1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_atomic_state_helper.h> 7 8 #include "i915_drv.h" 9 #include "i915_reg.h" 10 #include "i915_utils.h" 11 #include "intel_atomic.h" 12 #include "intel_bw.h" 13 #include "intel_cdclk.h" 14 #include "intel_display_core.h" 15 #include "intel_display_types.h" 16 #include "skl_watermark.h" 17 #include "intel_mchbar_regs.h" 18 #include "intel_pcode.h" 19 20 /* Parameters for Qclk Geyserville (QGV) */ 21 struct intel_qgv_point { 22 u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd; 23 }; 24 25 struct intel_psf_gv_point { 26 u8 clk; /* clock in multiples of 16.6666 MHz */ 27 }; 28 29 struct intel_qgv_info { 30 struct intel_qgv_point points[I915_NUM_QGV_POINTS]; 31 struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS]; 32 u8 num_points; 33 u8 num_psf_points; 34 u8 t_bl; 35 u8 max_numchannels; 36 u8 channel_width; 37 u8 deinterleave; 38 }; 39 40 static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv, 41 struct intel_qgv_point *sp, 42 int point) 43 { 44 u32 dclk_ratio, dclk_reference; 45 u32 val; 46 47 val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC); 48 dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val); 49 if (val & DG1_QCLK_REFERENCE) 50 dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */ 51 else 52 dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */ 53 sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000); 54 55 val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); 56 if (val & DG1_GEAR_TYPE) 57 sp->dclk *= 2; 58 59 if (sp->dclk == 0) 60 return -EINVAL; 61 62 val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR); 63 sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val); 64 sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val); 65 66 val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH); 67 sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val); 68 sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val); 69 70 sp->t_rc = sp->t_rp + sp->t_ras; 71 72 return 0; 73 } 74 75 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv, 76 struct intel_qgv_point *sp, 77 int point) 78 { 79 u32 val = 0, val2 = 0; 80 u16 dclk; 81 int ret; 82 83 ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | 84 ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point), 85 &val, &val2); 86 if (ret) 87 return ret; 88 89 dclk = val & 0xffff; 90 sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000); 91 sp->t_rp = (val & 0xff0000) >> 16; 92 sp->t_rcd = (val & 0xff000000) >> 24; 93 94 sp->t_rdpre = val2 & 0xff; 95 sp->t_ras = (val2 & 0xff00) >> 8; 96 97 sp->t_rc = sp->t_rp + sp->t_ras; 98 99 return 0; 100 } 101 102 static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv, 103 struct intel_psf_gv_point *points) 104 { 105 u32 val = 0; 106 int ret; 107 int i; 108 109 ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | 110 ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL); 111 if (ret) 112 return ret; 113 114 for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) { 115 points[i].clk = val & 0xff; 116 val >>= 8; 117 } 118 119 return 0; 120 } 121 122 static u16 icl_qgv_points_mask(struct drm_i915_private *i915) 123 { 124 unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points; 125 unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points; 126 u16 qgv_points = 0, psf_points = 0; 127 128 /* 129 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects 130 * it with failure if we try masking any unadvertised points. 131 * So need to operate only with those returned from PCode. 132 */ 133 if (num_qgv_points > 0) 134 qgv_points = GENMASK(num_qgv_points - 1, 0); 135 136 if (num_psf_gv_points > 0) 137 psf_points = GENMASK(num_psf_gv_points - 1, 0); 138 139 return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points); 140 } 141 142 static bool is_sagv_enabled(struct drm_i915_private *i915, u16 points_mask) 143 { 144 return !is_power_of_2(~points_mask & icl_qgv_points_mask(i915) & 145 ICL_PCODE_REQ_QGV_PT_MASK); 146 } 147 148 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv, 149 u32 points_mask) 150 { 151 int ret; 152 153 if (DISPLAY_VER(dev_priv) >= 14) 154 return 0; 155 156 /* bspec says to keep retrying for at least 1 ms */ 157 ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG, 158 points_mask, 159 ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK, 160 ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE, 161 1); 162 163 if (ret < 0) { 164 drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask); 165 return ret; 166 } 167 168 dev_priv->display.sagv.status = is_sagv_enabled(dev_priv, points_mask) ? 