1 /* 2 * Copyright © 2006-2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include "intel_atomic.h" 25 #include "intel_cdclk.h" 26 #include "intel_display_types.h" 27 #include "intel_sideband.h" 28 29 /** 30 * DOC: CDCLK / RAWCLK 31 * 32 * The display engine uses several different clocks to do its work. There 33 * are two main clocks involved that aren't directly related to the actual 34 * pixel clock or any symbol/bit clock of the actual output port. These 35 * are the core display clock (CDCLK) and RAWCLK. 36 * 37 * CDCLK clocks most of the display pipe logic, and thus its frequency 38 * must be high enough to support the rate at which pixels are flowing 39 * through the pipes. Downscaling must also be accounted as that increases 40 * the effective pixel rate. 41 * 42 * On several platforms the CDCLK frequency can be changed dynamically 43 * to minimize power consumption for a given display configuration. 44 * Typically changes to the CDCLK frequency require all the display pipes 45 * to be shut down while the frequency is being changed. 46 * 47 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit. 48 * DMC will not change the active CDCLK frequency however, so that part 49 * will still be performed by the driver directly. 50 * 51 * RAWCLK is a fixed frequency clock, often used by various auxiliary 52 * blocks such as AUX CH or backlight PWM. Hence the only thing we 53 * really need to know about RAWCLK is its frequency so that various 54 * dividers can be programmed correctly. 55 */ 56 57 static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv, 58 struct intel_cdclk_state *cdclk_state) 59 { 60 cdclk_state->cdclk = 133333; 61 } 62 63 static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv, 64 struct intel_cdclk_state *cdclk_state) 65 { 66 cdclk_state->cdclk = 200000; 67 } 68 69 static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv, 70 struct intel_cdclk_state *cdclk_state) 71 { 72 cdclk_state->cdclk = 266667; 73 } 74 75 static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv, 76 struct intel_cdclk_state *cdclk_state) 77 { 78 cdclk_state->cdclk = 333333; 79 } 80 81 static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv, 82 struct intel_cdclk_state *cdclk_state) 83 { 84 cdclk_state->cdclk = 400000; 85 } 86 87 static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv, 88 struct intel_cdclk_state *cdclk_state) 89 { 90 cdclk_state->cdclk = 450000; 91 } 92 93 static void i85x_get_cdclk(struct drm_i915_private *dev_priv, 94 struct intel_cdclk_state *cdclk_state) 95 { 96 struct pci_dev *pdev = dev_priv->drm.pdev; 97 u16 hpllcc = 0; 98 99 /* 100 * 852GM/852GMV only supports 133 MHz and the HPLLCC 101 * encoding is different :( 102 * FIXME is this the right way to detect 852GM/852GMV? 103 */ 104 if (pdev->revision == 0x1) { 105 cdclk_state->cdclk = 133333; 106 return; 107 } 108 109 pci_bus_read_config_word(pdev->bus, 110 PCI_DEVFN(0, 3), HPLLCC, &hpllcc); 111 112 /* Assume that the hardware is in the high speed state. This 113 * should be the default. 114 */ 115 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 116 case GC_CLOCK_133_200: 117 case GC_CLOCK_133_200_2: 118 case GC_CLOCK_100_200: 119 cdclk_state->cdclk = 200000; 120 break; 121 case GC_CLOCK_166_250: 122 cdclk_state->cdclk = 250000; 123 break; 124 case GC_CLOCK_100_133: 125 cdclk_state->cdclk = 133333; 126 break; 127 case GC_CLOCK_133_266: 128 case GC_CLOCK_133_266_2: 129 case GC_CLOCK_166_266: 130 cdclk_state->cdclk = 266667; 131 break; 132 } 133 } 134 135 static void i915gm_get_cdclk(struct drm_i915_private *dev_priv, 136 struct intel_cdclk_state *cdclk_state) 137 { 138 struct pci_dev *pdev = dev_priv->drm.pdev; 139 u16 gcfgc = 0; 140 141 pci_read_config_word(pdev, GCFGC, &gcfgc); 142 143 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 144 cdclk_state->cdclk = 133333; 145 return; 146 } 147 148 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 149 case GC_DISPLAY_CLOCK_333_320_MHZ: 150 cdclk_state->cdclk = 333333; 151 break; 152 default: 153 case GC_DISPLAY_CLOCK_190_200_MHZ: 154 cdclk_state->cdclk = 190000; 155 break; 156 } 157 } 158 159 static void i945gm_get_cdclk(struct drm_i915_private *dev_priv, 160 struct intel_cdclk_state *cdclk_state) 161 { 162 struct pci_dev *pdev = dev_priv->drm.pdev; 163 u16 gcfgc = 0; 164 165 pci_read_config_word(pdev, GCFGC, &gcfgc); 166 167 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) { 168 cdclk_state->cdclk = 133333; 169 return; 170 } 171 172 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 173 case GC_DISPLAY_CLOCK_333_320_MHZ: 174 cdclk_state->cdclk = 320000; 175 break; 176 default: 177 case GC_DISPLAY_CLOCK_190_200_MHZ: 178 cdclk_state->cdclk = 200000; 179 break; 180 } 181 } 182 183 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv) 184 { 185 static const unsigned int blb_vco[8] = { 186 [0] = 3200000, 187 [1] = 4000000, 188 [2] = 5333333, 189 [3] = 4800000, 190 [4] = 6400000, 191 }; 192 static const unsigned int pnv_vco[8] = { 193 [0] = 3200000, 194 [1] = 4000000, 195 [2] = 5333333, 196 [3] = 4800000, 197 [4] = 2666667, 198 }; 199 static const unsigned int cl_vco[8] = { 200 [0] = 3200000, 201 [1] = 4000000, 202 [2] = 5333333, 203 [3] = 6400000, 204 [4] = 3333333, 205 [5] = 3566667, 206 [6] = 4266667, 207 }; 208 static const unsigned int elk_vco[8] = { 209 [0] = 3200000, 210 [1] = 4000000, 211 [2] = 5333333, 212 [3] = 4800000, 213 }; 214 static const unsigned int ctg_vco[8] = { 215 [0] = 3200000, 216 [1] = 4000000, 217 [2] = 5333333, 218 [3] = 6400000, 219 [4] = 2666667, 220 [5] = 4266667, 221 }; 222 const unsigned int *vco_table; 223 unsigned int vco; 224 u8 tmp = 0; 225 226 /* FIXME other chipsets? */ 227 if (IS_GM45(dev_priv)) 228 vco_table = ctg_vco; 229 else if (IS_G45(dev_priv)) 230 vco_table = elk_vco; 231 else if (IS_I965GM(dev_priv)) 232 vco_table = cl_vco; 233 else if (IS_PINEVIEW(dev_priv)) 234 vco_table = pnv_vco; 235 else if (IS_G33(dev_priv)) 236 vco_table = blb_vco; 237 else 238 return 0; 239 240 tmp = I915_READ(IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? 241 HPLLVCO_MOBILE : HPLLVCO); 242 243 vco = vco_table[tmp & 0x7]; 244 if (vco == 0) 245 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp); 246 else 247 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco); 248 249 return vco; 250 } 251 252 static void g33_get_cdclk(struct drm_i915_private *dev_priv, 253 struct intel_cdclk_state *cdclk_state) 254 { 255 struct pci_dev *pdev = dev_priv->drm.pdev; 256 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 }; 257 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 }; 258 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 }; 259 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 }; 260 const u8 *div_table; 261 unsigned int cdclk_sel; 262 u16 tmp = 0; 263 264 cdclk_state->vco = intel_hpll_vco(dev_priv); 265 266 pci_read_config_word(pdev, GCFGC, &tmp); 267 268 cdclk_sel = (tmp >> 4) & 0x7; 269 270 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 271 goto fail; 272 273 switch (cdclk_state->vco) { 274 case 3200000: 275 div_table = div_3200; 276 break; 277 case 4000000: 278 div_table = div_4000; 279 break; 280 case 4800000: 281 div_table = div_4800; 282 break; 283 case 5333333: 284 div_table = div_5333; 285 break; 286 default: 287 goto fail; 288 } 289 290 cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, 291 div_table[cdclk_sel]); 292 return; 293 294 fail: 295 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", 296 cdclk_state->vco, tmp); 297 cdclk_state->cdclk = 190476; 298 } 299 300 static void pnv_get_cdclk(struct drm_i915_private *dev_priv, 301 struct intel_cdclk_state *cdclk_state) 302 { 303 struct pci_dev *pdev = dev_priv->drm.pdev; 304 u16 gcfgc = 0; 305 306 pci_read_config_word(pdev, GCFGC, &gcfgc); 307 308 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 309 case GC_DISPLAY_CLOCK_267_MHZ_PNV: 310 cdclk_state->cdclk = 266667; 311 break; 312 case GC_DISPLAY_CLOCK_333_MHZ_PNV: 313 cdclk_state->cdclk = 333333; 314 break; 315 case GC_DISPLAY_CLOCK_444_MHZ_PNV: 316 cdclk_state->cdclk = 444444; 317 break; 318 case GC_DISPLAY_CLOCK_200_MHZ_PNV: 319 cdclk_state->cdclk = 200000; 320 break; 321 default: 322 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); 323 /* fall through */ 324 case GC_DISPLAY_CLOCK_133_MHZ_PNV: 325 cdclk_state->cdclk = 133333; 326 break; 327 case GC_DISPLAY_CLOCK_167_MHZ_PNV: 328 cdclk_state->cdclk = 166667; 329 break; 330 } 331 } 332 333 static void i965gm_get_cdclk(struct drm_i915_private *dev_priv, 334 struct intel_cdclk_state *cdclk_state) 335 { 336 struct pci_dev *pdev = dev_priv->drm.pdev; 337 static const u8 div_3200[] = { 16, 10, 8 }; 338 static const u8 div_4000[] = { 20, 12, 10 }; 339 static const u8 div_5333[] = { 24, 16, 14 }; 340 const u8 *div_table; 341 unsigned int cdclk_sel; 342 u16 tmp = 0; 343 344 cdclk_state->vco = intel_hpll_vco(dev_priv); 345 346 pci_read_config_word(pdev, GCFGC, &tmp); 347 348 cdclk_sel = ((tmp >> 8) & 0x1f) - 1; 349 350 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 351 goto fail; 352 353 switch (cdclk_state->vco) { 354 case 3200000: 355 div_table = div_3200; 356 break; 357 case 4000000: 358 div_table = div_4000; 359 break; 360 case 5333333: 361 div_table = div_5333; 362 break; 363 default: 364 goto fail; 365 } 366 367 cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, 368 div_table[cdclk_sel]); 369 return; 370 371 fail: 372 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", 373 cdclk_state->vco, tmp); 374 cdclk_state->cdclk = 200000; 375 } 376 377 static void gm45_get_cdclk(struct drm_i915_private *dev_priv, 378 struct intel_cdclk_state *cdclk_state) 379 { 380 struct pci_dev *pdev = dev_priv->drm.pdev; 381 unsigned int cdclk_sel; 382 u16 tmp = 0; 383 384 cdclk_state->vco = intel_hpll_vco(dev_priv); 385 386 pci_read_config_word(pdev, GCFGC, &tmp); 387 388 cdclk_sel = (tmp >> 12) & 0x1; 389 390 switch (cdclk_state->vco) { 391 case 2666667: 392 case 4000000: 393 case 5333333: 394 cdclk_state->cdclk = cdclk_sel ? 