1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30 
31 #include "display/intel_display.h"
32 #include "display/intel_display_types.h"
33 #include "display/intel_gmbus.h"
34 
35 #include "i915_drv.h"
36 #include "i915_reg.h"
37 
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40 
41 /**
42  * DOC: Video BIOS Table (VBT)
43  *
44  * The Video BIOS Table, or VBT, provides platform and board specific
45  * configuration information to the driver that is not discoverable or available
46  * through other means. The configuration is mostly related to display
47  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48  * the PCI ROM.
49  *
50  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52  * contain the actual configuration information. The VBT Header, and thus the
53  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54  * BDB Header. The data blocks are concatenated after the BDB Header. The data
55  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56  * data. (Block 53, the MIPI Sequence Block is an exception.)
57  *
58  * The driver parses the VBT during load. The relevant information is stored in
59  * driver private data for ease of use, and the actual VBT is not read after
60  * that.
61  */
62 
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65 	struct drm_i915_private *i915;
66 
67 	struct child_device_config child;
68 	struct dsc_compression_parameters_entry *dsc;
69 	struct list_head node;
70 };
71 
72 #define	SLAVE_ADDR1	0x70
73 #define	SLAVE_ADDR2	0x72
74 
75 /* Get BDB block size given a pointer to Block ID. */
76 static u32 _get_blocksize(const u8 *block_base)
77 {
78 	/* The MIPI Sequence Block v3+ has a separate size field. */
79 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 		return *((const u32 *)(block_base + 4));
81 	else
82 		return *((const u16 *)(block_base + 1));
83 }
84 
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
86 static u32 get_blocksize(const void *block_data)
87 {
88 	return _get_blocksize(block_data - 3);
89 }
90 
91 static const void *
92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94 	const struct bdb_header *bdb = _bdb;
95 	const u8 *base = _bdb;
96 	int index = 0;
97 	u32 total, current_size;
98 	enum bdb_block_id current_id;
99 
100 	/* skip to first section */
101 	index += bdb->header_size;
102 	total = bdb->bdb_size;
103 
104 	/* walk the sections looking for section_id */
105 	while (index + 3 < total) {
106 		current_id = *(base + index);
107 		current_size = _get_blocksize(base + index);
108 		index += 3;
109 
110 		if (index + current_size > total)
111 			return NULL;
112 
113 		if (current_id == section_id)
114 			return base + index;
115 
116 		index += current_size;
117 	}
118 
119 	return NULL;
120 }
121 
122 /*
123  * Offset from the start of BDB to the start of the
124  * block data (just past the block header).
125  */
126 static u32 block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128 	const void *block;
129 
130 	block = find_raw_section(bdb, section_id);
131 	if (!block)
132 		return 0;
133 
134 	return block - bdb;
135 }
136 
137 /* size of the block excluding the header */
138 static u32 block_size(const void *bdb, enum bdb_block_id section_id)
139 {
140 	const void *block;
141 
142 	block = find_raw_section(bdb, section_id);
143 	if (!block)
144 		return 0;
145 
146 	return get_blocksize(block);
147 }
148 
149 struct bdb_block_entry {
150 	struct list_head node;
151 	enum bdb_block_id section_id;
152 	u8 data[];
153 };
154 
155 static const void *
156 find_section(struct drm_i915_private *i915,
157 	     enum bdb_block_id section_id)
158 {
159 	struct bdb_block_entry *entry;
160 
161 	list_for_each_entry(entry, &i915->vbt.bdb_blocks, node) {
162 		if (entry->section_id == section_id)
163 			return entry->data + 3;
164 	}
165 
166 	return NULL;
167 }
168 
169 static const struct {
170 	enum bdb_block_id section_id;
171 	size_t min_size;
172 } bdb_blocks[] = {
173 	{ .section_id = BDB_GENERAL_FEATURES,
174 	  .min_size = sizeof(struct bdb_general_features), },
175 	{ .section_id = BDB_GENERAL_DEFINITIONS,
176 	  .min_size = sizeof(struct bdb_general_definitions), },
177 	{ .section_id = BDB_PSR,
178 	  .min_size = sizeof(struct bdb_psr), },
179 	{ .section_id = BDB_DRIVER_FEATURES,
180 	  .min_size = sizeof(struct bdb_driver_features), },
181 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
182 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
183 	{ .section_id = BDB_SDVO_PANEL_DTDS,
184 	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
185 	{ .section_id = BDB_EDP,
186 	  .min_size = sizeof(struct bdb_edp), },
187 	{ .section_id = BDB_LVDS_OPTIONS,
188 	  .min_size = sizeof(struct bdb_lvds_options), },
189 	/*
190 	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
191 	 * so keep the two ordered.
192 	 */
193 	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
194 	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
195 	{ .section_id = BDB_LVDS_LFP_DATA,
196 	  .min_size = 0, /* special case */ },
197 	{ .section_id = BDB_LVDS_BACKLIGHT,
198 	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
199 	{ .section_id = BDB_LFP_POWER,
200 	  .min_size = sizeof(struct bdb_lfp_power), },
201 	{ .section_id = BDB_MIPI_CONFIG,
202 	  .min_size = sizeof(struct bdb_mipi_config), },
203 	{ .section_id = BDB_MIPI_SEQUENCE,
204 	  .min_size = sizeof(struct bdb_mipi_sequence) },
205 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
206 	  .min_size = sizeof(struct bdb_compression_parameters), },
207 	{ .section_id = BDB_GENERIC_DTD,
208 	  .min_size = sizeof(struct bdb_generic_dtd), },
209 };
210 
211 static size_t lfp_data_min_size(struct drm_i915_private *i915)
212 {
213 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
214 	size_t size;
215 
216 	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
217 	if (!ptrs)
218 		return 0;
219 
220 	size = sizeof(struct bdb_lvds_lfp_data);
221 	if (ptrs->panel_name.table_size)
222 		size = max(size, ptrs->panel_name.offset +
223 			   sizeof(struct bdb_lvds_lfp_data_tail));
224 
225 	return size;
226 }
227 
228 static bool validate_lfp_data_ptrs(const void *bdb,
229 				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
230 {
231 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
232 	int data_block_size, lfp_data_size;
233 	int i;
234 
235 	data_block_size = block_size(bdb, BDB_LVDS_LFP_DATA);
236 	if (data_block_size == 0)
237 		return false;
238 
239 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
240 	if (ptrs->lvds_entries != 3)
241 		return false;
242 
243 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
244 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
245 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
246 	panel_name_size = ptrs->panel_name.table_size;
247 
248 	/* fp_timing has variable size */
249 	if (fp_timing_size < 32 ||
250 	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
251 	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
252 		return false;
253 
254 	/* panel_name is not present in old VBTs */
255 	if (panel_name_size != 0 &&
256 	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
257 		return false;
258 
259 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
260 	if (16 * lfp_data_size > data_block_size)
261 		return false;
262 
263 	/*
264 	 * Except for vlv/chv machines all real VBTs seem to have 6
265 	 * unaccounted bytes in the fp_timing table. And it doesn't
266 	 * appear to be a really intentional hole as the fp_timing
267 	 * 0xffff terminator is always within those 6 missing bytes.
268 	 */
269 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size &&
270 	    fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
271 		return false;
272 
273 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size > ptrs->ptr[0].dvo_timing.offset ||
274 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
275 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
276 		return false;
277 
278 	/* make sure the table entries have uniform size */
279 	for (i = 1; i < 16; i++) {
280 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
281 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
282 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
283 			return false;
284 
285 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
286 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
287 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
288 			return false;
289 	}
290 
291 	/* make sure the tables fit inside the data block */
292 	for (i = 0; i < 16; i++) {
293 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
294 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
295 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
296 			return false;
297 	}
298 
299 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
300 		return false;
301 
302 	return true;
303 }
304 
305 /* make the data table offsets relative to the data block */
306 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
307 {
308 	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
309 	u32 offset;
310 	int i;
311 
312 	offset = block_offset(bdb, BDB_LVDS_LFP_DATA);
313 
314 	for (i = 0; i < 16; i++) {
315 		if (ptrs->ptr[i].fp_timing.offset < offset ||
316 		    ptrs->ptr[i].dvo_timing.offset < offset ||
317 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
318 			return false;
319 
320 		ptrs->ptr[i].fp_timing.offset -= offset;
321 		ptrs->ptr[i].dvo_timing.offset -= offset;
322 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
323 	}
324 
325 	if (ptrs->panel_name.table_size) {
326 		if (ptrs->panel_name.offset < offset)
327 			return false;
328 
329 		ptrs->panel_name.offset -= offset;
330 	}
331 
332 	return validate_lfp_data_ptrs(bdb, ptrs);
333 }
334 
335 static const void *find_fp_timing_terminator(const u8 *data, int size)
336 {
337 	int i;
338 
339 	for (i = 0; i < size - 1; i++) {
340 		if (data[i] == 0xff && data[i+1] == 0xff)
341 			return &data[i];
342 	}
343 
344 	return NULL;
345 }
346 
347 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
348 			     int table_size, int total_size)
349 {
350 	if (total_size < table_size)
351 		return total_size;
352 
353 	table->table_size = table_size;
354 	table->offset = total_size - table_size;
355 
356 	return total_size - table_size;
357 }
358 
359 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
360 			      const struct lvds_lfp_data_ptr_table *prev,
361 			      int size)
362 {
363 	next->table_size = prev->table_size;
364 	next->offset = prev->offset + size;
365 }
366 
367 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
368 				    const void *bdb)
369 {
370 	int i, size, table_size, block_size, offset;
371 	const void *t0, *t1, *block;
372 	struct bdb_lvds_lfp_data_ptrs *ptrs;
373 	void *ptrs_block;
374 
375 	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
376 	if (!block)
377 		return NULL;
378 
379 	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
380 
381 	block_size = get_blocksize(block);
382 
383 	size = block_size;
384 	t0 = find_fp_timing_terminator(block, size);
385 	if (!t0)
386 		return NULL;
387 
388 	size -= t0 - block - 2;
389 	t1 = find_fp_timing_terminator(t0 + 2, size);
390 	if (!t1)
391 		return NULL;
392 
393 	size = t1 - t0;
394 	if (size * 16 > block_size)
395 		return NULL;
396 
397 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
398 	if (!ptrs_block)
399 		return NULL;
400 
401 	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
402 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
403 	ptrs = ptrs_block + 3;
404 
405 	table_size = sizeof(struct lvds_pnp_id);
406 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
407 
408 	table_size = sizeof(struct lvds_dvo_timing);
409 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
410 
411 	table_size = t0 - block + 2;
412 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
413 
414 	if (ptrs->ptr[0].fp_timing.table_size)
415 		ptrs->lvds_entries++;
416 	if (ptrs->ptr[0].dvo_timing.table_size)
