1 /* 2 * Copyright © 2006-2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/time.h> 25 26 #include "hsw_ips.h" 27 #include "i915_reg.h" 28 #include "intel_atomic.h" 29 #include "intel_atomic_plane.h" 30 #include "intel_audio.h" 31 #include "intel_bw.h" 32 #include "intel_cdclk.h" 33 #include "intel_crtc.h" 34 #include "intel_de.h" 35 #include "intel_display_types.h" 36 #include "intel_mchbar_regs.h" 37 #include "intel_pci_config.h" 38 #include "intel_pcode.h" 39 #include "intel_psr.h" 40 #include "intel_vdsc.h" 41 #include "vlv_sideband.h" 42 43 /** 44 * DOC: CDCLK / RAWCLK 45 * 46 * The display engine uses several different clocks to do its work. There 47 * are two main clocks involved that aren't directly related to the actual 48 * pixel clock or any symbol/bit clock of the actual output port. These 49 * are the core display clock (CDCLK) and RAWCLK. 50 * 51 * CDCLK clocks most of the display pipe logic, and thus its frequency 52 * must be high enough to support the rate at which pixels are flowing 53 * through the pipes. Downscaling must also be accounted as that increases 54 * the effective pixel rate. 55 * 56 * On several platforms the CDCLK frequency can be changed dynamically 57 * to minimize power consumption for a given display configuration. 58 * Typically changes to the CDCLK frequency require all the display pipes 59 * to be shut down while the frequency is being changed. 60 * 61 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. 62 * DMC will not change the active CDCLK frequency however, so that part 63 * will still be performed by the driver directly. 64 * 65 * RAWCLK is a fixed frequency clock, often used by various auxiliary 66 * blocks such as AUX CH or backlight PWM. Hence the only thing we 67 * really need to know about RAWCLK is its frequency so that various 68 * dividers can be programmed correctly. 69 */ 70 71 struct intel_cdclk_funcs { 72 void (*get_cdclk)(struct drm_i915_private *i915, 73 struct intel_cdclk_config *cdclk_config); 74 void (*set_cdclk)(struct drm_i915_private *i915, 75 const struct intel_cdclk_config *cdclk_config, 76 enum pipe pipe); 77 int (*modeset_calc_cdclk)(struct intel_cdclk_state *state); 78 u8 (*calc_voltage_level)(int cdclk); 79 }; 80 81 void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv, 82 struct intel_cdclk_config *cdclk_config) 83 { 84 dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config); 85 } 86 87 static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv, 88 const struct intel_cdclk_config *cdclk_config, 89 enum pipe pipe) 90 { 91 dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe); 92 } 93 94 static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv, 95 struct intel_cdclk_state *cdclk_config) 96 { 97 return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config); 98 } 99 100 static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv, 101 int cdclk) 102 { 103 return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk); 104 } 105 106 static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv, 107 struct intel_cdclk_config *cdclk_config) 108 { 109 cdclk_config->cdclk = 133333; 110 } 111 112 static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv, 113 struct intel_cdclk_config *cdclk_config) 114 { 115 cdclk_config->cdclk = 200000; 116 } 117 118 static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv, 119 struct intel_cdclk_config *cdclk_config) 120 { 121 cdclk_config->cdclk = 266667; 122 } 123 124 static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv, 125 struct intel_cdclk_config *cdclk_config) 126 { 127 cdclk_config->cdclk = 333333; 128 } 129 130 static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv, 131 struct intel_cdclk_config *cdclk_config) 132 { 133 cdclk_config->cdclk = 400000; 134 } 135 136 static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv, 137 struct intel_cdclk_config *cdclk_config) 138 { 139 cdclk_config->cdclk = 450000; 140 } 141 142 static void i85x_get_cdclk(struct drm_i915_private *dev_priv, 143 struct intel_cdclk_config *cdclk_config) 144 { 145 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 146 u16 hpllcc = 0; 147 148 /* 149 * 852GM/852GMV only supports 133 MHz and the HPLLCC 150 * encoding is different :( 151 * FIXME is this the right way to detect 852GM/852GMV? 152 */ 153 if (pdev->revision == 0x1) { 154 cdclk_config->cdclk = 133333; 155 return; 156 } 157 158 pci_bus_read_config_word(pdev->bus, 159 PCI_DEVFN(0, 3), HPLLCC, &hpllcc); 160 161 /* Assume that the hardware is in the high speed state. This 162 * should be the default. 163 */ 164 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 165 case GC_CLOCK_133_200: 166 case GC_CLOCK_133_200_2: 167 case GC_CLOCK_100_200: 168 cdclk_config->cdclk = 200000; 169 break; 170 case GC_CLOCK_166_250: 171 cdclk_config->cdclk = 250000; 172 break; 173 case GC_CLOCK_100_133: 174 cdclk_config->cdclk = 133333; 175 break; 176 case GC_CLOCK_133_266: 177 case GC_CLOCK_133_266_2: 178 case GC_CLOCK_166_266: 179 cdclk_config->cdclk = 266667; 180 break; 181 } 182 } 183 184 static void i915gm_get_cdclk(struct drm_i915_private *dev_priv, 185 struct intel_cdclk_config *cdclk_config) 186 { 187 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 188 u16 gcfgc = 0; 189 190 pci_read_config_word(pdev, GCFGC, &gcfgc); 191 192 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 193 cdclk_config->cdclk = 133333; 194 return; 195 } 196 197 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 198 case GC_DISPLAY_CLOCK_333_320_MHZ: 199 cdclk_config->cdclk = 333333; 200 break; 201 default: 202 case GC_DISPLAY_CLOCK_190_200_MHZ: 203 cdclk_config->cdclk = 190000; 204 break; 205 } 206 } 207 208 static void i945gm_get_cdclk(struct drm_i915_private *dev_priv, 209 struct intel_cdclk_config *cdclk_config) 210 { 211 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 212 u16 gcfgc = 0; 213 214 pci_read_config_word(pdev, GCFGC, &gcfgc); 215 216 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 217 cdclk_config->cdclk = 133333; 218 return; 219 } 220 221 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 222 case GC_DISPLAY_CLOCK_333_320_MHZ: 223 cdclk_config->cdclk = 320000; 224 break; 225 default: 226 case GC_DISPLAY_CLOCK_190_200_MHZ: 227 cdclk_config->cdclk = 200000; 228 break; 229 } 230 } 231 232 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv) 233 { 234 static const unsigned int blb_vco[8] = { 235 [0] = 3200000, 236 [1] = 4000000, 237 [2] = 5333333, 238 [3] = 4800000, 239 [4] = 6400000, 240 }; 241 static const unsigned int pnv_vco[8] = { 242 [0] = 3200000, 243 [1] = 4000000, 244 [2] = 5333333, 245 [3] = 4800000, 246 [4] = 2666667, 247 }; 248 static const unsigned int cl_vco[8] = { 249 [0] = 3200000, 250 [1] = 4000000, 251 [2] = 5333333, 252 [3] = 6400000, 253 [4] = 3333333, 254 [5] = 3566667, 255 [6] = 4266667, 256 }; 257 static const unsigned int elk_vco[8] = { 258 [0] = 3200000, 259 [1] = 4000000, 260 [2] = 5333333, 261 [3] = 4800000, 262 }; 263 static const unsigned int ctg_vco[8] = { 264 [0] = 3200000, 265 [1] = 4000000, 266 [2] = 5333333, 267 [3] = 6400000, 268 [4] = 2666667, 269 [5] = 4266667, 270 }; 271 const unsigned int *vco_table; 272 unsigned int vco; 273 u8 tmp = 0; 274 275 /* FIXME other chipsets? */ 276 if (IS_GM45(dev_priv)) 277 vco_table = ctg_vco; 278 else if (IS_G45(dev_priv)) 279 vco_table = elk_vco; 280 else if (IS_I965GM(dev_priv)) 281 vco_table = cl_vco; 282 else if (IS_PINEVIEW(dev_priv)) 283 vco_table = pnv_vco; 284 else if (IS_G33(dev_priv)) 285 vco_table = blb_vco; 286 else 287 return 0; 288 289 tmp = intel_de_read(dev_priv, 290 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO); 291 292 vco = vco_table[tmp & 0x7]; 293 if (vco == 0) 294 drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n", 295 tmp); 296 else 297 drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco); 298 299 return vco; 300 } 301 302 static void g33_get_cdclk(struct drm_i915_private *dev_priv, 303 struct intel_cdclk_config *cdclk_config) 304 { 305 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 306 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; 307 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; 308 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; 309 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; 310 const u8 *div_table; 311 unsigned int cdclk_sel; 312 u16 tmp = 0; 313 314 cdclk_config->vco = intel_hpll_vco(dev_priv); 315 316 pci_read_config_word(pdev, GCFGC, &tmp); 317 318 cdclk_sel = (tmp >> 4) & 0x7; 319 320 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 321 goto fail; 322 323 switch (cdclk_config->vco) { 324 case 3200000: 325 div_table = div_3200; 326 break; 327 case 4000000: 328 div_table = div_4000; 329 break; 330 case 4800000: 331 div_table = div_4800; 332 break; 333 case 5333333: 334 div_table = div_5333; 335 break; 336 default: 337 goto fail; 338 } 339 340 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 341 div_table[cdclk_sel]); 342 return; 343 344 fail: 345 drm_err(&dev_priv->drm, 346 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", 347 cdclk_config->vco, tmp); 348 cdclk_config->cdclk = 190476; 349 } 350 351 static void pnv_get_cdclk(struct drm_i915_private *dev_priv, 352 struct intel_cdclk_config *cdclk_config) 353 { 354 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 355 u16 gcfgc = 0; 356 357 pci_read_config_word(pdev, GCFGC, &gcfgc); 358 359 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 360 case GC_DISPLAY_CLOCK_267_MHZ_PNV: 361 cdclk_config->cdclk = 266667; 362 break; 363 case GC_DISPLAY_CLOCK_333_MHZ_PNV: 364 cdclk_config->cdclk = 333333; 365 break; 366 case GC_DISPLAY_CLOCK_444_MHZ_PNV: 367 cdclk_config->cdclk = 444444; 368 break; 369 case GC_DISPLAY_CLOCK_200_MHZ_PNV: 370 cdclk_config->cdclk = 200000; 371 break; 372 default: 373 drm_err(&dev_priv->drm, 374 "Unknown pnv display core clock 0x%04x\n", gcfgc); 375 fallthrough; 376 case GC_DISPLAY_CLOCK_133_MHZ_PNV: 377 cdclk_config->cdclk = 133333; 378 break; 379 case GC_DISPLAY_CLOCK_167_MHZ_PNV: 380 cdclk_config->cdclk = 166667; 381 break; 382 } 383 } 384 385 static void i965gm_get_cdclk(struct drm_i915_private *dev_priv, 386 struct intel_cdclk_config *cdclk_config) 387 { 388 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 389 static const u8 div_3200[] = { 16, 10, 8 }; 390 static const u8 div_4000[] = { 20, 12, 10 }; 391 static const u8 div_5333[] = { 24, 16, 14 }; 392 const u8 *div_table; 393 unsigned int cdclk_sel; 394 u16 tmp = 0; 395 396 cdclk_config->vco = intel_hpll_vco(dev_priv); 397 398 pci_read_config_word(pdev, GCFGC, &tmp); 399 400 cdclk_sel = ((tmp >> 8) & 0x1f) - 1; 401 402 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 403 goto fail; 404 405 switch (cdclk_config->vco) { 406 case 3200000: 407 div_table = div_3200; 408 break; 409 case 4000000: 410 div_table = div_4000; 411 break; 412 case 5333333: 413 div_table = div_5333; 414 break; 415 default: 416 goto fail; 417 } 418 419 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, 420 div_table[cdclk_sel]); 421 return; 422 423 fail: 424 drm_err(&dev_priv->drm, 425 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", 426 cdclk_config->vco, tmp); 427 cdclk_config->cdclk = 200000; 428 } 429 430 static void gm45_get_cdclk(struct drm_i915_private *dev_priv, 431 struct intel_cdclk_config *cdclk_config) 432 { 433 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 434 unsigned int cdclk_sel; 435 u16 tmp = 0; 436 437 cdclk_config->vco = intel_hpll_vco(dev_priv); 438 439 pci_read_config_word(pdev, GCFGC, &tmp); 440 441 cdclk_sel = (tmp >> 12) & 0x1; 442 443 switch (cdclk_config->vco) { 444 case 2666667: 445 case 4000000: 446 case 5333333: 447 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222; 448 break; 449 case 3200000: 450 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571; 451 break; 452 default: 453 drm_err(&dev_priv->drm, 454 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", 455 cdclk_config->vco, tmp); 456 cdclk_config->cdclk = 222222; 457 break; 458 } 459 } 460 461 static void hsw_get_cdclk(struct drm_i915_private *dev_priv, 462 struct intel_cdclk_config *cdclk_config) 463 { 464 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL); 465 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 466 467 if (lcpll & LCPLL_CD_SOURCE_FCLK) 468 cdclk_config->cdclk = 800000; 469 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) 470 cdclk_config->cdclk = 450000; 471 else if (freq == LCPLL_CLK_FREQ_450) 472 cdclk_config->cdclk = 450000; 473 else if (IS_HASWELL_ULT(dev_priv)) 474 cdclk_config->cdclk = 337500; 475 else 476 cdclk_config->cdclk = 540000; 477 } 478 479 static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) 480 { 481 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 482 333333 : 320000; 483 484 /* 485 * We seem to get an unstable or solid color picture at 200MHz. 486 * Not sure what's wrong. For now use 200MHz only when all pipes 487 * are off. 488 */ 489 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320) 490 return 400000; 491 else if (min_cdclk > 266667) 492 return freq_320; 493 else if (min_cdclk > 0) 494 return 266667; 495 else 496 return 200000; 497 } 498 499 static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk) 500 { 501 if (IS_VALLEYVIEW(dev_priv)) { 502 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ 503 return 2; 504 else if (cdclk >= 266667) 505 return 1; 506 else 507 return 0; 508 } else { 509 /* 510 * Specs are full of misinformation, but testing on actual 511 * hardware has shown that we just need to write the desired 512 * CCK divider into the Punit register. 