333333 : 222222; 395 break; 396 case 3200000: 397 cdclk_state->cdclk = cdclk_sel ? 320000 : 228571; 398 break; 399 default: 400 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", 401 cdclk_state->vco, tmp); 402 cdclk_state->cdclk = 222222; 403 break; 404 } 405 } 406 407 static void hsw_get_cdclk(struct drm_i915_private *dev_priv, 408 struct intel_cdclk_state *cdclk_state) 409 { 410 u32 lcpll = I915_READ(LCPLL_CTL); 411 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 412 413 if (lcpll & LCPLL_CD_SOURCE_FCLK) 414 cdclk_state->cdclk = 800000; 415 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) 416 cdclk_state->cdclk = 450000; 417 else if (freq == LCPLL_CLK_FREQ_450) 418 cdclk_state->cdclk = 450000; 419 else if (IS_HSW_ULT(dev_priv)) 420 cdclk_state->cdclk = 337500; 421 else 422 cdclk_state->cdclk = 540000; 423 } 424 425 static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) 426 { 427 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 428 333333 : 320000; 429 430 /* 431 * We seem to get an unstable or solid color picture at 200MHz. 432 * Not sure what's wrong. For now use 200MHz only when all pipes 433 * are off. 434 */ 435 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320) 436 return 400000; 437 else if (min_cdclk > 266667) 438 return freq_320; 439 else if (min_cdclk > 0) 440 return 266667; 441 else 442 return 200000; 443 } 444 445 static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk) 446 { 447 if (IS_VALLEYVIEW(dev_priv)) { 448 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ 449 return 2; 450 else if (cdclk >= 266667) 451 return 1; 452 else 453 return 0; 454 } else { 455 /* 456 * Specs are full of misinformation, but testing on actual 457 * hardware has shown that we just need to write the desired 458 * CCK divider into the Punit register. 459 */ 460 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; 461 } 462 } 463 464 static void vlv_get_cdclk(struct drm_i915_private *dev_priv, 465 struct intel_cdclk_state *cdclk_state) 466 { 467 u32 val; 468 469 vlv_iosf_sb_get(dev_priv, 470 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 471 472 cdclk_state->vco = vlv_get_hpll_vco(dev_priv); 473 cdclk_state->cdclk = vlv_get_cck_clock(dev_priv, "cdclk", 474 CCK_DISPLAY_CLOCK_CONTROL, 475 cdclk_state->vco); 476 477 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 478 479 vlv_iosf_sb_put(dev_priv, 480 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT)); 481 482 if (IS_VALLEYVIEW(dev_priv)) 483 cdclk_state->voltage_level = (val & DSPFREQGUAR_MASK) >> 484 DSPFREQGUAR_SHIFT; 485 else 486 cdclk_state->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >> 487 DSPFREQGUAR_SHIFT_CHV; 488 } 489 490 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) 491 { 492 unsigned int credits, default_credits; 493 494 if (IS_CHERRYVIEW(dev_priv)) 495 default_credits = PFI_CREDIT(12); 496 else 497 default_credits = PFI_CREDIT(8); 498 499 if (dev_priv->cdclk.hw.cdclk >= dev_priv->czclk_freq) { 500 /* CHV suggested value is 31 or 63 */ 501 if (IS_CHERRYVIEW(dev_priv)) 502 credits = PFI_CREDIT_63; 503 else 504 credits = PFI_CREDIT(15); 505 } else { 506 credits = default_credits; 507 } 508 509 /* 510 * WA - write default credits before re-programming 511 * FIXME: should we also set the resend bit here? 512 */ 513 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | 514 default_credits); 515 516 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | 517 credits | PFI_CREDIT_RESEND); 518 519 /* 520 * FIXME is this guaranteed to clear 521 * immediately or should we poll for it? 522 */ 523 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND); 524 } 525 526 static void vlv_set_cdclk(struct drm_i915_private *dev_priv, 527 const struct intel_cdclk_state *cdclk_state, 528 enum pipe pipe) 529 { 530 int cdclk = cdclk_state->cdclk; 531 u32 val, cmd = cdclk_state->voltage_level; 532 intel_wakeref_t wakeref; 533 534 switch (cdclk) { 535 case 400000: 536 case 333333: 537 case 320000: 538 case 266667: 539 case 200000: 540 break; 541 default: 542 MISSING_CASE(cdclk); 543 return; 544 } 545 546 /* There are cases where we can end up here with power domains 547 * off and a CDCLK frequency other than the minimum, like when 548 * issuing a modeset without actually changing any display after 549 * a system suspend. So grab the display core domain, which covers 550 * the HW blocks needed for the following programming. 551 */ 552 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); 553 554 vlv_iosf_sb_get(dev_priv, 555 BIT(VLV_IOSF_SB_CCK) | 556 BIT(VLV_IOSF_SB_BUNIT) | 557 BIT(VLV_IOSF_SB_PUNIT)); 558 559 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 560 val &= ~DSPFREQGUAR_MASK; 561 val |= (cmd << DSPFREQGUAR_SHIFT); 562 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 563 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 564 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 565 50)) { 566 DRM_ERROR("timed out waiting for CDclk change\n"); 567 } 568 569 if (cdclk == 400000) { 570 u32 divider; 571 572 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, 573 cdclk) - 1; 574 575 /* adjust cdclk divider */ 576 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); 577 val &= ~CCK_FREQUENCY_VALUES; 578 val |= divider; 579 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); 580 581 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & 582 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 583 50)) 584 DRM_ERROR("timed out waiting for CDclk change\n"); 585 } 586 587 /* adjust self-refresh exit latency value */ 588 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); 589 val &= ~0x7f; 590 591 /* 592 * For high bandwidth configs, we set a higher latency in the bunit 593 * so that the core display fetch happens in time to avoid underruns. 594 */ 595 if (cdclk == 400000) 596 val |= 4500 / 250; /* 4.5 usec */ 597 else 598 val |= 3000 / 250; /* 3.0 usec */ 599 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); 600 601 vlv_iosf_sb_put(dev_priv, 602 BIT(VLV_IOSF_SB_CCK) | 603 BIT(VLV_IOSF_SB_BUNIT) | 604 BIT(VLV_IOSF_SB_PUNIT)); 605 606 intel_update_cdclk(dev_priv); 607 608 vlv_program_pfi_credits(dev_priv); 609 610 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); 611 } 612 613 static void chv_set_cdclk(struct drm_i915_private *dev_priv, 614 const struct intel_cdclk_state *cdclk_state, 615 enum pipe pipe) 616 { 617 int cdclk = cdclk_state->cdclk; 618 u32 val, cmd = cdclk_state->voltage_level; 619 intel_wakeref_t wakeref; 620 621 switch (cdclk) { 622 case 333333: 623 case 320000: 624 case 266667: 625 case 200000: 626 break; 627 default: 628 MISSING_CASE(cdclk); 629 return; 630 } 631 632 /* There are cases where we can end up here with power domains 633 * off and a CDCLK frequency other than the minimum, like when 634 * issuing a modeset without actually changing any display after 635 * a system suspend. So grab the display core domain, which covers 636 * the HW blocks needed for the following programming. 637 */ 638 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE); 639 640 vlv_punit_get(dev_priv); 641 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 642 val &= ~DSPFREQGUAR_MASK_CHV; 643 val |= (cmd << DSPFREQGUAR_SHIFT_CHV); 644 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 645 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & 646 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 647 50)) { 648 DRM_ERROR("timed out waiting for CDclk change\n"); 649 } 650 651 vlv_punit_put(dev_priv); 652 653 intel_update_cdclk(dev_priv); 654 655 vlv_program_pfi_credits(dev_priv); 656 657 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref); 658 } 659 660 static int bdw_calc_cdclk(int min_cdclk) 661 { 662 if (min_cdclk > 540000) 663 return 675000; 664 else if (min_cdclk > 450000) 665 return 540000; 666 else if (min_cdclk > 337500) 667 return 450000; 668 else 669 return 337500; 670 } 671 672 static u8 bdw_calc_voltage_level(int cdclk) 673 { 674 switch (cdclk) { 675 default: 676 case 337500: 677 return 2; 678 case 450000: 679 return 0; 680 case 540000: 681 return 1; 682 case 675000: 683 return 3; 684 } 685 } 686 687 static void bdw_get_cdclk(struct drm_i915_private *dev_priv, 688 struct intel_cdclk_state *cdclk_state) 689 { 690 u32 lcpll = I915_READ(LCPLL_CTL); 691 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK; 692 693 if (lcpll & LCPLL_CD_SOURCE_FCLK) 694 cdclk_state->cdclk = 800000; 695 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) 696 cdclk_state->cdclk = 450000; 697 else if (freq == LCPLL_CLK_FREQ_450) 698 cdclk_state->cdclk = 450000; 699 else if (freq == LCPLL_CLK_FREQ_54O_BDW) 700 cdclk_state->cdclk = 540000; 701 else if (freq == LCPLL_CLK_FREQ_337_5_BDW) 702 cdclk_state->cdclk = 337500; 703 else 704 cdclk_state->cdclk = 675000; 705 706 /* 707 * Can't read this out :( Let's assume it's 708 * at least what the CDCLK frequency requires. 709 */ 710 cdclk_state->voltage_level = 711 bdw_calc_voltage_level(cdclk_state->cdclk); 712 } 713 714 static void bdw_set_cdclk(struct drm_i915_private *dev_priv, 715 const struct intel_cdclk_state *cdclk_state, 716 enum pipe pipe) 717 { 718 int cdclk = cdclk_state->cdclk; 719 u32 val; 720 int ret; 721 722 if (WARN((I915_READ(LCPLL_CTL) & 723 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | 724 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | 725 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | 726 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, 727 "trying to change cdclk frequency with cdclk not enabled\n")) 728 return; 729 730 ret = sandybridge_pcode_write(dev_priv, 731 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); 732 if (ret) { 733 DRM_ERROR("failed to inform pcode about cdclk change\n"); 734 return; 735 } 736 737 val = I915_READ(LCPLL_CTL); 738 val |= LCPLL_CD_SOURCE_FCLK; 739 I915_WRITE(LCPLL_CTL, val); 740 741 /* 742 * According to the spec, it should be enough to poll for this 1 us. 743 * However, extensive testing shows that this can take longer. 