169 I915_SAGV_ENABLED : I915_SAGV_DISABLED; 170 171 return 0; 172 } 173 174 static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv, 175 struct intel_qgv_point *sp, int point) 176 { 177 u32 val, val2; 178 u16 dclk; 179 180 val = intel_uncore_read(&dev_priv->uncore, 181 MTL_MEM_SS_INFO_QGV_POINT_LOW(point)); 182 val2 = intel_uncore_read(&dev_priv->uncore, 183 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point)); 184 dclk = REG_FIELD_GET(MTL_DCLK_MASK, val); 185 sp->dclk = DIV_ROUND_UP((16667 * dclk), 1000); 186 sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val); 187 sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val); 188 189 sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2); 190 sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2); 191 192 sp->t_rc = sp->t_rp + sp->t_ras; 193 194 return 0; 195 } 196 197 static int 198 intel_read_qgv_point_info(struct drm_i915_private *dev_priv, 199 struct intel_qgv_point *sp, 200 int point) 201 { 202 if (DISPLAY_VER(dev_priv) >= 14) 203 return mtl_read_qgv_point_info(dev_priv, sp, point); 204 else if (IS_DG1(dev_priv)) 205 return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point); 206 else 207 return icl_pcode_read_qgv_point_info(dev_priv, sp, point); 208 } 209 210 static int icl_get_qgv_points(struct drm_i915_private *dev_priv, 211 struct intel_qgv_info *qi, 212 bool is_y_tile) 213 { 214 const struct dram_info *dram_info = &dev_priv->dram_info; 215 int i, ret; 216 217 qi->num_points = dram_info->num_qgv_points; 218 qi->num_psf_points = dram_info->num_psf_gv_points; 219 220 if (DISPLAY_VER(dev_priv) >= 14) { 221 switch (dram_info->type) { 222 case INTEL_DRAM_DDR4: 223 qi->t_bl = 4; 224 qi->max_numchannels = 2; 225 qi->channel_width = 64; 226 qi->deinterleave = 2; 227 break; 228 case INTEL_DRAM_DDR5: 229 qi->t_bl = 8; 230 qi->max_numchannels = 4; 231 qi->channel_width = 32; 232 qi->deinterleave = 2; 233 break; 234 case INTEL_DRAM_LPDDR4: 235 case INTEL_DRAM_LPDDR5: 236 qi->t_bl = 16; 237 qi->max_numchannels = 8; 238 qi->channel_width = 16; 239 qi->deinterleave = 4; 240 break; 241 default: 242 MISSING_CASE(dram_info->type); 243 return -EINVAL; 244 } 245 } else if (DISPLAY_VER(dev_priv) >= 12) { 246 switch (dram_info->type) { 247 case INTEL_DRAM_DDR4: 248 qi->t_bl = is_y_tile ? 8 : 4; 249 qi->max_numchannels = 2; 250 qi->channel_width = 64; 251 qi->deinterleave = is_y_tile ? 1 : 2; 252 break; 253 case INTEL_DRAM_DDR5: 254 qi->t_bl = is_y_tile ? 16 : 8; 255 qi->max_numchannels = 4; 256 qi->channel_width = 32; 257 qi->deinterleave = is_y_tile ? 1 : 2; 258 break; 259 case INTEL_DRAM_LPDDR4: 260 if (IS_ROCKETLAKE(dev_priv)) { 261 qi->t_bl = 8; 262 qi->max_numchannels = 4; 263 qi->channel_width = 32; 264 qi->deinterleave = 2; 265 break; 266 } 267 fallthrough; 268 case INTEL_DRAM_LPDDR5: 269 qi->t_bl = 16; 270 qi->max_numchannels = 8; 271 qi->channel_width = 16; 272 qi->deinterleave = is_y_tile ? 2 : 4; 273 break; 274 default: 275 qi->t_bl = 16; 276 qi->max_numchannels = 1; 277 break; 278 } 279 } else if (DISPLAY_VER(dev_priv) == 11) { 280 qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8; 281 qi->max_numchannels = 1; 282 } 283 284 if (drm_WARN_ON(&dev_priv->drm, 285 qi->num_points > ARRAY_SIZE(qi->points))) 286 qi->num_points = ARRAY_SIZE(qi->points); 287 288 for (i = 0; i < qi->num_points; i++) { 289 struct intel_qgv_point *sp = &qi->points[i]; 290 291 ret = intel_read_qgv_point_info(dev_priv, sp, i); 292 if (ret) 293 return ret; 294 295 drm_dbg_kms(&dev_priv->drm, 296 "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n", 297 i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras, 298 sp->t_rcd, sp->t_rc); 299 } 300 301 if (qi->num_psf_points > 0) { 302 ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points); 303 if (ret) { 304 drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n"); 305 qi->num_psf_points = 0; 306 } 307 308 for (i = 0; i < qi->num_psf_points; i++) 309 drm_dbg_kms(&dev_priv->drm, 310 "PSF GV %d: CLK=%d \n", 311 i, qi->psf_points[i].clk); 312 } 313 314 return 0; 315 } 316 317 static int adl_calc_psf_bw(int clk) 318 { 319 /* 320 * clk is multiples of 16.666MHz (100/6) 321 * According