xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_bios.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_dp_helper.h>
29 
30 #include "display/intel_display.h"
31 #include "display/intel_display_types.h"
32 #include "display/intel_gmbus.h"
33 
34 #include "i915_drv.h"
35 
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38 
39 /**
40  * DOC: Video BIOS Table (VBT)
41  *
42  * The Video BIOS Table, or VBT, provides platform and board specific
43  * configuration information to the driver that is not discoverable or available
44  * through other means. The configuration is mostly related to display
45  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46  * the PCI ROM.
47  *
48  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50  * contain the actual configuration information. The VBT Header, and thus the
51  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52  * BDB Header. The data blocks are concatenated after the BDB Header. The data
53  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54  * data. (Block 53, the MIPI Sequence Block is an exception.)
55  *
56  * The driver parses the VBT during load. The relevant information is stored in
57  * driver private data for ease of use, and the actual VBT is not read after
58  * that.
59  */
60 
61 /* Wrapper for VBT child device config */
62 struct intel_bios_encoder_data {
63 	struct drm_i915_private *i915;
64 
65 	struct child_device_config child;
66 	struct dsc_compression_parameters_entry *dsc;
67 	struct list_head node;
68 };
69 
70 #define	SLAVE_ADDR1	0x70
71 #define	SLAVE_ADDR2	0x72
72 
73 /* Get BDB block size given a pointer to Block ID. */
74 static u32 _get_blocksize(const u8 *block_base)
75 {
76 	/* The MIPI Sequence Block v3+ has a separate size field. */
77 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
78 		return *((const u32 *)(block_base + 4));
79 	else
80 		return *((const u16 *)(block_base + 1));
81 }
82 
83 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
84 static u32 get_blocksize(const void *block_data)
85 {
86 	return _get_blocksize(block_data - 3);
87 }
88 
89 static const void *
90 find_section(const void *_bdb, enum bdb_block_id section_id)
91 {
92 	const struct bdb_header *bdb = _bdb;
93 	const u8 *base = _bdb;
94 	int index = 0;
95 	u32 total, current_size;
96 	enum bdb_block_id current_id;
97 
98 	/* skip to first section */
99 	index += bdb->header_size;
100 	total = bdb->bdb_size;
101 
102 	/* walk the sections looking for section_id */
103 	while (index + 3 < total) {
104 		current_id = *(base + index);
105 		current_size = _get_blocksize(base + index);
106 		index += 3;
107 
108 		if (index + current_size > total)
109 			return NULL;
110 
111 		if (current_id == section_id)
112 			return base + index;
113 
114 		index += current_size;
115 	}
116 
117 	return NULL;
118 }
119 
120 static void
121 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
122 			const struct lvds_dvo_timing *dvo_timing)
123 {
124 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
125 		dvo_timing->hactive_lo;
126 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
127 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
128 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
129 		((dvo_timing->hsync_pulse_width_hi << 8) |
130 			dvo_timing->hsync_pulse_width_lo);
131 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
132 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
133 
134 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
135 		dvo_timing->vactive_lo;
136 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
137 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
138 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
139 		((dvo_timing->vsync_pulse_width_hi << 4) |
140 			dvo_timing->vsync_pulse_width_lo);
141 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
142 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
143 	panel_fixed_mode->clock = dvo_timing->clock * 10;
144 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
145 
146 	if (dvo_timing->hsync_positive)
147 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
148 	else
149 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
150 
151 	if (dvo_timing->vsync_positive)
152 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
153 	else
154 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
155 
156 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
157 		dvo_timing->himage_lo;
158 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
159 		dvo_timing->vimage_lo;
160 
161 	/* Some VBTs have bogus h/vtotal values */
162 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
163 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
164 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
165 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
166 
167 	drm_mode_set_name(panel_fixed_mode);
168 }
169 
170 static const struct lvds_dvo_timing *
171 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
172 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
173 		    int index)
174 {
175 	/*
176 	 * the size of fp_timing varies on the different platform.
177 	 * So calculate the DVO timing relative offset in LVDS data
178 	 * entry to get the DVO timing entry
179 	 */
180 
181 	int lfp_data_size =
182 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
183 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
184 	int dvo_timing_offset =
185 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
186 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
187 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
188 
189 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
190 }
191 
192 /* get lvds_fp_timing entry
193  * this function may return NULL if the corresponding entry is invalid
194  */
195 static const struct lvds_fp_timing *
196 get_lvds_fp_timing(const struct bdb_header *bdb,
197 		   const struct bdb_lvds_lfp_data *data,
198 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
199 		   int index)
200 {
201 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
202 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
203 	size_t ofs;
204 
205 	if (index >= ARRAY_SIZE(ptrs->ptr))
206 		return NULL;
207 	ofs = ptrs->ptr[index].fp_timing_offset;
208 	if (ofs < data_ofs ||
209 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
210 		return NULL;
211 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
212 }
213 
214 /* Parse general panel options */
215 static void
216 parse_panel_options(struct drm_i915_private *i915,
217 		    const struct bdb_header *bdb)
218 {
219 	const struct bdb_lvds_options *lvds_options;
220 	int panel_type;
221 	int drrs_mode;
222 	int ret;
223 
224 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
225 	if (!lvds_options)
226 		return;
227 
228 	i915->vbt.lvds_dither = lvds_options->pixel_dither;
229 
230 	ret = intel_opregion_get_panel_type(i915);
231 	if (ret >= 0) {
232 		drm_WARN_ON(&i915->drm, ret > 0xf);
233 		panel_type = ret;
234 		drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
235 			    panel_type);
236 	} else {
237 		if (lvds_options->panel_type > 0xf) {
238 			drm_dbg_kms(&i915->drm,
239 				    "Invalid VBT panel type 0x%x\n",
240 				    lvds_options->panel_type);
241 			return;
242 		}
243 		panel_type = lvds_options->panel_type;
244 		drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
245 			    panel_type);
246 	}
247 
248 	i915->vbt.panel_type = panel_type;
249 
250 	drrs_mode = (lvds_options->dps_panel_type_bits
251 				>> (panel_type * 2)) & MODE_MASK;
252 	/*
253 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
254 	 * The below piece of code is required to adjust vbt.drrs_type
255 	 * to match the enum drrs_support_type.