744 */ 745 if (wait_for_us(I915_READ(LCPLL_CTL) & 746 LCPLL_CD_SOURCE_FCLK_DONE, 100)) 747 DRM_ERROR("Switching to FCLK failed\n"); 748 749 val = I915_READ(LCPLL_CTL); 750 val &= ~LCPLL_CLK_FREQ_MASK; 751 752 switch (cdclk) { 753 default: 754 MISSING_CASE(cdclk); 755 /* fall through */ 756 case 337500: 757 val |= LCPLL_CLK_FREQ_337_5_BDW; 758 break; 759 case 450000: 760 val |= LCPLL_CLK_FREQ_450; 761 break; 762 case 540000: 763 val |= LCPLL_CLK_FREQ_54O_BDW; 764 break; 765 case 675000: 766 val |= LCPLL_CLK_FREQ_675_BDW; 767 break; 768 } 769 770 I915_WRITE(LCPLL_CTL, val); 771 772 val = I915_READ(LCPLL_CTL); 773 val &= ~LCPLL_CD_SOURCE_FCLK; 774 I915_WRITE(LCPLL_CTL, val); 775 776 if (wait_for_us((I915_READ(LCPLL_CTL) & 777 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 778 DRM_ERROR("Switching back to LCPLL failed\n"); 779 780 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, 781 cdclk_state->voltage_level); 782 783 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1); 784 785 intel_update_cdclk(dev_priv); 786 } 787 788 static int skl_calc_cdclk(int min_cdclk, int vco) 789 { 790 if (vco == 8640000) { 791 if (min_cdclk > 540000) 792 return 617143; 793 else if (min_cdclk > 432000) 794 return 540000; 795 else if (min_cdclk > 308571) 796 return 432000; 797 else 798 return 308571; 799 } else { 800 if (min_cdclk > 540000) 801 return 675000; 802 else if (min_cdclk > 450000) 803 return 540000; 804 else if (min_cdclk > 337500) 805 return 450000; 806 else 807 return 337500; 808 } 809 } 810 811 static u8 skl_calc_voltage_level(int cdclk) 812 { 813 if (cdclk > 540000) 814 return 3; 815 else if (cdclk > 450000) 816 return 2; 817 else if (cdclk > 337500) 818 return 1; 819 else 820 return 0; 821 } 822 823 static void skl_dpll0_update(struct drm_i915_private *dev_priv, 824 struct intel_cdclk_state *cdclk_state) 825 { 826 u32 val; 827 828 cdclk_state->ref = 24000; 829 cdclk_state->vco = 0; 830 831 val = I915_READ(LCPLL1_CTL); 832 if ((val & LCPLL_PLL_ENABLE) == 0) 833 return; 834 835 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0)) 836 return; 837 838 val = I915_READ(DPLL_CTRL1); 839 840 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | 841 DPLL_CTRL1_SSC(SKL_DPLL0) | 842 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) != 843 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) 844 return; 845 846 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) { 847 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0): 848 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0): 849 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0): 850 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0): 851 cdclk_state->vco = 8100000; 852 break; 853 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0): 854 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0): 855 cdclk_state->vco = 8640000; 856 break; 857 default: 858 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 859 break; 860 } 861 } 862 863 static void skl_get_cdclk(struct drm_i915_private *dev_priv, 864 struct intel_cdclk_state *cdclk_state) 865 { 866 u32 cdctl; 867 868 skl_dpll0_update(dev_priv, cdclk_state); 869 870 cdclk_state->cdclk = cdclk_state->bypass = cdclk_state->ref; 871 872 if (cdclk_state->vco == 0) 873 goto out; 874 875 cdctl = I915_READ(CDCLK_CTL); 876 877 if (cdclk_state->vco == 8640000) { 878 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 879 case CDCLK_FREQ_450_432: 880 cdclk_state->cdclk = 432000; 881 break; 882 case CDCLK_FREQ_337_308: 883 cdclk_state->cdclk = 308571; 884 break; 885 case CDCLK_FREQ_540: 886 cdclk_state->cdclk = 540000; 887 break; 888 case CDCLK_FREQ_675_617: 889 cdclk_state->cdclk = 617143; 890 break; 891 default: 892 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 893 break; 894 } 895 } else { 896 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 897 case CDCLK_FREQ_450_432: 898 cdclk_state->cdclk = 450000; 899 break; 900 case CDCLK_FREQ_337_308: 901 cdclk_state->cdclk = 337500; 902 break; 903 case CDCLK_FREQ_540: 904 cdclk_state->cdclk = 540000; 905 break; 906 case CDCLK_FREQ_675_617: 907 cdclk_state->cdclk = 675000; 908 break; 909 default: 910 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK); 911 break; 912 } 913 } 914 915 out: 916 /* 917 * Can't read this out :( Let's assume it's 918 * at least what the CDCLK frequency requires. 919 */ 920 cdclk_state->voltage_level = 921 skl_calc_voltage_level(cdclk_state->cdclk); 922 } 923 924 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ 925 static int skl_cdclk_decimal(int cdclk) 926 { 927 return DIV_ROUND_CLOSEST(cdclk - 1000, 500); 928 } 929 930 static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, 931 int vco) 932 { 933 bool changed = dev_priv->skl_preferred_vco_freq != vco; 934 935 dev_priv->skl_preferred_vco_freq = vco; 936 937 if (changed) 938 intel_update_max_cdclk(dev_priv); 939 } 940 941 static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco) 942 { 943 u32 val; 944 945 WARN_ON(vco != 8100000 && vco != 8640000); 946 947 /* 948 * We always enable DPLL0 with the lowest link rate possible, but still 949 * taking into account the VCO required to operate the eDP panel at the 950 * desired frequency. The usual DP link rates operate with a VCO of 951 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. 952 * The modeset code is responsible for the selection of the exact link 953 * rate later on, with the constraint of choosing a frequency that 954 * works with vco. 955 */ 956 val = I915_READ(DPLL_CTRL1); 957 958 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | 959 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 960 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0); 961 if (vco == 8640000) 962 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 963 SKL_DPLL0); 964 else 965 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 966 SKL_DPLL0); 967 968 I915_WRITE(DPLL_CTRL1, val); 969 POSTING_READ(DPLL_CTRL1); 970 971 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE); 972 973 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5)) 974 DRM_ERROR("DPLL0 not locked\n"); 975 976 dev_priv->cdclk.hw.vco = vco; 977 978 /* We'll want to keep using the current vco from now on. */ 979 skl_set_preferred_cdclk_vco(dev_priv, vco); 980 } 981 982 static void skl_dpll0_disable(struct drm_i915_private *dev_priv) 983 { 984 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE); 985 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1)) 986 DRM_ERROR("Couldn't disable DPLL0\n"); 987 988 dev_priv->cdclk.hw.vco = 0; 989 } 990 991 static void skl_set_cdclk(struct drm_i915_private *dev_priv, 992 const struct intel_cdclk_state *cdclk_state, 993 enum pipe pipe) 994 { 995 int cdclk = cdclk_state->cdclk; 996 int vco = cdclk_state->vco; 997 u32 freq_select, cdclk_ctl; 998 int ret; 999 1000 /* 1001 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are 1002 * unsupported on SKL. In theory this should never happen since only 1003 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not 1004 * supported on SKL either, see the above WA. WARN whenever trying to 1005 * use the corresponding VCO freq as that always leads to using the 1006 * minimum 308MHz CDCLK. 1007 */ 1008 WARN_ON_ONCE(IS_SKYLAKE(dev_priv) && vco == 8640000); 1009 1010 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, 1011 SKL_CDCLK_PREPARE_FOR_CHANGE, 1012 SKL_CDCLK_READY_FOR_CHANGE, 1013 SKL_CDCLK_READY_FOR_CHANGE, 3); 1014 if (ret) { 1015 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n", 1016 ret); 1017 return; 1018 } 1019 1020 /* Choose frequency for this cdclk */ 1021 switch (cdclk) { 1022 default: 1023 WARN_ON(cdclk != dev_priv->cdclk.hw.bypass); 1024 WARN_ON(vco != 0); 1025 /* fall through */ 1026 case 308571: 1027 case 337500: 1028 freq_select = CDCLK_FREQ_337_308; 1029 break; 1030 case 450000: 1031 case 432000: 1032 freq_select = CDCLK_FREQ_450_432; 1033 break; 1034 case 540000: 1035 freq_select = CDCLK_FREQ_540; 1036 break; 1037 case 617143: 1038 case 675000: 1039 freq_select = CDCLK_FREQ_675_617; 1040 break; 1041 } 1042 1043 if (dev_priv->cdclk.hw.vco != 0 && 1044 dev_priv->cdclk.hw.vco != vco) 1045 skl_dpll0_disable(dev_priv); 1046 1047 cdclk_ctl = I915_READ(CDCLK_CTL); 1048 1049 if (dev_priv->cdclk.hw.vco != vco) { 1050 /* Wa Display #1183: skl,kbl,cfl */ 1051 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1052 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1053 I915_WRITE(CDCLK_CTL, cdclk_ctl); 1054 } 1055 1056 /* Wa Display #1183: skl,kbl,cfl */ 1057 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE; 1058 I915_WRITE(CDCLK_CTL, cdclk_ctl); 1059 POSTING_READ(CDCLK_CTL); 1060 1061 if (dev_priv->cdclk.hw.vco != vco) 1062 skl_dpll0_enable(dev_priv, vco); 1063 1064 /* Wa Display #1183: skl,kbl,cfl */ 1065 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK); 1066 I915_WRITE(CDCLK_CTL, cdclk_ctl); 1067 1068 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk); 1069 I915_WRITE(CDCLK_CTL, cdclk_ctl); 1070 1071 /* Wa Display #1183: skl,kbl,cfl */ 1072 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE; 1073 I915_WRITE(CDCLK_CTL, cdclk_ctl); 1074 POSTING_READ(CDCLK_CTL); 1075 1076 /* inform PCU of the change */ 1077 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, 1078 cdclk_state->voltage_level); 1079 1080 intel_update_cdclk(dev_priv); 1081 } 1082 1083 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv) 1084 { 1085 u32 cdctl, expected; 1086 1087 /* 1088 * check if the pre-os initialized the display 1089 * There is SWF18 scratchpad register defined which is set by the 1090 * pre-os which can be used by the OS drivers to check the status 1091 */ 1092 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0) 1093 goto sanitize; 1094 1095 intel_update_cdclk(dev_priv); 1096 intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); 1097 1098 /* Is PLL enabled and locked ? */ 1099 if (dev_priv->cdclk.hw.vco == 0 || 1100 dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) 1101 goto sanitize; 1102 1103 /* DPLL okay; verify the cdclock 1104 * 1105 * Noticed in some instances that the freq selection is correct but 1106 * decimal part is programmed wrong from BIOS where pre-os does not 1107 * enable display. Verify the same as well. 1108 */ 1109 cdctl = I915_READ(CDCLK_CTL); 1110 expected = (cdctl & CDCLK_FREQ_SEL_MASK) | 1111 skl_cdclk_decimal(dev_priv->cdclk.hw.cdclk); 1112 if (cdctl == expected) 1113 /* All well; nothing to sanitize */ 1114 return; 1115 1116 sanitize: 1117 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); 1118 1119 /* force cdclk programming */ 1120 dev_priv->cdclk.hw.cdclk = 0; 1121 /* force full PLL disable + enable */ 1122 dev_priv->cdclk.hw.vco = -1; 1123 } 1124 1125 static void skl_init_cdclk(struct drm_i915_private *dev_priv) 1126 { 1127 struct intel_cdclk_state cdclk_state; 1128 1129 skl_sanitize_cdclk(dev_priv); 1130 1131 if (dev_priv->cdclk.hw.cdclk != 0 && 1132 dev_priv->cdclk.hw.vco != 0) { 1133 /* 1134 * Use the current vco as our initial 1135 * guess as to what the preferred vco is. 1136 */ 1137 if (dev_priv->skl_preferred_vco_freq == 0) 1138 skl_set_preferred_cdclk_vco(dev_priv, 1139 dev_priv->cdclk.hw.vco); 1140 return; 1141 } 1142 1143 cdclk_state = dev_priv->cdclk.hw; 1144 1145 cdclk_state.vco = dev_priv->skl_preferred_vco_freq; 1146 if (cdclk_state.vco == 0) 1147 cdclk_state.vco = 8100000; 1148 cdclk_state.cdclk = skl_calc_cdclk(0, cdclk_state.vco); 1149 cdclk_state.voltage_level = skl_calc_voltage_level(cdclk_state.cdclk); 1150 1151 skl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); 1152 } 1153 1154 static void skl_uninit_cdclk(struct drm_i915_private *dev_priv) 1155 { 1156 struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw; 1157 1158 cdclk_state.cdclk = cdclk_state.bypass; 1159 cdclk_state.vco = 0; 1160 cdclk_state.voltage_level = skl_calc_voltage_level(cdclk_state.cdclk); 1161 1162 skl_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); 1163 } 1164 1165 static const struct intel_cdclk_vals bxt_cdclk_table[] = { 1166 { .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 }, 1167 { .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 }, 1168 { .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 }, 1169 { .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 }, 1170 { .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 }, 1171 {} 1172 }; 1173 1174 static const struct intel_cdclk_vals glk_cdclk_table[] = { 1175 { .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 }, 1176 { .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 }, 1177 { .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 }, 1178 {} 1179 }; 1180 1181 static const struct intel_cdclk_vals cnl_cdclk_table[] = { 1182 { .refclk = 19200, .cdclk = 168000, .divider = 4, .ratio = 35 }, 1183 { .refclk = 19200, .cdclk = 336000, .divider = 2, .ratio = 35 }, 1184 { .refclk = 19200, .cdclk = 528000, .divider = 2, .ratio = 55 }, 1185 1186 { .refclk = 24000, .cdclk = 168000, .divider = 4, .ratio = 28 }, 1187 { .refclk = 24000, .cdclk = 336000, .divider = 2, .ratio = 28 }, 1188 { .refclk = 24000, .cdclk = 528000, .divider = 2, .ratio = 44 }, 1189 {} 1190 }; 1191 1192 static const struct intel_cdclk_vals icl_cdclk_table[] = { 1193 { .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 }, 1194 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 }, 1195 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 }, 1196 { .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 }, 1197 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 }, 1198 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 }, 1199 1200 { .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 }, 1201 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 }, 1202 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 }, 1203 { .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 }, 1204 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 }, 1205 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 }, 1206 1207 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 }, 1208 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 }, 1209 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 }, 1210 { .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 }, 1211 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 }, 1212 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 }, 1213 {} 1214 }; 1215 1216 static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk) 1217 { 1218 const struct intel_cdclk_vals *table = dev_priv->cdclk.table; 1219 int i; 1220 1221 for (i = 0; table[i].refclk; i++) 1222 if (table[i].refclk == dev_priv->cdclk.hw.ref && 1223 table[i].cdclk >= min_cdclk) 1224 return table[i].cdclk; 1225 1226 WARN(1, "Cannot satisfy minimum cdclk %d with refclk %u\n", 1227 min_cdclk, dev_priv->cdclk.hw.ref); 1228 return 0; 1229 } 1230 1231 static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk) 1232 { 1233 const struct intel_cdclk_vals *table = dev_priv->cdclk.table; 1234 int i; 1235 1236 if (cdclk == dev_priv->cdclk.hw.bypass) 1237 return 0; 1238 1239 for (i = 0; table[i].refclk; i++) 1240 if (table[i].refclk == dev_priv->cdclk.hw.ref && 1241 table[i].cdclk == cdclk) 1242 return dev_priv->cdclk.hw.ref * table[i].ratio; 1243 1244 WARN(1, "cdclk %d not valid for refclk %u\n", 1245 cdclk, dev_priv->cdclk.hw.ref); 1246 return 0; 1247 } 1248 1249 static u8 bxt_calc_voltage_level(int cdclk) 1250 { 1251 return DIV_ROUND_UP(cdclk, 25000); 1252 } 1253 1254 static u8 cnl_calc_voltage_level(int cdclk) 1255 { 1256 if (cdclk > 336000) 1257 return 2; 1258 else if (cdclk > 168000) 1259 return 1; 1260 else 1261 return 0; 1262 } 1263 1264 static u8 icl_calc_voltage_level(int cdclk) 1265 { 1266 if (cdclk > 556800) 1267 return 2; 1268 else if (cdclk > 312000) 1269 return 1; 1270 else 1271 return 0; 1272 } 1273 1274 static u8 ehl_calc_voltage_level(int cdclk) 1275 { 1276 if (cdclk > 326400) 1277 return 3; 1278 else if (cdclk > 312000) 1279 return 2; 1280 else if (cdclk > 180000) 1281 return 1; 1282 else 1283 return 0; 1284 } 1285 1286 static void cnl_readout_refclk(struct drm_i915_private *dev_priv, 1287 struct intel_cdclk_state *cdclk_state) 1288 { 1289 if (I915_READ(SKL_DSSM) & CNL_DSSM_CDCLK_PLL_REFCLK_24MHz) 1290 cdclk_state->ref = 24000; 1291 else 1292 cdclk_state->ref = 19200; 1293 } 1294 1295 static void icl_readout_refclk(struct drm_i915_private *dev_priv, 1296 struct intel_cdclk_state *cdclk_state) 1297 { 1298 u32 dssm = I915_READ(SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK; 1299 1300 switch (dssm) { 1301 default: 1302 MISSING_CASE(dssm); 1303 /* fall through */ 1304 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz: 1305 cdclk_state->ref = 24000; 1306 break; 1307 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz: 1308 cdclk_state->ref = 19200; 1309 break; 1310 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz: 1311 cdclk_state->ref = 38400; 1312 break; 1313 } 1314 } 1315 1316 static void bxt_de_pll_readout(struct drm_i915_private *dev_priv, 1317 struct intel_cdclk_state *cdclk_state) 1318 { 1319 u32 val, ratio; 1320 1321 if (INTEL_GEN(dev_priv) >= 11) 1322 icl_readout_refclk(dev_priv, cdclk_state); 1323 else if (IS_CANNONLAKE(dev_priv)) 1324 cnl_readout_refclk(dev_priv, cdclk_state); 1325 else 1326 cdclk_state->ref = 19200; 1327 1328 val = I915_READ(BXT_DE_PLL_ENABLE); 1329 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 || 1330 (val & BXT_DE_PLL_LOCK) == 0) { 1331 /* 1332 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but 1333 * setting it to zero is a way to signal that. 1334 */ 1335 cdclk_state->vco = 0; 1336 return; 1337 } 1338 1339 /* 1340 * CNL+ have the ratio directly in the PLL enable register, gen9lp had 1341 * it in a separate PLL control register. 1342 */ 1343 if (INTEL_GEN(dev_priv) >= 10) 1344 ratio = val & CNL_CDCLK_PLL_RATIO_MASK; 1345 else 1346 ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; 1347 1348 cdclk_state->vco = ratio * cdclk_state->ref; 1349 } 1350 1351 static void bxt_get_cdclk(struct drm_i915_private *dev_priv, 1352 struct intel_cdclk_state *cdclk_state) 1353 { 1354 u32 divider; 1355 int div; 1356 1357 bxt_de_pll_readout(dev_priv, cdclk_state); 1358 1359 if (INTEL_GEN(dev_priv) >= 12) 1360 cdclk_state->bypass = cdclk_state->ref / 2; 1361 else if (INTEL_GEN(dev_priv) >= 11) 1362 cdclk_state->bypass = 50000; 1363 else 1364 cdclk_state->bypass = cdclk_state->ref; 1365 1366 if (cdclk_state->vco == 0) { 1367 cdclk_state->cdclk = cdclk_state->bypass; 1368 goto out; 1369 } 1370 1371 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK; 1372 1373 switch (divider) { 1374 case BXT_CDCLK_CD2X_DIV_SEL_1: 1375 div = 2; 1376 break; 1377 case BXT_CDCLK_CD2X_DIV_SEL_1_5: 1378 WARN(IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10, 1379 "Unsupported divider\n"); 1380 div = 3; 1381 break; 1382 case BXT_CDCLK_CD2X_DIV_SEL_2: 1383 div = 4; 1384 break; 1385 case BXT_CDCLK_CD2X_DIV_SEL_4: 1386 WARN(INTEL_GEN(dev_priv) >= 10, "Unsupported divider\n"); 1387 div = 8; 1388 break; 1389 default: 1390 MISSING_CASE(divider); 1391 return; 1392 } 1393 1394 cdclk_state->cdclk = DIV_ROUND_CLOSEST(cdclk_state->vco, div); 1395 1396 out: 1397 /* 1398 * Can't read this out :( Let's assume it's 1399 * at least what the CDCLK frequency requires. 