417 		ptrs->lvds_entries++;
418 	if (ptrs->ptr[0].panel_pnp_id.table_size)
419 		ptrs->lvds_entries++;
420 
421 	if (size != 0 || ptrs->lvds_entries != 3) {
422 		kfree(ptrs);
423 		return NULL;
424 	}
425 
426 	size = t1 - t0;
427 	for (i = 1; i < 16; i++) {
428 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
429 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
430 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
431 	}
432 
433 	size = t1 - t0;
434 	table_size = sizeof(struct lvds_lfp_panel_name);
435 
436 	if (16 * (size + table_size) <= block_size) {
437 		ptrs->panel_name.table_size = table_size;
438 		ptrs->panel_name.offset = size * 16;
439 	}
440 
441 	offset = block - bdb;
442 
443 	for (i = 0; i < 16; i++) {
444 		ptrs->ptr[i].fp_timing.offset += offset;
445 		ptrs->ptr[i].dvo_timing.offset += offset;
446 		ptrs->ptr[i].panel_pnp_id.offset += offset;
447 	}
448 
449 	if (ptrs->panel_name.table_size)
450 		ptrs->panel_name.offset += offset;
451 
452 	return ptrs_block;
453 }
454 
455 static void
456 init_bdb_block(struct drm_i915_private *i915,
457 	       const void *bdb, enum bdb_block_id section_id,
458 	       size_t min_size)
459 {
460 	struct bdb_block_entry *entry;
461 	void *temp_block = NULL;
462 	const void *block;
463 	size_t block_size;
464 
465 	block = find_raw_section(bdb, section_id);
466 
467 	/* Modern VBTs lack the LFP data table pointers block, make one up */
468 	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
469 		temp_block = generate_lfp_data_ptrs(i915, bdb);
470 		if (temp_block)
471 			block = temp_block + 3;
472 	}
473 	if (!block)
474 		return;
475 
476 	drm_WARN(&i915->drm, min_size == 0,
477 		 "Block %d min_size is zero\n", section_id);
478 
479 	block_size = get_blocksize(block);
480 
481 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
482 			GFP_KERNEL);
483 	if (!entry) {
484 		kfree(temp_block);
485 		return;
486 	}
487 
488 	entry->section_id = section_id;
489 	memcpy(entry->data, block - 3, block_size + 3);
490 
491 	kfree(temp_block);
492 
493 	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
494 		    section_id, block_size, min_size);
495 
496 	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
497 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
498 		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
499 		kfree(entry);
500 		return;
501 	}
502 
503 	list_add_tail(&entry->node, &i915->vbt.bdb_blocks);
504 }
505 
506 static void init_bdb_blocks(struct drm_i915_private *i915,
507 			    const void *bdb)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
512 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
513 		size_t min_size = bdb_blocks[i].min_size;
514 
515 		if (section_id == BDB_LVDS_LFP_DATA)
516 			min_size = lfp_data_min_size(i915);
517 
518 		init_bdb_block(i915, bdb, section_id, min_size);
519 	}
520 }
521 
522 static void
523 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
524 			const struct lvds_dvo_timing *dvo_timing)
525 {
526 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
527 		dvo_timing->hactive_lo;
528 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
529 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
530 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
531 		((dvo_timing->hsync_pulse_width_hi << 8) |
532 			dvo_timing->hsync_pulse_width_lo);
533 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
534 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
535 
536 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
537 		dvo_timing->vactive_lo;
538 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
539 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
540 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
541 		((dvo_timing->vsync_pulse_width_hi << 4) |
542 			dvo_timing->vsync_pulse_width_lo);
543 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
544 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
545 	panel_fixed_mode->clock = dvo_timing->clock * 10;
546 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
547 
548 	if (dvo_timing->hsync_positive)
549 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
550 	else
551 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
552 
553 	if (dvo_timing->vsync_positive)
554 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
555 	else
556 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
557 
558 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
559 		dvo_timing->himage_lo;
560 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
561 		dvo_timing->vimage_lo;
562 
563 	/* Some VBTs have bogus h/vtotal values */
564 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
565 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
566 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
567 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
568 
569 	drm_mode_set_name(panel_fixed_mode);
570 }
571 
572 static const struct lvds_dvo_timing *
573 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
574 		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
575 		    int index)
576 {
577 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
578 }
579 
580 static const struct lvds_fp_timing *
581 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
582 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
583 		   int index)
584 {
585 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
586 }
587 
588 static const struct bdb_lvds_lfp_data_tail *
589 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
590 		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
591 {
592 	if (ptrs->panel_name.table_size)
593 		return (const void *)data + ptrs->panel_name.offset;
594 	else
595 		return NULL;
596 }
597 
598 static int opregion_get_panel_type(struct drm_i915_private *i915)
599 {
600 	return intel_opregion_get_panel_type(i915);
601 }
602 
603 static int vbt_get_panel_type(struct drm_i915_private *i915)
604 {
605 	const struct bdb_lvds_options *lvds_options;
606 
607 	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
608 	if (!lvds_options)
609 		return -1;
610 
611 	if (lvds_options->panel_type > 0xf) {
612 		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
613 			    lvds_options->panel_type);
614 		return -1;
615 	}
616 
617 	return lvds_options->panel_type;
618 }
619 
620 static int fallback_get_panel_type(struct drm_i915_private *i915)
621 {
622 	return 0;
623 }
624 
625 enum panel_type {
626 	PANEL_TYPE_OPREGION,
627 	PANEL_TYPE_VBT,
628 	PANEL_TYPE_FALLBACK,
629 };
630 
631 static int get_panel_type(struct drm_i915_private *i915)
632 {
633 	struct {
634 		const char *name;
635 		int (*get_panel_type)(struct drm_i915_private *i915);
636 		int panel_type;
637 	} panel_types[] = {
638 		[PANEL_TYPE_OPREGION] = {
639 			.name = "OpRegion",
640 			.get_panel_type = opregion_get_panel_type,
641 		},
642 		[PANEL_TYPE_VBT] = {
643 			.name = "VBT",
644 			.get_panel_type = vbt_get_panel_type,
645 		},
646 		[PANEL_TYPE_FALLBACK] = {
647 			.name = "fallback",
648 			.get_panel_type = fallback_get_panel_type,
649 		},
650 	};
651 	int i;
652 
653 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
654 		panel_types[i].panel_type = panel_types[i].get_panel_type(i915);
655 
656 		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf);
657 
658 		if (panel_types[i].panel_type >= 0)
659 			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
660 				    panel_types[i].name, panel_types[i].panel_type);
661 	}
662 
663 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
664 		i = PANEL_TYPE_OPREGION;
665 	else if (panel_types[PANEL_TYPE_VBT].panel_type >= 0)
666 		i = PANEL_TYPE_VBT;
667 	else
668 		i = PANEL_TYPE_FALLBACK;
669 
670 	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
671 		    panel_types[i].name, panel_types[i].panel_type);
672 
673 	return panel_types[i].panel_type;
674 }
675 
676 /* Parse general panel options */
677 static void
678 parse_panel_options(struct drm_i915_private *i915)
679 {
680 	const struct bdb_lvds_options *lvds_options;
681 	int panel_type;
682 	int drrs_mode;
683 
684 	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
685 	if (!lvds_options)
686 		return;
687 
688 	i915->vbt.lvds_dither = lvds_options->pixel_dither;
689 
690 	panel_type = get_panel_type(i915);
691 
692 	i915->vbt.panel_type = panel_type;
693 
694 	drrs_mode = (lvds_options->dps_panel_type_bits
695 				>> (panel_type * 2)) & MODE_MASK;
696 	/*
697 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
698 	 * The below piece of code is required to adjust vbt.drrs_type
699 	 * to match the enum drrs_support_type.
700 	 */
701 	switch (drrs_mode) {
702 	case 0:
703 		i915->vbt.drrs_type = DRRS_TYPE_STATIC;
704 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
705 		break;
706 	case 2:
707 		i915->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
708 		drm_dbg_kms(&i915->drm,
709 			    "DRRS supported mode is seamless\n");
710 		break;
711 	default:
712 		i915->vbt.drrs_type = DRRS_TYPE_NONE;
713 		drm_dbg_kms(&i915->drm,
714 			    "DRRS not supported (VBT input)\n");
715 		break;
716 	}
717 }
718 
719 static void
720 parse_lfp_panel_dtd(struct drm_i915_private *i915,
721 		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
722 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
723 {
724 	const struct lvds_dvo_timing *panel_dvo_timing;
725 	const struct lvds_fp_timing *fp_timing;
726 	struct drm_display_mode *panel_fixed_mode;
727 	int panel_type = i915->vbt.panel_type;
728 
729 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
730 					       lvds_lfp_data_ptrs,
731 					       panel_type);
732 
733 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
734 	if (!panel_fixed_mode)
735 		return;
736 
737 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
738 
739 	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
740 
741 	drm_dbg_kms(&i915->drm,
742 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
743 		    DRM_MODE_ARG(panel_fixed_mode));
744 
745 	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
746 				       lvds_lfp_data_ptrs,
747 				       panel_type);
748 
749 	/* check the resolution, just to be sure */
750 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
751 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
752 		i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
753 		drm_dbg_kms(&i915->drm,
754 			    "VBT initial LVDS value %x\n",
755 			    i915->vbt.bios_lvds_val);
756 	}
757 }
758 
759 static void
760 parse_lfp_data(struct drm_i915_private *i915)
761 {
762 	const struct bdb_lvds_lfp_data *data;
763 	const struct bdb_lvds_lfp_data_tail *tail;
764 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
765 	int panel_type = i915->vbt.panel_type;
766 
767 	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
768 	if (!ptrs)
769 		return;
770 
771 	data = find_section(i915, BDB_LVDS_LFP_DATA);
772 	if (!data)
773 		return;
774 
775 	if (!i915->vbt.lfp_lvds_vbt_mode)
776 		parse_lfp_panel_dtd(i915, data, ptrs);
777 
778 	tail = get_lfp_data_tail(data, ptrs);
779 	if (!tail)
780 		return;
781 
782 	if (i915->vbt.version >= 188) {
783 		i915->vbt.seamless_drrs_min_refresh_rate =
784 			tail->seamless_drrs_min_refresh_rate[panel_type];
785 		drm_dbg_kms(&i915->drm,
786 			    "Seamless DRRS min refresh rate: %d Hz\n",
787 			    i915->vbt.seamless_drrs_min_refresh_rate);
788 	}
789 }
790 
791 static void
792 parse_generic_dtd(struct drm_i915_private *i915)
793 {
794 	const struct bdb_generic_dtd *generic_dtd;
795 	const struct generic_dtd_entry *dtd;
796 	struct drm_display_mode *panel_fixed_mode;
797 	int num_dtd;
798 
799 	/*
800 	 * Older VBTs provided DTD information for internal displays through
801 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
802 	 * DTD information should be provided via a newer "generic DTD"
803 	 * block (58).  Just to be safe, we'll try the new generic DTD block
804 	 * first on VBT >= 229, but still fall back to trying the old LFP
805 	 * block if that fails.