to BSpec PSF GV bandwidth is 322 * calculated as BW = 64 * clk * 16.666Mhz 323 */ 324 return DIV_ROUND_CLOSEST(64 * clk * 100, 6); 325 } 326 327 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi) 328 { 329 u16 dclk = 0; 330 int i; 331 332 for (i = 0; i < qi->num_points; i++) 333 dclk = max(dclk, qi->points[i].dclk); 334 335 return dclk; 336 } 337 338 struct intel_sa_info { 339 u16 displayrtids; 340 u8 deburst, deprogbwlimit, derating; 341 }; 342 343 static const struct intel_sa_info icl_sa_info = { 344 .deburst = 8, 345 .deprogbwlimit = 25, /* GB/s */ 346 .displayrtids = 128, 347 .derating = 10, 348 }; 349 350 static const struct intel_sa_info tgl_sa_info = { 351 .deburst = 16, 352 .deprogbwlimit = 34, /* GB/s */ 353 .displayrtids = 256, 354 .derating = 10, 355 }; 356 357 static const struct intel_sa_info rkl_sa_info = { 358 .deburst = 8, 359 .deprogbwlimit = 20, /* GB/s */ 360 .displayrtids = 128, 361 .derating = 10, 362 }; 363 364 static const struct intel_sa_info adls_sa_info = { 365 .deburst = 16, 366 .deprogbwlimit = 38, /* GB/s */ 367 .displayrtids = 256, 368 .derating = 10, 369 }; 370 371 static const struct intel_sa_info adlp_sa_info = { 372 .deburst = 16, 373 .deprogbwlimit = 38, /* GB/s */ 374 .displayrtids = 256, 375 .derating = 20, 376 }; 377 378 static const struct intel_sa_info mtl_sa_info = { 379 .deburst = 32, 380 .deprogbwlimit = 38, /* GB/s */ 381 .displayrtids = 256, 382 .derating = 20, 383 }; 384 385 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa) 386 { 387 struct intel_qgv_info qi = {}; 388 bool is_y_tile = true; /* assume y tile may be used */ 389 int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels); 390 int ipqdepth, ipqdepthpch = 16; 391 int dclk_max; 392 int maxdebw; 393 int num_groups = ARRAY_SIZE(dev_priv->display.bw.max); 394 int i, ret; 395 396 ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile); 397 if (ret) { 398 drm_dbg_kms(&dev_priv->drm, 399 "Failed to get memory subsystem information, ignoring bandwidth limits"); 400 return ret; 401 } 402 403 dclk_max = icl_sagv_max_dclk(&qi); 404 maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10); 405 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); 406 qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); 407 408 for (i = 0; i < num_groups; i++) { 409 struct intel_bw_info *bi = &dev_priv->display.bw.max[i]; 410 int clpchgroup; 411 int j; 412 413 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; 414 bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; 415 416 bi->num_qgv_points = qi.num_points; 417 bi->num_psf_gv_points = qi.num_psf_points; 418 419 for (j = 0; j < qi.num_points; j++) { 420 const struct intel_qgv_point *sp = &qi.points[j]; 421 int ct, bw; 422 423 /* 424 * Max row cycle time 425 * 426 * FIXME what is the logic behind the 427 * assumed burst length? 428 */ 429 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + 430 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); 431 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); 432 433 bi->deratedbw[j] = min(maxdebw, 434 bw * (100 - sa->derating) / 100); 435 436 drm_dbg_kms(&dev_priv->drm, 437 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", 438 i, j, bi->num_planes, bi->deratedbw[j]); 439 } 440 } 441 /* 442 * In case if SAGV is disabled in BIOS, we always get 1 443 * SAGV point, but we can't send PCode commands to restrict it 444 * as it will fail and pointless anyway. 445 */ 446 if (qi.num_points == 1) 447 dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 448 else 449 dev_priv->display.sagv.status = I915_SAGV_ENABLED; 450 451 return 0; 452 } 453 454 static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa) 455 { 456 struct intel_qgv_info qi = {}; 457 const struct dram_info *dram_info = &dev_priv->dram_info; 458 bool is_y_tile = true; /* assume y tile may be used */ 459 int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels); 460 int ipqdepth, ipqdepthpch = 16; 461 int dclk_max; 462 int maxdebw, peakbw; 463 int clperchgroup; 464 int num_groups = ARRAY_SIZE(dev_priv->display.bw.max); 465 int i, ret; 466 467 ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile); 468 if (ret) { 469 drm_dbg_kms(&dev_priv->drm, 470 "Failed to get memory subsystem information, ignoring bandwidth limits"); 471 return ret; 472 } 473 474 if (DISPLAY_VER(dev_priv) < 14 && 475 (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)) 