256 	 */
257 	switch (drrs_mode) {
258 	case 0:
259 		i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
260 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
261 		break;
262 	case 2:
263 		i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
264 		drm_dbg_kms(&i915->drm,
265 			    "DRRS supported mode is seamless\n");
266 		break;
267 	default:
268 		i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
269 		drm_dbg_kms(&i915->drm,
270 			    "DRRS not supported (VBT input)\n");
271 		break;
272 	}
273 }
274 
275 /* Try to find integrated panel timing data */
276 static void
277 parse_lfp_panel_dtd(struct drm_i915_private *i915,
278 		    const struct bdb_header *bdb)
279 {
280 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
281 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
282 	const struct lvds_dvo_timing *panel_dvo_timing;
283 	const struct lvds_fp_timing *fp_timing;
284 	struct drm_display_mode *panel_fixed_mode;
285 	int panel_type = i915->vbt.panel_type;
286 
287 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
288 	if (!lvds_lfp_data)
289 		return;
290 
291 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
292 	if (!lvds_lfp_data_ptrs)
293 		return;
294 
295 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
296 					       lvds_lfp_data_ptrs,
297 					       panel_type);
298 
299 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
300 	if (!panel_fixed_mode)
301 		return;
302 
303 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
304 
305 	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
306 
307 	drm_dbg_kms(&i915->drm,
308 		    "Found panel mode in BIOS VBT legacy lfp table:\n");
309 	drm_mode_debug_printmodeline(panel_fixed_mode);
310 
311 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
312 				       lvds_lfp_data_ptrs,
313 				       panel_type);
314 	if (fp_timing) {
315 		/* check the resolution, just to be sure */
316 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
317 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
318 			i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
319 			drm_dbg_kms(&i915->drm,
320 				    "VBT initial LVDS value %x\n",
321 				    i915->vbt.bios_lvds_val);
322 		}
323 	}
324 }
325 
326 static void
327 parse_generic_dtd(struct drm_i915_private *i915,
328 		  const struct bdb_header *bdb)
329 {
330 	const struct bdb_generic_dtd *generic_dtd;
331 	const struct generic_dtd_entry *dtd;
332 	struct drm_display_mode *panel_fixed_mode;
333 	int num_dtd;
334 
335 	generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
336 	if (!generic_dtd)
337 		return;
338 
339 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
340 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
341 			generic_dtd->gdtd_size);
342 		return;
343 	} else if (generic_dtd->gdtd_size !=
344 		   sizeof(struct generic_dtd_entry)) {
345 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
346 			generic_dtd->gdtd_size);
347 		/* DTD has unknown fields, but keep going */
348 	}
349 
350 	num_dtd = (get_blocksize(generic_dtd) -
351 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
352 	if (i915->vbt.panel_type >= num_dtd) {
353 		drm_err(&i915->drm,
354 			"Panel type %d not found in table of %d DTD's\n",
355 			i915->vbt.panel_type, num_dtd);
356 		return;
357 	}
358 
359 	dtd = &generic_dtd->dtd[i915->vbt.panel_type];
360 
361 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
362 	if (!panel_fixed_mode)
363 		return;
364 
365 	panel_fixed_mode->hdisplay = dtd->hactive;
366 	panel_fixed_mode->hsync_start =
367 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
368 	panel_fixed_mode->hsync_end =
369 		panel_fixed_mode->hsync_start + dtd->hsync;
370 	panel_fixed_mode->htotal =
371 		panel_fixed_mode->hdisplay + dtd->hblank;
372 
373 	panel_fixed_mode->vdisplay = dtd->vactive;
374 	panel_fixed_mode->vsync_start =
375 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
376 	panel_fixed_mode->vsync_end =
377 		panel_fixed_mode->vsync_start + dtd->vsync;
378 	panel_fixed_mode->vtotal =
379 		panel_fixed_mode->vdisplay + dtd->vblank;
380 
381 	panel_fixed_mode->clock = dtd->pixel_clock;
382 	panel_fixed_mode->width_mm = dtd->width_mm;
383 	panel_fixed_mode->height_mm = dtd->height_mm;
384 
385 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
386 	drm_mode_set_name(panel_fixed_mode);
387 
388 	if (dtd->hsync_positive_polarity)
389 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
390 	else
391 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
392 
393 	if (dtd->vsync_positive_polarity)
394 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
395 	else
396 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
397 
398 	drm_dbg_kms(&i915->drm,
399 		    "Found panel mode in BIOS VBT generic dtd table:\n");
400 	drm_mode_debug_printmodeline(panel_fixed_mode);
401 
402 	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
403 }
404 
405 static void
406 parse_panel_dtd(struct drm_i915_private *i915,
407 		const struct bdb_header *bdb)
408 {
409 	/*
410 	 * Older VBTs provided provided DTD information for internal displays
411 	 * through the "LFP panel DTD" block (42).  As of VBT revision 229,
412 	 * that block is now deprecated and DTD information should be provided
413 	 * via a newer "generic DTD" block (58).  Just to be safe, we'll
414 	 * try the new generic DTD block first on VBT >= 229, but still fall
415 	 * back to trying the old LFP block if that fails.