806 	 */
807 	if (i915->vbt.version < 229)
808 		return;
809 
810 	generic_dtd = find_section(i915, BDB_GENERIC_DTD);
811 	if (!generic_dtd)
812 		return;
813 
814 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
815 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
816 			generic_dtd->gdtd_size);
817 		return;
818 	} else if (generic_dtd->gdtd_size !=
819 		   sizeof(struct generic_dtd_entry)) {
820 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
821 			generic_dtd->gdtd_size);
822 		/* DTD has unknown fields, but keep going */
823 	}
824 
825 	num_dtd = (get_blocksize(generic_dtd) -
826 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
827 	if (i915->vbt.panel_type >= num_dtd) {
828 		drm_err(&i915->drm,
829 			"Panel type %d not found in table of %d DTD's\n",
830 			i915->vbt.panel_type, num_dtd);
831 		return;
832 	}
833 
834 	dtd = &generic_dtd->dtd[i915->vbt.panel_type];
835 
836 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
837 	if (!panel_fixed_mode)
838 		return;
839 
840 	panel_fixed_mode->hdisplay = dtd->hactive;
841 	panel_fixed_mode->hsync_start =
842 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
843 	panel_fixed_mode->hsync_end =
844 		panel_fixed_mode->hsync_start + dtd->hsync;
845 	panel_fixed_mode->htotal =
846 		panel_fixed_mode->hdisplay + dtd->hblank;
847 
848 	panel_fixed_mode->vdisplay = dtd->vactive;
849 	panel_fixed_mode->vsync_start =
850 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
851 	panel_fixed_mode->vsync_end =
852 		panel_fixed_mode->vsync_start + dtd->vsync;
853 	panel_fixed_mode->vtotal =
854 		panel_fixed_mode->vdisplay + dtd->vblank;
855 
856 	panel_fixed_mode->clock = dtd->pixel_clock;
857 	panel_fixed_mode->width_mm = dtd->width_mm;
858 	panel_fixed_mode->height_mm = dtd->height_mm;
859 
860 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
861 	drm_mode_set_name(panel_fixed_mode);
862 
863 	if (dtd->hsync_positive_polarity)
864 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
865 	else
866 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
867 
868 	if (dtd->vsync_positive_polarity)
869 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
870 	else
871 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
872 
873 	drm_dbg_kms(&i915->drm,
874 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
875 		    DRM_MODE_ARG(panel_fixed_mode));
876 
877 	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
878 }
879 
880 static void
881 parse_lfp_backlight(struct drm_i915_private *i915)
882 {
883 	const struct bdb_lfp_backlight_data *backlight_data;
884 	const struct lfp_backlight_data_entry *entry;
885 	int panel_type = i915->vbt.panel_type;
886 	u16 level;
887 
888 	backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
889 	if (!backlight_data)
890 		return;
891 
892 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
893 		drm_dbg_kms(&i915->drm,
894 			    "Unsupported backlight data entry size %u\n",
895 			    backlight_data->entry_size);
896 		return;
897 	}
898 
899 	entry = &backlight_data->data[panel_type];
900 
901 	i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
902 	if (!i915->vbt.backlight.present) {
903 		drm_dbg_kms(&i915->drm,
904 			    "PWM backlight not present in VBT (type %u)\n",
905 			    entry->type);
906 		return;
907 	}
908 
909 	i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
910 	if (i915->vbt.version >= 191) {
911 		size_t exp_size;
912 
913 		if (i915->vbt.version >= 236)
914 			exp_size = sizeof(struct bdb_lfp_backlight_data);
915 		else if (i915->vbt.version >= 234)
916 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
917 		else
918 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
919 
920 		if (get_blocksize(backlight_data) >= exp_size) {
921 			const struct lfp_backlight_control_method *method;
922 
923 			method = &backlight_data->backlight_control[panel_type];
924 			i915->vbt.backlight.type = method->type;
925 			i915->vbt.backlight.controller = method->controller;
926 		}
927 	}
928 
929 	i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
930 	i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
931 
932 	if (i915->vbt.version >= 234) {
933 		u16 min_level;
934 		bool scale;
935 
936 		level = backlight_data->brightness_level[panel_type].level;
937 		min_level = backlight_data->brightness_min_level[panel_type].level;
938 
939 		if (i915->vbt.version >= 236)
940 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
941 		else
942 			scale = level > 255;
943 
944 		if (scale)
945 			min_level = min_level / 255;
946 
947 		if (min_level > 255) {
948 			drm_warn(&i915->drm, "Brightness min level > 255\n");
949 			level = 255;
950 		}
951 		i915->vbt.backlight.min_brightness = min_level;
952 
953 		i915->vbt.backlight.brightness_precision_bits =
954 			backlight_data->brightness_precision_bits[panel_type];
955 	} else {
956 		level = backlight_data->level[panel_type];
957 		i915->vbt.backlight.min_brightness = entry->min_brightness;
958 	}
959 
960 	drm_dbg_kms(&i915->drm,
961 		    "VBT backlight PWM modulation frequency %u Hz, "
962 		    "active %s, min brightness %u, level %u, controller %u\n",
963 		    i915->vbt.backlight.pwm_freq_hz,
964 		    i915->vbt.backlight.active_low_pwm ? "low" : "high",
965 		    i915->vbt.backlight.min_brightness,
966 		    level,
967 		    i915->vbt.backlight.controller);
968 }
969 
970 /* Try to find sdvo panel data */
971 static void
972 parse_sdvo_panel_data(struct drm_i915_private *i915)
973 {
974 	const struct bdb_sdvo_panel_dtds *dtds;
975 	struct drm_display_mode *panel_fixed_mode;
976 	int index;
977 
978 	index = i915->params.vbt_sdvo_panel_type;
979 	if (index == -2) {
980 		drm_dbg_kms(&i915->drm,
981 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
982 		return;
983 	}
984 
985 	if (index == -1) {
986 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
987 
988 		sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
989 		if (!sdvo_lvds_options)
990 			return;
991 
992 		index = sdvo_lvds_options->panel_type;
993 	}
994 
995 	dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
996 	if (!dtds)
997 		return;
998 
999 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1000 	if (!panel_fixed_mode)
1001 		return;
1002 
1003 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1004 
1005 	i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1006 
1007 	drm_dbg_kms(&i915->drm,
1008 		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1009 		    DRM_MODE_ARG(panel_fixed_mode));
1010 }
1011 
1012 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1013 				    bool alternate)
1014 {
1015 	switch (DISPLAY_VER(i915)) {
1016 	case 2:
1017 		return alternate ? 66667 : 48000;
1018 	case 3:
1019 	case 4:
1020 		return alternate ? 100000 : 96000;
1021 	default:
1022 		return alternate ? 100000 : 120000;
1023 	}
1024 }
1025 
1026 static void
1027 parse_general_features(struct drm_i915_private *i915)
1028 {
1029 	const struct bdb_general_features *general;
1030 
1031 	general = find_section(i915, BDB_GENERAL_FEATURES);
1032 	if (!general)
1033 		return;
1034 
1035 	i915->vbt.int_tv_support = general->int_tv_support;
1036 	/* int_crt_support can't be trusted on earlier platforms */
1037 	if (i915->vbt.version >= 155 &&
1038 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1039 		i915->vbt.int_crt_support = general->int_crt_support;
1040 	i915->vbt.lvds_use_ssc = general->enable_ssc;
1041 	i915->vbt.lvds_ssc_freq =
1042 		intel_bios_ssc_frequency(i915, general->ssc_freq);
1043 	i915->vbt.display_clock_mode = general->display_clock_mode;
1044 	i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1045 	if (i915->vbt.version >= 181) {
1046 		i915->vbt.orientation = general->rotate_180 ?
1047 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1048 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1049 	} else {
1050 		i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1051 	}
1052 
1053 	if (i915->vbt.version >= 249 && general->afc_startup_config) {
1054 		i915->vbt.override_afc_startup = true;
1055 		i915->vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1056 	}
1057 
1058 	drm_dbg_kms(&i915->drm,
1059 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1060 		    i915->vbt.int_tv_support,
1061 		    i915->vbt.int_crt_support,
1062 		    i915->vbt.lvds_use_ssc,
1063 		    i915->vbt.lvds_ssc_freq,
1064 		    i915->vbt.display_clock_mode,
1065 		    i915->vbt.fdi_rx_polarity_inverted);
1066 }
1067 
1068 static const struct child_device_config *
1069 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1070 {
1071 	return (const void *) &defs->devices[i * defs->child_dev_size];
1072 }
1073 
1074 static void
1075 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1076 {
1077 	struct sdvo_device_mapping *mapping;
1078 	const struct intel_bios_encoder_data *devdata;
1079 	const struct child_device_config *child;
1080 	int count = 0;
1081 
1082 	/*
1083 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1084 	 * accurate and doesn't have to be, as long as it's not too strict.
1085 	 */
1086 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1087 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1088 		return;
1089 	}
1090 
1091 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1092 		child = &devdata->child;
1093 
1094 		if (child->slave_addr != SLAVE_ADDR1 &&
1095 		    child->slave_addr != SLAVE_ADDR2) {
1096 			/*
1097 			 * If the slave address is neither 0x70 nor 0x72,
1098 			 * it is not a SDVO device. Skip it.
1099 			 */
1100 			continue;
1101 		}
1102 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1103 		    child->dvo_port != DEVICE_PORT_DVOC) {
1104 			/* skip the incorrect SDVO port */
1105 			drm_dbg_kms(&i915->drm,
1106 				    "Incorrect SDVO port. Skip it\n");
1107 			continue;
1108 		}
1109 		drm_dbg_kms(&i915->drm,
1110 			    "the SDVO device with slave addr %2x is found on"
1111 			    " %s port\n",
1112 			    child->slave_addr,
1113 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1114 			    "SDVOB" : "SDVOC");
1115 		mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
1116 		if (!mapping->initialized) {
1117 			mapping->dvo_port = child->dvo_port;
1118 			mapping->slave_addr = child->slave_addr;
1119 			mapping->dvo_wiring = child->dvo_wiring;
1120 			mapping->ddc_pin = child->ddc_pin;
1121 			mapping->i2c_pin = child->i2c_pin;
1122 			mapping->initialized = 1;
1123 			drm_dbg_kms(&i915->drm,
1124 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1125 				    mapping->dvo_port, mapping->slave_addr,
1126 				    mapping->dvo_wiring, mapping->ddc_pin,
1127 				    mapping->i2c_pin);
1128 		} else {
1129 			drm_dbg_kms(&i915->drm,
1130 				    "Maybe one SDVO port is shared by "
1131 				    "two SDVO device.\n");
1132 		}
1133 		if (child->slave2_addr) {
1134 			/* Maybe this is a SDVO device with multiple inputs */
1135 			/* And the mapping info is not added */
1136 			drm_dbg_kms(&i915->drm,
1137 				    "there exists the slave2_addr. Maybe this"
1138 				    " is a SDVO device with multiple inputs.\n");
1139 		}
1140 		count++;
1141 	}
1142 
1143 	if (!count) {
1144 		/* No SDVO device info is found */
1145 		drm_dbg_kms(&i915->drm,
1146 			    "No SDVO device info is found in VBT\n");
1147 	}
1148 }
1149 
1150 static void
1151 parse_driver_features(struct drm_i915_private *i915)
1152 {
1153 	const struct bdb_driver_features *driver;
1154 
1155 	driver = find_section(i915, BDB_DRIVER_FEATURES);
1156 	if (!driver)
1157 		return;
1158 
1159 	if (DISPLAY_VER(i915) >= 5) {
1160 		/*
1161 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1162 		 * to mean "eDP". The VBT spec doesn't agree with that
1163 		 * interpretation, but real world VBTs seem to.
1164 		 */
1165 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1166 			i915->vbt.int_lvds_support = 0;
1167 	} else {
1168 		/*
1169 		 * FIXME it's not clear which BDB version has the LVDS config
1170 		 * bits defined. Revision history in the VBT spec says:
1171 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1172 		 *  Config (00b and 11b values defined) | 06/13/2005"
1173 		 * but does not the specify the BDB version.
1174 		 *
1175 		 * So far version 134 (on i945gm) is the oldest VBT observed
1176 		 * in the wild with the bits correctly populated. Version
1177 		 * 108 (on i85x) does not have the bits correctly populated.
1178 		 */
1179 		if (i915->vbt.version >= 134 &&
1180 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1181 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1182 			i915->vbt.int_lvds_support = 0;
1183 	}
1184 
1185 	if (i915->vbt.version < 228) {
1186 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1187 			    driver->drrs_enabled);
1188 		/*
1189 		 * If DRRS is not supported, drrs_type has to be set to 0.
1190 		 * This is because, VBT is configured in such a way that
1191 		 * static DRRS is 0 and DRRS not supported is represented by
1192 		 * driver->drrs_enabled=false
1193 		 */
1194 		if (!driver->drrs_enabled)
1195 			i915->vbt.drrs_type = DRRS_TYPE_NONE;
1196 
1197 		i915->vbt.psr.enable = driver->psr_enabled;
1198 	}
1199 }
1200 
1201 static void
1202 parse_power_conservation_features(struct drm_i915_private *i915)
1203 {
1204 	const struct bdb_lfp_power *power;
1205 	u8 panel_type = i915->vbt.panel_type;
1206 
1207 	if (i915->vbt.version < 228)
1208 		return;
1209 
1210 	power = find_section(i915, BDB_LFP_POWER);
1211 	if (!power)
1212 		return;
1213 
1214 	i915->vbt.psr.enable = power->psr & BIT(panel_type);
1215 
1216 	/*
1217 	 * If DRRS is not supported, drrs_type has to be set to 0.
1218 	 * This is because, VBT is configured in such a way that
1219 	 * static DRRS is 0 and DRRS not supported is represented by
1220 	 * power->drrs & BIT(panel_type)=false
1221 	 */
1222 	if (!(power->drrs & BIT(panel_type)))
1223 		i915->vbt.drrs_type = DRRS_TYPE_NONE;
1224 
1225 	if (i915->vbt.version >= 232)
1226 		i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
1227 }
1228 
1229 static void
1230 parse_edp(struct drm_i915_private *i915)
1231 {
1232 	const struct bdb_edp *edp;
1233 	const struct edp_power_seq *edp_pps;
1234 	const struct edp_fast_link_params *edp_link_params;
1235 	int panel_type = i915->vbt.panel_type;
1236 
1237 	edp = find_section(i915, BDB_EDP);
1238 	if (!edp)
1239 		return;
1240 
1241 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
1242 	case EDP_18BPP:
1243 		i915->vbt.edp.bpp = 18;
1244 		break;
1245 	case EDP_24BPP:
1246 		i915->vbt.edp.bpp = 24;
1247 		break;
1248 	case EDP_30BPP:
1249 		i915->vbt.edp.bpp = 30;
1250 		break;
1251 	}
1252 
1253 	/* Get the eDP sequencing and link info */
1254 	edp_pps = &edp->power_seqs[panel_type];
1255 	edp_link_params = &edp->fast_link_params[panel_type];
1256 
1257 	i915->vbt.edp.pps = *edp_pps;
1258 
1259 	switch (edp_link_params->rate) {
1260 	case EDP_RATE_1_62:
1261 		i915->vbt.edp.rate = DP_LINK_BW_1_62;
1262 		break;
1263 	case EDP_RATE_2_7:
1264 		i915->vbt.edp.rate = DP_LINK_BW_2_7;
1265 		break;
1266 	default:
1267 		drm_dbg_kms(&i915->drm,
1268 			    "VBT has unknown eDP link rate value %u\n",
1269 			     edp_link_params->rate);
1270 		break;
1271 	}
1272 
1273 	switch (edp_link_params->lanes) {
1274 	case EDP_LANE_1:
1275 		i915->vbt.edp.lanes = 1;
1276 		break;
1277 	case EDP_LANE_2:
1278 		i915->vbt.edp.lanes = 2;
1279 		break;
1280 	case EDP_LANE_4:
1281 		i915->vbt.edp.lanes = 4;
1282 		break;
1283 	default:
1284 		drm_dbg_kms(&i915->drm,
1285 			    "VBT has unknown eDP lane count value %u\n",
1286 			    edp_link_params->lanes);
1287 		break;
1288 	}
1289 
1290 	switch (edp_link_params->preemphasis) {
1291 	case EDP_PREEMPHASIS_NONE:
1292 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1293 		break;
1294 	case EDP_PREEMPHASIS_3_5dB:
1295 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1296 		break;
1297 	case EDP_PREEMPHASIS_6dB:
1298 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1299 		break;
1300 	case EDP_PREEMPHASIS_9_5dB:
1301 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1302 		break;
1303 	default:
1304 		drm_dbg_kms(&i915->drm,
1305 			    "VBT has unknown eDP pre-emphasis value %u\n",
1306 			    edp_link_params->preemphasis);
1307 		break;
1308 	}
1309 
1310 	switch (edp_link_params->vswing) {
1311 	case EDP_VSWING_0_4V:
1312 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1313 		break;
1314 	case EDP_VSWING_0_6V:
1315 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1316 		break;
1317 	case EDP_VSWING_0_8V:
1318 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1319 		break;
1320 	case EDP_VSWING_1_2V:
1321 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1322 		break;
1323 	default:
1324 		drm_dbg_kms(&i915->drm,
1325 			    "VBT has unknown eDP voltage swing value %u\n",
1326 			    edp_link_params->vswing);
1327 		break;
1328 	}
1329 
1330 	if (i915->vbt.version >= 173) {
1331 		u8 vswing;
1332 
1333 		/* Don't read from VBT if module parameter has valid value*/
1334 		if (i915->params.edp_vswing) {
1335 			i915->vbt.edp.low_vswing =
1336 				i915->params.edp_vswing == 1;
1337 		} else {
1338 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1339 			i915->vbt.edp.low_vswing = vswing == 0;
1340 		}
1341 	}
1342 
1343 	i915->vbt.edp.drrs_msa_timing_delay =
1344 		(edp->sdrrs_msa_timing_delay >> (panel_type * 2)) & 3;
1345 }
1346 
1347 static void
1348 parse_psr(struct drm_i915_private *i915)
1349 {
1350 	const struct bdb_psr *psr;
1351 	const struct psr_table *psr_table;
1352 	int panel_type = i915->vbt.panel_type;
1353 
1354 	psr = find_section(i915, BDB_PSR);
1355 	if (!psr) {
1356 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1357 		return;
1358 	}
1359 
1360 	psr_table = &psr->psr_table[panel_type];
1361 
1362 	i915->vbt.psr.full_link = psr_table->full_link;
1363 	i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1364 
1365 	/* Allowed VBT values goes from 0 to 15 */
1366 	i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1367 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1368 
1369 	/*
1370 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1371 	 * Old decimal value is wake up time in multiples of 100 us.