476 num_channels *= 2; 477 478 qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); 479 480 if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12) 481 qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1); 482 483 if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels) 484 drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels."); 485 if (qi.max_numchannels != 0) 486 num_channels = min_t(u8, num_channels, qi.max_numchannels); 487 488 dclk_max = icl_sagv_max_dclk(&qi); 489 490 peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max; 491 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */ 492 493 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); 494 /* 495 * clperchgroup = 4kpagespermempage * clperchperblock, 496 * clperchperblock = 8 / num_channels * interleave 497 */ 498 clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave; 499 500 for (i = 0; i < num_groups; i++) { 501 struct intel_bw_info *bi = &dev_priv->display.bw.max[i]; 502 struct intel_bw_info *bi_next; 503 int clpchgroup; 504 int j; 505 506 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; 507 508 if (i < num_groups - 1) { 509 bi_next = &dev_priv->display.bw.max[i + 1]; 510 511 if (clpchgroup < clperchgroup) 512 bi_next->num_planes = (ipqdepth - clpchgroup) / 513 clpchgroup + 1; 514 else 515 bi_next->num_planes = 0; 516 } 517 518 bi->num_qgv_points = qi.num_points; 519 bi->num_psf_gv_points = qi.num_psf_points; 520 521 for (j = 0; j < qi.num_points; j++) { 522 const struct intel_qgv_point *sp = &qi.points[j]; 523 int ct, bw; 524 525 /* 526 * Max row cycle time 527 * 528 * FIXME what is the logic behind the 529 * assumed burst length? 530 */ 531 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + 532 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); 533 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); 534 535 bi->deratedbw[j] = min(maxdebw, 536 bw * (100 - sa->derating) / 100); 537 538 drm_dbg_kms(&dev_priv->drm, 539 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", 540 i, j, bi->num_planes, bi->deratedbw[j]); 541 } 542 543 for (j = 0; j < qi.num_psf_points; j++) { 544 const struct intel_psf_gv_point *sp = &qi.psf_points[j]; 545 546 bi->psf_bw[j] = adl_calc_psf_bw(sp->clk); 547 548 drm_dbg_kms(&dev_priv->drm, 549 "BW%d / PSF GV %d: num_planes=%d bw=%u\n", 550 i, j, bi->num_planes, bi->psf_bw[j]); 551 } 552 } 553 554 /* 555 * In case if SAGV is disabled in BIOS, we always get 1 556 * SAGV point, but we can't send PCode commands to restrict it 557 * as it will fail and pointless anyway. 558 */ 559 if (qi.num_points == 1) 560 dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 561 else 562 dev_priv->display.sagv.status = I915_SAGV_ENABLED; 563 564 return 0; 565 } 566 567 static void dg2_get_bw_info(struct drm_i915_private *i915) 568 { 569 unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000; 570 int num_groups = ARRAY_SIZE(i915->display.bw.max); 571 int i; 572 573 /* 574 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth 575 * that doesn't depend on the number of planes enabled. So fill all the 576 * plane group with constant bw information for uniformity with other 577 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth, 578 * whereas DG2-G11 platforms have 38 GB/s. 579 */ 580 for (i = 0; i < num_groups; i++) { 581 struct intel_bw_info *bi = &i915->display.bw.max[i]; 582 583 bi->num_planes = 1; 584 /* Need only one dummy QGV point per group */ 585 bi->num_qgv_points = 1; 586 bi->deratedbw[0] = deratedbw; 587 } 588 589 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 590 } 591 592 static unsigned int icl_max_bw(struct drm_i915_private *dev_priv, 593 int num_planes, int qgv_point) 594 { 595 int i; 596 597 /* 598 * Let's return max bw for 0 planes 599 */ 600 num_planes = max(1, num_planes); 601 602 for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) { 603 const struct intel_bw_info *bi = 604 &dev_priv->display.bw.max[i]; 605 606 /* 607 * Pcode will not expose all QGV points when 608 * SAGV is forced to off/min/med/max. 609 */ 610 if (qgv_point >= bi->num_qgv_points) 611 return UINT_MAX; 612 613 if (num_planes >= bi->num_planes) 614 return bi->deratedbw[qgv_point]; 615 } 616 617 return 0; 618 } 619 620 static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv, 621 int num_planes, int qgv_point) 622 { 623 int i; 624 625 /* 626 * Let's return max bw for 0 planes 