513 */ 514 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; 515 } 516 } 517 518 static void vlv_get_cdclk(struct drm_i915_private *dev_priv, 519 struct intel_cdclk_config *cdclk_config) 520 { 521 u32 val; 522 523 vlv_iosf_sb_get(dev_priv, 524 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 525 526 cdclk_config->vco = vlv_get_hpll_vco(dev_priv); 527 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk", 528 CCK_DISPLAY_CLOCK_CONTROL, 529 cdclk_config->vco); 530 531 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 532 533 vlv_iosf_sb_put(dev_priv, 534 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 535 536 if (IS_VALLEYVIEW(dev_priv)) 537 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >> 538 DSPFREQGUAR_SHIFT; 539 else 540 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> 541 DSPFREQGUAR_SHIFT_CHV; 542 } 543 544 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) 545 { 546 unsigned int credits, default_credits; 547 548 if (IS_CHERRYVIEW(dev_priv)) 549 default_credits = PFI_CREDIT(12); 550 else 551 default_credits = PFI_CREDIT(8); 552 553 if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) { 554 /* CHV suggested value is 31 or 63 */ 555 if (IS_CHERRYVIEW(dev_priv)) 556 credits = PFI_CREDIT_63; 557 else 558 credits = PFI_CREDIT(15); 559 } else { 560 credits = default_credits; 561 } 562 563 /* 564 * WA - write default credits before re-programming 565 * FIXME: should we also set the resend bit here? 566 */ 567 intel_de_write(dev_priv, GCI_CONTROL, 568 VGA_FAST_MODE_DISABLE | default_credits); 569 570 intel_de_write(dev_priv, GCI_CONTROL, 571 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND); 572 573 /* 574 * FIXME is this guaranteed to clear 575 * immediately or should we poll for it? 576 */ 577 drm_WARN_ON(&dev_priv->drm, 578 intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND); 579 } 580 581 static void vlv_set_cdclk(struct drm_i915_private *dev_priv, 582 const struct intel_cdclk_config *cdclk_config, 583 enum pipe pipe) 584 { 585 int cdclk = cdclk_config->cdclk; 586 u32 val, cmd = cdclk_config->voltage_level; 587 intel_wakeref_t wakeref; 588 589 switch (cdclk) { 590 case 400000: 591 case 333333: 592 case 320000: 593 case 266667: 594 case 200000: 595 break; 596 default: 597 MISSING_CASE(cdclk); 598 return; 599 } 600 601 /* There are cases where we can end up here with power domains 602 * off and a CDCLK frequency other than the minimum, like when 603 * issuing a modeset without actually changing any display after 604 * a system suspend. So grab the display core domain, which covers 605 * the HW blocks needed for the following programming. 606 */ 607 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); 608 609 vlv_iosf_sb_get(dev_priv, 610 BIT(VLV_IOSF_SB_CCK) | 611 BIT(VLV_IOSF_SB_BUNIT) | 612 BIT(VLV_IOSF_SB_PUNIT)); 613 614 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 615 val &= ~DSPFREQGUAR_MASK; 616 val |= (cmd << DSPFREQGUAR_SHIFT); 617 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 618 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 619 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 620 50)) { 621 drm_err(&dev_priv->drm, 622 "timed out waiting for CDclk change\n"); 623 } 624 625 if (cdclk == 400000) { 626 u32 divider; 627 628 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, 629 cdclk) - 1; 630 631 /* adjust cdclk divider */ 632 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); 633 val &= ~CCK_FREQUENCY_VALUES; 634 val |= divider; 635 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); 636 637 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & 638 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 639 50)) 640 drm_err(&dev_priv->drm, 641 "timed out waiting for CDclk change\n"); 642 } 643 644 /* adjust self-refresh exit latency value */ 645 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); 646 val &= ~0x7f; 647 648 /* 649 * For high bandwidth configs, we set a higher latency in the bunit 650 * so that the core display fetch happens in time to avoid underruns. 651 */ 652 if (cdclk == 400000) 653 val |= 4500 / 250; /* 4.5 usec */ 654 else 655 val |= 3000 / 250; /* 3.0 usec */ 656 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); 657 658 vlv_iosf_sb_put(dev_priv, 659 BIT(VLV_IOSF_SB_CCK) | 660 BIT(VLV_IOSF_SB_BUNIT) | 661 BIT(VLV_IOSF_SB_PUNIT)); 662 663 intel_update_cdclk(dev_priv); 664 665 vlv_program_pfi_credits(dev_priv); 666 667 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); 668 } 669 670 static void chv_set_cdclk(struct drm_i915_private *dev_priv, 671 const struct intel_cdclk_config *cdclk_config, 672 enum pipe pipe) 673 { 674 int cdclk = cdclk_config->cdclk; 675 u32 val, cmd = cdclk_config->voltage_level; 676 intel_wakeref_t wakeref; 677 678 switch (cdclk) { 679 case 333333: 680 case 320000: 681 case 266667: 682 case 200000: 683 break; 684 default: 685 MISSING_CASE(cdclk); 686 return; 687 } 688 689 /* There are cases where we can end up here with power domains 690 * off and a CDCLK frequency other than the minimum, like when 691 * issuing a modeset without actually changing any display after 692 * a system suspend. So grab the display core domain, which covers 693 * the HW blocks needed for the following programming. 694 */ 695 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); 696 697 vlv_punit_get(dev_priv); 698 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 699 val &= ~DSPFREQGUAR_MASK_CHV; 700 val |= (cmd << DSPFREQGUAR_SHIFT_CHV); 701 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 702 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 703 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 704 50)) { 705 drm_err(&dev_priv->drm, 706 "timed out waiting for CDclk change\n"); 707 } 708 709 vlv_punit_put(dev_priv); 710 711 intel_update_cdclk(dev_priv); 712 713 vlv_program_pfi_credits(dev_priv); 714 715 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); 716 } 717 718 static int bdw_calc_cdclk(int min_cdclk) 719 { 720 if (min_cdclk > 540000) 721 return 675000; 722 else if (min_cdclk > 450000) 723 return 540000; 724 else if (min_cdclk > 337500) 725 return 450000; 726 else 727 return 337500; 728 } 729 730 static u8 bdw_calc_voltage_level(int cdclk) 731 { 732 switch (cdclk) { 733 default: 734 case 337500: 735 return 2; 736 case 450000: 737 return 0; 738 case 540000: 739 return 1; 740 case 675000: 741 return 3; 742 } 743 } 744 745 static void bdw_get_cdclk(struct drm_i915_private *dev_priv, 746 struct intel_cdclk_config *cdclk_config) 747 { 748 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL); 749 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 750 751 if (lcpll & LCPLL_CD_SOURCE_FCLK) 752 cdclk_config->cdclk = 800000; 753 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) 754 cdclk_config->cdclk = 450000; 755 else if (freq == LCPLL_CLK_FREQ_450) 756 cdclk_config->cdclk = 450000; 757 else if (freq == LCPLL_CLK_FREQ_54O_BDW) 758 cdclk_config->cdclk = 540000; 759 else if (freq == LCPLL_CLK_FREQ_337_5_BDW) 760 cdclk_config->cdclk = 337500; 761 else 762 cdclk_config->cdclk = 675000; 763 764 /* 765 * Can't read this out :( Let's assume it's 766 * at least what the CDCLK frequency requires. 767 */ 768 cdclk_config->voltage_level = 769 bdw_calc_voltage_level(cdclk_config->cdclk); 770 } 771 772 static u32 bdw_cdclk_freq_sel(int cdclk) 773 { 774 switch (cdclk) { 775 default: 776 MISSING_CASE(cdclk); 777 fallthrough; 778 case 337500: 779 return LCPLL_CLK_FREQ_337_5_BDW; 780 case 450000: 781 return LCPLL_CLK_FREQ_450; 782 case 540000: 783 return LCPLL_CLK_FREQ_54O_BDW; 784 case 675000: 785 return LCPLL_CLK_FREQ_675_BDW; 786 } 787 } 788 789 static void bdw_set_cdclk(struct drm_i915_private *dev_priv, 790 const struct intel_cdclk_config *cdclk_config, 791 enum pipe pipe) 792 { 793 int cdclk = cdclk_config->cdclk; 794 int ret; 795 796 if (drm_WARN(&dev_priv->drm, 797 (intel_de_read(dev_priv, LCPLL_CTL) & 798 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | 799 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | 800 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | 801 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, 802 "trying to change cdclk frequency with cdclk not enabled\n")) 803 return; 804 805 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); 806 if (ret) { 807 drm_err(&dev_priv->drm, 808 "failed to inform pcode about cdclk change\n"); 809 return; 810 } 811 812 intel_de_rmw(dev_priv, LCPLL_CTL, 813 0, LCPLL_CD_SOURCE_FCLK); 814 815 /* 816 * According to the spec, it should be enough to poll for this 1 us. 817 * However, extensive testing shows that this can take longer. 818 */ 819 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) & 820 LCPLL_CD_SOURCE_FCLK_DONE, 100)) 821 drm_err(&dev_priv->drm, "Switching to FCLK failed\n"); 822 823 intel_de_rmw(dev_priv, LCPLL_CTL, 824 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk)); 825 826 intel_de_rmw(dev_priv, LCPLL_CTL, 827 LCPLL_CD_SOURCE_FCLK, 0); 828 829 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) & 830 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 831 drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n"); 832 833 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ, 834 cdclk_config->voltage_level); 835 836 intel_de_write(dev_priv, CDCLK_FREQ, 837 DIV_ROUND_CLOSEST(cdclk, 1000) - 1); 838 839 intel_update_cdclk(dev_priv); 840 } 841 842 static int skl_calc_cdclk(int min_cdclk, int vco) 843 { 844 if (vco == 8640000) { 845 if (min_cdclk > 540000) 846 return 617143; 847 else if (min_cdclk > 432000) 848 return 540000; 849 else if (min_cdclk > 308571) 850 return 432000; 851 else 852 return 308571; 853 } else { 854 if (min_cdclk > 540000) 855 return 675000; 856 else if (min_cdclk > 450000) 857 return 540000; 858 else if (min_cdclk > 337500) 859 return 450000; 860 else 861 return 337500; 862 } 863 } 864 865 static u8 skl_calc_voltage_level(int cdclk) 866 { 867 if (cdclk > 540000) 868 return 3; 869 else if (cdclk > 450000) 870 return 2; 871 else if (cdclk > 337500) 872 return 1; 873 else 874 return 0; 875 } 876 877 static void skl_dpll0_update(struct drm_i915_private *dev_priv, 878 struct intel_cdclk_config *cdclk_config) 879 { 880 u32 val; 881 882 cdclk_config->ref = 24000; 883 cdclk_config->vco = 0; 884 885 val = intel_de_read(dev_priv, LCPLL1_CTL); 886 if ((val & LCPLL_PLL_ENABLE) == 0) 887 return; 888 889 if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0)) 890 return; 891 892 val = intel_de_read(dev_priv, DPLL_CTRL1); 893 894 if (drm_WARN_ON(&dev_priv->drm, 895 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 896 DPLL_CTRL1_SSC(SKL_DPLL0) | 897 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != 898 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) 899 return; 900 901 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { 902 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): 903 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): 904 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): 905 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): 906 cdclk_config->vco = 8100000; 907 break; 908 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): 909 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): 910 cdclk_config->vco = 8640000; 911 break; 912 default: 913 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 914 break; 915 } 916 } 917 918 static void skl_get_cdclk(struct drm_i915_private *dev_priv, 919 struct intel_cdclk_config *cdclk_config) 920 { 921 u32 cdctl; 922 923 skl_dpll0_update(dev_priv, cdclk_config); 924 925 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref; 926 927 if (cdclk_config->vco == 0) 928 goto out; 929 930 cdctl = intel_de_read(dev_priv, CDCLK_CTL); 931 932 if (cdclk_config->vco == 8640000) { 933 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 934 case CDCLK_FREQ_450_432: 935 cdclk_config->cdclk = 432000; 936 break; 937 case CDCLK_FREQ_337_308: 938 cdclk_config->cdclk = 308571; 939 break; 940 case CDCLK_FREQ_540: 941 cdclk_config->cdclk = 540000; 942 break; 943 case CDCLK_FREQ_675_617: 944 cdclk_config->cdclk = 617143; 945 break; 946 default: 947 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 948 break; 949 } 950 } else { 951 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 952 case CDCLK_FREQ_450_432: 953 cdclk_config->cdclk = 450000; 954 break; 955 case CDCLK_FREQ_337_308: 956 cdclk_config->cdclk = 337500; 957 break; 958 case CDCLK_FREQ_540: 959 cdclk_config->cdclk = 540000; 960 break; 961 case CDCLK_FREQ_675_617: 962 cdclk_config->cdclk = 675000; 963 break; 964 default: 965 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 966 break; 967 } 968 } 969 970 out: 971 /* 972 * Can't read this out :( Let's assume it's 973 * at least what the CDCLK frequency requires. 974 */ 975 cdclk_config->voltage_level = 976 skl_calc_voltage_level(cdclk_config->cdclk); 977 } 978 979 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ 980 static int skl_cdclk_decimal(int cdclk) 981 { 982 return DIV_ROUND_CLOSEST(cdclk - 1000, 500); 983 } 984 985 static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, 986 int vco) 987 { 988 bool changed = dev_priv->skl_preferred_vco_freq != vco; 989 990 dev_priv->skl_preferred_vco_freq = vco; 991 992 if (changed) 993 intel_update_max_cdclk(dev_priv); 994 } 995 996 static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco) 997 { 998 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000); 999 1000 /* 1001 * We always enable DPLL0 with the lowest link rate possible, but still 1002 * taking into account the VCO required to operate the eDP panel at the 1003 * desired frequency. The usual DP link rates operate with a VCO of 1004 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. 1005 * The modeset code is responsible for the selection of the exact link 1006 * rate later on, with the constraint of choosing a frequency that 1007 * works with vco. 1008 */ 1009 if (vco == 8640000) 1010 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0); 1011 else 1012 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0); 1013 } 1014 1015 static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco) 1016 { 1017 intel_de_rmw(dev_priv, DPLL_CTRL1, 1018 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 1019 DPLL_CTRL1_SSC(SKL_DPLL0) | 1020 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0), 1021 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) | 1022 skl_dpll0_link_rate(dev_priv, vco)); 1023 intel_de_posting_read(dev_priv, DPLL_CTRL1); 1024 1025 intel_de_rmw(dev_priv, LCPLL1_CTL, 1026 0, LCPLL_PLL_ENABLE); 1027 1028 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5)) 1029 drm_err(&dev_priv->drm, "DPLL0 not locked\n"); 1030 1031 dev_priv->display.cdclk.hw.vco = vco; 1032 1033 /* We'll want to keep using the current vco from now on. */ 1034 skl_set_preferred_cdclk_vco(dev_priv, vco); 1035 } 1036 1037 static void skl_dpll0_disable(struct drm_i915_private *dev_priv) 1038 { 1039 intel_de_rmw(dev_priv, LCPLL1_CTL, 1040 LCPLL_PLL_ENABLE, 0); 1041 1042 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1)) 1043 drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n"); 1044 1045 dev_priv->display.cdclk.hw.vco = 0; 1046 } 1047 1048 static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv, 1049 int cdclk, int vco) 1050 { 1051 switch (cdclk) { 1052 default: 1053 drm_WARN_ON(&dev_priv->drm, 1054 cdclk != dev_priv->display.cdclk.hw.bypass); 1055 drm_WARN_ON(&dev_priv->drm, vco != 0); 1056 fallthrough; 1057 case 308571: 1058 case 337500: 1059 return CDCLK_FREQ_337_308; 1060 case 450000: 1061 case 432000: 1062 return CDCLK_FREQ_450_432; 1063 case 540000: 1064 return CDCLK_FREQ_540; 1065 case 617143: 1066 case 675000: 1067 return CDCLK_FREQ_675_617; 1068 } 1069 } 1070 1071 static void skl_set_cdclk(struct drm_i915_private *dev_priv, 1072 const struct intel_cdclk_config *cdclk_config, 1073 enum pipe pipe) 1074 { 1075 int cdclk = cdclk_config->cdclk; 1076 int vco = cdclk_config->vco; 1077 u32 freq_select, cdclk_ctl; 1078 int ret; 1079 1080 /* 1081 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are 1082 * unsupported on SKL. In theory this should never happen since only 1083 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not 1084 * supported on SKL either, see the above WA. WARN whenever trying to 1085 * use the corresponding VCO freq as that always leads to using the 1086 * minimum 308MHz CDCLK. 