1372 	 */
1373 	if (i915->vbt.version >= 205 &&
1374 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1375 		switch (psr_table->tp1_wakeup_time) {
1376 		case 0:
1377 			i915->vbt.psr.tp1_wakeup_time_us = 500;
1378 			break;
1379 		case 1:
1380 			i915->vbt.psr.tp1_wakeup_time_us = 100;
1381 			break;
1382 		case 3:
1383 			i915->vbt.psr.tp1_wakeup_time_us = 0;
1384 			break;
1385 		default:
1386 			drm_dbg_kms(&i915->drm,
1387 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1388 				    psr_table->tp1_wakeup_time);
1389 			fallthrough;
1390 		case 2:
1391 			i915->vbt.psr.tp1_wakeup_time_us = 2500;
1392 			break;
1393 		}
1394 
1395 		switch (psr_table->tp2_tp3_wakeup_time) {
1396 		case 0:
1397 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1398 			break;
1399 		case 1:
1400 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1401 			break;
1402 		case 3:
1403 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1404 			break;
1405 		default:
1406 			drm_dbg_kms(&i915->drm,
1407 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1408 				    psr_table->tp2_tp3_wakeup_time);
1409 			fallthrough;
1410 		case 2:
1411 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1412 		break;
1413 		}
1414 	} else {
1415 		i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1416 		i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1417 	}
1418 
1419 	if (i915->vbt.version >= 226) {
1420 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1421 
1422 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
1423 		switch (wakeup_time) {
1424 		case 0:
1425 			wakeup_time = 500;
1426 			break;
1427 		case 1:
1428 			wakeup_time = 100;
1429 			break;
1430 		case 3:
1431 			wakeup_time = 50;
1432 			break;
1433 		default:
1434 		case 2:
1435 			wakeup_time = 2500;
1436 			break;
1437 		}
1438 		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1439 	} else {
1440 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1441 		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
1442 	}
1443 }
1444 
1445 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1446 				      u16 version, enum port port)
1447 {
1448 	if (!i915->vbt.dsi.config->dual_link || version < 197) {
1449 		i915->vbt.dsi.bl_ports = BIT(port);
1450 		if (i915->vbt.dsi.config->cabc_supported)
1451 			i915->vbt.dsi.cabc_ports = BIT(port);
1452 
1453 		return;
1454 	}
1455 
1456 	switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1457 	case DL_DCS_PORT_A:
1458 		i915->vbt.dsi.bl_ports = BIT(PORT_A);
1459 		break;
1460 	case DL_DCS_PORT_C:
1461 		i915->vbt.dsi.bl_ports = BIT(PORT_C);
1462 		break;
1463 	default:
1464 	case DL_DCS_PORT_A_AND_C:
1465 		i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1466 		break;
1467 	}
1468 
1469 	if (!i915->vbt.dsi.config->cabc_supported)
1470 		return;
1471 
1472 	switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1473 	case DL_DCS_PORT_A:
1474 		i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1475 		break;
1476 	case DL_DCS_PORT_C:
1477 		i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1478 		break;
1479 	default:
1480 	case DL_DCS_PORT_A_AND_C:
1481 		i915->vbt.dsi.cabc_ports =
1482 					BIT(PORT_A) | BIT(PORT_C);
1483 		break;
1484 	}
1485 }
1486 
1487 static void
1488 parse_mipi_config(struct drm_i915_private *i915)
1489 {
1490 	const struct bdb_mipi_config *start;
1491 	const struct mipi_config *config;
1492 	const struct mipi_pps_data *pps;
1493 	int panel_type = i915->vbt.panel_type;
1494 	enum port port;
1495 
1496 	/* parse MIPI blocks only if LFP type is MIPI */
1497 	if (!intel_bios_is_dsi_present(i915, &port))
1498 		return;
1499 
1500 	/* Initialize this to undefined indicating no generic MIPI support */
1501 	i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1502 
1503 	/* Block #40 is already parsed and panel_fixed_mode is
1504 	 * stored in i915->lfp_lvds_vbt_mode
1505 	 * resuse this when needed
1506 	 */
1507 
1508 	/* Parse #52 for panel index used from panel_type already
1509 	 * parsed
1510 	 */
1511 	start = find_section(i915, BDB_MIPI_CONFIG);
1512 	if (!start) {
1513 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1514 		return;
1515 	}
1516 
1517 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1518 		panel_type);
1519 
1520 	/*
1521 	 * get hold of the correct configuration block and pps data as per
1522 	 * the panel_type as index
1523 	 */
1524 	config = &start->config[panel_type];
1525 	pps = &start->pps[panel_type];
1526 
1527 	/* store as of now full data. Trim when we realise all is not needed */
1528 	i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1529 	if (!i915->vbt.dsi.config)
1530 		return;
1531 
1532 	i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1533 	if (!i915->vbt.dsi.pps) {
1534 		kfree(i915->vbt.dsi.config);
1535 		return;
1536 	}
1537 
1538 	parse_dsi_backlight_ports(i915, i915->vbt.version, port);
1539 
1540 	/* FIXME is the 90 vs. 270 correct? */
1541 	switch (config->rotation) {
1542 	case ENABLE_ROTATION_0:
1543 		/*
1544 		 * Most (all?) VBTs claim 0 degrees despite having
1545 		 * an upside down panel, thus we do not trust this.
1546 		 */
1547 		i915->vbt.dsi.orientation =
1548 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1549 		break;
1550 	case ENABLE_ROTATION_90:
1551 		i915->vbt.dsi.orientation =
1552 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1553 		break;
1554 	case ENABLE_ROTATION_180:
1555 		i915->vbt.dsi.orientation =
1556 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1557 		break;
1558 	case ENABLE_ROTATION_270:
1559 		i915->vbt.dsi.orientation =
1560 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1561 		break;
1562 	}
1563 
1564 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1565 	i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1566 }
1567 
1568 /* Find the sequence block and size for the given panel. */
1569 static const u8 *
1570 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1571 			  u16 panel_id, u32 *seq_size)
1572 {
1573 	u32 total = get_blocksize(sequence);
1574 	const u8 *data = &sequence->data[0];
1575 	u8 current_id;
1576 	u32 current_size;
1577 	int header_size = sequence->version >= 3 ? 5 : 3;
1578 	int index = 0;
1579 	int i;
1580 
1581 	/* skip new block size */
1582 	if (sequence->version >= 3)
1583 		data += 4;
1584 
1585 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1586 		if (index + header_size > total) {
1587 			DRM_ERROR("Invalid sequence block (header)\n");
1588 			return NULL;
1589 		}
1590 
1591 		current_id = *(data + index);
1592 		if (sequence->version >= 3)
1593 			current_size = *((const u32 *)(data + index + 1));
1594 		else
1595 			current_size = *((const u16 *)(data + index + 1));
1596 
1597 		index += header_size;
1598 
1599 		if (index + current_size > total) {
1600 			DRM_ERROR("Invalid sequence block\n");
1601 			return NULL;
1602 		}
1603 
1604 		if (current_id == panel_id) {
1605 			*seq_size = current_size;
1606 			return data + index;
1607 		}
1608 
1609 		index += current_size;
1610 	}
1611 
1612 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1613 
1614 	return NULL;
1615 }
1616 
1617 static int goto_next_sequence(const u8 *data, int index, int total)
1618 {
1619 	u16 len;
1620 
1621 	/* Skip Sequence Byte. */
1622 	for (index = index + 1; index < total; index += len) {
1623 		u8 operation_byte = *(data + index);
1624 		index++;
1625 
1626 		switch (operation_byte) {
1627 		case MIPI_SEQ_ELEM_END:
1628 			return index;
1629 		case MIPI_SEQ_ELEM_SEND_PKT:
1630 			if (index + 4 > total)
1631 				return 0;
1632 
1633 			len = *((const u16 *)(data + index + 2)) + 4;
1634 			break;
1635 		case MIPI_SEQ_ELEM_DELAY:
1636 			len = 4;
1637 			break;
1638 		case MIPI_SEQ_ELEM_GPIO:
1639 			len = 2;
1640 			break;
1641 		case MIPI_SEQ_ELEM_I2C:
1642 			if (index + 7 > total)
1643 				return 0;
1644 			len = *(data + index + 6) + 7;
1645 			break;
1646 		default:
1647 			DRM_ERROR("Unknown operation byte\n");
1648 			return 0;
1649 		}
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1656 {
1657 	int seq_end;
1658 	u16 len;
1659 	u32 size_of_sequence;
1660 
1661 	/*
1662 	 * Could skip sequence based on Size of Sequence alone, but also do some
1663 	 * checking on the structure.
1664 	 */
1665 	if (total < 5) {
1666 		DRM_ERROR("Too small sequence size\n");
1667 		return 0;
1668 	}
1669 
1670 	/* Skip Sequence Byte. */
1671 	index++;
1672 
1673 	/*
1674 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1675 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1676 	 * byte.
1677 	 */
1678 	size_of_sequence = *((const u32 *)(data + index));
1679 	index += 4;
1680 
1681 	seq_end = index + size_of_sequence;
1682 	if (seq_end > total) {
1683 		DRM_ERROR("Invalid sequence size\n");
1684 		return 0;
1685 	}
1686 
1687 	for (; index < total; index += len) {
1688 		u8 operation_byte = *(data + index);
1689 		index++;
1690 
1691 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1692 			if (index != seq_end) {
1693 				DRM_ERROR("Invalid element structure\n");
1694 				return 0;
1695 			}
1696 			return index;
1697 		}
1698 
1699 		len = *(data + index);
1700 		index++;
1701 
1702 		/*
1703 		 * FIXME: Would be nice to check elements like for v1/v2 in
1704 		 * goto_next_sequence() above.
1705 		 */
1706 		switch (operation_byte) {
1707 		case MIPI_SEQ_ELEM_SEND_PKT:
1708 		case MIPI_SEQ_ELEM_DELAY:
1709 		case MIPI_SEQ_ELEM_GPIO:
1710 		case MIPI_SEQ_ELEM_I2C:
1711 		case MIPI_SEQ_ELEM_SPI:
1712 		case MIPI_SEQ_ELEM_PMIC:
1713 			break;
1714 		default:
1715 			DRM_ERROR("Unknown operation byte %u\n",
1716 				  operation_byte);
1717 			break;
1718 		}
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 /*
1725  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1726  * skip all delay + gpio operands and stop at the first DSI packet op.