627 */ 628 num_planes = max(1, num_planes); 629 630 for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) { 631 const struct intel_bw_info *bi = 632 &dev_priv->display.bw.max[i]; 633 634 /* 635 * Pcode will not expose all QGV points when 636 * SAGV is forced to off/min/med/max. 637 */ 638 if (qgv_point >= bi->num_qgv_points) 639 return UINT_MAX; 640 641 if (num_planes <= bi->num_planes) 642 return bi->deratedbw[qgv_point]; 643 } 644 645 return dev_priv->display.bw.max[0].deratedbw[qgv_point]; 646 } 647 648 static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv, 649 int psf_gv_point) 650 { 651 const struct intel_bw_info *bi = 652 &dev_priv->display.bw.max[0]; 653 654 return bi->psf_bw[psf_gv_point]; 655 } 656 657 void intel_bw_init_hw(struct drm_i915_private *dev_priv) 658 { 659 if (!HAS_DISPLAY(dev_priv)) 660 return; 661 662 if (DISPLAY_VER(dev_priv) >= 14) 663 tgl_get_bw_info(dev_priv, &mtl_sa_info); 664 else if (IS_DG2(dev_priv)) 665 dg2_get_bw_info(dev_priv); 666 else if (IS_ALDERLAKE_P(dev_priv)) 667 tgl_get_bw_info(dev_priv, &adlp_sa_info); 668 else if (IS_ALDERLAKE_S(dev_priv)) 669 tgl_get_bw_info(dev_priv, &adls_sa_info); 670 else if (IS_ROCKETLAKE(dev_priv)) 671 tgl_get_bw_info(dev_priv, &rkl_sa_info); 672 else if (DISPLAY_VER(dev_priv) == 12) 673 tgl_get_bw_info(dev_priv, &tgl_sa_info); 674 else if (DISPLAY_VER(dev_priv) == 11) 675 icl_get_bw_info(dev_priv, &icl_sa_info); 676 } 677 678 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state) 679 { 680 /* 681 * We assume cursors are small enough 682 * to not not cause bandwidth problems. 683 */ 684 return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); 685 } 686 687 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state) 688 { 689 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 690 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 691 unsigned int data_rate = 0; 692 enum plane_id plane_id; 693 694 for_each_plane_id_on_crtc(crtc, plane_id) { 695 /* 696 * We assume cursors are small enough 697 * to not not cause bandwidth problems. 698 */ 699 if (plane_id == PLANE_CURSOR) 700 continue; 701 702 data_rate += crtc_state->data_rate[plane_id]; 703 704 if (DISPLAY_VER(i915) < 11) 705 data_rate += crtc_state->data_rate_y[plane_id]; 706 } 707 708 return data_rate; 709 } 710 711 /* "Maximum Pipe Read Bandwidth" */ 712 static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state) 713 { 714 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 715 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 716 717 if (DISPLAY_VER(i915) < 12) 718 return 0; 719 720 return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512); 721 } 722 723 void intel_bw_crtc_update(struct intel_bw_state *bw_state, 724 const struct intel_crtc_state *crtc_state) 725 { 726 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 727 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 728 729 bw_state->data_rate[crtc->pipe] = 730 intel_bw_crtc_data_rate(crtc_state); 731 bw_state->num_active_planes[crtc->pipe] = 732 intel_bw_crtc_num_active_planes(crtc_state); 733 734 drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n", 735 pipe_name(crtc->pipe), 736 bw_state->data_rate[crtc->pipe], 737 bw_state->num_active_planes[crtc->pipe]); 738 } 739 740 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv, 741 const struct intel_bw_state *bw_state) 742 { 743 unsigned int num_active_planes = 0; 744 enum pipe pipe; 745 746 for_each_pipe(dev_priv, pipe) 747 num_active_planes += bw_state->num_active_planes[pipe]; 748 749 return num_active_planes; 750 } 751 752 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv, 753 const struct intel_bw_state *bw_state) 754 { 755 unsigned int data_rate = 0; 756 enum pipe pipe; 757 758 for_each_pipe(dev_priv, pipe) 759 data_rate += bw_state->data_rate[pipe]; 760 761 if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv)) 762 data_rate = DIV_ROUND_UP(data_rate * 105, 100); 763 764 return data_rate; 765 } 766 767 struct intel_bw_state * 768 intel_atomic_get_old_bw_state(struct intel_atomic_state *state) 769 { 770 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 771 struct intel_global_state *bw_state; 772 773 bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj); 774 775 return to_intel_bw_state(bw_state); 776 } 777 778 struct intel_bw_state * 779 intel_atomic_get_new_bw_state(struct intel_atomic_state *state) 780 { 781 