416 	 */
417 	if (bdb->version >= 229)
418 		parse_generic_dtd(i915, bdb);
419 	if (!i915->vbt.lfp_lvds_vbt_mode)
420 		parse_lfp_panel_dtd(i915, bdb);
421 }
422 
423 static void
424 parse_lfp_backlight(struct drm_i915_private *i915,
425 		    const struct bdb_header *bdb)
426 {
427 	const struct bdb_lfp_backlight_data *backlight_data;
428 	const struct lfp_backlight_data_entry *entry;
429 	int panel_type = i915->vbt.panel_type;
430 	u16 level;
431 
432 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
433 	if (!backlight_data)
434 		return;
435 
436 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
437 		drm_dbg_kms(&i915->drm,
438 			    "Unsupported backlight data entry size %u\n",
439 			    backlight_data->entry_size);
440 		return;
441 	}
442 
443 	entry = &backlight_data->data[panel_type];
444 
445 	i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
446 	if (!i915->vbt.backlight.present) {
447 		drm_dbg_kms(&i915->drm,
448 			    "PWM backlight not present in VBT (type %u)\n",
449 			    entry->type);
450 		return;
451 	}
452 
453 	i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
454 	if (bdb->version >= 191) {
455 		size_t exp_size;
456 
457 		if (bdb->version >= 236)
458 			exp_size = sizeof(struct bdb_lfp_backlight_data);
459 		else if (bdb->version >= 234)
460 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
461 		else
462 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
463 
464 		if (get_blocksize(backlight_data) >= exp_size) {
465 			const struct lfp_backlight_control_method *method;
466 
467 			method = &backlight_data->backlight_control[panel_type];
468 			i915->vbt.backlight.type = method->type;
469 			i915->vbt.backlight.controller = method->controller;
470 		}
471 	}
472 
473 	i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
474 	i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
475 
476 	if (bdb->version >= 234) {
477 		u16 min_level;
478 		bool scale;
479 
480 		level = backlight_data->brightness_level[panel_type].level;
481 		min_level = backlight_data->brightness_min_level[panel_type].level;
482 
483 		if (bdb->version >= 236)
484 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
485 		else
486 			scale = level > 255;
487 
488 		if (scale)
489 			min_level = min_level / 255;
490 
491 		if (min_level > 255) {
492 			drm_warn(&i915->drm, "Brightness min level > 255\n");
493 			level = 255;
494 		}
495 		i915->vbt.backlight.min_brightness = min_level;
496 
497 		i915->vbt.backlight.brightness_precision_bits =
498 			backlight_data->brightness_precision_bits[panel_type];
499 	} else {
500 		level = backlight_data->level[panel_type];
501 		i915->vbt.backlight.min_brightness = entry->min_brightness;
502 	}
503 
504 	drm_dbg_kms(&i915->drm,
505 		    "VBT backlight PWM modulation frequency %u Hz, "
506 		    "active %s, min brightness %u, level %u, controller %u\n",
507 		    i915->vbt.backlight.pwm_freq_hz,
508 		    i915->vbt.backlight.active_low_pwm ? "low" : "high",
509 		    i915->vbt.backlight.min_brightness,
510 		    level,
511 		    i915->vbt.backlight.controller);
512 }
513 
514 /* Try to find sdvo panel data */
515 static void
516 parse_sdvo_panel_data(struct drm_i915_private *i915,
517 		      const struct bdb_header *bdb)
518 {
519 	const struct bdb_sdvo_panel_dtds *dtds;
520 	struct drm_display_mode *panel_fixed_mode;
521 	int index;
522 
523 	index = i915->params.vbt_sdvo_panel_type;
524 	if (index == -2) {
525 		drm_dbg_kms(&i915->drm,
526 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
527 		return;
528 	}
529 
530 	if (index == -1) {
531 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
532 
533 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
534 		if (!sdvo_lvds_options)
535 			return;
536 
537 		index = sdvo_lvds_options->panel_type;
538 	}
539 
540 	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
541 	if (!dtds)
542 		return;
543 
544 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
545 	if (!panel_fixed_mode)
546 		return;
547 
548 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
549 
550 	i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
551 
552 	drm_dbg_kms(&i915->drm,
553 		    "Found SDVO panel mode in BIOS VBT tables:\n");
554 	drm_mode_debug_printmodeline(panel_fixed_mode);
555 }
556 
557 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
558 				    bool alternate)
559 {
560 	switch (DISPLAY_VER(i915)) {
561 	case 2:
562 		return alternate ? 66667 : 48000;
563 	case 3:
564 	case 4:
565 		return alternate ? 100000 : 96000;
566 	default:
567 		return alternate ? 100000 : 120000;
568 	}
569 }
570 
571 static void
572 parse_general_features(struct drm_i915_private *i915,
573 		       const struct bdb_header *bdb)
574 {
575 	const struct bdb_general_features *general;
576 
577 	general = find_section(bdb, BDB_GENERAL_FEATURES);
578 	if (!general)
579 		return;
580 
581 	i915->vbt.int_tv_support = general->int_tv_support;
582 	/* int_crt_support can't be trusted on earlier platforms */
583 	if (bdb->version >= 155 &&
584 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
585 		i915->vbt.int_crt_support = general->int_crt_support;
586 	i915->vbt.lvds_use_ssc = general->enable_ssc;
587 	i915->vbt.lvds_ssc_freq =
588 		intel_bios_ssc_frequency(i915, general->ssc_freq);
589 	i915->vbt.display_clock_mode = general->display_clock_mode;
590 	i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
591 	if (bdb->version >= 181) {
592 		i915->vbt.orientation = general->rotate_180 ?
593 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
594 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
595 	} else {
596 		i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
597 	}
598 	drm_dbg_kms(&i915->drm,
599 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
600 		    i915->vbt.int_tv_support,
601 		    i915->vbt.int_crt_support,
602 		    i915->vbt.lvds_use_ssc,
603 		    i915->vbt.lvds_ssc_freq,
604 		    i915->vbt.display_clock_mode,
605 		    i915->vbt.fdi_rx_polarity_inverted);
606 }
607 
608 static const struct child_device_config *
609 child_device_ptr(const struct bdb_general_definitions *defs, int i)
610 {
611 	return (const void *) &defs->devices[i * defs->child_dev_size];
612 }
613 
614 static void
615 parse_sdvo_device_mapping(struct drm_i915_private *i915)
616 {
617 	struct sdvo_device_mapping *mapping;
618 	const struct intel_bios_encoder_data *devdata;
619 	const struct child_device_config *child;
620 	int count = 0;
621 
622 	/*
623 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
624 	 * accurate and doesn't have to be, as long as it's not too strict.