1087 */ 1088 drm_WARN_ON_ONCE(&dev_priv->drm, 1089 IS_SKYLAKE(dev_priv) && vco == 8640000); 1090 1091 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1092 SKL_CDCLK_PREPARE_FOR_CHANGE, 1093 SKL_CDCLK_READY_FOR_CHANGE, 1094 SKL_CDCLK_READY_FOR_CHANGE, 3); 1095 if (ret) { 1096 drm_err(&dev_priv->drm, 1097 "Failed to inform PCU about cdclk change (%d)\n", ret); 1098 return; 1099 } 1100 1101 freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco); 1102 1103 if (dev_priv->display.cdclk.hw.vco != 0 && 1104 dev_priv->display.cdclk.hw.vco != vco) 1105 skl_dpll0_disable(dev_priv); 1106 1107 cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL); 1108 1109 if (dev_priv->display.cdclk.hw.vco != vco) { 1110 /* Wa Display #1183: skl,kbl,cfl */ 1111 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1112 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1113 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1114 } 1115 1116 /* Wa Display #1183: skl,kbl,cfl */ 1117 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; 1118 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1119 intel_de_posting_read(dev_priv, CDCLK_CTL); 1120 1121 if (dev_priv->display.cdclk.hw.vco != vco) 1122 skl_dpll0_enable(dev_priv, vco); 1123 1124 /* Wa Display #1183: skl,kbl,cfl */ 1125 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1126 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1127 1128 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1129 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1130 1131 /* Wa Display #1183: skl,kbl,cfl */ 1132 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; 1133 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl); 1134 intel_de_posting_read(dev_priv, CDCLK_CTL); 1135 1136 /* inform PCU of the change */ 1137 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1138 cdclk_config->voltage_level); 1139 1140 intel_update_cdclk(dev_priv); 1141 } 1142 1143 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv) 1144 { 1145 u32 cdctl, expected; 1146 1147 /* 1148 * check if the pre-os initialized the display 1149 * There is SWF18 scratchpad register defined which is set by the 1150 * pre-os which can be used by the OS drivers to check the status 1151 */ 1152 if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0) 1153 goto sanitize; 1154 1155 intel_update_cdclk(dev_priv); 1156 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK"); 1157 1158 /* Is PLL enabled and locked ? */ 1159 if (dev_priv->display.cdclk.hw.vco == 0 || 1160 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass) 1161 goto sanitize; 1162 1163 /* DPLL okay; verify the cdclock 1164 * 1165 * Noticed in some instances that the freq selection is correct but 1166 * decimal part is programmed wrong from BIOS where pre-os does not 1167 * enable display. Verify the same as well. 1168 */ 1169 cdctl = intel_de_read(dev_priv, CDCLK_CTL); 1170 expected = (cdctl & CDCLK_FREQ_SEL_MASK) | 1171 skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk); 1172 if (cdctl == expected) 1173 /* All well; nothing to sanitize */ 1174 return; 1175 1176 sanitize: 1177 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n"); 1178 1179 /* force cdclk programming */ 1180 dev_priv->display.cdclk.hw.cdclk = 0; 1181 /* force full PLL disable + enable */ 1182 dev_priv->display.cdclk.hw.vco = -1; 1183 } 1184 1185 static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv) 1186 { 1187 struct intel_cdclk_config cdclk_config; 1188 1189 skl_sanitize_cdclk(dev_priv); 1190 1191 if (dev_priv->display.cdclk.hw.cdclk != 0 && 1192 dev_priv->display.cdclk.hw.vco != 0) { 1193 /* 1194 * Use the current vco as our initial 1195 * guess as to what the preferred vco is. 1196 */ 1197 if (dev_priv->skl_preferred_vco_freq == 0) 1198 skl_set_preferred_cdclk_vco(dev_priv, 1199 dev_priv->display.cdclk.hw.vco); 1200 return; 1201 } 1202 1203 cdclk_config = dev_priv->display.cdclk.hw; 1204 1205 cdclk_config.vco = dev_priv->skl_preferred_vco_freq; 1206 if (cdclk_config.vco == 0) 1207 cdclk_config.vco = 8100000; 1208 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco); 1209 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1210 1211 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 1212 } 1213 1214 static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv) 1215 { 1216 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw; 1217 1218 cdclk_config.cdclk = cdclk_config.bypass; 1219 cdclk_config.vco = 0; 1220 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk); 1221 1222 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 1223 } 1224 1225 struct intel_cdclk_vals { 1226 u32 cdclk; 1227 u16 refclk; 1228 u16 waveform; 1229 u8 divider; /* CD2X divider * 2 */ 1230 u8 ratio; 1231 }; 1232 1233 static const struct intel_cdclk_vals bxt_cdclk_table[] = { 1234 { .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 }, 1235 { .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 }, 1236 { .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 }, 1237 { .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 }, 1238 { .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 }, 1239 {} 1240 }; 1241 1242 static const struct intel_cdclk_vals glk_cdclk_table[] = { 1243 { .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 }, 1244 { .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 }, 1245 { .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 }, 1246 {} 1247 }; 1248 1249 static const struct intel_cdclk_vals icl_cdclk_table[] = { 1250 { .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 }, 1251 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 }, 1252 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, 1253 { .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 }, 1254 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, 1255 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, 1256 1257 { .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 }, 1258 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 }, 1259 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, 1260 { .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 }, 1261 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, 1262 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 }, 1263 1264 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 }, 1265 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 }, 1266 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, 1267 { .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 }, 1268 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, 1269 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, 1270 {} 1271 }; 1272 1273 static const struct intel_cdclk_vals rkl_cdclk_table[] = { 1274 { .refclk = 19200, .cdclk = 172800, .divider = 4, .ratio = 36 }, 1275 { .refclk = 19200, .cdclk = 192000, .divider = 4, .ratio = 40 }, 1276 { .refclk = 19200, .cdclk = 307200, .divider = 4, .ratio = 64 }, 1277 { .refclk = 19200, .cdclk = 326400, .divider = 8, .ratio = 136 }, 1278 { .refclk = 19200, .cdclk = 556800, .divider = 4, .ratio = 116 }, 1279 { .refclk = 19200, .cdclk = 652800, .divider = 4, .ratio = 136 }, 1280 1281 { .refclk = 24000, .cdclk = 180000, .divider = 4, .ratio = 30 }, 1282 { .refclk = 24000, .cdclk = 192000, .divider = 4, .ratio = 32 }, 1283 { .refclk = 24000, .cdclk = 312000, .divider = 4, .ratio = 52 }, 1284 { .refclk = 24000, .cdclk = 324000, .divider = 8, .ratio = 108 }, 1285 { .refclk = 24000, .cdclk = 552000, .divider = 4, .ratio = 92 }, 1286 { .refclk = 24000, .cdclk = 648000, .divider = 4, .ratio = 108 }, 1287 1288 { .refclk = 38400, .cdclk = 172800, .divider = 4, .ratio = 18 }, 1289 { .refclk = 38400, .cdclk = 192000, .divider = 4, .ratio = 20 }, 1290 { .refclk = 38400, .cdclk = 307200, .divider = 4, .ratio = 32 }, 1291 { .refclk = 38400, .cdclk = 326400, .divider = 8, .ratio = 68 }, 1292 { .refclk = 38400, .cdclk = 556800, .divider = 4, .ratio = 58 }, 1293 { .refclk = 38400, .cdclk = 652800, .divider = 4, .ratio = 68 }, 1294 {} 1295 }; 1296 1297 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = { 1298 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, 1299 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, 1300 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, 1301 1302 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, 1303 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, 1304 { .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 }, 1305 1306 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, 1307 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, 1308 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, 1309 {} 1310 }; 1311 1312 static const struct intel_cdclk_vals adlp_cdclk_table[] = { 1313 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 }, 1314 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 }, 1315 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, 1316 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, 1317 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, 1318 1319 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 }, 1320 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 }, 1321 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, 1322 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, 1323 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 }, 1324 1325 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 }, 1326 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 }, 1327 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, 1328 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, 1329 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, 1330 {} 1331 }; 1332 1333 static const struct intel_cdclk_vals rplu_cdclk_table[] = { 1334 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 }, 1335 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 }, 1336 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, 1337 { .refclk = 19200, .cdclk = 480000, .divider = 2, .ratio = 50 }, 1338 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, 1339 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, 1340 1341 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 }, 1342 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 }, 1343 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, 1344 { .refclk = 24000, .cdclk = 480000, .divider = 2, .ratio = 40 }, 1345 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, 1346 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 }, 1347 1348 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 }, 1349 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 }, 1350 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, 1351 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25 }, 1352 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, 1353 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, 1354 {} 1355 }; 1356 1357 static const struct intel_cdclk_vals dg2_cdclk_table[] = { 1358 { .refclk = 38400, .cdclk = 163200, .divider = 2, .ratio = 34, .waveform = 0x8888 }, 1359 { .refclk = 38400, .cdclk = 204000, .divider = 2, .ratio = 34, .waveform = 0x9248 }, 1360 { .refclk = 38400, .cdclk = 244800, .divider = 2, .ratio = 34, .waveform = 0xa4a4 }, 1361 { .refclk = 38400, .cdclk = 285600, .divider = 2, .ratio = 34, .waveform = 0xa54a }, 1362 { .refclk = 38400, .cdclk = 326400, .divider = 2, .ratio = 34, .waveform = 0xaaaa }, 1363 { .refclk = 38400, .cdclk = 367200, .divider = 2, .ratio = 34, .waveform = 0xad5a }, 1364 { .refclk = 38400, .cdclk = 408000, .divider = 2, .ratio = 34, .waveform = 0xb6b6 }, 1365 { .refclk = 38400, .cdclk = 448800, .divider = 2, .ratio = 34, .waveform = 0xdbb6 }, 1366 { .refclk = 38400, .cdclk = 489600, .divider = 2, .ratio = 34, .waveform = 0xeeee }, 1367 { .refclk = 38400, .cdclk = 530400, .divider = 2, .ratio = 34, .waveform = 0xf7de }, 1368 { .refclk = 38400, .cdclk = 571200, .divider = 2, .ratio = 34, .waveform = 0xfefe }, 1369 { .refclk = 38400, .cdclk = 612000, .divider = 2, .ratio = 34, .waveform = 0xfffe }, 1370 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0xffff }, 1371 {} 1372 }; 1373 1374 static const struct intel_cdclk_vals mtl_cdclk_table[] = { 1375 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 16, .waveform = 0xad5a }, 1376 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 16, .waveform = 0xb6b6 }, 1377 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16, .waveform = 0x0000 }, 1378 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25, .waveform = 0x0000 }, 1379 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29, .waveform = 0x0000 }, 1380 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0x0000 }, 1381 {} 1382 }; 1383 1384 static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) 1385 { 1386 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table; 1387 int i; 1388 1389 for (i = 0; table[i].refclk; i++) 1390 if (table[i].refclk == dev_priv->display.cdclk.hw.ref && 1391 table[i].cdclk >= min_cdclk) 1392 return table[i].cdclk; 1393 1394 drm_WARN(&dev_priv->drm, 1, 1395 "Cannot satisfy minimum cdclk %d with refclk %u\n", 1396 min_cdclk, dev_priv->display.cdclk.hw.ref); 1397 