1400 */ 1401 cdclk_state->voltage_level = 1402 dev_priv->display.calc_voltage_level(cdclk_state->cdclk); 1403 } 1404 1405 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv) 1406 { 1407 I915_WRITE(BXT_DE_PLL_ENABLE, 0); 1408 1409 /* Timeout 200us */ 1410 if (intel_de_wait_for_clear(dev_priv, 1411 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1412 DRM_ERROR("timeout waiting for DE PLL unlock\n"); 1413 1414 dev_priv->cdclk.hw.vco = 0; 1415 } 1416 1417 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco) 1418 { 1419 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref); 1420 u32 val; 1421 1422 val = I915_READ(BXT_DE_PLL_CTL); 1423 val &= ~BXT_DE_PLL_RATIO_MASK; 1424 val |= BXT_DE_PLL_RATIO(ratio); 1425 I915_WRITE(BXT_DE_PLL_CTL, val); 1426 1427 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); 1428 1429 /* Timeout 200us */ 1430 if (intel_de_wait_for_set(dev_priv, 1431 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1)) 1432 DRM_ERROR("timeout waiting for DE PLL lock\n"); 1433 1434 dev_priv->cdclk.hw.vco = vco; 1435 } 1436 1437 static void cnl_cdclk_pll_disable(struct drm_i915_private *dev_priv) 1438 { 1439 u32 val; 1440 1441 val = I915_READ(BXT_DE_PLL_ENABLE); 1442 val &= ~BXT_DE_PLL_PLL_ENABLE; 1443 I915_WRITE(BXT_DE_PLL_ENABLE, val); 1444 1445 /* Timeout 200us */ 1446 if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) == 0, 1)) 1447 DRM_ERROR("timeout waiting for CDCLK PLL unlock\n"); 1448 1449 dev_priv->cdclk.hw.vco = 0; 1450 } 1451 1452 static void cnl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco) 1453 { 1454 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk.hw.ref); 1455 u32 val; 1456 1457 val = CNL_CDCLK_PLL_RATIO(ratio); 1458 I915_WRITE(BXT_DE_PLL_ENABLE, val); 1459 1460 val |= BXT_DE_PLL_PLL_ENABLE; 1461 I915_WRITE(BXT_DE_PLL_ENABLE, val); 1462 1463 /* Timeout 200us */ 1464 if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) != 0, 1)) 1465 DRM_ERROR("timeout waiting for CDCLK PLL lock\n"); 1466 1467 dev_priv->cdclk.hw.vco = vco; 1468 } 1469 1470 static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 1471 { 1472 if (INTEL_GEN(dev_priv) >= 12) { 1473 if (pipe == INVALID_PIPE) 1474 return TGL_CDCLK_CD2X_PIPE_NONE; 1475 else 1476 return TGL_CDCLK_CD2X_PIPE(pipe); 1477 } else if (INTEL_GEN(dev_priv) >= 11) { 1478 if (pipe == INVALID_PIPE) 1479 return ICL_CDCLK_CD2X_PIPE_NONE; 1480 else 1481 return ICL_CDCLK_CD2X_PIPE(pipe); 1482 } else { 1483 if (pipe == INVALID_PIPE) 1484 return BXT_CDCLK_CD2X_PIPE_NONE; 1485 else 1486 return BXT_CDCLK_CD2X_PIPE(pipe); 1487 } 1488 } 1489 1490 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, 1491 const struct intel_cdclk_state *cdclk_state, 1492 enum pipe pipe) 1493 { 1494 int cdclk = cdclk_state->cdclk; 1495 int vco = cdclk_state->vco; 1496 u32 val, divider; 1497 int ret; 1498 1499 /* Inform power controller of upcoming frequency change. */ 1500 if (INTEL_GEN(dev_priv) >= 10) 1501 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL, 1502 SKL_CDCLK_PREPARE_FOR_CHANGE, 1503 SKL_CDCLK_READY_FOR_CHANGE, 1504 SKL_CDCLK_READY_FOR_CHANGE, 3); 1505 else 1506 /* 1507 * BSpec requires us to wait up to 150usec, but that leads to 1508 * timeouts; the 2ms used here is based on experiment. 1509 */ 1510 ret = sandybridge_pcode_write_timeout(dev_priv, 1511 HSW_PCODE_DE_WRITE_FREQ_REQ, 1512 0x80000000, 150, 2); 1513 1514 if (ret) { 1515 DRM_ERROR("Failed to inform PCU about cdclk change (err %d, freq %d)\n", 1516 ret, cdclk); 1517 return; 1518 } 1519 1520 /* cdclk = vco / 2 / div{1,1.5,2,4} */ 1521 switch (DIV_ROUND_CLOSEST(vco, cdclk)) { 1522 default: 1523 WARN_ON(cdclk != dev_priv->cdclk.hw.bypass); 1524 WARN_ON(vco != 0); 1525 /* fall through */ 1526 case 2: 1527 divider = BXT_CDCLK_CD2X_DIV_SEL_1; 1528 break; 1529 case 3: 1530 WARN(IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10, 1531 "Unsupported divider\n"); 1532 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5; 1533 break; 1534 case 4: 1535 divider = BXT_CDCLK_CD2X_DIV_SEL_2; 1536 break; 1537 case 8: 1538 WARN(INTEL_GEN(dev_priv) >= 10, "Unsupported divider\n"); 1539 divider = BXT_CDCLK_CD2X_DIV_SEL_4; 1540 break; 1541 } 1542 1543 if (INTEL_GEN(dev_priv) >= 10) { 1544 if (dev_priv->cdclk.hw.vco != 0 && 1545 dev_priv->cdclk.hw.vco != vco) 1546 cnl_cdclk_pll_disable(dev_priv); 1547 1548 if (dev_priv->cdclk.hw.vco != vco) 1549 cnl_cdclk_pll_enable(dev_priv, vco); 1550 1551 } else { 1552 if (dev_priv->cdclk.hw.vco != 0 && 1553 dev_priv->cdclk.hw.vco != vco) 1554 bxt_de_pll_disable(dev_priv); 1555 1556 if (dev_priv->cdclk.hw.vco != vco) 1557 bxt_de_pll_enable(dev_priv, vco); 1558 } 1559 1560 val = divider | skl_cdclk_decimal(cdclk) | 1561 bxt_cdclk_cd2x_pipe(dev_priv, pipe); 1562 1563 /* 1564 * Disable SSA Precharge when CD clock frequency < 500 MHz, 1565 * enable otherwise. 1566 */ 1567 if (IS_GEN9_LP(dev_priv) && cdclk >= 500000) 1568 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 1569 I915_WRITE(CDCLK_CTL, val); 1570 1571 if (pipe != INVALID_PIPE) 1572 intel_wait_for_vblank(dev_priv, pipe); 1573 1574 if (INTEL_GEN(dev_priv) >= 10) { 1575 ret = sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, 1576 cdclk_state->voltage_level); 1577 } else { 1578 /* 1579 * The timeout isn't specified, the 2ms used here is based on 1580 * experiment. 1581 * FIXME: Waiting for the request completion could be delayed 1582 * until the next PCODE request based on BSpec. 1583 */ 1584 ret = sandybridge_pcode_write_timeout(dev_priv, 1585 HSW_PCODE_DE_WRITE_FREQ_REQ, 1586 cdclk_state->voltage_level, 1587 150, 2); 1588 } 1589 1590 if (ret) { 1591 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n", 1592 ret, cdclk); 1593 return; 1594 } 1595 1596 intel_update_cdclk(dev_priv); 1597 1598 if (INTEL_GEN(dev_priv) >= 10) 1599 /* 1600 * Can't read out the voltage level :( 1601 * Let's just assume everything is as expected. 1602 */ 1603 dev_priv->cdclk.hw.voltage_level = cdclk_state->voltage_level; 1604 } 1605 1606 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv) 1607 { 1608 u32 cdctl, expected; 1609 int cdclk, vco; 1610 1611 intel_update_cdclk(dev_priv); 1612 intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK"); 1613 1614 if (dev_priv->cdclk.hw.vco == 0 || 1615 dev_priv->cdclk.hw.cdclk == dev_priv->cdclk.hw.bypass) 1616 goto sanitize; 1617 1618 /* DPLL okay; verify the cdclock 1619 * 1620 * Some BIOS versions leave an incorrect decimal frequency value and 1621 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4, 1622 * so sanitize this register. 1623 */ 1624 cdctl = I915_READ(CDCLK_CTL); 1625 /* 1626 * Let's ignore the pipe field, since BIOS could have configured the 1627 * dividers both synching to an active pipe, or asynchronously 1628 * (PIPE_NONE). 1629 */ 1630 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE); 1631 1632 /* Make sure this is a legal cdclk value for the platform */ 1633 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->cdclk.hw.cdclk); 1634 if (cdclk != dev_priv->cdclk.hw.cdclk) 1635 goto sanitize; 1636 1637 /* Make sure the VCO is correct for the cdclk */ 1638 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 1639 if (vco != dev_priv->cdclk.hw.vco) 1640 goto sanitize; 1641 1642 expected = skl_cdclk_decimal(cdclk); 1643 1644 /* Figure out what CD2X divider we should be using for this cdclk */ 1645 switch (DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.vco, 1646 dev_priv->cdclk.hw.cdclk)) { 1647 case 2: 1648 expected |= BXT_CDCLK_CD2X_DIV_SEL_1; 1649 break; 1650 case 3: 1651 expected |= BXT_CDCLK_CD2X_DIV_SEL_1_5; 1652 break; 1653 case 4: 1654 expected |= BXT_CDCLK_CD2X_DIV_SEL_2; 1655 break; 1656 case 8: 1657 expected |= BXT_CDCLK_CD2X_DIV_SEL_4; 1658 break; 1659 default: 1660 goto sanitize; 1661 } 1662 1663 /* 1664 * Disable SSA Precharge when CD clock frequency < 500 MHz, 1665 * enable otherwise. 1666 */ 1667 if (IS_GEN9_LP(dev_priv) && dev_priv->cdclk.hw.cdclk >= 500000) 1668 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 1669 1670 if (cdctl == expected) 1671 /* All well; nothing to sanitize */ 1672 return; 1673 1674 sanitize: 1675 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n"); 1676 1677 /* force cdclk programming */ 1678 dev_priv->cdclk.hw.cdclk = 0; 1679 1680 /* force full PLL disable + enable */ 1681 dev_priv->cdclk.hw.vco = -1; 1682 } 1683 1684 static void bxt_init_cdclk(struct drm_i915_private *dev_priv) 1685 { 1686 struct intel_cdclk_state cdclk_state; 1687 1688 bxt_sanitize_cdclk(dev_priv); 1689 1690 if (dev_priv->cdclk.hw.cdclk != 0 && 1691 dev_priv->cdclk.hw.vco != 0) 1692 return; 1693 1694 cdclk_state = dev_priv->cdclk.hw; 1695 1696 /* 1697 * FIXME: 1698 * - The initial CDCLK needs to be read from VBT. 1699 * Need to make this change after VBT has changes for BXT. 1700 */ 1701 cdclk_state.cdclk = bxt_calc_cdclk(dev_priv, 0); 1702 cdclk_state.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_state.cdclk); 1703 cdclk_state.voltage_level = 1704 dev_priv->display.calc_voltage_level(cdclk_state.cdclk); 1705 1706 bxt_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); 1707 } 1708 1709 static void bxt_uninit_cdclk(struct drm_i915_private *dev_priv) 1710 { 1711 struct intel_cdclk_state cdclk_state = dev_priv->cdclk.hw; 1712 1713 cdclk_state.cdclk = cdclk_state.bypass; 1714 cdclk_state.vco = 0; 1715 cdclk_state.voltage_level = 1716 dev_priv->display.calc_voltage_level(cdclk_state.cdclk); 1717 1718 bxt_set_cdclk(dev_priv, &cdclk_state, INVALID_PIPE); 1719 } 1720 1721 /** 1722 * intel_cdclk_init - Initialize CDCLK 1723 * @i915: i915 device 1724 * 1725 * Initialize CDCLK. This consists mainly of initializing dev_priv->cdclk.hw and 1726 * sanitizing the state of the hardware if needed. This is generally done only 1727 * during the display core initialization sequence, after which the DMC will 1728 * take care of turning CDCLK off/on as needed. 1729 */ 1730 void intel_cdclk_init(struct drm_i915_private *i915) 1731 { 1732 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10) 1733 bxt_init_cdclk(i915); 1734 else if (IS_GEN9_BC(i915)) 1735 skl_init_cdclk(i915); 1736 } 1737 1738 /** 1739 * intel_cdclk_uninit - Uninitialize CDCLK 1740 * @i915: i915 device 1741 * 1742 * Uninitialize CDCLK. This is done only during the display core 1743 * uninitialization sequence. 1744 */ 1745 void intel_cdclk_uninit(struct drm_i915_private *i915) 1746 { 1747 if (INTEL_GEN(i915) >= 10 || IS_GEN9_LP(i915)) 1748 bxt_uninit_cdclk(i915); 1749 else if (IS_GEN9_BC(i915)) 1750 skl_uninit_cdclk(i915); 1751 } 1752 1753 /** 1754 * intel_cdclk_needs_modeset - Determine if two CDCLK states require a modeset on all pipes 1755 * @a: first CDCLK state 1756 * @b: second CDCLK state 1757 * 1758 * Returns: 1759 * True if the CDCLK states require pipes to be off during reprogramming, false if not. 1760 */ 1761 bool intel_cdclk_needs_modeset(const struct intel_cdclk_state *a, 1762 const struct intel_cdclk_state *b) 1763 { 1764 return a->cdclk != b->cdclk || 1765 a->vco != b->vco || 1766 a->ref != b->ref; 1767 } 1768 1769 /** 1770 * intel_cdclk_needs_cd2x_update - Determine if two CDCLK states require a cd2x divider update 1771 * @dev_priv: Not a CDCLK state, it's the drm_i915_private! 