625 	 */
626 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
627 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
628 		return;
629 	}
630 
631 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
632 		child = &devdata->child;
633 
634 		if (child->slave_addr != SLAVE_ADDR1 &&
635 		    child->slave_addr != SLAVE_ADDR2) {
636 			/*
637 			 * If the slave address is neither 0x70 nor 0x72,
638 			 * it is not a SDVO device. Skip it.
639 			 */
640 			continue;
641 		}
642 		if (child->dvo_port != DEVICE_PORT_DVOB &&
643 		    child->dvo_port != DEVICE_PORT_DVOC) {
644 			/* skip the incorrect SDVO port */
645 			drm_dbg_kms(&i915->drm,
646 				    "Incorrect SDVO port. Skip it\n");
647 			continue;
648 		}
649 		drm_dbg_kms(&i915->drm,
650 			    "the SDVO device with slave addr %2x is found on"
651 			    " %s port\n",
652 			    child->slave_addr,
653 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
654 			    "SDVOB" : "SDVOC");
655 		mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
656 		if (!mapping->initialized) {
657 			mapping->dvo_port = child->dvo_port;
658 			mapping->slave_addr = child->slave_addr;
659 			mapping->dvo_wiring = child->dvo_wiring;
660 			mapping->ddc_pin = child->ddc_pin;
661 			mapping->i2c_pin = child->i2c_pin;
662 			mapping->initialized = 1;
663 			drm_dbg_kms(&i915->drm,
664 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
665 				    mapping->dvo_port, mapping->slave_addr,
666 				    mapping->dvo_wiring, mapping->ddc_pin,
667 				    mapping->i2c_pin);
668 		} else {
669 			drm_dbg_kms(&i915->drm,
670 				    "Maybe one SDVO port is shared by "
671 				    "two SDVO device.\n");
672 		}
673 		if (child->slave2_addr) {
674 			/* Maybe this is a SDVO device with multiple inputs */
675 			/* And the mapping info is not added */
676 			drm_dbg_kms(&i915->drm,
677 				    "there exists the slave2_addr. Maybe this"
678 				    " is a SDVO device with multiple inputs.\n");
679 		}
680 		count++;
681 	}
682 
683 	if (!count) {
684 		/* No SDVO device info is found */
685 		drm_dbg_kms(&i915->drm,
686 			    "No SDVO device info is found in VBT\n");
687 	}
688 }
689 
690 static void
691 parse_driver_features(struct drm_i915_private *i915,
692 		      const struct bdb_header *bdb)
693 {
694 	const struct bdb_driver_features *driver;
695 
696 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
697 	if (!driver)
698 		return;
699 
700 	if (DISPLAY_VER(i915) >= 5) {
701 		/*
702 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
703 		 * to mean "eDP". The VBT spec doesn't agree with that
704 		 * interpretation, but real world VBTs seem to.
705 		 */
706 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
707 			i915->vbt.int_lvds_support = 0;
708 	} else {
709 		/*
710 		 * FIXME it's not clear which BDB version has the LVDS config
711 		 * bits defined. Revision history in the VBT spec says:
712 		 * "0.92 | Add two definitions for VBT value of LVDS Active
713 		 *  Config (00b and 11b values defined) | 06/13/2005"
714 		 * but does not the specify the BDB version.
715 		 *
716 		 * So far version 134 (on i945gm) is the oldest VBT observed
717 		 * in the wild with the bits correctly populated. Version
718 		 * 108 (on i85x) does not have the bits correctly populated.
719 		 */
720 		if (bdb->version >= 134 &&
721 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
722 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
723 			i915->vbt.int_lvds_support = 0;
724 	}
725 
726 	if (bdb->version < 228) {
727 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
728 			    driver->drrs_enabled);
729 		/*
730 		 * If DRRS is not supported, drrs_type has to be set to 0.
731 		 * This is because, VBT is configured in such a way that
732 		 * static DRRS is 0 and DRRS not supported is represented by
733 		 * driver->drrs_enabled=false
734 		 */
735 		if (!driver->drrs_enabled)
736 			i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
737 
738 		i915->vbt.psr.enable = driver->psr_enabled;
739 	}
740 }
741 
742 static void
743 parse_power_conservation_features(struct drm_i915_private *i915,
744 				  const struct bdb_header *bdb)
745 {
746 	const struct bdb_lfp_power *power;
747 	u8 panel_type = i915->vbt.panel_type;
748 
749 	if (bdb->version < 228)
750 		return;
751 
752 	power = find_section(bdb, BDB_LFP_POWER);
753 	if (!power)
754 		return;
755 
756 	i915->vbt.psr.enable = power->psr & BIT(panel_type);
757 
758 	/*
759 	 * If DRRS is not supported, drrs_type has to be set to 0.