return 0; 1398 } 1399 1400 static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk) 1401 { 1402 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table; 1403 int i; 1404 1405 if (cdclk == dev_priv->display.cdclk.hw.bypass) 1406 return 0; 1407 1408 for (i = 0; table[i].refclk; i++) 1409 if (table[i].refclk == dev_priv->display.cdclk.hw.ref && 1410 table[i].cdclk == cdclk) 1411 return dev_priv->display.cdclk.hw.ref * table[i].ratio; 1412 1413 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n", 1414 cdclk, dev_priv->display.cdclk.hw.ref); 1415 return 0; 1416 } 1417 1418 static u8 bxt_calc_voltage_level(int cdclk) 1419 { 1420 return DIV_ROUND_UP(cdclk, 25000); 1421 } 1422 1423 static u8 icl_calc_voltage_level(int cdclk) 1424 { 1425 if (cdclk > 556800) 1426 return 2; 1427 else if (cdclk > 312000) 1428 return 1; 1429 else 1430 return 0; 1431 } 1432 1433 static u8 ehl_calc_voltage_level(int cdclk) 1434 { 1435 if (cdclk > 326400) 1436 return 3; 1437 else if (cdclk > 312000) 1438 return 2; 1439 else if (cdclk > 180000) 1440 return 1; 1441 else 1442 return 0; 1443 } 1444 1445 static u8 tgl_calc_voltage_level(int cdclk) 1446 { 1447 if (cdclk > 556800) 1448 return 3; 1449 else if (cdclk > 326400) 1450 return 2; 1451 else if (cdclk > 312000) 1452 return 1; 1453 else 1454 return 0; 1455 } 1456 1457 static u8 rplu_calc_voltage_level(int cdclk) 1458 { 1459 if (cdclk > 556800) 1460 return 3; 1461 else if (cdclk > 480000) 1462 return 2; 1463 else if (cdclk > 312000) 1464 return 1; 1465 else 1466 return 0; 1467 } 1468 1469 static void icl_readout_refclk(struct drm_i915_private *dev_priv, 1470 struct intel_cdclk_config *cdclk_config) 1471 { 1472 u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK; 1473 1474 switch (dssm) { 1475 default: 1476 MISSING_CASE(dssm); 1477 fallthrough; 1478 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: 1479 cdclk_config->ref = 24000; 1480 break; 1481 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: 1482 cdclk_config->ref = 19200; 1483 break; 1484 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: 1485 cdclk_config->ref = 38400; 1486 break; 1487 } 1488 } 1489 1490 static void bxt_de_pll_readout(struct drm_i915_private *dev_priv, 1491 struct intel_cdclk_config *cdclk_config) 1492 { 1493 u32 val, ratio; 1494 1495 if (IS_DG2(dev_priv)) 1496 cdclk_config->ref = 38400; 1497 else if (DISPLAY_VER(dev_priv) >= 11) 1498 icl_readout_refclk(dev_priv, cdclk_config); 1499 else 1500 cdclk_config->ref = 19200; 1501 1502 val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE); 1503 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || 1504 (val & BXT_DE_PLL_LOCK) == 0) { 1505 /* 1506 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but 1507 * setting it to zero is a way to signal that. 1508 */ 1509 cdclk_config->vco = 0; 1510 return; 1511 } 1512 1513 /* 1514 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register, 1515 * gen9lp had it in a separate PLL control register. 1516 */ 1517 if (DISPLAY_VER(dev_priv) >= 11) 1518 ratio = val & ICL_CDCLK_PLL_RATIO_MASK; 1519 else 1520 ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; 1521 1522 cdclk_config->vco = ratio * cdclk_config->ref; 1523 } 1524 1525 static void bxt_get_cdclk(struct drm_i915_private *dev_priv, 1526 struct intel_cdclk_config *cdclk_config) 1527 { 1528 u32 squash_ctl = 0; 1529 u32 divider; 1530 int div; 1531 1532 bxt_de_pll_readout(dev_priv, cdclk_config); 1533 1534 if (DISPLAY_VER(dev_priv) >= 12) 1535 cdclk_config->bypass = cdclk_config->ref / 2; 1536 else if (DISPLAY_VER(dev_priv) >= 11) 1537 cdclk_config->bypass = 50000; 1538 else 1539 cdclk_config->bypass = cdclk_config->ref; 1540 1541 if (cdclk_config->vco == 0) { 1542 cdclk_config->cdclk = cdclk_config->bypass; 1543 goto out; 1544 } 1545 1546 divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; 1547 1548 switch (divider) { 1549 case BXT_CDCLK_CD2X_DIV_SEL_1: 1550 div = 2; 1551 break; 1552 case BXT_CDCLK_CD2X_DIV_SEL_1_5: 1553 div = 3; 1554 break; 1555 case BXT_CDCLK_CD2X_DIV_SEL_2: 1556 div = 4; 1557 break; 1558 case BXT_CDCLK_CD2X_DIV_SEL_4: 1559 div = 8; 1560 break; 1561 default: 1562 MISSING_CASE(divider); 1563 return; 1564 } 1565 1566 if (HAS_CDCLK_SQUASH(dev_priv)) 1567 squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL); 1568 1569 if (squash_ctl & CDCLK_SQUASH_ENABLE) { 1570 u16 waveform; 1571 int size; 1572 1573 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1; 1574 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size); 1575 1576 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) * 1577 cdclk_config->vco, size * div); 1578 } else { 1579 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div); 1580 } 1581 1582 out: 1583 /* 1584 * Can't read this out :( Let's assume it's 1585 * at least what the CDCLK frequency requires. 1586 */ 1587 cdclk_config->voltage_level = 1588 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk); 1589 } 1590 1591 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv) 1592 { 1593 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0); 1594 1595 /* Timeout 200us */ 1596 if (intel_de_wait_for_clear(dev_priv, 1597 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1598 drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n"); 1599 1600 dev_priv->display.cdclk.hw.vco = 0; 1601 } 1602 1603 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco) 1604 { 1605 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref); 1606 1607 intel_de_rmw(dev_priv, BXT_DE_PLL_CTL, 1608 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio)); 1609 1610 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); 1611 1612 /* Timeout 200us */ 1613 if (intel_de_wait_for_set(dev_priv, 1614 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1615 drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n"); 1616 1617 dev_priv->display.cdclk.hw.vco = vco; 1618 } 1619 1620 static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv) 1621 { 1622 intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE, 1623 BXT_DE_PLL_PLL_ENABLE, 0); 1624 1625 /* Timeout 200us */ 1626 if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1627 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n"); 1628 1629 dev_priv->display.cdclk.hw.vco = 0; 1630 } 1631 1632 static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco) 1633 { 1634 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref); 1635 u32 val; 1636 1637 val = ICL_CDCLK_PLL_RATIO(ratio); 1638 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1639 1640 val |= BXT_DE_PLL_PLL_ENABLE; 1641 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1642 1643 /* Timeout 200us */ 1644 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1645 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n"); 1646 1647 dev_priv->display.cdclk.hw.vco = vco; 1648 } 1649 1650 static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco) 1651 { 1652 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref); 1653 u32 val; 1654 1655 /* Write PLL ratio without disabling */ 1656 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE; 1657 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1658 1659 /* Submit freq change request */ 1660 val |= BXT_DE_PLL_FREQ_REQ; 1661 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1662 1663 /* Timeout 200us */ 1664 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, 1665 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1)) 1666 drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n"); 1667 1668 val &= ~BXT_DE_PLL_FREQ_REQ; 1669 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val); 1670 1671 dev_priv->display.cdclk.hw.vco = vco; 1672 } 1673 1674 static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 1675 { 1676 if (DISPLAY_VER(dev_priv) >= 12) { 1677 if (pipe == INVALID_PIPE) 1678 return TGL_CDCLK_CD2X_PIPE_NONE; 1679 else 1680 return TGL_CDCLK_CD2X_PIPE(pipe); 1681 } else if (DISPLAY_VER(dev_priv) >= 11) { 1682 if (pipe == INVALID_PIPE) 1683 return ICL_CDCLK_CD2X_PIPE_NONE; 1684 else 1685 return ICL_CDCLK_CD2X_PIPE(pipe); 1686 } else { 1687 if (pipe == INVALID_PIPE) 1688 return BXT_CDCLK_CD2X_PIPE_NONE; 1689 else 1690 return BXT_CDCLK_CD2X_PIPE(pipe); 1691 } 1692 } 1693 1694 static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv, 1695 int cdclk, int vco) 1696 { 1697 /* cdclk = vco / 2 / div{1,1.5,2,4} */ 1698 switch (DIV_ROUND_CLOSEST(vco, cdclk)) { 1699 default: 1700 drm_WARN_ON(&dev_priv->drm, 1701 cdclk != dev_priv->display.cdclk.hw.bypass); 1702 drm_WARN_ON(&dev_priv->drm, vco != 0); 1703 fallthrough; 1704 case 2: 1705 return BXT_CDCLK_CD2X_DIV_SEL_1; 1706 case 3: 1707 return BXT_CDCLK_CD2X_DIV_SEL_1_5; 1708 case 4: 1709 return BXT_CDCLK_CD2X_DIV_SEL_2; 1710 case 8: 1711 return BXT_CDCLK_CD2X_DIV_SEL_4; 1712 } 1713 } 1714 1715 static u32 cdclk_squash_waveform(struct drm_i915_private *dev_priv, 1716 int cdclk) 1717 { 1718 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table; 1719 int i; 1720 1721 if (cdclk == dev_priv->display.cdclk.hw.bypass) 1722 return 0; 1723 1724 for (i = 0; table[i].refclk; i++) 1725 if (table[i].refclk == dev_priv->display.cdclk.hw.ref && 1726 table[i].cdclk == cdclk) 1727 return table[i].waveform; 1728 1729 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n", 1730 cdclk, dev_priv->display.cdclk.hw.ref); 1731 1732 return 0xffff; 1733 } 1734 1735 static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco) 1736 { 1737 if (i915->display.cdclk.hw.vco != 0 && 1738 i915->display.cdclk.hw.vco != vco) 1739 icl_cdclk_pll_disable(i915); 1740 1741 if (i915->display.cdclk.hw.vco != vco) 1742 icl_cdclk_pll_enable(i915, vco); 1743 } 1744 1745 static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco) 1746 { 1747 if (i915->display.cdclk.hw.vco != 0 && 1748 i915->display.cdclk.hw.vco != vco) 1749 bxt_de_pll_disable(i915); 1750 1751 if (i915->display.cdclk.hw.vco != vco) 1752 bxt_de_pll_enable(i915, vco); 1753 } 1754 1755 static void dg2_cdclk_squash_program(struct drm_i915_private *i915, 1756 u16 waveform) 1757 { 1758 u32 squash_ctl = 0; 1759 1760 if (waveform) 1761 squash_ctl = CDCLK_SQUASH_ENABLE | 1762 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform; 1763 1764 intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl); 1765 } 1766 1767 static bool cdclk_pll_is_unknown(unsigned int vco) 1768 { 1769 /* 1770 * Ensure driver does not take the crawl path for the 1771 * case when the vco is set to ~0 in the 1772 * sanitize path. 1773 */ 1774 return vco == ~0; 1775 } 1776 1777 static int cdclk_squash_divider(u16 waveform) 1778 { 1779 return hweight16(waveform ?: 0xffff); 1780 } 1781 1782 static bool cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private *i915, 1783 const struct intel_cdclk_config *old_cdclk_config, 1784 const struct intel_cdclk_config *new_cdclk_config, 1785 struct intel_cdclk_config *mid_cdclk_config) 1786 { 1787 u16 old_waveform, new_waveform, mid_waveform; 1788 int size = 16; 1789 int div = 2; 1790 1791 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */ 1792 if (cdclk_pll_is_unknown(old_cdclk_config->vco)) 1793 return false; 1794 1795 /* Return if both Squash and Crawl are not present */ 1796 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915)) 1797 return false; 1798 1799 old_waveform = cdclk_squash_waveform(i915, old_cdclk_config->cdclk); 1800 new_waveform = cdclk_squash_waveform(i915, new_cdclk_config->cdclk); 1801 1802 /* Return if Squash only or Crawl only is the desired action */ 1803 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 || 1804 old_cdclk_config->vco == new_cdclk_config->vco || 1805 old_waveform == new_waveform) 1806 return false; 1807 1808 *mid_cdclk_config = *new_cdclk_config; 1809 1810 /* 1811 * Populate the mid_cdclk_config accordingly. 1812 * - If moving to a higher cdclk, the desired action is squashing. 1813 * The mid cdclk config should have the new (squash) waveform. 1814 * - If moving to a lower cdclk, the desired action is crawling. 1815 * The mid cdclk config should have the new vco. 1816 */ 1817 1818 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) { 1819 mid_cdclk_config->vco = old_cdclk_config->vco; 1820 mid_waveform = new_waveform; 1821 } else { 1822 mid_cdclk_config->vco = new_cdclk_config->vco; 1823 mid_waveform = old_waveform; 1824 } 1825 1826 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) * 1827 mid_cdclk_config->vco, size * div); 1828 1829 /* make sure the mid clock came out sane */ 1830 1831 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk < 1832 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk)); 1833 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk > 1834 i915->display.cdclk.max_cdclk_freq); 1835 drm_WARN_ON(&i915->drm, cdclk_squash_waveform(i915, mid_cdclk_config->cdclk) != 1836 mid_waveform); 1837 1838 return true; 1839 } 1840 1841 static bool pll_enable_wa_needed(struct drm_i915_private *dev_priv) 1842 { 1843 return ((IS_DG2(dev_priv) || IS_METEORLAKE(dev_priv)) && 1844 dev_priv->display.cdclk.hw.vco > 0 && 1845 HAS_CDCLK_SQUASH(dev_priv)); 1846 } 1847 1848 static void _bxt_set_cdclk(struct drm_i915_private *dev_priv, 1849 const struct intel_cdclk_config *cdclk_config, 1850 enum pipe pipe) 1851 { 1852 int cdclk = cdclk_config->cdclk; 1853 int vco = cdclk_config->vco; 1854 u32 val; 1855 u16 waveform; 1856 int clock; 1857 1858 if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0 && 1859 !cdclk_pll_is_unknown(dev_priv->display.cdclk.hw.vco)) { 1860 if (dev_priv->display.cdclk.hw.vco != vco) 1861 adlp_cdclk_pll_crawl(dev_priv, vco); 1862 } else if (DISPLAY_VER(dev_priv) >= 11) { 1863 /* wa_15010685871: dg2, mtl */ 1864 if (pll_enable_wa_needed(dev_priv)) 1865 dg2_cdclk_squash_program(dev_priv, 0); 1866 1867 icl_cdclk_pll_update(dev_priv, vco); 1868 } else 1869 bxt_cdclk_pll_update(dev_priv, vco); 1870 1871 waveform = cdclk_squash_waveform(dev_priv, cdclk); 1872 1873 if (waveform) 1874 clock = vco / 2; 1875 else 1876 clock = cdclk; 1877 1878 if (HAS_CDCLK_SQUASH(dev_priv)) 1879 dg2_cdclk_squash_program(dev_priv, waveform); 1880 1881 val = bxt_cdclk_cd2x_div_sel(dev_priv, clock, vco) | 1882 bxt_cdclk_cd2x_pipe(dev_priv, pipe) | 1883 skl_cdclk_decimal(cdclk); 1884 1885 /* 1886 * Disable SSA Precharge when CD clock frequency < 500 MHz, 1887 * enable otherwise. 