1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_atomic_state_helper.h>
7 
8 #include "intel_atomic.h"
9 #include "intel_bw.h"
10 #include "intel_cdclk.h"
11 #include "intel_display_types.h"
12 #include "intel_pm.h"
13 #include "intel_sideband.h"
14 
15 /* Parameters for Qclk Geyserville (QGV) */
16 struct intel_qgv_point {
17 	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
18 };
19 
20 struct intel_qgv_info {
21 	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
22 	u8 num_points;
23 	u8 t_bl;
24 };
25 
26 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
27 					 struct intel_qgv_point *sp,
28 					 int point)
29 {
30 	u32 val = 0, val2 = 0;
31 	int ret;
32 
33 	ret = sandybridge_pcode_read(dev_priv,
34 				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
35 				     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
36 				     &val, &val2);
37 	if (ret)
38 		return ret;
39 
40 	sp->dclk = val & 0xffff;
41 	sp->t_rp = (val & 0xff0000) >> 16;
42 	sp->t_rcd = (val & 0xff000000) >> 24;
43 
44 	sp->t_rdpre = val2 & 0xff;
45 	sp->t_ras = (val2 & 0xff00) >> 8;
46 
47 	sp->t_rc = sp->t_rp + sp->t_ras;
48 
49 	return 0;
50 }
51 
52 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
53 				  u32 points_mask)
54 {
55 	int ret;
56 
57 	/* bspec says to keep retrying for at least 1 ms */
58 	ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
59 				points_mask,
60 				ICL_PCODE_POINTS_RESTRICTED_MASK,
61 				ICL_PCODE_POINTS_RESTRICTED,
62 				1);
63 
64 	if (ret < 0) {
65 		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d)\n", ret);
66 		return ret;
67 	}
68 
69 	return 0;
70 }
71 
72 static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
73 			      struct intel_qgv_info *qi)
74 {
75 	const struct dram_info *dram_info = &dev_priv->dram_info;
76 	int i, ret;
77 
78 	qi->num_points = dram_info->num_qgv_points;
79 
80 	if (IS_DISPLAY_VER(dev_priv, 12))
81 		switch (dram_info->type) {
82 		case INTEL_DRAM_DDR4:
83 			qi->t_bl = 4;
84 			break;
85 		case INTEL_DRAM_DDR5:
86 			qi->t_bl = 8;
87 			break;
88 		default:
89 			qi->t_bl = 16;
90 			break;
91 		}
92 	else if (IS_DISPLAY_VER(dev_priv, 11))
93 		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
94 
95 	if (drm_WARN_ON(&dev_priv->drm,
96 			qi->num_points > ARRAY_SIZE(qi->points)))
97 		qi->num_points = ARRAY_SIZE(qi->points);
98 
99 	for (i = 0; i < qi->num_points; i++) {
100 		struct intel_qgv_point *sp = &qi->points[i];
101 
102 		ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
103 		if (ret)
104 			return ret;
105 
106 		drm_dbg_kms(&dev_priv->drm,
107 			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
108 			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
109 			    sp->t_rcd, sp->t_rc);
110 	}
111 
112 	return 0;
113 }
114 
115 static int icl_calc_bw(int dclk, int num, int den)
116 {
117 	/* multiples of 16.666MHz (100/6) */
118 	return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
119 }
120 
121 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
122 {
123 	u16 dclk = 0;
124 	int i;
125 
126 	for (i = 0; i < qi->num_points; i++)
127 		dclk = max(dclk, qi->points[i].dclk);
128 
129 	return dclk;
130 }
131 
132 struct intel_sa_info {
133 	u16 displayrtids;
134 	u8 deburst, deprogbwlimit;
135 };
136 
137 static const struct intel_sa_info icl_sa_info = {
138 	.deburst = 8,
139 	.deprogbwlimit = 25, /* GB/s */
140 	.displayrtids = 128,
141 };
142 
143 static const struct intel_sa_info tgl_sa_info = {
144 	.deburst = 16,
145 	.deprogbwlimit = 34, /* GB/s */
146 	.displayrtids = 256,
147 };
148 
149 static const struct intel_sa_info rkl_sa_info = {
150 	.deburst = 16,
151 	.deprogbwlimit = 20, /* GB/s */
152 	.displayrtids = 128,
153 };
154 