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 782 struct intel_global_state *bw_state; 783 784 bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj); 785 786 return to_intel_bw_state(bw_state); 787 } 788 789 struct intel_bw_state * 790 intel_atomic_get_bw_state(struct intel_atomic_state *state) 791 { 792 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 793 struct intel_global_state *bw_state; 794 795 bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj); 796 if (IS_ERR(bw_state)) 797 return ERR_CAST(bw_state); 798 799 return to_intel_bw_state(bw_state); 800 } 801 802 static bool intel_bw_state_changed(struct drm_i915_private *i915, 803 const struct intel_bw_state *old_bw_state, 804 const struct intel_bw_state *new_bw_state) 805 { 806 enum pipe pipe; 807 808 for_each_pipe(i915, pipe) { 809 const struct intel_dbuf_bw *old_crtc_bw = 810 &old_bw_state->dbuf_bw[pipe]; 811 const struct intel_dbuf_bw *new_crtc_bw = 812 &new_bw_state->dbuf_bw[pipe]; 813 enum dbuf_slice slice; 814 815 for_each_dbuf_slice(i915, slice) { 816 if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] || 817 old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice]) 818 return true; 819 } 820 821 if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe]) 822 return true; 823 } 824 825 return false; 826 } 827 828 static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state, 829 struct intel_crtc *crtc, 830 enum plane_id plane_id, 831 const struct skl_ddb_entry *ddb, 832 unsigned int data_rate) 833 { 834 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 835 struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe]; 836 unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb); 837 enum dbuf_slice slice; 838 839 /* 840 * The arbiter can only really guarantee an 841 * equal share of the total bw to each plane. 842 */ 843 for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) { 844 crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate); 845 crtc_bw->active_planes[slice] |= BIT(plane_id); 846 } 847 } 848 849 static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state, 850 const struct intel_crtc_state *crtc_state) 851 { 852 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 853 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 854 struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe]; 855 enum plane_id plane_id; 856 857 memset(crtc_bw, 0, sizeof(*crtc_bw)); 858 859 if (!crtc_state->hw.active) 860 return; 861 862 for_each_plane_id_on_crtc(crtc, plane_id) { 863 /* 864 * We assume cursors are small enough 865 * to not cause bandwidth problems. 866 */ 867 if (plane_id == PLANE_CURSOR) 868 continue; 869 870 skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id, 871 &crtc_state->wm.skl.plane_ddb[plane_id], 872 crtc_state->data_rate[plane_id]); 873 874 if (DISPLAY_VER(i915) < 11) 875 skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id, 876 &crtc_state->wm.skl.plane_ddb_y[plane_id], 877 crtc_state->data_rate[plane_id]); 878 } 879 } 880 881 /* "Maximum Data Buffer Bandwidth" */ 882 static int 883 intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915, 884 const struct intel_bw_state *bw_state) 885 { 886 unsigned int total_max_bw = 0; 887 enum dbuf_slice slice; 888 889 for_each_dbuf_slice(i915, slice) { 890 int num_active_planes = 0; 891 unsigned int max_bw = 0; 892 enum pipe pipe; 893 894 /* 895 * The arbiter can only really guarantee an 896 * equal share of the total bw to each plane. 897 */ 898 for_each_pipe(i915, pipe) { 899 const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe]; 900 901 max_bw = max(crtc_bw->max_bw[slice], max_bw); 902 num_active_planes += hweight8(crtc_bw->active_planes[slice]); 903 } 904 max_bw *= num_active_planes; 905 906 total_max_bw = max(total_max_bw, max_bw); 907 } 908 909 return DIV_ROUND_UP(total_max_bw, 64); 910 } 911 912 int intel_bw_min_cdclk(struct drm_i915_private *i915, 913 const struct intel_bw_state *bw_state) 914 { 915 enum pipe pipe; 916 int min_cdclk; 917 918 min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state); 919 920 for_each_pipe(i915, pipe) 921 min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk); 922 923 return min_cdclk; 924 } 925 926 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state, 927 bool *need_cdclk_calc) 928 { 929 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 930 struct intel_bw_state *new_bw_state = NULL; 931 const struct intel_bw_state *old_bw_state = NULL; 932 const struct intel_cdclk_state *cdclk_state; 933 const struct intel_crtc_state *crtc_state; 934 int old_min_cdclk, new_min_cdclk; 935 struct intel_crtc *crtc; 936 int i; 937 938 if (DISPLAY_VER(dev_priv) < 9) 939 return 0; 940 941 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 942 new_bw_state = intel_atomic_get_bw_state(state); 943 if (IS_ERR(new_bw_state)) 944 return PTR_ERR(new_bw_state); 945 946 old_bw_state = intel_atomic_get_old_bw_state(state); 947 948 skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state); 949 950 new_bw_state->min_cdclk[crtc->pipe] = 951 intel_bw_crtc_min_cdclk(crtc_state); 952 } 953 954 if (!old_bw_state) 955 return 0; 956 957 if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) { 958 int ret = intel_atomic_lock_global_state(&new_bw_state->base); 959 if (ret) 960 return ret; 961 } 962 963 old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state); 964 new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state); 965 966 /* 967 * No need to check against the cdclk state if 968 * the min cdclk doesn't increase. 969 * 970 * Ie. we only ever increase the cdclk due to bandwidth 971 * requirements. This can reduce back and forth 972 * display blinking due to constant cdclk changes. 973 */ 974 if (new_min_cdclk <= old_min_cdclk) 975 return 0; 976 977 cdclk_state = intel_atomic_get_cdclk_state(state); 978 if (IS_ERR(cdclk_state)) 979 return PTR_ERR(cdclk_state); 980 981 /* 982 * No need to recalculate the cdclk state if 983 * the min cdclk doesn't increase. 984 * 985 * Ie. we only ever increase the cdclk due to bandwidth 986 * requirements. This can reduce back and forth 987 * display blinking due to constant cdclk changes. 988 */ 989 if (new_min_cdclk <= cdclk_state->bw_min_cdclk) 990 return 0; 991 992 drm_dbg_kms(&dev_priv->drm, 993 "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n", 994 new_min_cdclk, cdclk_state->bw_min_cdclk); 995 *need_cdclk_calc = true; 996 997 return 0; 998 } 999 1000 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed) 1001 { 1002 struct drm_i915_private *i915 = to_i915(state->base.dev); 1003 const struct intel_crtc_state *new_crtc_state, *old_crtc_state; 1004 struct intel_crtc *crtc; 1005 int i; 1006 1007 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 1008 new_crtc_state, i) { 1009 unsigned int old_data_rate = 1010 intel_bw_crtc_data_rate(old_crtc_state); 1011 unsigned int new_data_rate = 1012 intel_bw_crtc_data_rate(new_crtc_state); 1013 unsigned int old_active_planes = 1014 intel_bw_crtc_num_active_planes(old_crtc_state); 1015 unsigned int new_active_planes = 1016 intel_bw_crtc_num_active_planes(new_crtc_state); 1017 struct intel_bw_state *new_bw_state; 1018 1019 /* 1020 * Avoid locking the bw state when 1021 * nothing significant has changed. 1022 */ 1023 if (old_data_rate == new_data_rate && 1024 old_active_planes == new_active_planes) 1025 continue; 1026 1027 new_bw_state = intel_atomic_get_bw_state(state); 1028 if (IS_ERR(new_bw_state)) 1029 return PTR_ERR(new_bw_state); 1030 1031 new_bw_state->data_rate[crtc->pipe] = new_data_rate; 1032 new_bw_state->num_active_planes[crtc->pipe] = new_active_planes; 1033 1034 *changed = true; 1035 1036 drm_dbg_kms(&i915->drm, 1037 "[CRTC:%d:%s] data rate %u num active planes %u\n", 1038 crtc->base.base.id, crtc->base.name, 1039 new_bw_state->data_rate[crtc->pipe], 1040 new_bw_state->num_active_planes[crtc->pipe]); 1041 } 1042 1043 return 0; 1044 } 1045 1046 int intel_bw_atomic_check(struct intel_atomic_state *state) 1047 { 1048 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1049 const struct intel_bw_state *old_bw_state; 1050 struct intel_bw_state *new_bw_state; 1051 unsigned int data_rate; 1052 unsigned int num_active_planes; 1053 int i, ret; 1054 u16 qgv_points = 0, psf_points = 0; 1055 unsigned int max_bw_point = 0, max_bw = 0; 1056 unsigned int num_qgv_points = dev_priv->display.bw.max[0].num_qgv_points; 1057 unsigned int num_psf_gv_points = dev_priv->display.bw.max[0].num_psf_gv_points; 1058 bool changed = false; 1059 1060 /* FIXME earlier gens need some checks too */ 1061 if (DISPLAY_VER(dev_priv) < 11) 1062 return 0; 1063 1064 ret = intel_bw_check_data_rate(state, &changed); 1065 if (ret) 1066 return ret; 1067 1068 old_bw_state = intel_atomic_get_old_bw_state(state); 1069 new_bw_state = intel_atomic_get_new_bw_state(state); 