1888 */ 1889 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 1890 cdclk >= 500000) 1891 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 1892 intel_de_write(dev_priv, CDCLK_CTL, val); 1893 1894 if (pipe != INVALID_PIPE) 1895 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe)); 1896 } 1897 1898 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, 1899 const struct intel_cdclk_config *cdclk_config, 1900 enum pipe pipe) 1901 { 1902 struct intel_cdclk_config mid_cdclk_config; 1903 int cdclk = cdclk_config->cdclk; 1904 int ret = 0; 1905 1906 /* 1907 * Inform power controller of upcoming frequency change. 1908 * Display versions 14 and beyond do not follow the PUnit 1909 * mailbox communication, skip 1910 * this step. 1911 */ 1912 if (DISPLAY_VER(dev_priv) >= 14 || IS_DG2(dev_priv)) 1913 /* NOOP */; 1914 else if (DISPLAY_VER(dev_priv) >= 11) 1915 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1916 SKL_CDCLK_PREPARE_FOR_CHANGE, 1917 SKL_CDCLK_READY_FOR_CHANGE, 1918 SKL_CDCLK_READY_FOR_CHANGE, 3); 1919 else 1920 /* 1921 * BSpec requires us to wait up to 150usec, but that leads to 1922 * timeouts; the 2ms used here is based on experiment. 1923 */ 1924 ret = snb_pcode_write_timeout(&dev_priv->uncore, 1925 HSW_PCODE_DE_WRITE_FREQ_REQ, 1926 0x80000000, 150, 2); 1927 1928 if (ret) { 1929 drm_err(&dev_priv->drm, 1930 "Failed to inform PCU about cdclk change (err %d, freq %d)\n", 1931 ret, cdclk); 1932 return; 1933 } 1934 1935 if (cdclk_compute_crawl_and_squash_midpoint(dev_priv, &dev_priv->display.cdclk.hw, 1936 cdclk_config, &mid_cdclk_config)) { 1937 _bxt_set_cdclk(dev_priv, &mid_cdclk_config, pipe); 1938 _bxt_set_cdclk(dev_priv, cdclk_config, pipe); 1939 } else { 1940 _bxt_set_cdclk(dev_priv, cdclk_config, pipe); 1941 } 1942 1943 if (DISPLAY_VER(dev_priv) >= 14) 1944 /* 1945 * NOOP - No Pcode communication needed for 1946 * Display versions 14 and beyond 1947 */; 1948 else if (DISPLAY_VER(dev_priv) >= 11 && !IS_DG2(dev_priv)) 1949 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL, 1950 cdclk_config->voltage_level); 1951 if (DISPLAY_VER(dev_priv) < 11) { 1952 /* 1953 * The timeout isn't specified, the 2ms used here is based on 1954 * experiment. 1955 * FIXME: Waiting for the request completion could be delayed 1956 * until the next PCODE request based on BSpec. 1957 */ 1958 ret = snb_pcode_write_timeout(&dev_priv->uncore, 1959 HSW_PCODE_DE_WRITE_FREQ_REQ, 1960 cdclk_config->voltage_level, 1961 150, 2); 1962 } 1963 if (ret) { 1964 drm_err(&dev_priv->drm, 1965 "PCode CDCLK freq set failed, (err %d, freq %d)\n", 1966 ret, cdclk); 1967 return; 1968 } 1969 1970 intel_update_cdclk(dev_priv); 1971 1972 if (DISPLAY_VER(dev_priv) >= 11) 1973 /* 1974 * Can't read out the voltage level :( 1975 * Let's just assume everything is as expected. 1976 */ 1977 dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level; 1978 } 1979 1980 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv) 1981 { 1982 u32 cdctl, expected; 1983 int cdclk, clock, vco; 1984 1985 intel_update_cdclk(dev_priv); 1986 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK"); 1987 1988 if (dev_priv->display.cdclk.hw.vco == 0 || 1989 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass) 1990 goto sanitize; 1991 1992 /* DPLL okay; verify the cdclock 1993 * 1994 * Some BIOS versions leave an incorrect decimal frequency value and 1995 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, 1996 * so sanitize this register. 1997 */ 1998 cdctl = intel_de_read(dev_priv, CDCLK_CTL); 1999 /* 2000 * Let's ignore the pipe field, since BIOS could have configured the 2001 * dividers both synching to an active pipe, or asynchronously 2002 * (PIPE_NONE). 2003 */ 2004 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE); 2005 2006 /* Make sure this is a legal cdclk value for the platform */ 2007 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk); 2008 if (cdclk != dev_priv->display.cdclk.hw.cdclk) 2009 goto sanitize; 2010 2011 /* Make sure the VCO is correct for the cdclk */ 2012 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 2013 if (vco != dev_priv->display.cdclk.hw.vco) 2014 goto sanitize; 2015 2016 expected = skl_cdclk_decimal(cdclk); 2017 2018 /* Figure out what CD2X divider we should be using for this cdclk */ 2019 if (HAS_CDCLK_SQUASH(dev_priv)) 2020 clock = dev_priv->display.cdclk.hw.vco / 2; 2021 else 2022 clock = dev_priv->display.cdclk.hw.cdclk; 2023 2024 expected |= bxt_cdclk_cd2x_div_sel(dev_priv, clock, 2025 dev_priv->display.cdclk.hw.vco); 2026 2027 /* 2028 * Disable SSA Precharge when CD clock frequency < 500 MHz, 2029 * enable otherwise. 2030 */ 2031 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 2032 dev_priv->display.cdclk.hw.cdclk >= 500000) 2033 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 2034 2035 if (cdctl == expected) 2036 /* All well; nothing to sanitize */ 2037 return; 2038 2039 sanitize: 2040 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n"); 2041 2042 /* force cdclk programming */ 2043 dev_priv->display.cdclk.hw.cdclk = 0; 2044 2045 /* force full PLL disable + enable */ 2046 dev_priv->display.cdclk.hw.vco = -1; 2047 } 2048 2049 static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv) 2050 { 2051 struct intel_cdclk_config cdclk_config; 2052 2053 bxt_sanitize_cdclk(dev_priv); 2054 2055 if (dev_priv->display.cdclk.hw.cdclk != 0 && 2056 dev_priv->display.cdclk.hw.vco != 0) 2057 return; 2058 2059 cdclk_config = dev_priv->display.cdclk.hw; 2060 2061 /* 2062 * FIXME: 2063 * - The initial CDCLK needs to be read from VBT. 2064 * Need to make this change after VBT has changes for BXT. 2065 */ 2066 cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0); 2067 cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk); 2068 cdclk_config.voltage_level = 2069 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk); 2070 2071 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 2072 } 2073 2074 static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv) 2075 { 2076 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw; 2077 2078 cdclk_config.cdclk = cdclk_config.bypass; 2079 cdclk_config.vco = 0; 2080 cdclk_config.voltage_level = 2081 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk); 2082 2083 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE); 2084 } 2085 2086 /** 2087 * intel_cdclk_init_hw - Initialize CDCLK hardware 2088 * @i915: i915 device 2089 * 2090 * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and 2091 * sanitizing the state of the hardware if needed. This is generally done only 2092 * during the display core initialization sequence, after which the DMC will 2093 * take care of turning CDCLK off/on as needed. 2094 */ 2095 void intel_cdclk_init_hw(struct drm_i915_private *i915) 2096 { 2097 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915)) 2098 bxt_cdclk_init_hw(i915); 2099 else if (DISPLAY_VER(i915) == 9) 2100 skl_cdclk_init_hw(i915); 2101 } 2102 2103 /** 2104 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware 2105 * @i915: i915 device 2106 * 2107 * Uninitialize CDCLK. This is done only during the display core 2108 * uninitialization sequence. 2109 */ 2110 void intel_cdclk_uninit_hw(struct drm_i915_private *i915) 2111 { 2112 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915)) 2113 bxt_cdclk_uninit_hw(i915); 2114 else if (DISPLAY_VER(i915) == 9) 2115 skl_cdclk_uninit_hw(i915); 2116 } 2117 2118 static bool intel_cdclk_can_crawl_and_squash(struct drm_i915_private *i915, 2119 const struct intel_cdclk_config *a, 2120 const struct intel_cdclk_config *b) 2121 { 2122 u16 old_waveform; 2123 u16 new_waveform; 2124 2125 drm_WARN_ON(&i915->drm, cdclk_pll_is_unknown(a->vco)); 2126 2127 if (a->vco == 0 || b->vco == 0) 2128 return false; 2129 2130 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915)) 2131 return false; 2132 2133 old_waveform = cdclk_squash_waveform(i915, a->cdclk); 2134 new_waveform = cdclk_squash_waveform(i915, b->cdclk); 2135 2136 return a->vco != b->vco && 2137 old_waveform != new_waveform; 2138 } 2139 2140 static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv, 2141 const struct intel_cdclk_config *a, 2142 const struct intel_cdclk_config *b) 2143 { 2144 int a_div, b_div; 2145 2146 if (!HAS_CDCLK_CRAWL(dev_priv)) 2147 return false; 2148 2149 /* 2150 * The vco and cd2x divider will change independently 2151 * from each, so we disallow cd2x change when crawling. 2152 */ 2153 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk); 2154 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk); 2155 2156 return a->vco != 0 && b->vco != 0 && 2157 a->vco != b->vco && 2158 a_div == b_div && 2159 a->ref == b->ref; 2160 } 2161 2162 static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv, 2163 const struct intel_cdclk_config *a, 2164 const struct intel_cdclk_config *b) 2165 { 2166 /* 2167 * FIXME should store a bit more state in intel_cdclk_config 2168 * to differentiate squasher vs. cd2x divider properly. For 2169 * the moment all platforms with squasher use a fixed cd2x 2170 * divider. 2171 */ 2172 if (!HAS_CDCLK_SQUASH(dev_priv)) 2173 return false; 2174 2175 return a->cdclk != b->cdclk && 2176 a->vco != 0 && 2177 a->vco == b->vco && 2178 a->ref == b->ref; 2179 } 2180 2181 /** 2182 * intel_cdclk_needs_modeset - Determine if changong between the CDCLK 2183 * configurations requires a modeset on all pipes 2184 * @a: first CDCLK configuration 2185 * @b: second CDCLK configuration 2186 * 2187 * Returns: 2188 * True if changing between the two CDCLK configurations 2189 * requires all pipes to be off, false if not. 2190 */ 2191 bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a, 2192 const struct intel_cdclk_config *b) 2193 { 2194 return a->cdclk != b->cdclk || 2195 a->vco != b->vco || 2196 a->ref != b->ref; 2197 } 2198 2199 /** 2200 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK 2201 * configurations requires only a cd2x divider update 2202 * @dev_priv: i915 device 2203 * @a: first CDCLK configuration 2204 * @b: second CDCLK configuration 2205 * 2206 * Returns: 2207 * True if changing between the two CDCLK configurations 2208 * can be done with just a cd2x divider update, false if not. 2209 */ 2210 static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv, 2211 const struct intel_cdclk_config *a, 2212 const struct intel_cdclk_config *b) 2213 { 2214 /* Older hw doesn't have the capability */ 2215 if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv)) 2216 return false; 2217 2218 /* 2219 * FIXME should store a bit more state in intel_cdclk_config 2220 * to differentiate squasher vs. cd2x divider properly. For 2221 * the moment all platforms with squasher use a fixed cd2x 2222 * divider. 2223 */ 2224 if (HAS_CDCLK_SQUASH(dev_priv)) 2225 return false; 2226 2227 return a->cdclk != b->cdclk && 2228 a->vco != 0 && 2229 a->vco == b->vco && 2230 a->ref == b->ref; 2231 } 2232 2233 /** 2234 * intel_cdclk_changed - Determine if two CDCLK configurations are different 2235 * @a: first CDCLK configuration 2236 * @b: second CDCLK configuration 2237 * 2238 * Returns: 2239 * True if the CDCLK configurations don't match, false if they do. 2240 */ 2241 static bool intel_cdclk_changed(const struct intel_cdclk_config *a, 2242 const struct intel_cdclk_config *b) 2243 { 2244 return intel_cdclk_needs_modeset(a, b) || 2245 a->voltage_level != b->voltage_level; 2246 } 2247 2248 void intel_cdclk_dump_config(struct drm_i915_private *i915, 2249 const struct intel_cdclk_config *cdclk_config, 2250 const char *context) 2251 { 2252 drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", 2253 context, cdclk_config->cdclk, cdclk_config->vco, 2254 cdclk_config->ref, cdclk_config->bypass, 2255 cdclk_config->voltage_level); 2256 } 2257 2258 static void intel_pcode_notify(struct drm_i915_private *i915, 2259 u8 voltage_level, 2260 u8 active_pipe_count, 2261 u16 cdclk, 2262 bool cdclk_update_valid, 2263 bool pipe_count_update_valid) 2264 { 2265 int ret; 2266 u32 update_mask = 0; 2267 2268 if (!IS_DG2(i915)) 2269 return; 2270 2271 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level); 2272 2273 if (cdclk_update_valid) 2274 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID; 2275 2276 if (pipe_count_update_valid) 2277 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID; 2278 2279 ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL, 2280 SKL_CDCLK_PREPARE_FOR_CHANGE | 2281 update_mask, 2282 SKL_CDCLK_READY_FOR_CHANGE, 2283 SKL_CDCLK_READY_FOR_CHANGE, 3); 2284 if (ret) 2285 drm_err(&i915->drm, 2286 "Failed to inform PCU about display config (err %d)\n", 2287 ret); 2288 } 2289 2290 /** 2291 * intel_set_cdclk - Push the CDCLK configuration to the hardware 2292 * @dev_priv: i915 device 2293 * @cdclk_config: new CDCLK configuration 2294 * @pipe: pipe with which to synchronize the update 2295 * 2296 * Program the hardware based on the passed in CDCLK state, 2297 * if necessary. 2298 */ 2299 static void intel_set_cdclk(struct drm_i915_private *dev_priv, 2300 const struct intel_cdclk_config *cdclk_config, 2301 enum pipe pipe) 2302 { 2303 struct intel_encoder *encoder; 2304 2305 if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config)) 2306 return; 2307 2308 if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk)) 2309 return; 2310 2311 intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to"); 2312 2313 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2314 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2315 2316 intel_psr_pause(intel_dp); 2317 } 2318 2319 intel_audio_cdclk_change_pre(dev_priv); 2320 2321 /* 2322 * Lock aux/gmbus while we change cdclk in case those 2323 * functions use cdclk. Not all platforms/ports do, 2324 * but we'll lock them all for simplicity. 2325 */ 2326 mutex_lock(&dev_priv->display.gmbus.mutex); 2327 for_each_intel_dp(&dev_priv->drm, encoder) { 2328 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2329 2330 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex, 2331 &dev_priv->display.gmbus.mutex); 2332 } 2333 2334 intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe); 2335 2336 for_each_intel_dp(&dev_priv->drm, encoder) { 2337 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2338 2339 mutex_unlock(&intel_dp->aux.hw_mutex); 2340 } 2341 mutex_unlock(&dev_priv->display.gmbus.mutex); 2342 2343 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2344 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2345 2346 intel_psr_resume(intel_dp); 2347 } 2348 2349 intel_audio_cdclk_change_post(dev_priv); 2350 2351 if (drm_WARN(&dev_priv->drm, 2352 intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config), 2353 "cdclk state doesn't match!