155 static const struct intel_sa_info adls_sa_info = {
156 	.deburst = 16,
157 	.deprogbwlimit = 38, /* GB/s */
158 	.displayrtids = 256,
159 };
160 
161 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
162 {
163 	struct intel_qgv_info qi = {};
164 	bool is_y_tile = true; /* assume y tile may be used */
165 	int num_channels = dev_priv->dram_info.num_channels;
166 	int deinterleave;
167 	int ipqdepth, ipqdepthpch;
168 	int dclk_max;
169 	int maxdebw;
170 	int i, ret;
171 
172 	ret = icl_get_qgv_points(dev_priv, &qi);
173 	if (ret) {
174 		drm_dbg_kms(&dev_priv->drm,
175 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
176 		return ret;
177 	}
178 
179 	deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
180 	dclk_max = icl_sagv_max_dclk(&qi);
181 
182 	ipqdepthpch = 16;
183 
184 	maxdebw = min(sa->deprogbwlimit * 1000,
185 		      icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
186 	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
187 
188 	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
189 		struct intel_bw_info *bi = &dev_priv->max_bw[i];
190 		int clpchgroup;
191 		int j;
192 
193 		clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
194 		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
195 
196 		bi->num_qgv_points = qi.num_points;
197 
198 		for (j = 0; j < qi.num_points; j++) {
199 			const struct intel_qgv_point *sp = &qi.points[j];
200 			int ct, bw;
201 
202 			/*
203 			 * Max row cycle time
204 			 *
205 			 * FIXME what is the logic behind the
206 			 * assumed burst length?
207 			 */
208 			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
209 				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
210 			bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
211 
212 			bi->deratedbw[j] = min(maxdebw,
213 					       bw * 9 / 10); /* 90% */
214 
215 			drm_dbg_kms(&dev_priv->drm,
216 				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
217 				    i, j, bi->num_planes, bi->deratedbw[j]);
218 		}
219 
220 		if (bi->num_planes == 1)
221 			break;
222 	}
223 
224 	/*
225 	 * In case if SAGV is disabled in BIOS, we always get 1
226 	 * SAGV point, but we can't send PCode commands to restrict it
227 	 * as it will fail and pointless anyway.
228 	 */
229 	if (qi.num_points == 1)
230 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
231 	else
232 		dev_priv->sagv_status = I915_SAGV_ENABLED;
233 
234 	return 0;
235 }
236 
237 static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
238 			       int num_planes, int qgv_point)
239 {
240 	int i;
241 
242 	/*
243 	 * Let's return max bw for 0 planes
244 	 */
245 	num_planes = max(1, num_planes);
246 
247 	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
248 		const struct intel_bw_info *bi =
249 			&dev_priv->max_bw[i];
250 
251 		/*
252 		 * Pcode will not expose all QGV points when
253 		 * SAGV is forced to off/min/med/max.
254 		 */
255 		if (qgv_point >= bi->num_qgv_points)
256 			return UINT_MAX;
257 
258 		if (num_planes >= bi->num_planes)
259 			return bi->deratedbw[qgv_point];
260 	}
261 
262 	return 0;
263 }
264 
265 void intel_bw_init_hw(struct drm_i915_private *dev_priv)
266 {
267 	if (!HAS_DISPLAY(dev_priv))
268 		return;
269 
270 	if (IS_ALDERLAKE_S(dev_priv))
271 		icl_get_bw_info(dev_priv, &adls_sa_info);
272 	else if (IS_ROCKETLAKE(dev_priv))
273 		icl_get_bw_info(dev_priv, &rkl_sa_info);
274 	else if (IS_DISPLAY_VER(dev_priv, 12))
275 		icl_get_bw_info(dev_priv, &tgl_sa_info);
276 	else if (IS_DISPLAY_VER(dev_priv, 11))
277 		icl_get_bw_info(dev_priv, &icl_sa_info);
278 }
279 
280 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
281 {
282 	/*
283 	 * We assume cursors are small enough
284 	 * to not not cause bandwidth problems.