760 	 * This is because, VBT is configured in such a way that
761 	 * static DRRS is 0 and DRRS not supported is represented by
762 	 * power->drrs & BIT(panel_type)=false
763 	 */
764 	if (!(power->drrs & BIT(panel_type)))
765 		i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
766 
767 	if (bdb->version >= 232)
768 		i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
769 }
770 
771 static void
772 parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
773 {
774 	const struct bdb_edp *edp;
775 	const struct edp_power_seq *edp_pps;
776 	const struct edp_fast_link_params *edp_link_params;
777 	int panel_type = i915->vbt.panel_type;
778 
779 	edp = find_section(bdb, BDB_EDP);
780 	if (!edp)
781 		return;
782 
783 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
784 	case EDP_18BPP:
785 		i915->vbt.edp.bpp = 18;
786 		break;
787 	case EDP_24BPP:
788 		i915->vbt.edp.bpp = 24;
789 		break;
790 	case EDP_30BPP:
791 		i915->vbt.edp.bpp = 30;
792 		break;
793 	}
794 
795 	/* Get the eDP sequencing and link info */
796 	edp_pps = &edp->power_seqs[panel_type];
797 	edp_link_params = &edp->fast_link_params[panel_type];
798 
799 	i915->vbt.edp.pps = *edp_pps;
800 
801 	switch (edp_link_params->rate) {
802 	case EDP_RATE_1_62:
803 		i915->vbt.edp.rate = DP_LINK_BW_1_62;
804 		break;
805 	case EDP_RATE_2_7:
806 		i915->vbt.edp.rate = DP_LINK_BW_2_7;
807 		break;
808 	default:
809 		drm_dbg_kms(&i915->drm,
810 			    "VBT has unknown eDP link rate value %u\n",
811 			     edp_link_params->rate);
812 		break;
813 	}
814 
815 	switch (edp_link_params->lanes) {
816 	case EDP_LANE_1:
817 		i915->vbt.edp.lanes = 1;
818 		break;
819 	case EDP_LANE_2:
820 		i915->vbt.edp.lanes = 2;
821 		break;
822 	case EDP_LANE_4:
823 		i915->vbt.edp.lanes = 4;
824 		break;
825 	default:
826 		drm_dbg_kms(&i915->drm,
827 			    "VBT has unknown eDP lane count value %u\n",
828 			    edp_link_params->lanes);
829 		break;
830 	}
831 
832 	switch (edp_link_params->preemphasis) {
833 	case EDP_PREEMPHASIS_NONE:
834 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
835 		break;
836 	case EDP_PREEMPHASIS_3_5dB:
837 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
838 		break;
839 	case EDP_PREEMPHASIS_6dB:
840 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
841 		break;
842 	case EDP_PREEMPHASIS_9_5dB:
843 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
844 		break;
845 	default:
846 		drm_dbg_kms(&i915->drm,
847 			    "VBT has unknown eDP pre-emphasis value %u\n",
848 			    edp_link_params->preemphasis);
849 		break;
850 	}
851 
852 	switch (edp_link_params->vswing) {
853 	case EDP_VSWING_0_4V:
854 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
855 		break;
856 	case EDP_VSWING_0_6V:
857 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
858 		break;
859 	case EDP_VSWING_0_8V:
860 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
861 		break;
862 	case EDP_VSWING_1_2V:
863 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
864 		break;
865 	default:
866 		drm_dbg_kms(&i915->drm,
867 			    "VBT has unknown eDP voltage swing value %u\n",
868 			    edp_link_params->vswing);
869 		break;
870 	}
871 
872 	if (bdb->version >= 173) {
873 		u8 vswing;
874 
875 		/* Don't read from VBT if module parameter has valid value*/
876 		if (i915->params.edp_vswing) {
877 			i915->vbt.edp.low_vswing =
878 				i915->params.edp_vswing == 1;
879 		} else {
880 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
881 			i915->vbt.edp.low_vswing = vswing == 0;
882 		}
883 	}
884 }
885 
886 static void
887 parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
888 {
889 	const struct bdb_psr *psr;
890 	const struct psr_table *psr_table;
891 	int panel_type = i915->vbt.panel_type;
892 
893 	psr = find_section(bdb, BDB_PSR);
894 	if (!psr) {
895 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
896 		return;
897 	}
898 
899 	psr_table = &psr->psr_table[panel_type];
900 
901 	i915->vbt.psr.full_link = psr_table->full_link;
902 	i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
903 
904 	/* Allowed VBT values goes from 0 to 15 */
905 	i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
906 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
907 
908 	switch (psr_table->lines_to_wait) {
909 	case 0:
910 		i915->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
911 		break;
912 	case 1:
913 		i915->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
914 		break;
915 	case 2:
916 		i915->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
917 		break;
918 	case 3:
919 		i915->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
920 		break;
921 	default:
922 		drm_dbg_kms(&i915->drm,
923 			    "VBT has unknown PSR lines to wait %u\n",
924 			    psr_table->lines_to_wait);
925 		break;
926 	}
927 
928 	/*
929 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
930 	 * Old decimal value is wake up time in multiples of 100 us.