\n")) { 2354 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]"); 2355 intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]"); 2356 } 2357 } 2358 2359 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state) 2360 { 2361 struct drm_i915_private *i915 = to_i915(state->base.dev); 2362 const struct intel_cdclk_state *old_cdclk_state = 2363 intel_atomic_get_old_cdclk_state(state); 2364 const struct intel_cdclk_state *new_cdclk_state = 2365 intel_atomic_get_new_cdclk_state(state); 2366 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2367 bool change_cdclk, update_pipe_count; 2368 2369 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2370 &new_cdclk_state->actual) && 2371 new_cdclk_state->active_pipes == 2372 old_cdclk_state->active_pipes) 2373 return; 2374 2375 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */ 2376 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX; 2377 2378 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2379 update_pipe_count = hweight8(new_cdclk_state->active_pipes) > 2380 hweight8(old_cdclk_state->active_pipes); 2381 2382 /* 2383 * According to "Sequence Before Frequency Change", 2384 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK, 2385 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK, 2386 * which basically means we choose the maximum of old and new CDCLK, if we know both 2387 */ 2388 if (change_cdclk) 2389 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk); 2390 2391 /* 2392 * According to "Sequence For Pipe Count Change", 2393 * if pipe count is increasing, set bits 25:16 to upcoming pipe count 2394 * (power well is enabled) 2395 * no action if it is decreasing, before the change 2396 */ 2397 if (update_pipe_count) 2398 num_active_pipes = hweight8(new_cdclk_state->active_pipes); 2399 2400 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk, 2401 change_cdclk, update_pipe_count); 2402 } 2403 2404 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state) 2405 { 2406 struct drm_i915_private *i915 = to_i915(state->base.dev); 2407 const struct intel_cdclk_state *new_cdclk_state = 2408 intel_atomic_get_new_cdclk_state(state); 2409 const struct intel_cdclk_state *old_cdclk_state = 2410 intel_atomic_get_old_cdclk_state(state); 2411 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0; 2412 bool update_cdclk, update_pipe_count; 2413 2414 /* According to "Sequence After Frequency Change", set voltage to used level */ 2415 voltage_level = new_cdclk_state->actual.voltage_level; 2416 2417 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk; 2418 update_pipe_count = hweight8(new_cdclk_state->active_pipes) < 2419 hweight8(old_cdclk_state->active_pipes); 2420 2421 /* 2422 * According to "Sequence After Frequency Change", 2423 * set bits 25:16 to current CDCLK 2424 */ 2425 if (update_cdclk) 2426 cdclk = new_cdclk_state->actual.cdclk; 2427 2428 /* 2429 * According to "Sequence For Pipe Count Change", 2430 * if pipe count is decreasing, set bits 25:16 to current pipe count, 2431 * after the change(power well is disabled) 2432 * no action if it is increasing, after the change 2433 */ 2434 if (update_pipe_count) 2435 num_active_pipes = hweight8(new_cdclk_state->active_pipes); 2436 2437 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk, 2438 update_cdclk, update_pipe_count); 2439 } 2440 2441 /** 2442 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware 2443 * @state: intel atomic state 2444 * 2445 * Program the hardware before updating the HW plane state based on the 2446 * new CDCLK state, if necessary. 2447 */ 2448 void 2449 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state) 2450 { 2451 struct drm_i915_private *i915 = to_i915(state->base.dev); 2452 const struct intel_cdclk_state *old_cdclk_state = 2453 intel_atomic_get_old_cdclk_state(state); 2454 const struct intel_cdclk_state *new_cdclk_state = 2455 intel_atomic_get_new_cdclk_state(state); 2456 enum pipe pipe = new_cdclk_state->pipe; 2457 2458 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2459 &new_cdclk_state->actual)) 2460 return; 2461 2462 if (IS_DG2(i915)) 2463 intel_cdclk_pcode_pre_notify(state); 2464 2465 if (pipe == INVALID_PIPE || 2466 old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) { 2467 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed); 2468 2469 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe); 2470 } 2471 } 2472 2473 /** 2474 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware 2475 * @state: intel atomic state 2476 * 2477 * Program the hardware after updating the HW plane state based on the 2478 * new CDCLK state, if necessary. 2479 */ 2480 void 2481 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state) 2482 { 2483 struct drm_i915_private *i915 = to_i915(state->base.dev); 2484 const struct intel_cdclk_state *old_cdclk_state = 2485 intel_atomic_get_old_cdclk_state(state); 2486 const struct intel_cdclk_state *new_cdclk_state = 2487 intel_atomic_get_new_cdclk_state(state); 2488 enum pipe pipe = new_cdclk_state->pipe; 2489 2490 if (!intel_cdclk_changed(&old_cdclk_state->actual, 2491 &new_cdclk_state->actual)) 2492 return; 2493 2494 if (IS_DG2(i915)) 2495 intel_cdclk_pcode_post_notify(state); 2496 2497 if (pipe != INVALID_PIPE && 2498 old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) { 2499 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed); 2500 2501 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe); 2502 } 2503 } 2504 2505 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state) 2506 { 2507 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2508 int pixel_rate = crtc_state->pixel_rate; 2509 2510 if (DISPLAY_VER(dev_priv) >= 10) 2511 return DIV_ROUND_UP(pixel_rate, 2); 2512 else if (DISPLAY_VER(dev_priv) == 9 || 2513 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 2514 return pixel_rate; 2515 else if (IS_CHERRYVIEW(dev_priv)) 2516 return DIV_ROUND_UP(pixel_rate * 100, 95); 2517 else if (crtc_state->double_wide) 2518 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2); 2519 else 2520 return DIV_ROUND_UP(pixel_rate * 100, 90); 2521 } 2522 2523 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state) 2524 { 2525 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2526 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2527 struct intel_plane *plane; 2528 int min_cdclk = 0; 2529 2530 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 2531 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk); 2532 2533 return min_cdclk; 2534 } 2535 2536 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state) 2537 { 2538 struct drm_i915_private *dev_priv = 2539 to_i915(crtc_state->uapi.crtc->dev); 2540 int min_cdclk; 2541 2542 if (!crtc_state->hw.enable) 2543 return 0; 2544 2545 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state); 2546 2547 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 2548 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state)) 2549 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95); 2550 2551 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz, 2552 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else 2553 * there may be audio corruption or screen corruption." This cdclk 2554 * restriction for GLK is 316.8 MHz. 2555 */ 2556 if (intel_crtc_has_dp_encoder(crtc_state) && 2557 crtc_state->has_audio && 2558 crtc_state->port_clock >= 540000 && 2559 crtc_state->lane_count == 4) { 2560 if (DISPLAY_VER(dev_priv) == 10) { 2561 /* Display WA #1145: glk */ 2562 min_cdclk = max(316800, min_cdclk); 2563 } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) { 2564 /* Display WA #1144: skl,bxt */ 2565 min_cdclk = max(432000, min_cdclk); 2566 } 2567 } 2568 2569 /* 2570 * According to BSpec, "The CD clock frequency must be at least twice 2571 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default. 2572 */ 2573 if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9) 2574 min_cdclk = max(2 * 96000, min_cdclk); 2575 2576 /* 2577 * "For DP audio configuration, cdclk frequency shall be set to 2578 * meet the following requirements: 2579 * DP Link Frequency(MHz) | Cdclk frequency(MHz) 2580 * 270 | 320 or higher 2581 * 162 | 200 or higher" 2582 */ 2583 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 2584 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio) 2585 min_cdclk = max(crtc_state->port_clock, min_cdclk); 2586 2587 /* 2588 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower 2589 * than 320000KHz. 2590 */ 2591 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && 2592 IS_VALLEYVIEW(dev_priv)) 2593 min_cdclk = max(320000, min_cdclk); 2594 2595 /* 2596 * On Geminilake once the CDCLK gets as low as 79200 2597 * picture gets unstable, despite that values are 2598 * correct for DSI PLL and DE PLL. 2599 */ 2600 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && 2601 IS_GEMINILAKE(dev_priv)) 2602 min_cdclk = max(158400, min_cdclk); 2603 2604 /* Account for additional needs from the planes */ 2605 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk); 2606 2607 /* 2608 * When we decide to use only one VDSC engine, since 2609 * each VDSC operates with 1 ppc throughput, pixel clock 2610 * cannot be higher than the VDSC clock (cdclk) 2611 * If there 2 VDSC engines, then pixel clock can't be higher than 2612 * VDSC clock(cdclk) * 2 and so on. 2613 */ 2614 if (crtc_state->dsc.compression_enable) { 2615 int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state); 2616 2617 min_cdclk = max_t(int, min_cdclk, 2618 DIV_ROUND_UP(crtc_state->pixel_rate, 2619 num_vdsc_instances)); 2620 } 2621 2622 /* 2623 * HACK. Currently for TGL/DG2 platforms we calculate 2624 * min_cdclk initially based on pixel_rate divided 2625 * by 2, accounting for also plane requirements, 2626 * however in some cases the lowest possible CDCLK 2627 * doesn't work and causing the underruns. 2628 * Explicitly stating here that this seems to be currently 2629 * rather a Hack, than final solution. 2630 */ 2631 if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) { 2632 /* 2633 * Clamp to max_cdclk_freq in case pixel rate is higher, 2634 * in order not to break an 8K, but still leave W/A at place. 2635 */ 2636 min_cdclk = max_t(int, min_cdclk, 2637 min_t(int, crtc_state->pixel_rate, 2638 dev_priv->display.cdclk.max_cdclk_freq)); 2639 } 2640 2641 return min_cdclk; 2642 } 2643 2644 static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state) 2645 { 2646 struct intel_atomic_state *state = cdclk_state->base.state; 2647 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2648 const struct intel_bw_state *bw_state; 2649 struct intel_crtc *crtc; 2650 struct intel_crtc_state *crtc_state; 2651 int min_cdclk, i; 2652 enum pipe pipe; 2653 2654 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2655 int ret; 2656 2657 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 2658 if (min_cdclk < 0) 2659 return min_cdclk; 2660 2661 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk) 2662 continue; 2663 2664 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 2665 2666 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2667 if (ret) 2668 return ret; 2669 } 2670 2671 bw_state = intel_atomic_get_new_bw_state(state); 2672 if (bw_state) { 2673 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state); 2674 2675 if (cdclk_state->bw_min_cdclk != min_cdclk) { 2676 int ret; 2677 2678 cdclk_state->bw_min_cdclk = min_cdclk; 2679 2680 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2681 if (ret) 2682 return ret; 2683 } 2684 } 2685 2686 min_cdclk = max(cdclk_state->force_min_cdclk, 2687 cdclk_state->bw_min_cdclk); 2688 for_each_pipe(dev_priv, pipe) 2689 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk); 2690 2691 if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) { 2692 drm_dbg_kms(&dev_priv->drm, 2693 "required cdclk (%d kHz) exceeds max (%d kHz)\n", 2694 min_cdclk, dev_priv->display.cdclk.max_cdclk_freq); 2695 return -EINVAL; 2696 } 2697 2698 return min_cdclk; 2699 } 2700 2701 /* 2702 * Account for port clock min voltage level requirements. 2703 * This only really does something on DISPLA_VER >= 11 but can be 2704 * called on earlier platforms as well. 2705 * 2706 * Note that this functions assumes that 0 is 2707 * the lowest voltage value, and higher values 2708 * correspond to increasingly higher voltages. 2709 * 2710 * Should that relationship no longer hold on 2711 * future platforms this code will need to be 2712 * adjusted. 