1727  */
1728 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1729 {
1730 	const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1731 	int index, len;
1732 
1733 	if (drm_WARN_ON(&i915->drm,
1734 			!data || i915->vbt.dsi.seq_version != 1))
1735 		return 0;
1736 
1737 	/* index = 1 to skip sequence byte */
1738 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1739 		switch (data[index]) {
1740 		case MIPI_SEQ_ELEM_SEND_PKT:
1741 			return index == 1 ? 0 : index;
1742 		case MIPI_SEQ_ELEM_DELAY:
1743 			len = 5; /* 1 byte for operand + uint32 */
1744 			break;
1745 		case MIPI_SEQ_ELEM_GPIO:
1746 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1747 			break;
1748 		default:
1749 			return 0;
1750 		}
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 /*
1757  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1758  * The deassert must be done before calling intel_dsi_device_ready, so for
1759  * these devices we split the init OTP sequence into a deassert sequence and
1760  * the actual init OTP part.
1761  */
1762 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1763 {
1764 	u8 *init_otp;
1765 	int len;
1766 
1767 	/* Limit this to VLV for now. */
1768 	if (!IS_VALLEYVIEW(i915))
1769 		return;
1770 
1771 	/* Limit this to v1 vid-mode sequences */
1772 	if (i915->vbt.dsi.config->is_cmd_mode ||
1773 	    i915->vbt.dsi.seq_version != 1)
1774 		return;
1775 
1776 	/* Only do this if there are otp and assert seqs and no deassert seq */
1777 	if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1778 	    !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1779 	    i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1780 		return;
1781 
1782 	/* The deassert-sequence ends at the first DSI packet */
1783 	len = get_init_otp_deassert_fragment_len(i915);
1784 	if (!len)
1785 		return;
1786 
1787 	drm_dbg_kms(&i915->drm,
1788 		    "Using init OTP fragment to deassert reset\n");
1789 
1790 	/* Copy the fragment, update seq byte and terminate it */
1791 	init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1792 	i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1793 	if (!i915->vbt.dsi.deassert_seq)
1794 		return;
1795 	i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1796 	i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1797 	/* Use the copy for deassert */
1798 	i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1799 		i915->vbt.dsi.deassert_seq;
1800 	/* Replace the last byte of the fragment with init OTP seq byte */
1801 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1802 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1803 	i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1804 }
1805 
1806 static void
1807 parse_mipi_sequence(struct drm_i915_private *i915)
1808 {
1809 	int panel_type = i915->vbt.panel_type;
1810 	const struct bdb_mipi_sequence *sequence;
1811 	const u8 *seq_data;
1812 	u32 seq_size;
1813 	u8 *data;
1814 	int index = 0;
1815 
1816 	/* Only our generic panel driver uses the sequence block. */
1817 	if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1818 		return;
1819 
1820 	sequence = find_section(i915, BDB_MIPI_SEQUENCE);
1821 	if (!sequence) {
1822 		drm_dbg_kms(&i915->drm,
1823 			    "No MIPI Sequence found, parsing complete\n");
1824 		return;
1825 	}
1826 
1827 	/* Fail gracefully for forward incompatible sequence block. */
1828 	if (sequence->version >= 4) {
1829 		drm_err(&i915->drm,
1830 			"Unable to parse MIPI Sequence Block v%u\n",
1831 			sequence->version);
1832 		return;
1833 	}
1834 
1835 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1836 		sequence->version);
1837 
1838 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1839 	if (!seq_data)
1840 		return;
1841 
1842 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1843 	if (!data)
1844 		return;
1845 
1846 	/* Parse the sequences, store pointers to each sequence. */
1847 	for (;;) {
1848 		u8 seq_id = *(data + index);
1849 		if (seq_id == MIPI_SEQ_END)
1850 			break;
1851 
1852 		if (seq_id >= MIPI_SEQ_MAX) {
1853 			drm_err(&i915->drm, "Unknown sequence %u\n",
1854 				seq_id);
1855 			goto err;
1856 		}
1857 
1858 		/* Log about presence of sequences we won't run. */
1859 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1860 			drm_dbg_kms(&i915->drm,
1861 				    "Unsupported sequence %u\n", seq_id);
1862 
1863 		i915->vbt.dsi.sequence[seq_id] = data + index;
1864 
1865 		if (sequence->version >= 3)
1866 			index = goto_next_sequence_v3(data, index, seq_size);
1867 		else
1868 			index = goto_next_sequence(data, index, seq_size);
1869 		if (!index) {
1870 			drm_err(&i915->drm, "Invalid sequence %u\n",
1871 				seq_id);
1872 			goto err;
1873 		}
1874 	}
1875 
1876 	i915->vbt.dsi.data = data;
1877 	i915->vbt.dsi.size = seq_size;
1878 	i915->vbt.dsi.seq_version = sequence->version;
1879 
1880 	fixup_mipi_sequences(i915);
1881 
1882 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1883 	return;
1884 
1885 err:
1886 	kfree(data);
1887 	memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1888 }
1889 
1890 static void
1891 parse_compression_parameters(struct drm_i915_private *i915)
1892 {
1893 	const struct bdb_compression_parameters *params;
1894 	struct intel_bios_encoder_data *devdata;
1895 	const struct child_device_config *child;
1896 	u16 block_size;
1897 	int index;
1898 
1899 	if (i915->vbt.version < 198)
1900 		return;
1901 
1902 	params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
1903 	if (params) {
1904 		/* Sanity checks */
1905 		if (params->entry_size != sizeof(params->data[0])) {
1906 			drm_dbg_kms(&i915->drm,
1907 				    "VBT: unsupported compression param entry size\n");
1908 			return;
1909 		}
1910 
1911 		block_size = get_blocksize(params);
1912 		if (block_size < sizeof(*params)) {
1913 			drm_dbg_kms(&i915->drm,
1914 				    "VBT: expected 16 compression param entries\n");
1915 			return;
1916 		}
1917 	}
1918 
1919 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1920 		child = &devdata->child;
1921 
1922 		if (!child->compression_enable)
1923 			continue;
1924 
1925 		if (!params) {
1926 			drm_dbg_kms(&i915->drm,
1927 				    "VBT: compression params not available\n");
1928 			continue;
1929 		}
1930 
1931 		if (child->compression_method_cps) {
1932 			drm_dbg_kms(&i915->drm,
1933 				    "VBT: CPS compression not supported\n");
1934 			continue;
1935 		}
1936 
1937 		index = child->compression_structure_index;
1938 
1939 		devdata->dsc = kmemdup(&params->data[index],
1940 				       sizeof(*devdata->dsc), GFP_KERNEL);
1941 	}
1942 }
1943 
1944 static u8 translate_iboost(u8 val)
1945 {
1946 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1947 
1948 	if (val >= ARRAY_SIZE(mapping)) {
1949 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1950 		return 0;
1951 	}
1952 	return mapping[val];
1953 }
1954 
1955 static const u8 cnp_ddc_pin_map[] = {
1956 	[0] = 0, /* N/A */
1957 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1958 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1959 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1960 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1961 };
1962 
1963 static const u8 icp_ddc_pin_map[] = {
1964 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1965 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1966 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1967 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1968 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1969 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1970 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1971 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1972 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1973 };
1974 
1975 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1976 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1977 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1978 	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1979 	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1980 };
1981 
1982 static const u8 adls_ddc_pin_map[] = {
1983 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1984 	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1985 	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1986 	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1987 	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1988 };
1989 
1990 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1991 	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1992 	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1993 	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1994 };
1995 
1996 static const u8 adlp_ddc_pin_map[] = {
1997 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1998 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1999 	[ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2000 	[ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2001 	[ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2002 	[ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2003 };
2004 
2005 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2006 {
2007 	const u8 *ddc_pin_map;
2008 	int n_entries;
2009 
2010 	if (IS_ALDERLAKE_P(i915)) {
2011 		ddc_pin_map = adlp_ddc_pin_map;
2012 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2013 	} else if (IS_ALDERLAKE_S(i915)) {
2014 		ddc_pin_map = adls_ddc_pin_map;
2015 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2016 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2017 		return vbt_pin;
2018 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2019 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2020 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2021 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2022 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2023 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2024 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2025 		ddc_pin_map = icp_ddc_pin_map;
2026 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2027 	} else if (HAS_PCH_CNP(i915)) {
2028 		ddc_pin_map = cnp_ddc_pin_map;
2029 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2030 	} else {
2031 		/* Assuming direct map */
2032 		return vbt_pin;
2033 	}
2034 
2035 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2036 		return ddc_pin_map[vbt_pin];
2037 
2038 	drm_dbg_kms(&i915->drm,
2039 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2040 		    vbt_pin);
2041 	return 0;
2042 }
2043 
2044 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2045 {
2046 	const struct intel_bios_encoder_data *devdata;
2047 	enum port port;
2048 
2049 	if (!ddc_pin)
2050 		return PORT_NONE;
2051 
2052 	for_each_port(port) {
2053 		devdata = i915->vbt.ports[port];
2054 
2055 		if (devdata && ddc_pin == devdata->child.ddc_pin)
2056 			return port;
2057 	}
2058 
2059 	return PORT_NONE;
2060 }
2061 
2062 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2063 			     enum port port)
2064 {
2065 	struct drm_i915_private *i915 = devdata->i915;
2066 	struct child_device_config *child;
2067 	u8 mapped_ddc_pin;
2068 	enum port p;
2069 
2070 	if (!devdata->child.ddc_pin)
2071 		return;
2072 
2073 	mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2074 	if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2075 		drm_dbg_kms(&i915->drm,
2076 			    "Port %c has invalid DDC pin %d, "
2077 			    "sticking to defaults\n",
2078 			    port_name(port), mapped_ddc_pin);
2079 		devdata->child.ddc_pin = 0;
2080 		return;
2081 	}
2082 
2083 	p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2084 	if (p == PORT_NONE)
2085 		return;
2086 
2087 	drm_dbg_kms(&i915->drm,
2088 		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
2089 		    "disabling port %c DVI/HDMI support\n",
2090 		    port_name(port), mapped_ddc_pin,
2091 		    port_name(p), port_name(p));
2092 
2093 	/*
2094 	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2095 	 * couldn't exist on the shared port. Otherwise they share the same ddc
2096 	 * pin and system couldn't communicate with them separately.
2097 	 *
2098 	 * Give inverse child device order the priority, last one wins. Yes,
2099 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2100 	 * port A and port E with the same AUX ch and we must pick port E :(
2101 	 */
2102 	child = &i915->vbt.ports[p]->child;
2103 
2104 	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2105 	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2106 
2107 	child->ddc_pin = 0;
2108 }
2109 
2110 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2111 {
2112 	const struct intel_bios_encoder_data *devdata;
2113 	enum port port;
2114 
2115 	if (!aux_ch)
2116 		return PORT_NONE;
2117 
2118 	for_each_port(port) {
2119 		devdata = i915->vbt.ports[port];
2120 
2121 		if (devdata && aux_ch == devdata->child.aux_channel)
2122 			return port;
2123 	}
2124 
2125 	return PORT_NONE;
2126 }
2127 
2128 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2129 			    enum port port)
2130 {
2131 	struct drm_i915_private *i915 = devdata->i915;
2132 	struct child_device_config *child;
2133 	enum port p;
2134 
2135 	p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2136 	if (p == PORT_NONE)
2137 		return;
2138 
2139 	drm_dbg_kms(&i915->drm,
2140 		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
2141 		    "disabling port %c DP support\n",
2142 		    port_name(port), devdata->child.aux_channel,
2143 		    port_name(p), port_name(p));
2144 
2145 	/*
2146 	 * If we have multiple ports supposedly sharing the aux channel, then DP
2147 	 * couldn't exist on the shared port. Otherwise they share the same aux
2148 	 * channel and system couldn't communicate with them separately.