931 	 */
932 	if (bdb->version >= 205 &&
933 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
934 		switch (psr_table->tp1_wakeup_time) {
935 		case 0:
936 			i915->vbt.psr.tp1_wakeup_time_us = 500;
937 			break;
938 		case 1:
939 			i915->vbt.psr.tp1_wakeup_time_us = 100;
940 			break;
941 		case 3:
942 			i915->vbt.psr.tp1_wakeup_time_us = 0;
943 			break;
944 		default:
945 			drm_dbg_kms(&i915->drm,
946 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
947 				    psr_table->tp1_wakeup_time);
948 			fallthrough;
949 		case 2:
950 			i915->vbt.psr.tp1_wakeup_time_us = 2500;
951 			break;
952 		}
953 
954 		switch (psr_table->tp2_tp3_wakeup_time) {
955 		case 0:
956 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
957 			break;
958 		case 1:
959 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
960 			break;
961 		case 3:
962 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
963 			break;
964 		default:
965 			drm_dbg_kms(&i915->drm,
966 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
967 				    psr_table->tp2_tp3_wakeup_time);
968 			fallthrough;
969 		case 2:
970 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
971 		break;
972 		}
973 	} else {
974 		i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
975 		i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
976 	}
977 
978 	if (bdb->version >= 226) {
979 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
980 
981 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
982 		switch (wakeup_time) {
983 		case 0:
984 			wakeup_time = 500;
985 			break;
986 		case 1:
987 			wakeup_time = 100;
988 			break;
989 		case 3:
990 			wakeup_time = 50;
991 			break;
992 		default:
993 		case 2:
994 			wakeup_time = 2500;
995 			break;
996 		}
997 		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
998 	} else {
999 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1000 		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
1001 	}
1002 }
1003 
1004 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1005 				      u16 version, enum port port)
1006 {
1007 	if (!i915->vbt.dsi.config->dual_link || version < 197) {
1008 		i915->vbt.dsi.bl_ports = BIT(port);
1009 		if (i915->vbt.dsi.config->cabc_supported)
1010 			i915->vbt.dsi.cabc_ports = BIT(port);
1011 
1012 		return;
1013 	}
1014 
1015 	switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1016 	case DL_DCS_PORT_A:
1017 		i915->vbt.dsi.bl_ports = BIT(PORT_A);
1018 		break;
1019 	case DL_DCS_PORT_C:
1020 		i915->vbt.dsi.bl_ports = BIT(PORT_C);
1021 		break;
1022 	default:
1023 	case DL_DCS_PORT_A_AND_C:
1024 		i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1025 		break;
1026 	}
1027 
1028 	if (!i915->vbt.dsi.config->cabc_supported)
1029 		return;
1030 
1031 	switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1032 	case DL_DCS_PORT_A:
1033 		i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1034 		break;
1035 	case DL_DCS_PORT_C:
1036 		i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1037 		break;
1038 	default:
1039 	case DL_DCS_PORT_A_AND_C:
1040 		i915->vbt.dsi.cabc_ports =
1041 					BIT(PORT_A) | BIT(PORT_C);
1042 		break;
1043 	}
1044 }
1045 
1046 static void
1047 parse_mipi_config(struct drm_i915_private *i915,
1048 		  const struct bdb_header *bdb)
1049 {
1050 	const struct bdb_mipi_config *start;
1051 	const struct mipi_config *config;
1052 	const struct mipi_pps_data *pps;
1053 	int panel_type = i915->vbt.panel_type;
1054 	enum port port;
1055 
1056 	/* parse MIPI blocks only if LFP type is MIPI */
1057 	if (!intel_bios_is_dsi_present(i915, &port))
1058 		return;
1059 
1060 	/* Initialize this to undefined indicating no generic MIPI support */
1061 	i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1062 
1063 	/* Block #40 is already parsed and panel_fixed_mode is
1064 	 * stored in i915->lfp_lvds_vbt_mode
1065 	 * resuse this when needed
1066 	 */
1067 
1068 	/* Parse #52 for panel index used from panel_type already
1069 	 * parsed
1070 	 */
1071 	start = find_section(bdb, BDB_MIPI_CONFIG);
1072 	if (!start) {
1073 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1074 		return;
1075 	}
1076 
1077 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1078 		panel_type);
1079 
1080 	/*
1081 	 * get hold of the correct configuration block and pps data as per
1082 	 * the panel_type as index
1083 	 */
1084 	config = &start->config[panel_type];
1085 	pps = &start->pps[panel_type];
1086 
1087 	/* store as of now full data. Trim when we realise all is not needed */
1088 	i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1089 	if (!i915->vbt.dsi.config)
1090 		return;
1091 
1092 	i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1093 	if (!i915->vbt.dsi.pps) {
1094 		kfree(i915->vbt.dsi.config);
1095 		return;
1096 	}
1097 
1098 	parse_dsi_backlight_ports(i915, bdb->version, port);
1099 
1100 	/* FIXME is the 90 vs. 270 correct? */
1101 	switch (config->rotation) {
1102 	case ENABLE_ROTATION_0:
1103 		/*
1104 		 * Most (all?) VBTs claim 0 degrees despite having
1105 		 * an upside down panel, thus we do not trust this.
1106 		 */
1107 		i915->vbt.dsi.orientation =
1108 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1109 		break;
1110 	case ENABLE_ROTATION_90:
1111 		i915->vbt.dsi.orientation =
1112 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1113 		break;
1114 	case ENABLE_ROTATION_180:
1115 		i915->vbt.dsi.orientation =
1116 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1117 		break;
1118 	case ENABLE_ROTATION_270:
1119 		i915->vbt.dsi.orientation =
1120 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1121 		break;
1122 	}
1123 
1124 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1125 	i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1126 }
1127 
1128 /* Find the sequence block and size for the given panel. */
1129 static const u8 *
1130 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1131 			  u16 panel_id, u32 *seq_size)
1132 {
1133 	u32 total = get_blocksize(sequence);
1134 	const u8 *data = &sequence->data[0];
1135 	u8 current_id;
1136 	u32 current_size;
1137 	int header_size = sequence->version >= 3 ? 5 : 3;
1138 	int index = 0;
1139 	int i;
1140 
1141 	/* skip new block size */
1142 	if (sequence->version >= 3)
1143 		data += 4;
1144 
1145 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1146 		if (index + header_size > total) {
1147 			DRM_ERROR("Invalid sequence block (header)\n");
1148 			return NULL;
1149 		}
1150 
1151 		current_id = *(data + index);
1152 		if (sequence->version >= 3)
1153 			current_size = *((const u32 *)(data + index + 1));
1154 		else
1155 			current_size = *((const u16 *)(data + index + 1));
1156 
1157 		index += header_size;
1158 
1159 		if (index + current_size > total) {
1160 			DRM_ERROR("Invalid sequence block\n");
1161 			return NULL;
1162 		}
1163 
1164 		if (current_id == panel_id) {
1165 			*seq_size = current_size;
1166 			return data + index;
1167 		}
1168 
1169 		index += current_size;
1170 	}
1171 
1172 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1173 
1174 	return NULL;
1175 }
1176 
1177 static int goto_next_sequence(const u8 *data, int index, int total)
1178 {
1179 	u16 len;
1180 
1181 	/* Skip Sequence Byte. */
1182 	for (index = index + 1; index < total; index += len) {
1183 		u8 operation_byte = *(data + index);
1184 		index++;
1185 
1186 		switch (operation_byte) {
1187 		case MIPI_SEQ_ELEM_END:
1188 			return index;
1189 		case MIPI_SEQ_ELEM_SEND_PKT:
1190 			if (index + 4 > total)
1191 				return 0;
1192 
1193 			len = *((const u16 *)(data + index + 2)) + 4;
1194 			break;
1195 		case MIPI_SEQ_ELEM_DELAY:
1196 			len = 4;
1197 			break;
1198 		case MIPI_SEQ_ELEM_GPIO:
1199 			len = 2;
1200 			break;
1201 		case MIPI_SEQ_ELEM_I2C:
1202 			if (index + 7 > total)
1203 				return 0;
1204 			len = *(data + index + 6) + 7;
1205 			break;
1206 		default:
1207 			DRM_ERROR("Unknown operation byte\n");
1208 			return 0;
1209 		}
1210 	}
1211 
1212 	return 0;
1213 }
1214 
1215 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1216 {
1217 	int seq_end;
1218 	u16 len;
1219 	u32 size_of_sequence;
1220 
1221 	/*
1222 	 * Could skip sequence based on Size of Sequence alone, but also do some
1223 	 * checking on the structure.