2713 */ 2714 static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state) 2715 { 2716 struct intel_atomic_state *state = cdclk_state->base.state; 2717 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2718 struct intel_crtc *crtc; 2719 struct intel_crtc_state *crtc_state; 2720 u8 min_voltage_level; 2721 int i; 2722 enum pipe pipe; 2723 2724 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2725 int ret; 2726 2727 if (crtc_state->hw.enable) 2728 min_voltage_level = crtc_state->min_voltage_level; 2729 else 2730 min_voltage_level = 0; 2731 2732 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level) 2733 continue; 2734 2735 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level; 2736 2737 ret = intel_atomic_lock_global_state(&cdclk_state->base); 2738 if (ret) 2739 return ret; 2740 } 2741 2742 min_voltage_level = 0; 2743 for_each_pipe(dev_priv, pipe) 2744 min_voltage_level = max(cdclk_state->min_voltage_level[pipe], 2745 min_voltage_level); 2746 2747 return min_voltage_level; 2748 } 2749 2750 static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2751 { 2752 struct intel_atomic_state *state = cdclk_state->base.state; 2753 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2754 int min_cdclk, cdclk; 2755 2756 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2757 if (min_cdclk < 0) 2758 return min_cdclk; 2759 2760 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk); 2761 2762 cdclk_state->logical.cdclk = cdclk; 2763 cdclk_state->logical.voltage_level = 2764 vlv_calc_voltage_level(dev_priv, cdclk); 2765 2766 if (!cdclk_state->active_pipes) { 2767 cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk); 2768 2769 cdclk_state->actual.cdclk = cdclk; 2770 cdclk_state->actual.voltage_level = 2771 vlv_calc_voltage_level(dev_priv, cdclk); 2772 } else { 2773 cdclk_state->actual = cdclk_state->logical; 2774 } 2775 2776 return 0; 2777 } 2778 2779 static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2780 { 2781 int min_cdclk, cdclk; 2782 2783 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2784 if (min_cdclk < 0) 2785 return min_cdclk; 2786 2787 cdclk = bdw_calc_cdclk(min_cdclk); 2788 2789 cdclk_state->logical.cdclk = cdclk; 2790 cdclk_state->logical.voltage_level = 2791 bdw_calc_voltage_level(cdclk); 2792 2793 if (!cdclk_state->active_pipes) { 2794 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk); 2795 2796 cdclk_state->actual.cdclk = cdclk; 2797 cdclk_state->actual.voltage_level = 2798 bdw_calc_voltage_level(cdclk); 2799 } else { 2800 cdclk_state->actual = cdclk_state->logical; 2801 } 2802 2803 return 0; 2804 } 2805 2806 static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state) 2807 { 2808 struct intel_atomic_state *state = cdclk_state->base.state; 2809 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2810 struct intel_crtc *crtc; 2811 struct intel_crtc_state *crtc_state; 2812 int vco, i; 2813 2814 vco = cdclk_state->logical.vco; 2815 if (!vco) 2816 vco = dev_priv->skl_preferred_vco_freq; 2817 2818 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2819 if (!crtc_state->hw.enable) 2820 continue; 2821 2822 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 2823 continue; 2824 2825 /* 2826 * DPLL0 VCO may need to be adjusted to get the correct 2827 * clock for eDP. This will affect cdclk as well. 2828 */ 2829 switch (crtc_state->port_clock / 2) { 2830 case 108000: 2831 case 216000: 2832 vco = 8640000; 2833 break; 2834 default: 2835 vco = 8100000; 2836 break; 2837 } 2838 } 2839 2840 return vco; 2841 } 2842 2843 static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2844 { 2845 int min_cdclk, cdclk, vco; 2846 2847 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2848 if (min_cdclk < 0) 2849 return min_cdclk; 2850 2851 vco = skl_dpll0_vco(cdclk_state); 2852 2853 cdclk = skl_calc_cdclk(min_cdclk, vco); 2854 2855 cdclk_state->logical.vco = vco; 2856 cdclk_state->logical.cdclk = cdclk; 2857 cdclk_state->logical.voltage_level = 2858 skl_calc_voltage_level(cdclk); 2859 2860 if (!cdclk_state->active_pipes) { 2861 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco); 2862 2863 cdclk_state->actual.vco = vco; 2864 cdclk_state->actual.cdclk = cdclk; 2865 cdclk_state->actual.voltage_level = 2866 skl_calc_voltage_level(cdclk); 2867 } else { 2868 cdclk_state->actual = cdclk_state->logical; 2869 } 2870 2871 return 0; 2872 } 2873 2874 static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2875 { 2876 struct intel_atomic_state *state = cdclk_state->base.state; 2877 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2878 int min_cdclk, min_voltage_level, cdclk, vco; 2879 2880 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2881 if (min_cdclk < 0) 2882 return min_cdclk; 2883 2884 min_voltage_level = bxt_compute_min_voltage_level(cdclk_state); 2885 if (min_voltage_level < 0) 2886 return min_voltage_level; 2887 2888 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk); 2889 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 2890 2891 cdclk_state->logical.vco = vco; 2892 cdclk_state->logical.cdclk = cdclk; 2893 cdclk_state->logical.voltage_level = 2894 max_t(int, min_voltage_level, 2895 intel_cdclk_calc_voltage_level(dev_priv, cdclk)); 2896 2897 if (!cdclk_state->active_pipes) { 2898 cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk); 2899 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 2900 2901 cdclk_state->actual.vco = vco; 2902 cdclk_state->actual.cdclk = cdclk; 2903 cdclk_state->actual.voltage_level = 2904 intel_cdclk_calc_voltage_level(dev_priv, cdclk); 2905 } else { 2906 cdclk_state->actual = cdclk_state->logical; 2907 } 2908 2909 return 0; 2910 } 2911 2912 static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state) 2913 { 2914 int min_cdclk; 2915 2916 /* 2917 * We can't change the cdclk frequency, but we still want to 2918 * check that the required minimum frequency doesn't exceed 2919 * the actual cdclk frequency. 2920 */ 2921 min_cdclk = intel_compute_min_cdclk(cdclk_state); 2922 if (min_cdclk < 0) 2923 return min_cdclk; 2924 2925 return 0; 2926 } 2927 2928 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj) 2929 { 2930 struct intel_cdclk_state *cdclk_state; 2931 2932 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL); 2933 if (!cdclk_state) 2934 return NULL; 2935 2936 cdclk_state->pipe = INVALID_PIPE; 2937 2938 return &cdclk_state->base; 2939 } 2940 2941 static void intel_cdclk_destroy_state(struct intel_global_obj *obj, 2942 struct intel_global_state *state) 2943 { 2944 kfree(state); 2945 } 2946 2947 static const struct intel_global_state_funcs intel_cdclk_funcs = { 2948 .atomic_duplicate_state = intel_cdclk_duplicate_state, 2949 .atomic_destroy_state = intel_cdclk_destroy_state, 2950 }; 2951 2952 struct intel_cdclk_state * 2953 intel_atomic_get_cdclk_state(struct intel_atomic_state *state) 2954 { 2955 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2956 struct intel_global_state *cdclk_state; 2957 2958 cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj); 2959 if (IS_ERR(cdclk_state)) 2960 return ERR_CAST(cdclk_state); 2961 2962 return to_intel_cdclk_state(cdclk_state); 2963 } 2964 2965 int intel_cdclk_atomic_check(struct intel_atomic_state *state, 2966 bool *need_cdclk_calc) 2967 { 2968 const struct intel_cdclk_state *old_cdclk_state; 2969 const struct intel_cdclk_state *new_cdclk_state; 2970 struct intel_plane_state __maybe_unused *plane_state; 2971 struct intel_plane *plane; 2972 int ret; 2973 int i; 2974 2975 /* 2976 * active_planes bitmask has been updated, and potentially affected 2977 * planes are part of the state. We can now compute the minimum cdclk 2978 * for each plane. 2979 */ 2980 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2981 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 2982 if (ret) 2983 return ret; 2984 } 2985 2986 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc); 2987 if (ret) 2988 return ret; 2989 2990 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 2991 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 2992 2993 if (new_cdclk_state && 2994 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 2995 *need_cdclk_calc = true; 2996 2997 return 0; 2998 } 2999 3000 int intel_cdclk_init(struct drm_i915_private *dev_priv) 3001 { 3002 struct intel_cdclk_state *cdclk_state; 3003 3004 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL); 3005 if (!cdclk_state) 3006 return -ENOMEM; 3007 3008 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj, 3009 &cdclk_state->base, &intel_cdclk_funcs); 3010 3011 return 0; 3012 } 3013 3014 static bool intel_cdclk_need_serialize(struct drm_i915_private *i915, 3015 const struct intel_cdclk_state *old_cdclk_state, 3016 const struct intel_cdclk_state *new_cdclk_state) 3017 { 3018 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) != 3019 hweight8(new_cdclk_state->active_pipes); 3020 bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual, 3021 &new_cdclk_state->actual); 3022 /* 3023 * We need to poke hw for gen >= 12, because we notify PCode if 3024 * pipe power well count changes. 3025 */ 3026 return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed); 3027 } 3028 3029 int intel_modeset_calc_cdclk(struct intel_atomic_state *state) 3030 { 3031 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3032 const struct intel_cdclk_state *old_cdclk_state; 3033 struct intel_cdclk_state *new_cdclk_state; 3034 enum pipe pipe = INVALID_PIPE; 3035 int ret; 3036 3037 new_cdclk_state = intel_atomic_get_cdclk_state(state); 3038 if (IS_ERR(new_cdclk_state)) 3039 return PTR_ERR(new_cdclk_state); 3040 3041 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 3042 3043 new_cdclk_state->active_pipes = 3044 intel_calc_active_pipes(state, old_cdclk_state->active_pipes); 3045 3046 ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state); 3047 if (ret) 3048 return ret; 3049 3050 if (intel_cdclk_need_serialize(dev_priv, old_cdclk_state, new_cdclk_state)) { 3051 /* 3052 * Also serialize commits across all crtcs 3053 * if the actual hw needs to be poked. 3054 */ 3055 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base); 3056 if (ret) 3057 return ret; 3058 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes || 3059 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk || 3060 intel_cdclk_changed(&old_cdclk_state->logical, 3061 &new_cdclk_state->logical)) { 3062 ret = intel_atomic_lock_global_state(&new_cdclk_state->base); 3063 if (ret) 3064 return ret; 3065 } else { 3066 return 0; 3067 } 3068 3069 if (is_power_of_2(new_cdclk_state->active_pipes) && 3070 intel_cdclk_can_cd2x_update(dev_priv, 3071 &old_cdclk_state->actual, 3072 &new_cdclk_state->actual)) { 3073 struct intel_crtc *crtc; 3074 struct intel_crtc_state *crtc_state; 3075 3076 pipe = ilog2(new_cdclk_state->active_pipes); 3077 crtc = intel_crtc_for_pipe(dev_priv, pipe); 3078 3079 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 3080 if (IS_ERR(crtc_state)) 3081 return PTR_ERR(crtc_state); 3082 3083 if (intel_crtc_needs_modeset(crtc_state)) 3084 pipe = INVALID_PIPE; 3085 } 3086 3087 if (intel_cdclk_can_crawl_and_squash(dev_priv, 3088 &old_cdclk_state->actual, 3089 &new_cdclk_state->actual)) { 3090 drm_dbg_kms(&dev_priv->drm, 3091 "Can change cdclk via crawling and squashing\n"); 3092 } else if (intel_cdclk_can_squash(dev_priv, 3093 &old_cdclk_state->actual, 3094 &new_cdclk_state->actual)) { 3095 drm_dbg_kms(&dev_priv->drm, 3096 "Can change cdclk via squashing\n"); 3097 } else if (intel_cdclk_can_crawl(dev_priv, 3098 &old_cdclk_state->actual, 3099 &new_cdclk_state->actual)) { 3100 drm_dbg_kms(&dev_priv->drm, 3101 "Can change cdclk via crawling\n"); 3102 } else if (pipe != INVALID_PIPE) { 3103 new_cdclk_state->pipe = pipe; 3104 3105 drm_dbg_kms(&dev_priv->drm, 3106 "Can change cdclk cd2x divider with pipe %c active\n", 3107 pipe_name(pipe)); 3108 } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual, 3109 &new_cdclk_state->actual)) { 3110 /* All pipes must be switched off while we change the cdclk. */ 3111 ret = intel_modeset_all_pipes(state, "CDCLK change"); 3112 if (ret) 3113 return ret; 3114 3115 drm_dbg_kms(&dev_priv->drm, 3116 "Modeset required for cdclk change\n"); 3117 } 3118 3119 drm_dbg_kms(&dev_priv->drm, 3120 "New cdclk calculated to be logical %u kHz, actual %u kHz\n", 3121 new_cdclk_state->logical.cdclk, 3122 new_cdclk_state->actual.cdclk); 3123 drm_dbg_kms(&dev_priv->drm, 3124 "New voltage level calculated to be logical %u, actual %u\n", 3125 new_cdclk_state->logical.voltage_level, 3126 new_cdclk_state->actual.voltage_level); 3127 3128 return 0; 3129 } 3130 3131 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) 3132 { 3133 int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq; 3134 3135 if (DISPLAY_VER(dev_priv) >= 10) 3136 return 2 * max_cdclk_freq; 3137 else if (DISPLAY_VER(dev_priv) == 9 || 3138 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 3139 return max_cdclk_freq; 3140 else if (IS_CHERRYVIEW(dev_priv)) 3141 return max_cdclk_freq*95/100; 3142 else if (DISPLAY_VER(dev_priv) < 4) 3143 return 2*max_cdclk_freq*90/100; 3144 else 3145 return max_cdclk_freq*90/100; 3146 } 3147 3148 /** 3149 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency 3150 * @dev_priv: i915 device 3151 * 3152 * Determine the maximum CDCLK frequency the platform supports, and also 3153 * derive the maximum dot clock frequency the maximum CDCLK frequency 3154 * allows. 3155 */ 3156 void intel_update_max_cdclk(struct drm_i915_private *dev_priv) 3157 { 3158 if (IS_JSL_EHL(dev_priv)) { 3159 if (dev_priv->display.cdclk.hw.ref == 24000) 3160 dev_priv->display.cdclk.max_cdclk_freq = 552000; 3161 else 3162 dev_priv->display.cdclk.max_cdclk_freq = 556800; 3163 } else if (DISPLAY_VER(dev_priv) >= 11) { 3164 if (dev_priv->display.cdclk.hw.ref == 24000) 3165 dev_priv->display.cdclk.max_cdclk_freq = 648000; 3166 else 3167 dev_priv->display.cdclk.max_cdclk_freq = 652800; 3168 } else if (IS_GEMINILAKE(dev_priv)) { 3169 dev_priv->display.cdclk.max_cdclk_freq = 316800; 3170 } else if (IS_BROXTON(dev_priv)) { 3171 dev_priv->display.cdclk.max_cdclk_freq = 624000; 3172 } else if (DISPLAY_VER(dev_priv) == 9) { 3173 u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; 3174 int max_cdclk, vco; 3175 3176 vco = dev_priv->skl_preferred_vco_freq; 3177 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000); 3178 3179 /* 3180 * Use the lower (vco 8640) cdclk values as a 3181 * first guess. skl_calc_cdclk() will correct it 3182 * if the preferred vco is 8100 instead. 3183 */ 3184 if (limit == SKL_DFSM_CDCLK_LIMIT_675) 3185 max_cdclk = 617143; 3186 else if (limit == SKL_DFSM_CDCLK_LIMIT_540) 3187 max_cdclk = 540000; 3188 else if (limit == SKL_DFSM_CDCLK_LIMIT_450) 3189 max_cdclk = 432000; 3190 else 3191 max_cdclk = 308571; 3192 3193 dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); 3194 } else if (IS_BROADWELL(dev_priv)) { 3195 /* 3196 * FIXME with extra cooling we can allow 3197 * 540 MHz for ULX and 675 Mhz for ULT. 3198 * How can we know if extra cooling is 3199 * available? PCI ID, VTB, something else? 3200 */ 3201 if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT) 3202 dev_priv->display.cdclk.max_cdclk_freq = 450000; 3203 else if (IS_BDW_ULX(dev_priv)) 3204 dev_priv->display.cdclk.max_cdclk_freq = 450000; 3205 else if (IS_BDW_ULT(dev_priv)) 3206 dev_priv->display.cdclk.max_cdclk_freq = 540000; 3207 else 3208 dev_priv->display.cdclk.max_cdclk_freq = 675000; 3209 } else if (IS_CHERRYVIEW(dev_priv)) { 3210 dev_priv->display.cdclk.max_cdclk_freq = 320000; 3211 } else if (IS_VALLEYVIEW(dev_priv)) { 3212 dev_priv->display.cdclk.max_cdclk_freq = 400000; 3213 } else { 3214 /* otherwise assume cdclk is fixed */ 3215 dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk; 3216 } 3217 3218 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); 3219 3220 drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n", 3221 dev_priv->display.cdclk.max_cdclk_freq); 3222 3223 drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n", 3224 dev_priv->max_dotclk_freq); 3225 } 3226 3227 /** 3228 * intel_update_cdclk - Determine the current CDCLK frequency 3229 * @dev_priv: i915 device 3230 * 3231 * Determine the current CDCLK frequency. 