2149 	 *
2150 	 * Give inverse child device order the priority, last one wins. Yes,
2151 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2152 	 * port A and port E with the same AUX ch and we must pick port E :(
2153 	 */
2154 	child = &i915->vbt.ports[p]->child;
2155 
2156 	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2157 	child->aux_channel = 0;
2158 }
2159 
2160 static u8 dvo_port_type(u8 dvo_port)
2161 {
2162 	switch (dvo_port) {
2163 	case DVO_PORT_HDMIA:
2164 	case DVO_PORT_HDMIB:
2165 	case DVO_PORT_HDMIC:
2166 	case DVO_PORT_HDMID:
2167 	case DVO_PORT_HDMIE:
2168 	case DVO_PORT_HDMIF:
2169 	case DVO_PORT_HDMIG:
2170 	case DVO_PORT_HDMIH:
2171 	case DVO_PORT_HDMII:
2172 		return DVO_PORT_HDMIA;
2173 	case DVO_PORT_DPA:
2174 	case DVO_PORT_DPB:
2175 	case DVO_PORT_DPC:
2176 	case DVO_PORT_DPD:
2177 	case DVO_PORT_DPE:
2178 	case DVO_PORT_DPF:
2179 	case DVO_PORT_DPG:
2180 	case DVO_PORT_DPH:
2181 	case DVO_PORT_DPI:
2182 		return DVO_PORT_DPA;
2183 	case DVO_PORT_MIPIA:
2184 	case DVO_PORT_MIPIB:
2185 	case DVO_PORT_MIPIC:
2186 	case DVO_PORT_MIPID:
2187 		return DVO_PORT_MIPIA;
2188 	default:
2189 		return dvo_port;
2190 	}
2191 }
2192 
2193 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2194 				    const int port_mapping[][3], u8 dvo_port)
2195 {
2196 	enum port port;
2197 	int i;
2198 
2199 	for (port = PORT_A; port < n_ports; port++) {
2200 		for (i = 0; i < n_dvo; i++) {
2201 			if (port_mapping[port][i] == -1)
2202 				break;
2203 
2204 			if (dvo_port == port_mapping[port][i])
2205 				return port;
2206 		}
2207 	}
2208 
2209 	return PORT_NONE;
2210 }
2211 
2212 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2213 				  u8 dvo_port)
2214 {
2215 	/*
2216 	 * Each DDI port can have more than one value on the "DVO Port" field,
2217 	 * so look for all the possible values for each port.
2218 	 */
2219 	static const int port_mapping[][3] = {
2220 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2221 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2222 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2223 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2224 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2225 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2226 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2227 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2228 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2229 	};
2230 	/*
2231 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2232 	 * map to DDI A,B,TC1,TC2 respectively.
2233 	 */
2234 	static const int rkl_port_mapping[][3] = {
2235 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2236 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2237 		[PORT_C] = { -1 },
2238 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2239 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2240 	};
2241 	/*
2242 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2243 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2244 	 */
2245 	static const int adls_port_mapping[][3] = {
2246 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2247 		[PORT_B] = { -1 },
2248 		[PORT_C] = { -1 },
2249 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2250 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2251 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2252 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2253 	};
2254 	static const int xelpd_port_mapping[][3] = {
2255 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2256 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2257 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2258 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2259 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2260 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2261 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2262 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2263 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2264 	};
2265 
2266 	if (DISPLAY_VER(i915) == 13)
2267 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2268 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2269 					  xelpd_port_mapping,
2270 					  dvo_port);
2271 	else if (IS_ALDERLAKE_S(i915))
2272 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2273 					  ARRAY_SIZE(adls_port_mapping[0]),
2274 					  adls_port_mapping,
2275 					  dvo_port);
2276 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2277 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2278 					  ARRAY_SIZE(rkl_port_mapping[0]),
2279 					  rkl_port_mapping,
2280 					  dvo_port);
2281 	else
2282 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2283 					  ARRAY_SIZE(port_mapping[0]),
2284 					  port_mapping,
2285 					  dvo_port);
2286 }
2287 
2288 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2289 {
2290 	switch (vbt_max_link_rate) {
2291 	default:
2292 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2293 		return 0;
2294 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2295 		return 2000000;
2296 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2297 		return 1350000;
2298 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2299 		return 1000000;
2300 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2301 		return 810000;
2302 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2303 		return 540000;
2304 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2305 		return 270000;
2306 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2307 		return 162000;
2308 	}
2309 }
2310 
2311 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2312 {
2313 	switch (vbt_max_link_rate) {
2314 	default:
2315 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2316 		return 810000;
2317 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2318 		return 540000;
2319 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2320 		return 270000;
2321 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2322 		return 162000;
2323 	}
2324 }
2325 
2326 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2327 {
2328 	if (!devdata || devdata->i915->vbt.version < 216)
2329 		return 0;
2330 
2331 	if (devdata->i915->vbt.version >= 230)
2332 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2333 	else
2334 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2335 }
2336 
2337 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2338 				 enum port port)
2339 {
2340 	struct drm_i915_private *i915 = devdata->i915;
2341 	bool is_hdmi;
2342 
2343 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2344 		return;
2345 
2346 	if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
2347 		return;
2348 
2349 	is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
2350 
2351 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2352 		    is_hdmi ? "/HDMI" : "");
2353 
2354 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2355 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2356 }
2357 
2358 static bool
2359 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2360 {
2361 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2362 }
2363 
2364 bool
2365 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2366 {
2367 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2368 }
2369 
2370 bool
2371 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2372 {
2373 	return intel_bios_encoder_supports_dvi(devdata) &&
2374 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2375 }
2376 
2377 bool
2378 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2379 {
2380 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2381 }
2382 
2383 static bool
2384 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2385 {
2386 	return intel_bios_encoder_supports_dp(devdata) &&
2387 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2388 }
2389 
2390 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2391 {
2392 	if (!devdata || devdata->i915->vbt.version < 158)
2393 		return -1;
2394 
2395 	return devdata->child.hdmi_level_shifter_value;
2396 }
2397 
2398 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2399 {
2400 	if (!devdata || devdata->i915->vbt.version < 204)
2401 		return 0;
2402 
2403 	switch (devdata->child.hdmi_max_data_rate) {
2404 	default:
2405 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2406 		fallthrough;
2407 	case HDMI_MAX_DATA_RATE_PLATFORM:
2408 		return 0;
2409 	case HDMI_MAX_DATA_RATE_594:
2410 		return 594000;
2411 	case HDMI_MAX_DATA_RATE_340:
2412 		return 340000;
2413 	case HDMI_MAX_DATA_RATE_300:
2414 		return 300000;
2415 	case HDMI_MAX_DATA_RATE_297:
2416 		return 297000;
2417 	case HDMI_MAX_DATA_RATE_165:
2418 		return 165000;
2419 	}
2420 }
2421 
2422 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2423 {
2424 	/*
2425 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2426 	 * the port as present. Only try to initialize port F for the
2427 	 * SKUs that may actually have it.
2428 	 */
2429 	if (port == PORT_F && IS_ICELAKE(i915))
2430 		return IS_ICL_WITH_PORT_F(i915);
2431 
2432 	return true;
2433 }
2434 
2435 static void parse_ddi_port(struct drm_i915_private *i915,
2436 			   struct intel_bios_encoder_data *devdata)
2437 {
2438 	const struct child_device_config *child = &devdata->child;
2439 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2440 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2441 	enum port port;
2442 
2443 	port = dvo_port_to_port(i915, child->dvo_port);
2444 	if (port == PORT_NONE)
2445 		return;
2446 
2447 	if (!is_port_valid(i915, port)) {
2448 		drm_dbg_kms(&i915->drm,
2449 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2450 			    port_name(port));
2451 		return;
2452 	}
2453 
2454 	if (i915->vbt.ports[port]) {
2455 		drm_dbg_kms(&i915->drm,
2456 			    "More than one child device for port %c in VBT, using the first.\n",
2457 			    port_name(port));
2458 		return;
2459 	}
2460 
2461 	sanitize_device_type(devdata, port);
2462 
2463 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2464 	is_dp = intel_bios_encoder_supports_dp(devdata);
2465 	is_crt = intel_bios_encoder_supports_crt(devdata);
2466 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2467 	is_edp = intel_bios_encoder_supports_edp(devdata);
2468 
2469 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2470 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2471 
2472 	drm_dbg_kms(&i915->drm,
2473 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2474 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2475 		    HAS_LSPCON(i915) && child->lspcon,
2476 		    supports_typec_usb, supports_tbt,
2477 		    devdata->dsc != NULL);
2478 
2479 	if (is_dvi)
2480 		sanitize_ddc_pin(devdata, port);
2481 
2482 	if (is_dp)
2483 		sanitize_aux_ch(devdata, port);
2484 
2485 	hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2486 	if (hdmi_level_shift >= 0) {
2487 		drm_dbg_kms(&i915->drm,
2488 			    "Port %c VBT HDMI level shift: %d\n",
2489 			    port_name(port), hdmi_level_shift);
2490 	}
2491 
2492 	max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2493 	if (max_tmds_clock)
2494 		drm_dbg_kms(&i915->drm,
2495 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2496 			    port_name(port), max_tmds_clock);
2497 
2498 	/* I_boost config for SKL and above */
2499 	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2500 	if (dp_boost_level)
2501 		drm_dbg_kms(&i915->drm,
2502 			    "Port %c VBT (e)DP boost level: %d\n",
2503 			    port_name(port), dp_boost_level);
2504 
2505 	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2506 	if (hdmi_boost_level)
2507 		drm_dbg_kms(&i915->drm,
2508 			    "Port %c VBT HDMI boost level: %d\n",
2509 			    port_name(port), hdmi_boost_level);
2510 
2511 	dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2512 	if (dp_max_link_rate)
2513 		drm_dbg_kms(&i915->drm,
2514 			    "Port %c VBT DP max link rate: %d\n",
2515 			    port_name(port), dp_max_link_rate);
2516 
2517 	i915->vbt.ports[port] = devdata;
2518 }
2519 
2520 static bool has_ddi_port_info(struct drm_i915_private *i915)
2521 {
2522 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2523 }
2524 
2525 static void parse_ddi_ports(struct drm_i915_private *i915)
2526 {
2527 	struct intel_bios_encoder_data *devdata;
2528 
2529 	if (!has_ddi_port_info(i915))
2530 		return;
2531 
2532 	list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2533 		parse_ddi_port(i915, devdata);
2534 }
2535 
2536 static void
2537 parse_general_definitions(struct drm_i915_private *i915)
2538 {
2539 	const struct bdb_general_definitions *defs;
2540 	struct intel_bios_encoder_data *devdata;
2541 	const struct child_device_config *child;
2542 	int i, child_device_num;
2543 	u8 expected_size;
2544 	u16 block_size;
2545 	int bus_pin;
2546 
2547 	defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2548 	if (!defs) {
2549 		drm_dbg_kms(&i915->drm,
2550 			    "No general definition block is found, no devices defined.\n");
2551 		return;
2552 	}
2553 
2554 	block_size = get_blocksize(defs);
2555 	if (block_size < sizeof(*defs)) {
2556 		drm_dbg_kms(&i915->drm,
2557 			    "General definitions block too small (%u)\n",
2558 			    block_size);
2559 		return;
2560 	}
2561 
2562 	bus_pin = defs->crt_ddc_gmbus_pin;
2563 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2564 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2565 		i915->vbt.crt_ddc_pin = bus_pin;
2566 
2567 	if (i915->vbt.version < 106) {
2568 		expected_size = 22;
2569 	} else if (i915->vbt.version < 111) {
2570 		expected_size = 27;
2571 	} else if (i915->vbt.version < 195) {
2572 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2573 	} else if (i915->vbt.version == 195) {
2574 		expected_size = 37;
2575 	} else if (i915->vbt.version <= 215) {
2576 		expected_size = 38;
2577 	} else if (i915->vbt.version <= 237) {
2578 		expected_size = 39;
2579 	} else {
2580 		expected_size = sizeof(*child);
2581 		BUILD_BUG_ON(sizeof(*child) < 39);
2582 		drm_dbg(&i915->drm,
2583 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2584 			i915->vbt.version, expected_size);
2585 	}
2586 
2587 	/* Flag an error for unexpected size, but continue anyway. */
2588 	if (defs->child_dev_size != expected_size)
2589 		drm_err(&i915->drm,
2590 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2591 			defs->child_dev_size, expected_size, i915->vbt.version);
2592 
2593 	/* The legacy sized child device config is the minimum we need. */
2594 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2595 		drm_dbg_kms(&i915->drm,
2596 			    "Child device config size %u is too small.\n",
2597 			    defs->child_dev_size);
2598 		return;
2599 	}
2600 
2601 	/* get the number of child device */
2602 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2603 
2604 	for (i = 0; i < child_device_num; i++) {
2605 		child = child_device_ptr(defs, i);
2606 		if (!child->device_type)
2607 			continue;
2608 
2609 		drm_dbg_kms(&i915->drm,
2610 			    "Found VBT child device with type 0x%x\n",
2611 			    child->device_type);
2612 
2613 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2614 		if (!devdata)
2615 			break;
2616 
2617 		devdata->i915 = i915;
2618 
2619 		/*
2620 		 * Copy as much as we know (sizeof) and is available
2621 		 * (child_dev_size) of the child device config. Accessing the
2622 		 * data must depend on VBT version.