1224 	 */
1225 	if (total < 5) {
1226 		DRM_ERROR("Too small sequence size\n");
1227 		return 0;
1228 	}
1229 
1230 	/* Skip Sequence Byte. */
1231 	index++;
1232 
1233 	/*
1234 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1235 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1236 	 * byte.
1237 	 */
1238 	size_of_sequence = *((const u32 *)(data + index));
1239 	index += 4;
1240 
1241 	seq_end = index + size_of_sequence;
1242 	if (seq_end > total) {
1243 		DRM_ERROR("Invalid sequence size\n");
1244 		return 0;
1245 	}
1246 
1247 	for (; index < total; index += len) {
1248 		u8 operation_byte = *(data + index);
1249 		index++;
1250 
1251 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1252 			if (index != seq_end) {
1253 				DRM_ERROR("Invalid element structure\n");
1254 				return 0;
1255 			}
1256 			return index;
1257 		}
1258 
1259 		len = *(data + index);
1260 		index++;
1261 
1262 		/*
1263 		 * FIXME: Would be nice to check elements like for v1/v2 in
1264 		 * goto_next_sequence() above.
1265 		 */
1266 		switch (operation_byte) {
1267 		case MIPI_SEQ_ELEM_SEND_PKT:
1268 		case MIPI_SEQ_ELEM_DELAY:
1269 		case MIPI_SEQ_ELEM_GPIO:
1270 		case MIPI_SEQ_ELEM_I2C:
1271 		case MIPI_SEQ_ELEM_SPI:
1272 		case MIPI_SEQ_ELEM_PMIC:
1273 			break;
1274 		default:
1275 			DRM_ERROR("Unknown operation byte %u\n",
1276 				  operation_byte);
1277 			break;
1278 		}
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1286  * skip all delay + gpio operands and stop at the first DSI packet op.
1287  */
1288 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1289 {
1290 	const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1291 	int index, len;
1292 
1293 	if (drm_WARN_ON(&i915->drm,
1294 			!data || i915->vbt.dsi.seq_version != 1))
1295 		return 0;
1296 
1297 	/* index = 1 to skip sequence byte */
1298 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1299 		switch (data[index]) {
1300 		case MIPI_SEQ_ELEM_SEND_PKT:
1301 			return index == 1 ? 0 : index;
1302 		case MIPI_SEQ_ELEM_DELAY:
1303 			len = 5; /* 1 byte for operand + uint32 */
1304 			break;
1305 		case MIPI_SEQ_ELEM_GPIO:
1306 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1307 			break;
1308 		default:
1309 			return 0;
1310 		}
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1318  * The deassert must be done before calling intel_dsi_device_ready, so for
1319  * these devices we split the init OTP sequence into a deassert sequence and
1320  * the actual init OTP part.