3232 */ 3233 void intel_update_cdclk(struct drm_i915_private *dev_priv) 3234 { 3235 intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw); 3236 3237 /* 3238 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): 3239 * Programmng [sic] note: bit[9:2] should be programmed to the number 3240 * of cdclk that generates 4MHz reference clock freq which is used to 3241 * generate GMBus clock. This will vary with the cdclk freq. 3242 */ 3243 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3244 intel_de_write(dev_priv, GMBUSFREQ_VLV, 3245 DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000)); 3246 } 3247 3248 static int dg1_rawclk(struct drm_i915_private *dev_priv) 3249 { 3250 /* 3251 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us 3252 * "Program Numerator=2, Denominator=4, Divider=37 decimal." 3253 */ 3254 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, 3255 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2)); 3256 3257 return 38400; 3258 } 3259 3260 static int cnp_rawclk(struct drm_i915_private *dev_priv) 3261 { 3262 u32 rawclk; 3263 int divider, fraction; 3264 3265 if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { 3266 /* 24 MHz */ 3267 divider = 24000; 3268 fraction = 0; 3269 } else { 3270 /* 19.2 MHz */ 3271 divider = 19000; 3272 fraction = 200; 3273 } 3274 3275 rawclk = CNP_RAWCLK_DIV(divider / 1000); 3276 if (fraction) { 3277 int numerator = 1; 3278 3279 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, 3280 fraction) - 1); 3281 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3282 rawclk |= ICP_RAWCLK_NUM(numerator); 3283 } 3284 3285 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk); 3286 return divider + fraction; 3287 } 3288 3289 static int pch_rawclk(struct drm_i915_private *dev_priv) 3290 { 3291 return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; 3292 } 3293 3294 static int vlv_hrawclk(struct drm_i915_private *dev_priv) 3295 { 3296 /* RAWCLK_FREQ_VLV register updated from power well code */ 3297 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", 3298 CCK_DISPLAY_REF_CLOCK_CONTROL); 3299 } 3300 3301 static int i9xx_hrawclk(struct drm_i915_private *dev_priv) 3302 { 3303 u32 clkcfg; 3304 3305 /* 3306 * hrawclock is 1/4 the FSB frequency 3307 * 3308 * Note that this only reads the state of the FSB 3309 * straps, not the actual FSB frequency. Some BIOSen 3310 * let you configure each independently. Ideally we'd 3311 * read out the actual FSB frequency but sadly we 3312 * don't know which registers have that information, 3313 * and all the relevant docs have gone to bit heaven :( 3314 */ 3315 clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK; 3316 3317 if (IS_MOBILE(dev_priv)) { 3318 switch (clkcfg) { 3319 case CLKCFG_FSB_400: 3320 return 100000; 3321 case CLKCFG_FSB_533: 3322 return 133333; 3323 case CLKCFG_FSB_667: 3324 return 166667; 3325 case CLKCFG_FSB_800: 3326 return 200000; 3327 case CLKCFG_FSB_1067: 3328 return 266667; 3329 case CLKCFG_FSB_1333: 3330 return 333333; 3331 default: 3332 MISSING_CASE(clkcfg); 3333 return 133333; 3334 } 3335 } else { 3336 switch (clkcfg) { 3337 case CLKCFG_FSB_400_ALT: 3338 return 100000; 3339 case CLKCFG_FSB_533: 3340 return 133333; 3341 case CLKCFG_FSB_667: 3342 return 166667; 3343 case CLKCFG_FSB_800: 3344 return 200000; 3345 case CLKCFG_FSB_1067_ALT: 3346 return 266667; 3347 case CLKCFG_FSB_1333_ALT: 3348 return 333333; 3349 case CLKCFG_FSB_1600_ALT: 3350 return 400000; 3351 default: 3352 return 133333; 3353 } 3354 } 3355 } 3356 3357 /** 3358 * intel_read_rawclk - Determine the current RAWCLK frequency 3359 * @dev_priv: i915 device 3360 * 3361 * Determine the current RAWCLK frequency. RAWCLK is a fixed 3362 * frequency clock so this needs to done only once. 3363 */ 3364 u32 intel_read_rawclk(struct drm_i915_private *dev_priv) 3365 { 3366 u32 freq; 3367 3368 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 3369 freq = dg1_rawclk(dev_priv); 3370 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTP) 3371 /* 3372 * MTL always uses a 38.4 MHz rawclk. The bspec tells us 3373 * "RAWCLK_FREQ defaults to the values for 38.4 and does 3374 * not need to be programmed." 3375 */ 3376 freq = 38400; 3377 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3378 freq = cnp_rawclk(dev_priv); 3379 else if (HAS_PCH_SPLIT(dev_priv)) 3380 freq = pch_rawclk(dev_priv); 3381 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3382 freq = vlv_hrawclk(dev_priv); 3383 else if (DISPLAY_VER(dev_priv) >= 3) 3384 freq = i9xx_hrawclk(dev_priv); 3385 else 3386 /* no rawclk on other platforms, or no need to know it */ 3387 return 0; 3388 3389 return freq; 3390 } 3391 3392 static int i915_cdclk_info_show(struct seq_file *m, void *unused) 3393 { 3394 struct drm_i915_private *i915 = m->private; 3395 3396 seq_printf(m, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk); 3397 seq_printf(m, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq); 3398 seq_printf(m, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq); 3399 3400 return 0; 3401 } 3402 3403 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info); 3404 3405 void intel_cdclk_debugfs_register(struct drm_i915_private *i915) 3406 { 3407 struct drm_minor *minor = i915->drm.primary; 3408 3409 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root, 3410 i915, &i915_cdclk_info_fops); 3411 } 3412 3413 static const struct intel_cdclk_funcs mtl_cdclk_funcs = { 3414 .get_cdclk = bxt_get_cdclk, 3415 .set_cdclk = bxt_set_cdclk, 3416 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3417 .calc_voltage_level = tgl_calc_voltage_level, 3418 }; 3419 3420 static const struct intel_cdclk_funcs rplu_cdclk_funcs = { 3421 .get_cdclk = bxt_get_cdclk, 3422 .set_cdclk = bxt_set_cdclk, 3423 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3424 .calc_voltage_level = rplu_calc_voltage_level, 3425 }; 3426 3427 static const struct intel_cdclk_funcs tgl_cdclk_funcs = { 3428 .get_cdclk = bxt_get_cdclk, 3429 .set_cdclk = bxt_set_cdclk, 3430 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3431 .calc_voltage_level = tgl_calc_voltage_level, 3432 }; 3433 3434 static const struct intel_cdclk_funcs ehl_cdclk_funcs = { 3435 .get_cdclk = bxt_get_cdclk, 3436 .set_cdclk = bxt_set_cdclk, 3437 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3438 .calc_voltage_level = ehl_calc_voltage_level, 3439 }; 3440 3441 static const struct intel_cdclk_funcs icl_cdclk_funcs = { 3442 .get_cdclk = bxt_get_cdclk, 3443 .set_cdclk = bxt_set_cdclk, 3444 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3445 .calc_voltage_level = icl_calc_voltage_level, 3446 }; 3447 3448 static const struct intel_cdclk_funcs bxt_cdclk_funcs = { 3449 .get_cdclk = bxt_get_cdclk, 3450 .set_cdclk = bxt_set_cdclk, 3451 .modeset_calc_cdclk = bxt_modeset_calc_cdclk, 3452 .calc_voltage_level = bxt_calc_voltage_level, 3453 }; 3454 3455 static const struct intel_cdclk_funcs skl_cdclk_funcs = { 3456 .get_cdclk = skl_get_cdclk, 3457 .set_cdclk = skl_set_cdclk, 3458 .modeset_calc_cdclk = skl_modeset_calc_cdclk, 3459 }; 3460 3461 static const struct intel_cdclk_funcs bdw_cdclk_funcs = { 3462 .get_cdclk = bdw_get_cdclk, 3463 .set_cdclk = bdw_set_cdclk, 3464 .modeset_calc_cdclk = bdw_modeset_calc_cdclk, 3465 }; 3466 3467 static const struct intel_cdclk_funcs chv_cdclk_funcs = { 3468 .get_cdclk = vlv_get_cdclk, 3469 .set_cdclk = chv_set_cdclk, 3470 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3471 }; 3472 3473 static const struct intel_cdclk_funcs vlv_cdclk_funcs = { 3474 .get_cdclk = vlv_get_cdclk, 3475 .set_cdclk = vlv_set_cdclk, 3476 .modeset_calc_cdclk = vlv_modeset_calc_cdclk, 3477 }; 3478 3479 static const struct intel_cdclk_funcs hsw_cdclk_funcs = { 3480 .get_cdclk = hsw_get_cdclk, 3481 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3482 }; 3483 3484 /* SNB, IVB, 965G, 945G */ 3485 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = { 3486 .get_cdclk = fixed_400mhz_get_cdclk, 3487 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3488 }; 3489 3490 static const struct intel_cdclk_funcs ilk_cdclk_funcs = { 3491 .get_cdclk = fixed_450mhz_get_cdclk, 3492 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3493 }; 3494 3495 static const struct intel_cdclk_funcs gm45_cdclk_funcs = { 3496 .get_cdclk = gm45_get_cdclk, 3497 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3498 }; 3499 3500 /* G45 uses G33 */ 3501 3502 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = { 3503 .get_cdclk = i965gm_get_cdclk, 3504 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3505 }; 3506 3507 /* i965G uses fixed 400 */ 3508 3509 static const struct intel_cdclk_funcs pnv_cdclk_funcs = { 3510 .get_cdclk = pnv_get_cdclk, 3511 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3512 }; 3513 3514 static const struct intel_cdclk_funcs g33_cdclk_funcs = { 3515 .get_cdclk = g33_get_cdclk, 3516 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3517 }; 3518 3519 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = { 3520 .get_cdclk = i945gm_get_cdclk, 3521 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3522 }; 3523 3524 /* i945G uses fixed 400 */ 3525 3526 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = { 3527 .get_cdclk = i915gm_get_cdclk, 3528 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3529 }; 3530 3531 static const struct intel_cdclk_funcs i915g_cdclk_funcs = { 3532 .get_cdclk = fixed_333mhz_get_cdclk, 3533 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3534 }; 3535 3536 static const struct intel_cdclk_funcs i865g_cdclk_funcs = { 3537 .get_cdclk = fixed_266mhz_get_cdclk, 3538 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3539 }; 3540 3541 static const struct intel_cdclk_funcs i85x_cdclk_funcs = { 3542 .get_cdclk = i85x_get_cdclk, 3543 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3544 }; 3545 3546 static const struct intel_cdclk_funcs i845g_cdclk_funcs = { 3547 .get_cdclk = fixed_200mhz_get_cdclk, 3548 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3549 }; 3550 3551 static const struct intel_cdclk_funcs i830_cdclk_funcs = { 3552 .get_cdclk = fixed_133mhz_get_cdclk, 3553 .modeset_calc_cdclk = fixed_modeset_calc_cdclk, 3554 }; 3555 3556 /** 3557 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks 3558 * @dev_priv: i915 device 3559 */ 3560 void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv) 3561 { 3562 if (IS_METEORLAKE(dev_priv)) { 3563 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs; 3564 dev_priv->display.cdclk.table = mtl_cdclk_table; 3565 } else if (IS_DG2(dev_priv)) { 3566 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3567 dev_priv->display.cdclk.table = dg2_cdclk_table; 3568 } else if (IS_ALDERLAKE_P(dev_priv)) { 3569 /* Wa_22011320316:adl-p[a0] */ 3570 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) { 3571 dev_priv->display.cdclk.table = adlp_a_step_cdclk_table; 3572 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3573 } else if (IS_ADLP_RPLU(dev_priv)) { 3574 dev_priv->display.cdclk.table = rplu_cdclk_table; 3575 dev_priv->display.funcs.cdclk = &rplu_cdclk_funcs; 3576 } else { 3577 dev_priv->display.cdclk.table = adlp_cdclk_table; 3578 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3579 } 3580 } else if (IS_ROCKETLAKE(dev_priv)) { 3581 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3582 dev_priv->display.cdclk.table = rkl_cdclk_table; 3583 } else if (DISPLAY_VER(dev_priv) >= 12) { 3584 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs; 3585 dev_priv->display.cdclk.table = icl_cdclk_table; 3586 } else if (IS_JSL_EHL(dev_priv)) { 3587 dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs; 3588 dev_priv->display.cdclk.table = icl_cdclk_table; 3589 } else if (DISPLAY_VER(dev_priv) >= 11) { 3590 dev_priv->display.funcs.cdclk = &icl_cdclk_funcs; 3591 dev_priv->display.cdclk.table = icl_cdclk_table; 3592 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 3593 dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs; 3594 if (IS_GEMINILAKE(dev_priv)) 3595 dev_priv->display.cdclk.table = glk_cdclk_table; 3596 else 3597 dev_priv->display.cdclk.table = bxt_cdclk_table; 3598 } else if (DISPLAY_VER(dev_priv) == 9) { 3599 dev_priv->display.funcs.cdclk = &skl_cdclk_funcs; 3600 } else if (IS_BROADWELL(dev_priv)) { 3601 dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs; 3602 } else if (IS_HASWELL(dev_priv)) { 3603 dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs; 3604 } else if (IS_CHERRYVIEW(dev_priv)) { 3605 dev_priv->display.funcs.cdclk = &chv_cdclk_funcs; 3606 } else if (IS_VALLEYVIEW(dev_priv)) { 3607 dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs; 3608 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 3609 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3610 } else if (IS_IRONLAKE(dev_priv)) { 3611 dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs; 3612 } else if (IS_GM45(dev_priv)) { 3613 dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs; 3614 } else if (IS_G45(dev_priv)) { 3615 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs; 3616 } else if (IS_I965GM(dev_priv)) { 3617 dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs; 3618 } else if (IS_I965G(dev_priv)) { 3619 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3620 } else if (IS_PINEVIEW(dev_priv)) { 3621 dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs; 3622 } else if (IS_G33(dev_priv)) { 3623 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs; 3624 } else if (IS_I945GM(dev_priv)) { 3625 dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs; 3626 } else if (IS_I945G(dev_priv)) { 3627 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs; 3628 } else if (IS_I915GM(dev_priv)) { 3629 dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs; 3630 } else if (IS_I915G(dev_priv)) { 3631 dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs; 3632 } else if (IS_I865G(dev_priv)) { 3633 dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs; 3634 } else if (IS_I85X(dev_priv)) { 3635 dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs; 3636 } else if (IS_I845G(dev_priv)) { 3637 dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs; 3638 } else if (IS_I830(dev_priv)) { 3639 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs; 3640 } 3641 3642 if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk, 3643 "Unknown platform. Assuming i830\n")) 3644 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs; 3645 } 3646