2623 		 */
2624 		memcpy(&devdata->child, child,
2625 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2626 
2627 		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2628 	}
2629 
2630 	if (list_empty(&i915->vbt.display_devices))
2631 		drm_dbg_kms(&i915->drm,
2632 			    "no child dev is parsed from VBT\n");
2633 }
2634 
2635 /* Common defaults which may be overridden by VBT. */
2636 static void
2637 init_vbt_defaults(struct drm_i915_private *i915)
2638 {
2639 	i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2640 
2641 	/* Default to having backlight */
2642 	i915->vbt.backlight.present = true;
2643 
2644 	/* LFP panel data */
2645 	i915->vbt.lvds_dither = 1;
2646 
2647 	/* SDVO panel data */
2648 	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2649 
2650 	/* general features */
2651 	i915->vbt.int_tv_support = 1;
2652 	i915->vbt.int_crt_support = 1;
2653 
2654 	/* driver features */
2655 	i915->vbt.int_lvds_support = 1;
2656 
2657 	/* Default to using SSC */
2658 	i915->vbt.lvds_use_ssc = 1;
2659 	/*
2660 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2661 	 * clock for LVDS.
2662 	 */
2663 	i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2664 							   !HAS_PCH_SPLIT(i915));
2665 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2666 		    i915->vbt.lvds_ssc_freq);
2667 }
2668 
2669 /* Defaults to initialize only if there is no VBT. */
2670 static void
2671 init_vbt_missing_defaults(struct drm_i915_private *i915)
2672 {
2673 	enum port port;
2674 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2675 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2676 
2677 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2678 		return;
2679 
2680 	for_each_port_masked(port, ports) {
2681 		struct intel_bios_encoder_data *devdata;
2682 		struct child_device_config *child;
2683 		enum phy phy = intel_port_to_phy(i915, port);
2684 
2685 		/*
2686 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2687 		 * to detect it.
2688 		 */
2689 		if (intel_phy_is_tc(i915, phy))
2690 			continue;
2691 
2692 		/* Create fake child device config */
2693 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2694 		if (!devdata)
2695 			break;
2696 
2697 		devdata->i915 = i915;
2698 		child = &devdata->child;
2699 
2700 		if (port == PORT_F)
2701 			child->dvo_port = DVO_PORT_HDMIF;
2702 		else if (port == PORT_E)
2703 			child->dvo_port = DVO_PORT_HDMIE;
2704 		else
2705 			child->dvo_port = DVO_PORT_HDMIA + port;
2706 
2707 		if (port != PORT_A && port != PORT_E)
2708 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2709 
2710 		if (port != PORT_E)
2711 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2712 
2713 		if (port == PORT_A)
2714 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2715 
2716 		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2717 
2718 		drm_dbg_kms(&i915->drm,
2719 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2720 			    child->device_type, port_name(port));
2721 	}
2722 
2723 	/* Bypass some minimum baseline VBT version checks */
2724 	i915->vbt.version = 155;
2725 }
2726 
2727 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2728 {
2729 	const void *_vbt = vbt;
2730 
2731 	return _vbt + vbt->bdb_offset;
2732 }
2733 
2734 /**
2735  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2736  * @buf:	pointer to a buffer to validate
2737  * @size:	size of the buffer
2738  *
2739  * Returns true on valid VBT.
2740  */
2741 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2742 {
2743 	const struct vbt_header *vbt = buf;
2744 	const struct bdb_header *bdb;
2745 
2746 	if (!vbt)
2747 		return false;
2748 
2749 	if (sizeof(struct vbt_header) > size) {
2750 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2751 		return false;
2752 	}
2753 
2754 	if (memcmp(vbt->signature, "$VBT", 4)) {
2755 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2756 		return false;
2757 	}
2758 
2759 	if (vbt->vbt_size > size) {
2760 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2761 		return false;
2762 	}
2763 
2764 	size = vbt->vbt_size;
2765 
2766 	if (range_overflows_t(size_t,
2767 			      vbt->bdb_offset,
2768 			      sizeof(struct bdb_header),
2769 			      size)) {
2770 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2771 		return false;
2772 	}
2773 
2774 	bdb = get_bdb_header(vbt);
2775 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2776 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2777 		return false;
2778 	}
2779 
2780 	return vbt;
2781 }
2782 
2783 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2784 {
2785 	u32 count, data, found, store = 0;
2786 	u32 static_region, oprom_offset;
2787 	u32 oprom_size = 0x200000;
2788 	u16 vbt_size;
2789 	u32 *vbt;
2790 
2791 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2792 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2793 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2794 
2795 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2796 	oprom_offset &= OROM_OFFSET_MASK;
2797 
2798 	for (count = 0; count < oprom_size; count += 4) {
2799 		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
2800 		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2801 
2802 		if (data == *((const u32 *)"$VBT")) {
2803 			found = oprom_offset + count;
2804 			break;
2805 		}
2806 	}
2807 
2808 	if (count >= oprom_size)
2809 		goto err_not_found;
2810 
2811 	/* Get VBT size and allocate space for the VBT */
2812 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
2813 		   offsetof(struct vbt_header, vbt_size));
2814 	vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2815 	vbt_size &= 0xffff;
2816 
2817 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2818 	if (!vbt)
2819 		goto err_not_found;
2820 
2821 	for (count = 0; count < vbt_size; count += 4) {
2822 		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
2823 		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2824 		*(vbt + store++) = data;
2825 	}
2826 
2827 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2828 		goto err_free_vbt;
2829 
2830 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2831 
2832 	return (struct vbt_header *)vbt;
2833 
2834 err_free_vbt:
2835 	kfree(vbt);
2836 err_not_found:
2837 	return NULL;
2838 }
2839 
2840 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2841 {
2842 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2843 	void __iomem *p = NULL, *oprom;
2844 	struct vbt_header *vbt;
2845 	u16 vbt_size;
2846 	size_t i, size;
2847 
2848 	oprom = pci_map_rom(pdev, &size);
2849 	if (!oprom)
2850 		return NULL;
2851 
2852 	/* Scour memory looking for the VBT signature. */
2853 	for (i = 0; i + 4 < size; i += 4) {
2854 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2855 			continue;
2856 
2857 		p = oprom + i;
2858 		size -= i;
2859 		break;
2860 	}
2861 
2862 	if (!p)
2863 		goto err_unmap_oprom;
2864 
2865 	if (sizeof(struct vbt_header) > size) {
2866 		drm_dbg(&i915->drm, "VBT header incomplete\n");
2867 		goto err_unmap_oprom;
2868 	}
2869 
2870 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2871 	if (vbt_size > size) {
2872 		drm_dbg(&i915->drm,
2873 			"VBT incomplete (vbt_size overflows)\n");
2874 		goto err_unmap_oprom;
2875 	}
2876 
2877 	/* The rest will be validated by intel_bios_is_valid_vbt() */
2878 	vbt = kmalloc(vbt_size, GFP_KERNEL);
2879 	if (!vbt)
2880 		goto err_unmap_oprom;
2881 
2882 	memcpy_fromio(vbt, p, vbt_size);
2883 
2884 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2885 		goto err_free_vbt;
2886 
2887 	pci_unmap_rom(pdev, oprom);
2888 
2889 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2890 
2891 	return vbt;
2892 
2893 err_free_vbt:
2894 	kfree(vbt);
2895 err_unmap_oprom:
2896 	pci_unmap_rom(pdev, oprom);
2897 
2898 	return NULL;
2899 }
2900 
2901 /**
2902  * intel_bios_init - find VBT and initialize settings from the BIOS
2903  * @i915: i915 device instance
2904  *
2905  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2906  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2907  * initialize some defaults if the VBT is not present at all.
2908  */
2909 void intel_bios_init(struct drm_i915_private *i915)
2910 {
2911 	const struct vbt_header *vbt = i915->opregion.vbt;
2912 	struct vbt_header *oprom_vbt = NULL;
2913 	const struct bdb_header *bdb;
2914 
2915 	INIT_LIST_HEAD(&i915->vbt.display_devices);
2916 	INIT_LIST_HEAD(&i915->vbt.bdb_blocks);
2917 
2918 	if (!HAS_DISPLAY(i915)) {
2919 		drm_dbg_kms(&i915->drm,
2920 			    "Skipping VBT init due to disabled display.\n");
2921 		return;
2922 	}
2923 
2924 	init_vbt_defaults(i915);
2925 
2926 	/*
2927 	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
2928 	 * PCI mapping
2929 	 */
2930 	if (!vbt && IS_DGFX(i915)) {
2931 		oprom_vbt = spi_oprom_get_vbt(i915);
2932 		vbt = oprom_vbt;
2933 	}
2934 
2935 	if (!vbt) {
2936 		oprom_vbt = oprom_get_vbt(i915);
2937 		vbt = oprom_vbt;
2938 	}
2939 
2940 	if (!vbt)
2941 		goto out;
2942 
2943 	bdb = get_bdb_header(vbt);
2944 	i915->vbt.version = bdb->version;
2945 
2946 	drm_dbg_kms(&i915->drm,
2947 		    "VBT signature \"%.*s\", BDB version %d\n",
2948 		    (int)sizeof(vbt->signature), vbt->signature, i915->vbt.version);
2949 
2950 	init_bdb_blocks(i915, bdb);
2951 
2952 	/* Grab useful general definitions */
2953 	parse_general_features(i915);
2954 	parse_general_definitions(i915);
2955 	parse_panel_options(i915);
2956 	parse_generic_dtd(i915);
2957 	parse_lfp_data(i915);
2958 	parse_lfp_backlight(i915);
2959 	parse_sdvo_panel_data(i915);
2960 	parse_driver_features(i915);
2961 	parse_power_conservation_features(i915);
2962 	parse_edp(i915);
2963 	parse_psr(i915);
2964 	parse_mipi_config(i915);
2965 	parse_mipi_sequence(i915);
2966 
2967 	/* Depends on child device list */
2968 	parse_compression_parameters(i915);
2969 
2970 out:
2971 	if (!vbt) {
2972 		drm_info(&i915->drm,
2973 			 "Failed to find VBIOS tables (VBT)\n");
2974 		init_vbt_missing_defaults(i915);
2975 	}
2976 
2977 	/* Further processing on pre-parsed or generated child device data */
2978 	parse_sdvo_device_mapping(i915);
2979 	parse_ddi_ports(i915);
2980 
2981 	kfree(oprom_vbt);
2982 }
2983 
2984 /**
2985  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2986  * @i915: i915 device instance
2987  */
2988 void intel_bios_driver_remove(struct drm_i915_private *i915)
2989 {
2990 	struct intel_bios_encoder_data *devdata, *nd;
2991 	struct bdb_block_entry *entry, *ne;
2992 
2993 	list_for_each_entry_safe(devdata, nd, &i915->vbt.display_devices, node) {
2994 		list_del(&devdata->node);
2995 		kfree(devdata->dsc);
2996 		kfree(devdata);
2997 	}
2998 
2999 	list_for_each_entry_safe(entry, ne, &i915->vbt.bdb_blocks, node) {
3000 		list_del(&entry->node);
3001 		kfree(entry);
3002 	}
3003 
3004 	kfree(i915->vbt.sdvo_lvds_vbt_mode);
3005 	i915->vbt.sdvo_lvds_vbt_mode = NULL;
3006 	kfree(i915->vbt.lfp_lvds_vbt_mode);
3007 	i915->vbt.lfp_lvds_vbt_mode = NULL;
3008 	kfree(i915->vbt.dsi.data);
3009 	i915->vbt.dsi.data = NULL;
3010 	kfree(i915->vbt.dsi.pps);
3011 	i915->vbt.dsi.pps = NULL;
3012 	kfree(i915->vbt.dsi.config);
3013 	i915->vbt.dsi.config = NULL;
3014 	kfree(i915->vbt.dsi.deassert_seq);
3015 	i915->vbt.dsi.deassert_seq = NULL;
3016 }
3017 
3018 /**
3019  * intel_bios_is_tv_present - is integrated TV present in VBT
3020  * @i915: i915 device instance
3021  *
3022  * Return true if TV is present. If no child devices were parsed from VBT,
3023  * assume TV is present.
3024  */
3025 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3026 {
3027 	const struct intel_bios_encoder_data *devdata;
3028 	const struct child_device_config *child;
3029 
3030 	if (!i915->vbt.int_tv_support)
3031 		return false;
3032 
3033 	if (list_empty(&i915->vbt.display_devices))
3034 		return true;
3035 
3036 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3037 		child = &devdata->child;
3038 
3039 		/*
3040 		 * If the device type is not TV, continue.
3041 		 */
3042 		switch (child->device_type) {
3043 		case DEVICE_TYPE_INT_TV:
3044 		case DEVICE_TYPE_TV:
3045 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3046 			break;
3047 		default:
3048 			continue;
3049 		}
3050 		/* Only when the addin_offset is non-zero, it is regarded
3051 		 * as present.