1772 * @a: first CDCLK state 1773 * @b: second CDCLK state 1774 * 1775 * Returns: 1776 * True if the CDCLK states require just a cd2x divider update, false if not. 1777 */ 1778 static bool intel_cdclk_needs_cd2x_update(struct drm_i915_private *dev_priv, 1779 const struct intel_cdclk_state *a, 1780 const struct intel_cdclk_state *b) 1781 { 1782 /* Older hw doesn't have the capability */ 1783 if (INTEL_GEN(dev_priv) < 10 && !IS_GEN9_LP(dev_priv)) 1784 return false; 1785 1786 return a->cdclk != b->cdclk && 1787 a->vco == b->vco && 1788 a->ref == b->ref; 1789 } 1790 1791 /** 1792 * intel_cdclk_changed - Determine if two CDCLK states are different 1793 * @a: first CDCLK state 1794 * @b: second CDCLK state 1795 * 1796 * Returns: 1797 * True if the CDCLK states don't match, false if they do. 1798 */ 1799 static bool intel_cdclk_changed(const struct intel_cdclk_state *a, 1800 const struct intel_cdclk_state *b) 1801 { 1802 return intel_cdclk_needs_modeset(a, b) || 1803 a->voltage_level != b->voltage_level; 1804 } 1805 1806 /** 1807 * intel_cdclk_swap_state - make atomic CDCLK configuration effective 1808 * @state: atomic state 1809 * 1810 * This is the CDCLK version of drm_atomic_helper_swap_state() since the 1811 * helper does not handle driver-specific global state. 1812 * 1813 * Similarly to the atomic helpers this function does a complete swap, 1814 * i.e. it also puts the old state into @state. This is used by the commit 1815 * code to determine how CDCLK has changed (for instance did it increase or 1816 * decrease). 1817 */ 1818 void intel_cdclk_swap_state(struct intel_atomic_state *state) 1819 { 1820 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1821 1822 swap(state->cdclk.logical, dev_priv->cdclk.logical); 1823 swap(state->cdclk.actual, dev_priv->cdclk.actual); 1824 } 1825 1826 void intel_dump_cdclk_state(const struct intel_cdclk_state *cdclk_state, 1827 const char *context) 1828 { 1829 DRM_DEBUG_DRIVER("%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n", 1830 context, cdclk_state->cdclk, cdclk_state->vco, 1831 cdclk_state->ref, cdclk_state->bypass, 1832 cdclk_state->voltage_level); 1833 } 1834 1835 /** 1836 * intel_set_cdclk - Push the CDCLK state to the hardware 1837 * @dev_priv: i915 device 1838 * @cdclk_state: new CDCLK state 1839 * @pipe: pipe with which to synchronize the update 1840 * 1841 * Program the hardware based on the passed in CDCLK state, 1842 * if necessary. 1843 */ 1844 static void intel_set_cdclk(struct drm_i915_private *dev_priv, 1845 const struct intel_cdclk_state *cdclk_state, 1846 enum pipe pipe) 1847 { 1848 if (!intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_state)) 1849 return; 1850 1851 if (WARN_ON_ONCE(!dev_priv->display.set_cdclk)) 1852 return; 1853 1854 intel_dump_cdclk_state(cdclk_state, "Changing CDCLK to"); 1855 1856 dev_priv->display.set_cdclk(dev_priv, cdclk_state, pipe); 1857 1858 if (WARN(intel_cdclk_changed(&dev_priv->cdclk.hw, cdclk_state), 1859 "cdclk state doesn't match!\n")) { 1860 intel_dump_cdclk_state(&dev_priv->cdclk.hw, "[hw state]"); 1861 intel_dump_cdclk_state(cdclk_state, "[sw state]"); 1862 } 1863 } 1864 1865 /** 1866 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware 1867 * @dev_priv: i915 device 1868 * @old_state: old CDCLK state 1869 * @new_state: new CDCLK state 1870 * @pipe: pipe with which to synchronize the update 1871 * 1872 * Program the hardware before updating the HW plane state based on the passed 1873 * in CDCLK state, if necessary. 1874 */ 1875 void 1876 intel_set_cdclk_pre_plane_update(struct drm_i915_private *dev_priv, 1877 const struct intel_cdclk_state *old_state, 1878 const struct intel_cdclk_state *new_state, 1879 enum pipe pipe) 1880 { 1881 if (pipe == INVALID_PIPE || old_state->cdclk <= new_state->cdclk) 1882 intel_set_cdclk(dev_priv, new_state, pipe); 1883 } 1884 1885 /** 1886 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware 1887 * @dev_priv: i915 device 1888 * @old_state: old CDCLK state 1889 * @new_state: new CDCLK state 1890 * @pipe: pipe with which to synchronize the update 1891 * 1892 * Program the hardware after updating the HW plane state based on the passed 1893 * in CDCLK state, if necessary. 1894 */ 1895 void 1896 intel_set_cdclk_post_plane_update(struct drm_i915_private *dev_priv, 1897 const struct intel_cdclk_state *old_state, 1898 const struct intel_cdclk_state *new_state, 1899 enum pipe pipe) 1900 { 1901 if (pipe != INVALID_PIPE && old_state->cdclk > new_state->cdclk) 1902 intel_set_cdclk(dev_priv, new_state, pipe); 1903 } 1904 1905 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state) 1906 { 1907 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 1908 int pixel_rate = crtc_state->pixel_rate; 1909 1910 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 1911 return DIV_ROUND_UP(pixel_rate, 2); 1912 else if (IS_GEN(dev_priv, 9) || 1913 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1914 return pixel_rate; 1915 else if (IS_CHERRYVIEW(dev_priv)) 1916 return DIV_ROUND_UP(pixel_rate * 100, 95); 1917 else if (crtc_state->double_wide) 1918 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2); 1919 else 1920 return DIV_ROUND_UP(pixel_rate * 100, 90); 1921 } 1922 1923 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state) 1924 { 1925 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1926 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1927 struct intel_plane *plane; 1928 int min_cdclk = 0; 1929 1930 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1931 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk); 1932 1933 return min_cdclk; 1934 } 1935 1936 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state) 1937 { 1938 struct drm_i915_private *dev_priv = 1939 to_i915(crtc_state->base.crtc->dev); 1940 int min_cdclk; 1941 1942 if (!crtc_state->base.enable) 1943 return 0; 1944 1945 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state); 1946 1947 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 1948 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state)) 1949 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95); 1950 1951 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz, 1952 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else 1953 * there may be audio corruption or screen corruption." This cdclk 1954 * restriction for GLK is 316.8 MHz. 1955 */ 1956 if (intel_crtc_has_dp_encoder(crtc_state) && 1957 crtc_state->has_audio && 1958 crtc_state->port_clock >= 540000 && 1959 crtc_state->lane_count == 4) { 1960 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) { 1961 /* Display WA #1145: glk,cnl */ 1962 min_cdclk = max(316800, min_cdclk); 1963 } else if (IS_GEN(dev_priv, 9) || IS_BROADWELL(dev_priv)) { 1964 /* Display WA #1144: skl,bxt */ 1965 min_cdclk = max(432000, min_cdclk); 1966 } 1967 } 1968 1969 /* 1970 * According to BSpec, "The CD clock frequency must be at least twice 1971 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default. 1972 */ 1973 if (crtc_state->has_audio && INTEL_GEN(dev_priv) >= 9) 1974 min_cdclk = max(2 * 96000, min_cdclk); 1975 1976 /* 1977 * "For DP audio configuration, cdclk frequency shall be set to 1978 * meet the following requirements: 1979 * DP Link Frequency(MHz) | Cdclk frequency(MHz) 1980 * 270 | 320 or higher 1981 * 162 | 200 or higher" 1982 */ 1983 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1984 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio) 1985 min_cdclk = max(crtc_state->port_clock, min_cdclk); 1986 1987 /* 1988 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower 1989 * than 320000KHz. 1990 */ 1991 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && 1992 IS_VALLEYVIEW(dev_priv)) 1993 min_cdclk = max(320000, min_cdclk); 1994 1995 /* 1996 * On Geminilake once the CDCLK gets as low as 79200 1997 * picture gets unstable, despite that values are 1998 * correct for DSI PLL and DE PLL. 1999 */ 2000 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) && 2001 IS_GEMINILAKE(dev_priv)) 2002 min_cdclk = max(158400, min_cdclk); 2003 2004 /* Account for additional needs from the planes */ 2005 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk); 2006 2007 if (min_cdclk > dev_priv->max_cdclk_freq) { 2008 DRM_DEBUG_KMS("required cdclk (%d kHz) exceeds max (%d kHz)\n", 2009 min_cdclk, dev_priv->max_cdclk_freq); 2010 return -EINVAL; 2011 } 2012 2013 return min_cdclk; 2014 } 2015 2016 static int intel_compute_min_cdclk(struct intel_atomic_state *state) 2017 { 2018 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2019 struct intel_crtc *crtc; 2020 struct intel_crtc_state *crtc_state; 2021 int min_cdclk, i; 2022 enum pipe pipe; 2023 2024 memcpy(state->min_cdclk, dev_priv->min_cdclk, 2025 sizeof(state->min_cdclk)); 2026 2027 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2028 int ret; 2029 2030 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 2031 if (min_cdclk < 0) 2032 return min_cdclk; 2033 2034 if (state->min_cdclk[i] == min_cdclk) 2035 continue; 2036 2037 state->min_cdclk[i] = min_cdclk; 2038 2039 ret = intel_atomic_lock_global_state(state); 2040 if (ret) 2041 return ret; 2042 } 2043 2044 min_cdclk = state->cdclk.force_min_cdclk; 2045 for_each_pipe(dev_priv, pipe) 2046 min_cdclk = max(state->min_cdclk[pipe], min_cdclk); 2047 2048 return min_cdclk; 2049 } 2050 2051 /* 2052 * Account for port clock min voltage level requirements. 2053 * This only really does something on CNL+ but can be 2054 * called on earlier platforms as well. 2055 * 2056 * Note that this functions assumes that 0 is 2057 * the lowest voltage value, and higher values 2058 * correspond to increasingly higher voltages. 2059 * 2060 * Should that relationship no longer hold on 2061 * future platforms this code will need to be 2062 * adjusted. 