1070 1071 if (new_bw_state && 1072 intel_can_enable_sagv(dev_priv, old_bw_state) != 1073 intel_can_enable_sagv(dev_priv, new_bw_state)) 1074 changed = true; 1075 1076 /* 1077 * If none of our inputs (data rates, number of active 1078 * planes, SAGV yes/no) changed then nothing to do here. 1079 */ 1080 if (!changed) 1081 return 0; 1082 1083 ret = intel_atomic_lock_global_state(&new_bw_state->base); 1084 if (ret) 1085 return ret; 1086 1087 data_rate = intel_bw_data_rate(dev_priv, new_bw_state); 1088 data_rate = DIV_ROUND_UP(data_rate, 1000); 1089 1090 num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state); 1091 1092 for (i = 0; i < num_qgv_points; i++) { 1093 unsigned int max_data_rate; 1094 1095 if (DISPLAY_VER(dev_priv) > 11) 1096 max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i); 1097 else 1098 max_data_rate = icl_max_bw(dev_priv, num_active_planes, i); 1099 /* 1100 * We need to know which qgv point gives us 1101 * maximum bandwidth in order to disable SAGV 1102 * if we find that we exceed SAGV block time 1103 * with watermarks. By that moment we already 1104 * have those, as it is calculated earlier in 1105 * intel_atomic_check, 1106 */ 1107 if (max_data_rate > max_bw) { 1108 max_bw_point = i; 1109 max_bw = max_data_rate; 1110 } 1111 if (max_data_rate >= data_rate) 1112 qgv_points |= BIT(i); 1113 1114 drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n", 1115 i, max_data_rate, data_rate); 1116 } 1117 1118 for (i = 0; i < num_psf_gv_points; i++) { 1119 unsigned int max_data_rate = adl_psf_bw(dev_priv, i); 1120 1121 if (max_data_rate >= data_rate) 1122 psf_points |= BIT(i); 1123 1124 drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d" 1125 " required %d\n", 1126 i, max_data_rate, data_rate); 1127 } 1128 1129 /* 1130 * BSpec states that we always should have at least one allowed point 1131 * left, so if we couldn't - simply reject the configuration for obvious 1132 * reasons. 1133 */ 1134 if (qgv_points == 0) { 1135 drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory" 1136 " bandwidth %d for display configuration(%d active planes).\n", 1137 data_rate, num_active_planes); 1138 return -EINVAL; 1139 } 1140 1141 if (num_psf_gv_points > 0 && psf_points == 0) { 1142 drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory" 1143 " bandwidth %d for display configuration(%d active planes).\n", 1144 data_rate, num_active_planes); 1145 return -EINVAL; 1146 } 1147 1148 /* 1149 * Leave only single point with highest bandwidth, if 1150 * we can't enable SAGV due to the increased memory latency it may 1151 * cause. 1152 */ 1153 if (!intel_can_enable_sagv(dev_priv, new_bw_state)) { 1154 qgv_points = BIT(max_bw_point); 1155 drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n", 1156 max_bw_point); 1157 } 1158 1159 /* 1160 * We store the ones which need to be masked as that is what PCode 1161 * actually accepts as a parameter. 1162 */ 1163 new_bw_state->qgv_points_mask = 1164 ~(ICL_PCODE_REQ_QGV_PT(qgv_points) | 1165 ADLS_PCODE_REQ_PSF_PT(psf_points)) & 1166 icl_qgv_points_mask(dev_priv); 1167 1168 /* 1169 * If the actual mask had changed we need to make sure that 1170 * the commits are serialized(in case this is a nomodeset, nonblocking) 1171 */ 1172 if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) { 1173 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 1174 if (ret) 1175 return ret; 1176 } 1177 1178 return 0; 1179 } 1180 1181 static struct intel_global_state * 1182 intel_bw_duplicate_state(struct intel_global_obj *obj) 1183 { 1184 struct intel_bw_state *state; 1185 1186 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 1187 if (!state) 1188 return NULL; 1189 1190 return &state->base; 1191 } 1192 1193 static void intel_bw_destroy_state(struct intel_global_obj *obj, 1194 struct intel_global_state *state) 1195 { 1196 kfree(state); 1197 } 1198 1199 static const struct intel_global_state_funcs intel_bw_funcs = { 1200 .atomic_duplicate_state = intel_bw_duplicate_state, 1201 .atomic_destroy_state = intel_bw_destroy_state, 1202 }; 1203 1204 int intel_bw_init(struct drm_i915_private *dev_priv) 1205 { 1206 struct intel_bw_state *state; 1207 1208 state = kzalloc(sizeof(*state), GFP_KERNEL); 1209 if (!state) 1210 return -ENOMEM; 1211 1212 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.bw.obj, 1213 &state->base, &intel_bw_funcs); 1214 1215 return 0; 1216 } 1217