3052 		 */
3053 		if (child->addin_offset)
3054 			return true;
3055 	}
3056 
3057 	return false;
3058 }
3059 
3060 /**
3061  * intel_bios_is_lvds_present - is LVDS present in VBT
3062  * @i915:	i915 device instance
3063  * @i2c_pin:	i2c pin for LVDS if present
3064  *
3065  * Return true if LVDS is present. If no child devices were parsed from VBT,
3066  * assume LVDS is present.
3067  */
3068 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3069 {
3070 	const struct intel_bios_encoder_data *devdata;
3071 	const struct child_device_config *child;
3072 
3073 	if (list_empty(&i915->vbt.display_devices))
3074 		return true;
3075 
3076 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3077 		child = &devdata->child;
3078 
3079 		/* If the device type is not LFP, continue.
3080 		 * We have to check both the new identifiers as well as the
3081 		 * old for compatibility with some BIOSes.
3082 		 */
3083 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3084 		    child->device_type != DEVICE_TYPE_LFP)
3085 			continue;
3086 
3087 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3088 			*i2c_pin = child->i2c_pin;
3089 
3090 		/* However, we cannot trust the BIOS writers to populate
3091 		 * the VBT correctly.  Since LVDS requires additional
3092 		 * information from AIM blocks, a non-zero addin offset is
3093 		 * a good indicator that the LVDS is actually present.
3094 		 */
3095 		if (child->addin_offset)
3096 			return true;
3097 
3098 		/* But even then some BIOS writers perform some black magic
3099 		 * and instantiate the device without reference to any
3100 		 * additional data.  Trust that if the VBT was written into
3101 		 * the OpRegion then they have validated the LVDS's existence.
3102 		 */
3103 		if (i915->opregion.vbt)
3104 			return true;
3105 	}
3106 
3107 	return false;
3108 }
3109 
3110 /**
3111  * intel_bios_is_port_present - is the specified digital port present
3112  * @i915:	i915 device instance
3113  * @port:	port to check
3114  *
3115  * Return true if the device in %port is present.
3116  */
3117 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3118 {
3119 	if (WARN_ON(!has_ddi_port_info(i915)))
3120 		return true;
3121 
3122 	return i915->vbt.ports[port];
3123 }
3124 
3125 /**
3126  * intel_bios_is_port_edp - is the device in given port eDP
3127  * @i915:	i915 device instance
3128  * @port:	port to check
3129  *
3130  * Return true if the device in %port is eDP.
3131  */
3132 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3133 {
3134 	const struct intel_bios_encoder_data *devdata =
3135 		intel_bios_encoder_data_lookup(i915, port);
3136 
3137 	return devdata && intel_bios_encoder_supports_edp(devdata);
3138 }
3139 
3140 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3141 {
3142 	const struct child_device_config *child = &devdata->child;
3143 
3144 	if (!intel_bios_encoder_supports_dp(devdata) ||
3145 	    !intel_bios_encoder_supports_hdmi(devdata))
3146 		return false;
3147 
3148 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3149 		return true;
3150 
3151 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3152 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3153 	    child->aux_channel != 0)
3154 		return true;
3155 
3156 	return false;
3157 }
3158 
3159 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3160 				     enum port port)
3161 {
3162 	const struct intel_bios_encoder_data *devdata =
3163 		intel_bios_encoder_data_lookup(i915, port);
3164 
3165 	return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3166 }
3167 
3168 /**
3169  * intel_bios_is_dsi_present - is DSI present in VBT
3170  * @i915:	i915 device instance
3171  * @port:	port for DSI if present
3172  *
3173  * Return true if DSI is present, and return the port in %port.
3174  */
3175 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3176 			       enum port *port)
3177 {
3178 	const struct intel_bios_encoder_data *devdata;
3179 	const struct child_device_config *child;
3180 	u8 dvo_port;
3181 
3182 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3183 		child = &devdata->child;
3184 
3185 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3186 			continue;
3187 
3188 		dvo_port = child->dvo_port;
3189 
3190 		if (dvo_port == DVO_PORT_MIPIA ||
3191 		    (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
3192 		    (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
3193 			if (port)
3194 				*port = dvo_port - DVO_PORT_MIPIA;
3195 			return true;
3196 		} else if (dvo_port == DVO_PORT_MIPIB ||
3197 			   dvo_port == DVO_PORT_MIPIC ||
3198 			   dvo_port == DVO_PORT_MIPID) {
3199 			drm_dbg_kms(&i915->drm,
3200 				    "VBT has unsupported DSI port %c\n",
3201 				    port_name(dvo_port - DVO_PORT_MIPIA));
3202 		}
3203 	}
3204 
3205 	return false;
3206 }
3207 
3208 static void fill_dsc(struct intel_crtc_state *crtc_state,
3209 		     struct dsc_compression_parameters_entry *dsc,
3210 		     int dsc_max_bpc)
3211 {
3212 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3213 	int bpc = 8;
3214 
3215 	vdsc_cfg->dsc_version_major = dsc->version_major;
3216 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3217 
3218 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3219 		bpc = 12;
3220 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3221 		bpc = 10;
3222 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3223 		bpc = 8;
3224 	else
3225 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3226 			      dsc_max_bpc);
3227 
3228 	crtc_state->pipe_bpp = bpc * 3;
3229 
3230 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3231 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3232 
3233 	/*
3234 	 * FIXME: This is ugly, and slice count should take DSC engine
3235 	 * throughput etc. into account.
3236 	 *
3237 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3238 	 */
3239 	if (dsc->slices_per_line & BIT(2)) {
3240 		crtc_state->dsc.slice_count = 4;
3241 	} else if (dsc->slices_per_line & BIT(1)) {
3242 		crtc_state->dsc.slice_count = 2;
3243 	} else {
3244 		/* FIXME */
3245 		if (!(dsc->slices_per_line & BIT(0)))
3246 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3247 
3248 		crtc_state->dsc.slice_count = 1;
3249 	}
3250 
3251 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3252 	    crtc_state->dsc.slice_count != 0)
3253 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3254 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3255 			      crtc_state->dsc.slice_count);
3256 
3257 	/*
3258 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3259 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3260 	 */
3261 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3262 							    dsc->rc_buffer_size);
3263 
3264 	/* FIXME: DSI spec says bpc + 1 for this one */
3265 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3266 
3267 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3268 
3269 	vdsc_cfg->slice_height = dsc->slice_height;
3270 }
3271 
3272 /* FIXME: initially DSI specific */
3273 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3274 			       struct intel_crtc_state *crtc_state,
3275 			       int dsc_max_bpc)
3276 {
3277 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3278 	const struct intel_bios_encoder_data *devdata;
3279 	const struct child_device_config *child;
3280 
3281 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3282 		child = &devdata->child;
3283 
3284 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3285 			continue;
3286 
3287 		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
3288 			if (!devdata->dsc)
3289 				return false;
3290 
3291 			if (crtc_state)
3292 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3293 
3294 			return true;
3295 		}
3296 	}
3297 
3298 	return false;
3299 }
3300 
3301 /**
3302  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3303  * @i915:	i915 device instance
3304  * @port:	port to check
3305  *
3306  * Return true if HPD should be inverted for %port.
3307  */
3308 bool
3309 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3310 				enum port port)
3311 {
3312 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3313 
3314 	if (drm_WARN_ON_ONCE(&i915->drm,
3315 			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3316 		return false;
3317 
3318 	return devdata && devdata->child.hpd_invert;
3319 }
3320 
3321 /**
3322  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3323  * @i915:	i915 device instance
3324  * @port:	port to check
3325  *
3326  * Return true if LSPCON is present on this port
3327  */
3328 bool
3329 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3330 			     enum port port)
3331 {
3332 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3333 
3334 	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3335 }
3336 
3337 /**
3338  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3339  * @i915:       i915 device instance
3340  * @port:       port to check
3341  *
3342  * Return true if port requires lane reversal
3343  */
3344 bool
3345 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3346 				   enum port port)
3347 {
3348 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3349 
3350 	return devdata && devdata->child.lane_reversal;
3351 }
3352 
3353 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3354 				   enum port port)
3355 {
3356 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3357 	enum aux_ch aux_ch;
3358 
3359 	if (!devdata || !devdata->child.aux_channel) {
3360 		aux_ch = (enum aux_ch)port;
3361 
3362 		drm_dbg_kms(&i915->drm,
3363 			    "using AUX %c for port %c (platform default)\n",
3364 			    aux_ch_name(aux_ch), port_name(port));
3365 		return aux_ch;
3366 	}
3367 
3368 	/*
3369 	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3370 	 * map to DDI A,B,TC1,TC2 respectively.
3371 	 *
3372 	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3373 	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3374 	 */
3375 	switch (devdata->child.aux_channel) {
3376 	case DP_AUX_A:
3377 		aux_ch = AUX_CH_A;
3378 		break;
3379 	case DP_AUX_B:
3380 		if (IS_ALDERLAKE_S(i915))
3381 			aux_ch = AUX_CH_USBC1;
3382 		else
3383 			aux_ch = AUX_CH_B;
3384 		break;
3385 	case DP_AUX_C:
3386 		if (IS_ALDERLAKE_S(i915))
3387 			aux_ch = AUX_CH_USBC2;
3388 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3389 			aux_ch = AUX_CH_USBC1;
3390 		else
3391 			aux_ch = AUX_CH_C;
3392 		break;
3393 	case DP_AUX_D:
3394 		if (DISPLAY_VER(i915) == 13)
3395 			aux_ch = AUX_CH_D_XELPD;
3396 		else if (IS_ALDERLAKE_S(i915))
3397 			aux_ch = AUX_CH_USBC3;
3398 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3399 			aux_ch = AUX_CH_USBC2;
3400 		else
3401 			aux_ch = AUX_CH_D;
3402 		break;
3403 	case DP_AUX_E:
3404 		if (DISPLAY_VER(i915) == 13)
3405 			aux_ch = AUX_CH_E_XELPD;
3406 		else if (IS_ALDERLAKE_S(i915))
3407 			aux_ch = AUX_CH_USBC4;
3408 		else
3409 			aux_ch = AUX_CH_E;
3410 		break;
3411 	case DP_AUX_F:
3412 		if (DISPLAY_VER(i915) == 13)
3413 			aux_ch = AUX_CH_USBC1;
3414 		else
3415 			aux_ch = AUX_CH_F;
3416 		break;
3417 	case DP_AUX_G:
3418 		if (DISPLAY_VER(i915) == 13)
3419 			aux_ch = AUX_CH_USBC2;
3420 		else
3421 			aux_ch = AUX_CH_G;
3422 		break;
3423 	case DP_AUX_H:
3424 		if (DISPLAY_VER(i915) == 13)
3425 			aux_ch = AUX_CH_USBC3;
3426 		else
3427 			aux_ch = AUX_CH_H;
3428 		break;
3429 	case DP_AUX_I:
3430 		if (DISPLAY_VER(i915) == 13)
3431 			aux_ch = AUX_CH_USBC4;
3432 		else
3433 			aux_ch = AUX_CH_I;
3434 		break;
3435 	default:
3436 		MISSING_CASE(devdata->child.aux_channel);
3437 		aux_ch = AUX_CH_A;
3438 		break;
3439 	}
3440 
3441 	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3442 		    aux_ch_name(aux_ch), port_name(port));
3443 
3444 	return aux_ch;
3445 }
3446 
3447 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3448 {
3449 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3450 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3451 
3452 	return _intel_bios_max_tmds_clock(devdata);
3453 }
3454 
3455 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3456 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3457 {
3458 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3459 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3460 
3461 	return _intel_bios_hdmi_level_shift(devdata);
3462 }
3463 
3464 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3465 {
3466 	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3467 		return 0;
3468 
3469 	return translate_iboost(devdata->child.dp_iboost_level);
3470 }
3471 
3472 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3473 {
3474 	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3475 		return 0;
3476 
3477 	return translate_iboost(devdata->child.hdmi_iboost_level);
3478 }
3479 
3480 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3481 {
3482 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3483 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3484 
3485 	return _intel_bios_dp_max_link_rate(devdata);
3486 }
3487 
3488 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3489 {
3490 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3491 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3492 
3493 	if (!devdata || !devdata->child.ddc_pin)
3494 		return 0;
3495 
3496 	return map_ddc_pin(i915, devdata->child.ddc_pin);
3497 }
3498 
3499 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3500 {
3501 	return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3502 }
3503 
3504 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3505 {
3506 	return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3507 }
3508 
3509 const struct intel_bios_encoder_data *
3510 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3511 {
3512 	return i915->vbt.ports[port];
3513 }
3514