2063 */ 2064 static int bxt_compute_min_voltage_level(struct intel_atomic_state *state) 2065 { 2066 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2067 struct intel_crtc *crtc; 2068 struct intel_crtc_state *crtc_state; 2069 u8 min_voltage_level; 2070 int i; 2071 enum pipe pipe; 2072 2073 memcpy(state->min_voltage_level, dev_priv->min_voltage_level, 2074 sizeof(state->min_voltage_level)); 2075 2076 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2077 int ret; 2078 2079 if (crtc_state->base.enable) 2080 min_voltage_level = crtc_state->min_voltage_level; 2081 else 2082 min_voltage_level = 0; 2083 2084 if (state->min_voltage_level[i] == min_voltage_level) 2085 continue; 2086 2087 state->min_voltage_level[i] = min_voltage_level; 2088 2089 ret = intel_atomic_lock_global_state(state); 2090 if (ret) 2091 return ret; 2092 } 2093 2094 min_voltage_level = 0; 2095 for_each_pipe(dev_priv, pipe) 2096 min_voltage_level = max(state->min_voltage_level[pipe], 2097 min_voltage_level); 2098 2099 return min_voltage_level; 2100 } 2101 2102 static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state) 2103 { 2104 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2105 int min_cdclk, cdclk; 2106 2107 min_cdclk = intel_compute_min_cdclk(state); 2108 if (min_cdclk < 0) 2109 return min_cdclk; 2110 2111 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk); 2112 2113 state->cdclk.logical.cdclk = cdclk; 2114 state->cdclk.logical.voltage_level = 2115 vlv_calc_voltage_level(dev_priv, cdclk); 2116 2117 if (!state->active_pipes) { 2118 cdclk = vlv_calc_cdclk(dev_priv, state->cdclk.force_min_cdclk); 2119 2120 state->cdclk.actual.cdclk = cdclk; 2121 state->cdclk.actual.voltage_level = 2122 vlv_calc_voltage_level(dev_priv, cdclk); 2123 } else { 2124 state->cdclk.actual = state->cdclk.logical; 2125 } 2126 2127 return 0; 2128 } 2129 2130 static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state) 2131 { 2132 int min_cdclk, cdclk; 2133 2134 min_cdclk = intel_compute_min_cdclk(state); 2135 if (min_cdclk < 0) 2136 return min_cdclk; 2137 2138 /* 2139 * FIXME should also account for plane ratio 2140 * once 64bpp pixel formats are supported. 2141 */ 2142 cdclk = bdw_calc_cdclk(min_cdclk); 2143 2144 state->cdclk.logical.cdclk = cdclk; 2145 state->cdclk.logical.voltage_level = 2146 bdw_calc_voltage_level(cdclk); 2147 2148 if (!state->active_pipes) { 2149 cdclk = bdw_calc_cdclk(state->cdclk.force_min_cdclk); 2150 2151 state->cdclk.actual.cdclk = cdclk; 2152 state->cdclk.actual.voltage_level = 2153 bdw_calc_voltage_level(cdclk); 2154 } else { 2155 state->cdclk.actual = state->cdclk.logical; 2156 } 2157 2158 return 0; 2159 } 2160 2161 static int skl_dpll0_vco(struct intel_atomic_state *state) 2162 { 2163 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2164 struct intel_crtc *crtc; 2165 struct intel_crtc_state *crtc_state; 2166 int vco, i; 2167 2168 vco = state->cdclk.logical.vco; 2169 if (!vco) 2170 vco = dev_priv->skl_preferred_vco_freq; 2171 2172 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 2173 if (!crtc_state->base.enable) 2174 continue; 2175 2176 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 2177 continue; 2178 2179 /* 2180 * DPLL0 VCO may need to be adjusted to get the correct 2181 * clock for eDP. This will affect cdclk as well. 2182 */ 2183 switch (crtc_state->port_clock / 2) { 2184 case 108000: 2185 case 216000: 2186 vco = 8640000; 2187 break; 2188 default: 2189 vco = 8100000; 2190 break; 2191 } 2192 } 2193 2194 return vco; 2195 } 2196 2197 static int skl_modeset_calc_cdclk(struct intel_atomic_state *state) 2198 { 2199 int min_cdclk, cdclk, vco; 2200 2201 min_cdclk = intel_compute_min_cdclk(state); 2202 if (min_cdclk < 0) 2203 return min_cdclk; 2204 2205 vco = skl_dpll0_vco(state); 2206 2207 /* 2208 * FIXME should also account for plane ratio 2209 * once 64bpp pixel formats are supported. 2210 */ 2211 cdclk = skl_calc_cdclk(min_cdclk, vco); 2212 2213 state->cdclk.logical.vco = vco; 2214 state->cdclk.logical.cdclk = cdclk; 2215 state->cdclk.logical.voltage_level = 2216 skl_calc_voltage_level(cdclk); 2217 2218 if (!state->active_pipes) { 2219 cdclk = skl_calc_cdclk(state->cdclk.force_min_cdclk, vco); 2220 2221 state->cdclk.actual.vco = vco; 2222 state->cdclk.actual.cdclk = cdclk; 2223 state->cdclk.actual.voltage_level = 2224 skl_calc_voltage_level(cdclk); 2225 } else { 2226 state->cdclk.actual = state->cdclk.logical; 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state) 2233 { 2234 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2235 int min_cdclk, min_voltage_level, cdclk, vco; 2236 2237 min_cdclk = intel_compute_min_cdclk(state); 2238 if (min_cdclk < 0) 2239 return min_cdclk; 2240 2241 min_voltage_level = bxt_compute_min_voltage_level(state); 2242 if (min_voltage_level < 0) 2243 return min_voltage_level; 2244 2245 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk); 2246 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 2247 2248 state->cdclk.logical.vco = vco; 2249 state->cdclk.logical.cdclk = cdclk; 2250 state->cdclk.logical.voltage_level = 2251 max_t(int, min_voltage_level, 2252 dev_priv->display.calc_voltage_level(cdclk)); 2253 2254 if (!state->active_pipes) { 2255 cdclk = bxt_calc_cdclk(dev_priv, state->cdclk.force_min_cdclk); 2256 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk); 2257 2258 state->cdclk.actual.vco = vco; 2259 state->cdclk.actual.cdclk = cdclk; 2260 state->cdclk.actual.voltage_level = 2261 dev_priv->display.calc_voltage_level(cdclk); 2262 } else { 2263 state->cdclk.actual = state->cdclk.logical; 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int intel_modeset_all_pipes(struct intel_atomic_state *state) 2270 { 2271 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2272 struct intel_crtc *crtc; 2273 2274 /* 2275 * Add all pipes to the state, and force 2276 * a modeset on all the active ones. 2277 */ 2278 for_each_intel_crtc(&dev_priv->drm, crtc) { 2279 struct intel_crtc_state *crtc_state; 2280 int ret; 2281 2282 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 2283 if (IS_ERR(crtc_state)) 2284 return PTR_ERR(crtc_state); 2285 2286 if (!crtc_state->base.active || 2287 drm_atomic_crtc_needs_modeset(&crtc_state->base)) 2288 continue; 2289 2290 crtc_state->base.mode_changed = true; 2291 2292 ret = drm_atomic_add_affected_connectors(&state->base, 2293 &crtc->base); 2294 if (ret) 2295 return ret; 2296 2297 ret = drm_atomic_add_affected_planes(&state->base, 2298 &crtc->base); 2299 if (ret) 2300 return ret; 2301 2302 crtc_state->update_planes |= crtc_state->active_planes; 2303 } 2304 2305 return 0; 2306 } 2307 2308 static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state) 2309 { 2310 int min_cdclk; 2311 2312 /* 2313 * We can't change the cdclk frequency, but we still want to 2314 * check that the required minimum frequency doesn't exceed 2315 * the actual cdclk frequency. 2316 */ 2317 min_cdclk = intel_compute_min_cdclk(state); 2318 if (min_cdclk < 0) 2319 return min_cdclk; 2320 2321 return 0; 2322 } 2323 2324 int intel_modeset_calc_cdclk(struct intel_atomic_state *state) 2325 { 2326 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2327 enum pipe pipe; 2328 int ret; 2329 2330 ret = dev_priv->display.modeset_calc_cdclk(state); 2331 if (ret) 2332 return ret; 2333 2334 /* 2335 * Writes to dev_priv->cdclk.{actual,logical} must protected 2336 * by holding all the crtc mutexes even if we don't end up 2337 * touching the hardware 2338 */ 2339 if (intel_cdclk_changed(&dev_priv->cdclk.actual, 2340 &state->cdclk.actual)) { 2341 /* 2342 * Also serialize commits across all crtcs 2343 * if the actual hw needs to be poked. 2344 */ 2345 ret = intel_atomic_serialize_global_state(state); 2346 if (ret) 2347 return ret; 2348 } else if (intel_cdclk_changed(&dev_priv->cdclk.logical, 2349 &state->cdclk.logical)) { 2350 ret = intel_atomic_lock_global_state(state); 2351 if (ret) 2352 return ret; 2353 } else { 2354 return 0; 2355 } 2356 2357 if (is_power_of_2(state->active_pipes) && 2358 intel_cdclk_needs_cd2x_update(dev_priv, 2359 &dev_priv->cdclk.actual, 2360 &state->cdclk.actual)) { 2361 struct intel_crtc *crtc; 2362 struct intel_crtc_state *crtc_state; 2363 2364 pipe = ilog2(state->active_pipes); 2365 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 2366 2367 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 2368 if (IS_ERR(crtc_state)) 2369 return PTR_ERR(crtc_state); 2370 2371 if (drm_atomic_crtc_needs_modeset(&crtc_state->base)) 2372 pipe = INVALID_PIPE; 2373 } else { 2374 pipe = INVALID_PIPE; 2375 } 2376 2377 if (pipe != INVALID_PIPE) { 2378 state->cdclk.pipe = pipe; 2379 2380 DRM_DEBUG_KMS("Can change cdclk with pipe %c active\n", 2381 pipe_name(pipe)); 2382 } else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual, 2383 &state->cdclk.actual)) { 2384 /* All pipes must be switched off while we change the cdclk. */ 2385 ret = intel_modeset_all_pipes(state); 2386 if (ret) 2387 return ret; 2388 2389 state->cdclk.pipe = INVALID_PIPE; 2390 2391 DRM_DEBUG_KMS("Modeset required for cdclk change\n"); 2392 } 2393 2394 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n", 2395 state->cdclk.logical.cdclk, 2396 state->cdclk.actual.cdclk); 2397 DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n", 2398 state->cdclk.logical.voltage_level, 2399 state->cdclk.actual.voltage_level); 2400 2401 return 0; 2402 } 2403 2404 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) 2405 { 2406 int max_cdclk_freq = dev_priv->max_cdclk_freq; 2407 2408 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 2409 return 2 * max_cdclk_freq; 2410 else if (IS_GEN(dev_priv, 9) || 2411 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 2412 return max_cdclk_freq; 2413 else if (IS_CHERRYVIEW(dev_priv)) 2414 return max_cdclk_freq*95/100; 2415 else if (INTEL_GEN(dev_priv) < 4) 2416 return 2*max_cdclk_freq*90/100; 2417 else 2418 return max_cdclk_freq*90/100; 2419 } 2420 2421 /** 2422 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency 2423 * @dev_priv: i915 device 2424 * 2425 * Determine the maximum CDCLK frequency the platform supports, and also 2426 * derive the maximum dot clock frequency the maximum CDCLK frequency 2427 * allows. 