285 	 */
286 	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
287 }
288 
289 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
290 {
291 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
292 	unsigned int data_rate = 0;
293 	enum plane_id plane_id;
294 
295 	for_each_plane_id_on_crtc(crtc, plane_id) {
296 		/*
297 		 * We assume cursors are small enough
298 		 * to not not cause bandwidth problems.
299 		 */
300 		if (plane_id == PLANE_CURSOR)
301 			continue;
302 
303 		data_rate += crtc_state->data_rate[plane_id];
304 	}
305 
306 	return data_rate;
307 }
308 
309 void intel_bw_crtc_update(struct intel_bw_state *bw_state,
310 			  const struct intel_crtc_state *crtc_state)
311 {
312 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
313 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
314 
315 	bw_state->data_rate[crtc->pipe] =
316 		intel_bw_crtc_data_rate(crtc_state);
317 	bw_state->num_active_planes[crtc->pipe] =
318 		intel_bw_crtc_num_active_planes(crtc_state);
319 
320 	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
321 		    pipe_name(crtc->pipe),
322 		    bw_state->data_rate[crtc->pipe],
323 		    bw_state->num_active_planes[crtc->pipe]);
324 }
325 
326 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
327 					       const struct intel_bw_state *bw_state)
328 {
329 	unsigned int num_active_planes = 0;
330 	enum pipe pipe;
331 
332 	for_each_pipe(dev_priv, pipe)
333 		num_active_planes += bw_state->num_active_planes[pipe];
334 
335 	return num_active_planes;
336 }
337 
338 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
339 				       const struct intel_bw_state *bw_state)
340 {
341 	unsigned int data_rate = 0;
342 	enum pipe pipe;
343 
344 	for_each_pipe(dev_priv, pipe)
345 		data_rate += bw_state->data_rate[pipe];
346 
347 	return data_rate;
348 }
349 
350 struct intel_bw_state *
351 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
352 {
353 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
354 	struct intel_global_state *bw_state;
355 
356 	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);
357 
358 	return to_intel_bw_state(bw_state);
359 }
360 
361 struct intel_bw_state *
362 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
363 {
364 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
365 	struct intel_global_state *bw_state;
366 
367 	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);
368 
369 	return to_intel_bw_state(bw_state);
370 }
371 
372 struct intel_bw_state *
373 intel_atomic_get_bw_state(struct intel_atomic_state *state)
374 {
375 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
376 	struct intel_global_state *bw_state;
377 
378 	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
379 	if (IS_ERR(bw_state))
380 		return ERR_CAST(bw_state);
381 
382 	return to_intel_bw_state(bw_state);
383 }
384 
385 int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
386 {
387 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
388 	struct intel_bw_state *new_bw_state = NULL;
389 	struct intel_bw_state *old_bw_state = NULL;
390 	const struct intel_crtc_state *crtc_state;
391 	struct intel_crtc *crtc;
392 	int max_bw = 0;
393 	int slice_id;
394 	enum pipe pipe;
395 	int i;
396 
397 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
398 		enum plane_id plane_id;
399 		struct intel_dbuf_bw *crtc_bw;
400 
401 		new_bw_state = intel_atomic_get_bw_state(state);
402 		if (IS_ERR(new_bw_state))
403 			return PTR_ERR(new_bw_state);
404 
405 		old_bw_state = intel_atomic_get_old_bw_state(state);
406 
407 		crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe];
408 
409 		memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));
410 
411 		if (!crtc_state->hw.active)
412 			continue;
413 
414 		for_each_plane_id_on_crtc(crtc, plane_id) {
415 			const struct skl_ddb_entry *plane_alloc =
416 				&crtc_state->wm.skl.plane_ddb_y[plane_id];
417 			const struct skl_ddb_entry *uv_plane_alloc =
418 				&crtc_state->wm.skl.plane_ddb_uv[plane_id];
419 			unsigned int data_rate = crtc_state->data_rate[plane_id];
420 			unsigned int dbuf_mask = 0;
421 
422 			dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc);
423 			dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc);
424 
425 			/*
426 			 * FIXME: To calculate that more properly we probably
427 			 * need to to split per plane data_rate into data_rate_y
428 			 * and data_rate_uv for multiplanar formats in order not
429 			 * to get accounted those twice if they happen to reside
430 			 * on different slices.
431 			 * However for pre-icl this would work anyway because
432 			 * we have only single slice and for icl+ uv plane has
433 			 * non-zero data rate.
434 			 * So in worst case those calculation are a bit
435 			 * pessimistic, which shouldn't pose any significant
436 			 * problem anyway.
437 			 */
438 			for_each_dbuf_slice_in_mask(slice_id, dbuf_mask)
439 				crtc_bw->used_bw[slice_id] += data_rate;
440 		}
441 	}
442 
443 	if (!old_bw_state)
444 		return 0;
445 
446 	for_each_pipe(dev_priv, pipe) {
447 		struct intel_dbuf_bw *crtc_bw;
448 
449 		crtc_bw = &new_bw_state->dbuf_bw[pipe];
450 
451 		for_each_dbuf_slice(slice_id) {
452 			/*
453 			 * Current experimental observations show that contrary
454 			 * to BSpec we get underruns once we exceed 64 * CDCLK
455 			 * for slices in total.
456 			 * As a temporary measure in order not to keep CDCLK
457 			 * bumped up all the time we calculate CDCLK according
458 			 * to this formula for  overall bw consumed by slices.
459 			 */
460 			max_bw += crtc_bw->used_bw[slice_id];
461 		}
462 	}
463 
464 	new_bw_state->min_cdclk = max_bw / 64;
465 
466 	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
467 		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
468 
469 		if (ret)
470 			return ret;
471 	}
472 
473 	return 0;
474 }
475 
476 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
477 {
478 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
479 	struct intel_bw_state *new_bw_state = NULL;
480 	struct intel_bw_state *old_bw_state = NULL;
481 	const struct intel_crtc_state *crtc_state;
482 	struct intel_crtc *crtc;
483 	int min_cdclk = 0;
484 	enum pipe pipe;
485 	int i;
486 
487 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
488 		new_bw_state = intel_atomic_get_bw_state(state);
489 		if (IS_ERR(new_bw_state))
490 			return PTR_ERR(new_bw_state);
491 
492 		old_bw_state = intel_atomic_get_old_bw_state(state);
493 	}
494 
495 	if (!old_bw_state)
496 		return 0;
497 
498 	for_each_pipe(dev_priv, pipe) {
499 		struct intel_cdclk_state *cdclk_state;
500 
501 		cdclk_state = intel_atomic_get_new_cdclk_state(state);
502 		if (!cdclk_state)
503 			return 0;
504 
505 		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
506 	}
507 
508 	new_bw_state->min_cdclk = min_cdclk;
509 
510 	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
511 		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
512 
513 		if (ret)
514 			return ret;
515 	}
516 
517 	return 0;
518 }
519 
520 int intel_bw_atomic_check(struct intel_atomic_state *state)
521 {
522 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
523 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
524 	struct intel_bw_state *new_bw_state = NULL;
525 	const struct intel_bw_state *old_bw_state = NULL;
526 	unsigned int data_rate;
527 	unsigned int num_active_planes;
528 	struct intel_crtc *crtc;
529 	int i, ret;
530 	u32 allowed_points = 0;
531 	unsigned int max_bw_point = 0, max_bw = 0;
532 	unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
533 	u32 mask = (1 << num_qgv_points) - 1;
534 
535 	/* FIXME earlier gens need some checks too */
536 	if (DISPLAY_VER(dev_priv) < 11)
537 		return 0;
538 
539 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
540 					    new_crtc_state, i) {
541 		unsigned int old_data_rate =
542 			intel_bw_crtc_data_rate(old_crtc_state);
543 		unsigned int new_data_rate =
544 			intel_bw_crtc_data_rate(new_crtc_state);
545 		unsigned int old_active_planes =
546 			intel_bw_crtc_num_active_planes(old_crtc_state);
547 		unsigned int new_active_planes =
548 			intel_bw_crtc_num_active_planes(new_crtc_state);
549 
550 		/*
551 		 * Avoid locking the bw state when
552 		 * nothing significant has changed.