2428 */ 2429 void intel_update_max_cdclk(struct drm_i915_private *dev_priv) 2430 { 2431 if (IS_ELKHARTLAKE(dev_priv)) { 2432 if (dev_priv->cdclk.hw.ref == 24000) 2433 dev_priv->max_cdclk_freq = 552000; 2434 else 2435 dev_priv->max_cdclk_freq = 556800; 2436 } else if (INTEL_GEN(dev_priv) >= 11) { 2437 if (dev_priv->cdclk.hw.ref == 24000) 2438 dev_priv->max_cdclk_freq = 648000; 2439 else 2440 dev_priv->max_cdclk_freq = 652800; 2441 } else if (IS_CANNONLAKE(dev_priv)) { 2442 dev_priv->max_cdclk_freq = 528000; 2443 } else if (IS_GEN9_BC(dev_priv)) { 2444 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; 2445 int max_cdclk, vco; 2446 2447 vco = dev_priv->skl_preferred_vco_freq; 2448 WARN_ON(vco != 8100000 && vco != 8640000); 2449 2450 /* 2451 * Use the lower (vco 8640) cdclk values as a 2452 * first guess. skl_calc_cdclk() will correct it 2453 * if the preferred vco is 8100 instead. 2454 */ 2455 if (limit == SKL_DFSM_CDCLK_LIMIT_675) 2456 max_cdclk = 617143; 2457 else if (limit == SKL_DFSM_CDCLK_LIMIT_540) 2458 max_cdclk = 540000; 2459 else if (limit == SKL_DFSM_CDCLK_LIMIT_450) 2460 max_cdclk = 432000; 2461 else 2462 max_cdclk = 308571; 2463 2464 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco); 2465 } else if (IS_GEMINILAKE(dev_priv)) { 2466 dev_priv->max_cdclk_freq = 316800; 2467 } else if (IS_BROXTON(dev_priv)) { 2468 dev_priv->max_cdclk_freq = 624000; 2469 } else if (IS_BROADWELL(dev_priv)) { 2470 /* 2471 * FIXME with extra cooling we can allow 2472 * 540 MHz for ULX and 675 Mhz for ULT. 2473 * How can we know if extra cooling is 2474 * available? PCI ID, VTB, something else? 2475 */ 2476 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) 2477 dev_priv->max_cdclk_freq = 450000; 2478 else if (IS_BDW_ULX(dev_priv)) 2479 dev_priv->max_cdclk_freq = 450000; 2480 else if (IS_BDW_ULT(dev_priv)) 2481 dev_priv->max_cdclk_freq = 540000; 2482 else 2483 dev_priv->max_cdclk_freq = 675000; 2484 } else if (IS_CHERRYVIEW(dev_priv)) { 2485 dev_priv->max_cdclk_freq = 320000; 2486 } else if (IS_VALLEYVIEW(dev_priv)) { 2487 dev_priv->max_cdclk_freq = 400000; 2488 } else { 2489 /* otherwise assume cdclk is fixed */ 2490 dev_priv->max_cdclk_freq = dev_priv->cdclk.hw.cdclk; 2491 } 2492 2493 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); 2494 2495 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n", 2496 dev_priv->max_cdclk_freq); 2497 2498 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n", 2499 dev_priv->max_dotclk_freq); 2500 } 2501 2502 /** 2503 * intel_update_cdclk - Determine the current CDCLK frequency 2504 * @dev_priv: i915 device 2505 * 2506 * Determine the current CDCLK frequency. 2507 */ 2508 void intel_update_cdclk(struct drm_i915_private *dev_priv) 2509 { 2510 dev_priv->display.get_cdclk(dev_priv, &dev_priv->cdclk.hw); 2511 2512 /* 2513 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq): 2514 * Programmng [sic] note: bit[9:2] should be programmed to the number 2515 * of cdclk that generates 4MHz reference clock freq which is used to 2516 * generate GMBus clock. This will vary with the cdclk freq. 2517 */ 2518 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2519 I915_WRITE(GMBUSFREQ_VLV, 2520 DIV_ROUND_UP(dev_priv->cdclk.hw.cdclk, 1000)); 2521 } 2522 2523 static int cnp_rawclk(struct drm_i915_private *dev_priv) 2524 { 2525 u32 rawclk; 2526 int divider, fraction; 2527 2528 if (I915_READ(SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) { 2529 /* 24 MHz */ 2530 divider = 24000; 2531 fraction = 0; 2532 } else { 2533 /* 19.2 MHz */ 2534 divider = 19000; 2535 fraction = 200; 2536 } 2537 2538 rawclk = CNP_RAWCLK_DIV(divider / 1000); 2539 if (fraction) { 2540 int numerator = 1; 2541 2542 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000, 2543 fraction) - 1); 2544 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2545 rawclk |= ICP_RAWCLK_NUM(numerator); 2546 } 2547 2548 I915_WRITE(PCH_RAWCLK_FREQ, rawclk); 2549 return divider + fraction; 2550 } 2551 2552 static int pch_rawclk(struct drm_i915_private *dev_priv) 2553 { 2554 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; 2555 } 2556 2557 static int vlv_hrawclk(struct drm_i915_private *dev_priv) 2558 { 2559 /* RAWCLK_FREQ_VLV register updated from power well code */ 2560 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", 2561 CCK_DISPLAY_REF_CLOCK_CONTROL); 2562 } 2563 2564 static int g4x_hrawclk(struct drm_i915_private *dev_priv) 2565 { 2566 u32 clkcfg; 2567 2568 /* hrawclock is 1/4 the FSB frequency */ 2569 clkcfg = I915_READ(CLKCFG); 2570 switch (clkcfg & CLKCFG_FSB_MASK) { 2571 case CLKCFG_FSB_400: 2572 return 100000; 2573 case CLKCFG_FSB_533: 2574 return 133333; 2575 case CLKCFG_FSB_667: 2576 return 166667; 2577 case CLKCFG_FSB_800: 2578 return 200000; 2579 case CLKCFG_FSB_1067: 2580 case CLKCFG_FSB_1067_ALT: 2581 return 266667; 2582 case CLKCFG_FSB_1333: 2583 case CLKCFG_FSB_1333_ALT: 2584 return 333333; 2585 default: 2586 return 133333; 2587 } 2588 } 2589 2590 /** 2591 * intel_update_rawclk - Determine the current RAWCLK frequency 2592 * @dev_priv: i915 device 2593 * 2594 * Determine the current RAWCLK frequency. RAWCLK is a fixed 2595 * frequency clock so this needs to done only once. 2596 */ 2597 void intel_update_rawclk(struct drm_i915_private *dev_priv) 2598 { 2599 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 2600 dev_priv->rawclk_freq = cnp_rawclk(dev_priv); 2601 else if (HAS_PCH_SPLIT(dev_priv)) 2602 dev_priv->rawclk_freq = pch_rawclk(dev_priv); 2603 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2604 dev_priv->rawclk_freq = vlv_hrawclk(dev_priv); 2605 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv)) 2606 dev_priv->rawclk_freq = g4x_hrawclk(dev_priv); 2607 else 2608 /* no rawclk on other platforms, or no need to know it */ 2609 return; 2610 2611 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq); 2612 } 2613 2614 /** 2615 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks 2616 * @dev_priv: i915 device 2617 */ 2618 void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv) 2619 { 2620 if (IS_ELKHARTLAKE(dev_priv)) { 2621 dev_priv->display.set_cdclk = bxt_set_cdclk; 2622 dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; 2623 dev_priv->display.calc_voltage_level = ehl_calc_voltage_level; 2624 dev_priv->cdclk.table = icl_cdclk_table; 2625 } else if (INTEL_GEN(dev_priv) >= 11) { 2626 dev_priv->display.set_cdclk = bxt_set_cdclk; 2627 dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; 2628 dev_priv->display.calc_voltage_level = icl_calc_voltage_level; 2629 dev_priv->cdclk.table = icl_cdclk_table; 2630 } else if (IS_CANNONLAKE(dev_priv)) { 2631 dev_priv->display.set_cdclk = bxt_set_cdclk; 2632 dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; 2633 dev_priv->display.calc_voltage_level = cnl_calc_voltage_level; 2634 dev_priv->cdclk.table = cnl_cdclk_table; 2635 } else if (IS_GEN9_LP(dev_priv)) { 2636 dev_priv->display.set_cdclk = bxt_set_cdclk; 2637 dev_priv->display.modeset_calc_cdclk = bxt_modeset_calc_cdclk; 2638 dev_priv->display.calc_voltage_level = bxt_calc_voltage_level; 2639 if (IS_GEMINILAKE(dev_priv)) 2640 dev_priv->cdclk.table = glk_cdclk_table; 2641 else 2642 dev_priv->cdclk.table = bxt_cdclk_table; 2643 } else if (IS_GEN9_BC(dev_priv)) { 2644 dev_priv->display.set_cdclk = skl_set_cdclk; 2645 dev_priv->display.modeset_calc_cdclk = skl_modeset_calc_cdclk; 2646 } else if (IS_BROADWELL(dev_priv)) { 2647 dev_priv->display.set_cdclk = bdw_set_cdclk; 2648 dev_priv->display.modeset_calc_cdclk = bdw_modeset_calc_cdclk; 2649 } else if (IS_CHERRYVIEW(dev_priv)) { 2650 dev_priv->display.set_cdclk = chv_set_cdclk; 2651 dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk; 2652 } else if (IS_VALLEYVIEW(dev_priv)) { 2653 dev_priv->display.set_cdclk = vlv_set_cdclk; 2654 dev_priv->display.modeset_calc_cdclk = vlv_modeset_calc_cdclk; 2655 } else { 2656 dev_priv->display.modeset_calc_cdclk = fixed_modeset_calc_cdclk; 2657 } 2658 2659 if (INTEL_GEN(dev_priv) >= 10 || IS_GEN9_LP(dev_priv)) 2660 dev_priv->display.get_cdclk = bxt_get_cdclk; 2661 else if (IS_GEN9_BC(dev_priv)) 2662 dev_priv->display.get_cdclk = skl_get_cdclk; 2663 else if (IS_BROADWELL(dev_priv)) 2664 dev_priv->display.get_cdclk = bdw_get_cdclk; 2665 else if (IS_HASWELL(dev_priv)) 2666 dev_priv->display.get_cdclk = hsw_get_cdclk; 2667 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2668 dev_priv->display.get_cdclk = vlv_get_cdclk; 2669 else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 2670 dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; 2671 else if (IS_GEN(dev_priv, 5)) 2672 dev_priv->display.get_cdclk = fixed_450mhz_get_cdclk; 2673 else if (IS_GM45(dev_priv)) 2674 dev_priv->display.get_cdclk = gm45_get_cdclk; 2675 else if (IS_G45(dev_priv)) 2676 dev_priv->display.get_cdclk = g33_get_cdclk; 2677 else if (IS_I965GM(dev_priv)) 2678 dev_priv->display.get_cdclk = i965gm_get_cdclk; 2679 else if (IS_I965G(dev_priv)) 2680 dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; 2681 else if (IS_PINEVIEW(dev_priv)) 2682 dev_priv->display.get_cdclk = pnv_get_cdclk; 2683 else if (IS_G33(dev_priv)) 2684 dev_priv->display.get_cdclk = g33_get_cdclk; 2685 else if (IS_I945GM(dev_priv)) 2686 dev_priv->display.get_cdclk = i945gm_get_cdclk; 2687 else if (IS_I945G(dev_priv)) 2688 dev_priv->display.get_cdclk = fixed_400mhz_get_cdclk; 2689 else if (IS_I915GM(dev_priv)) 2690 dev_priv->display.get_cdclk = i915gm_get_cdclk; 2691 else if (IS_I915G(dev_priv)) 2692 dev_priv->display.get_cdclk = fixed_333mhz_get_cdclk; 2693 else if (IS_I865G(dev_priv)) 2694 dev_priv->display.get_cdclk = fixed_266mhz_get_cdclk; 2695 else if (IS_I85X(dev_priv)) 2696 dev_priv->display.get_cdclk = i85x_get_cdclk; 2697 else if (IS_I845G(dev_priv)) 2698 dev_priv->display.get_cdclk = fixed_200mhz_get_cdclk; 2699 else { /* 830 */ 2700 WARN(!IS_I830(dev_priv), 2701 "Unknown platform. Assuming 133 MHz CDCLK\n"); 2702 dev_priv->display.get_cdclk = fixed_133mhz_get_cdclk; 2703 } 2704 } 2705