553 		 */
554 		if (old_data_rate == new_data_rate &&
555 		    old_active_planes == new_active_planes)
556 			continue;
557 
558 		new_bw_state = intel_atomic_get_bw_state(state);
559 		if (IS_ERR(new_bw_state))
560 			return PTR_ERR(new_bw_state);
561 
562 		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
563 		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
564 
565 		drm_dbg_kms(&dev_priv->drm,
566 			    "pipe %c data rate %u num active planes %u\n",
567 			    pipe_name(crtc->pipe),
568 			    new_bw_state->data_rate[crtc->pipe],
569 			    new_bw_state->num_active_planes[crtc->pipe]);
570 	}
571 
572 	if (!new_bw_state)
573 		return 0;
574 
575 	ret = intel_atomic_lock_global_state(&new_bw_state->base);
576 	if (ret)
577 		return ret;
578 
579 	data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
580 	data_rate = DIV_ROUND_UP(data_rate, 1000);
581 
582 	num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
583 
584 	for (i = 0; i < num_qgv_points; i++) {
585 		unsigned int max_data_rate;
586 
587 		max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
588 		/*
589 		 * We need to know which qgv point gives us
590 		 * maximum bandwidth in order to disable SAGV
591 		 * if we find that we exceed SAGV block time
592 		 * with watermarks. By that moment we already
593 		 * have those, as it is calculated earlier in
594 		 * intel_atomic_check,
595 		 */
596 		if (max_data_rate > max_bw) {
597 			max_bw_point = i;
598 			max_bw = max_data_rate;
599 		}
600 		if (max_data_rate >= data_rate)
601 			allowed_points |= BIT(i);
602 		drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
603 			    i, max_data_rate, data_rate);
604 	}
605 
606 	/*
607 	 * BSpec states that we always should have at least one allowed point
608 	 * left, so if we couldn't - simply reject the configuration for obvious
609 	 * reasons.
610 	 */
611 	if (allowed_points == 0) {
612 		drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
613 			    " bandwidth %d for display configuration(%d active planes).\n",
614 			    data_rate, num_active_planes);
615 		return -EINVAL;
616 	}
617 
618 	/*
619 	 * Leave only single point with highest bandwidth, if
620 	 * we can't enable SAGV due to the increased memory latency it may
621 	 * cause.
622 	 */
623 	if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
624 		allowed_points = BIT(max_bw_point);
625 		drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
626 			    max_bw_point);
627 	}
628 	/*
629 	 * We store the ones which need to be masked as that is what PCode
630 	 * actually accepts as a parameter.
631 	 */
632 	new_bw_state->qgv_points_mask = ~allowed_points & mask;
633 
634 	old_bw_state = intel_atomic_get_old_bw_state(state);
635 	/*
636 	 * If the actual mask had changed we need to make sure that
637 	 * the commits are serialized(in case this is a nomodeset, nonblocking)
638 	 */
639 	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
640 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
641 		if (ret)
642 			return ret;
643 	}
644 
645 	return 0;
646 }
647 
648 static struct intel_global_state *
649 intel_bw_duplicate_state(struct intel_global_obj *obj)
650 {
651 	struct intel_bw_state *state;
652 
653 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
654 	if (!state)
655 		return NULL;
656 
657 	return &state->base;
658 }
659 
660 static void intel_bw_destroy_state(struct intel_global_obj *obj,
661 				   struct intel_global_state *state)
662 {
663 	kfree(state);
664 }
665 
666 static const struct intel_global_state_funcs intel_bw_funcs = {
667 	.atomic_duplicate_state = intel_bw_duplicate_state,
668 	.atomic_destroy_state = intel_bw_destroy_state,
669 };
670 
671 int intel_bw_init(struct drm_i915_private *dev_priv)
672 {
673 	struct intel_bw_state *state;
674 
675 	state = kzalloc(sizeof(*state), GFP_KERNEL);
676 	if (!state)
677 		return -ENOMEM;
678 
679 	intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
680 				     &state->base, &intel_bw_funcs);
681 
682 	return 0;
683 }
684