1321  */
1322 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1323 {
1324 	u8 *init_otp;
1325 	int len;
1326 
1327 	/* Limit this to VLV for now. */
1328 	if (!IS_VALLEYVIEW(i915))
1329 		return;
1330 
1331 	/* Limit this to v1 vid-mode sequences */
1332 	if (i915->vbt.dsi.config->is_cmd_mode ||
1333 	    i915->vbt.dsi.seq_version != 1)
1334 		return;
1335 
1336 	/* Only do this if there are otp and assert seqs and no deassert seq */
1337 	if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1338 	    !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1339 	    i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1340 		return;
1341 
1342 	/* The deassert-sequence ends at the first DSI packet */
1343 	len = get_init_otp_deassert_fragment_len(i915);
1344 	if (!len)
1345 		return;
1346 
1347 	drm_dbg_kms(&i915->drm,
1348 		    "Using init OTP fragment to deassert reset\n");
1349 
1350 	/* Copy the fragment, update seq byte and terminate it */
1351 	init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1352 	i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1353 	if (!i915->vbt.dsi.deassert_seq)
1354 		return;
1355 	i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1356 	i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1357 	/* Use the copy for deassert */
1358 	i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1359 		i915->vbt.dsi.deassert_seq;
1360 	/* Replace the last byte of the fragment with init OTP seq byte */
1361 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1362 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1363 	i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1364 }
1365 
1366 static void
1367 parse_mipi_sequence(struct drm_i915_private *i915,
1368 		    const struct bdb_header *bdb)
1369 {
1370 	int panel_type = i915->vbt.panel_type;
1371 	const struct bdb_mipi_sequence *sequence;
1372 	const u8 *seq_data;
1373 	u32 seq_size;
1374 	u8 *data;
1375 	int index = 0;
1376 
1377 	/* Only our generic panel driver uses the sequence block. */
1378 	if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1379 		return;
1380 
1381 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1382 	if (!sequence) {
1383 		drm_dbg_kms(&i915->drm,
1384 			    "No MIPI Sequence found, parsing complete\n");
1385 		return;
1386 	}
1387 
1388 	/* Fail gracefully for forward incompatible sequence block. */
1389 	if (sequence->version >= 4) {
1390 		drm_err(&i915->drm,
1391 			"Unable to parse MIPI Sequence Block v%u\n",
1392 			sequence->version);
1393 		return;
1394 	}
1395 
1396 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1397 		sequence->version);
1398 
1399 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1400 	if (!seq_data)
1401 		return;
1402 
1403 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1404 	if (!data)
1405 		return;
1406 
1407 	/* Parse the sequences, store pointers to each sequence. */
1408 	for (;;) {
1409 		u8 seq_id = *(data + index);
1410 		if (seq_id == MIPI_SEQ_END)
1411 			break;
1412 
1413 		if (seq_id >= MIPI_SEQ_MAX) {
1414 			drm_err(&i915->drm, "Unknown sequence %u\n",
1415 				seq_id);
1416 			goto err;
1417 		}
1418 
1419 		/* Log about presence of sequences we won't run. */
1420 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1421 			drm_dbg_kms(&i915->drm,
1422 				    "Unsupported sequence %u\n", seq_id);
1423 
1424 		i915->vbt.dsi.sequence[seq_id] = data + index;
1425 
1426 		if (sequence->version >= 3)
1427 			index = goto_next_sequence_v3(data, index, seq_size);
1428 		else
1429 			index = goto_next_sequence(data, index, seq_size);
1430 		if (!index) {
1431 			drm_err(&i915->drm, "Invalid sequence %u\n",
1432 				seq_id);
1433 			goto err;
1434 		}
1435 	}
1436 
1437 	i915->vbt.dsi.data = data;
1438 	i915->vbt.dsi.size = seq_size;
1439 	i915->vbt.dsi.seq_version = sequence->version;
1440 
1441 	fixup_mipi_sequences(i915);
1442 
1443 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1444 	return;
1445 
1446 err:
1447 	kfree(data);
1448 	memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1449 }
1450 
1451 static void
1452 parse_compression_parameters(struct drm_i915_private *i915,
1453 			     const struct bdb_header *bdb)
1454 {
1455 	const struct bdb_compression_parameters *params;
1456 	struct intel_bios_encoder_data *devdata;
1457 	const struct child_device_config *child;
1458 	u16 block_size;
1459 	int index;
1460 
1461 	if (bdb->version < 198)
1462 		return;
1463 
1464 	params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1465 	if (params) {
1466 		/* Sanity checks */
1467 		if (params->entry_size != sizeof(params->data[0])) {
1468 			drm_dbg_kms(&i915->drm,
1469 				    "VBT: unsupported compression param entry size\n");
1470 			return;
1471 		}
1472 
1473 		block_size = get_blocksize(params);
1474 		if (block_size < sizeof(*params)) {
1475 			drm_dbg_kms(&i915->drm,
1476 				    "VBT: expected 16 compression param entries\n");
1477 			return;
1478 		}
1479 	}
1480 
1481 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1482 		child = &devdata->child;
1483 
1484 		if (!child->compression_enable)
1485 			continue;
1486 
1487 		if (!params) {
1488 			drm_dbg_kms(&i915->drm,
1489 				    "VBT: compression params not available\n");
1490 			continue;
1491 		}
1492 
1493 		if (child->compression_method_cps) {
1494 			drm_dbg_kms(&i915->drm,
1495 				    "VBT: CPS compression not supported\n");
1496 			continue;
1497 		}
1498 
1499 		index = child->compression_structure_index;
1500 
1501 		devdata->dsc = kmemdup(&params->data[index],
1502 				       sizeof(*devdata->dsc), GFP_KERNEL);
1503 	}
1504 }
1505 
1506 static u8 translate_iboost(u8 val)
1507 {
1508 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1509 
1510 	if (val >= ARRAY_SIZE(mapping)) {
1511 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1512 		return 0;
1513 	}
1514 	return mapping[val];
1515 }
1516 
1517 static const u8 cnp_ddc_pin_map[] = {
1518 	[0] = 0, /* N/A */
1519 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1520 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1521 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1522 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1523 };
1524 
1525 static const u8 icp_ddc_pin_map[] = {
1526 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1527 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1528 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1529 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1530 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1531 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1532 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1533 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1534 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1535 };
1536 
1537 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1538 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1539 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1540 	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1541 	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1542 };
1543 
1544 static const u8 adls_ddc_pin_map[] = {
1545 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1546 	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1547 	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1548 	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1549 	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1550 };
1551 
1552 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1553 	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1554 	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1555 	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1556 };
1557 
1558 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
1559 {
1560 	const u8 *ddc_pin_map;
1561 	int n_entries;
1562 
1563 	if (IS_ALDERLAKE_S(i915)) {
1564 		ddc_pin_map = adls_ddc_pin_map;
1565 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
1566 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
1567 		return vbt_pin;
1568 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
1569 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
1570 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
1571 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
1572 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
1573 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
1574 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
1575 		ddc_pin_map = icp_ddc_pin_map;
1576 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1577 	} else if (HAS_PCH_CNP(i915)) {
1578 		ddc_pin_map = cnp_ddc_pin_map;
1579 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1580 	} else {
1581 		/* Assuming direct map */
1582 		return vbt_pin;
1583 	}
1584 
1585 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1586 		return ddc_pin_map[vbt_pin];
1587 
1588 	drm_dbg_kms(&i915->drm,
1589 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1590 		    vbt_pin);
1591 	return 0;
1592 }
1593 
1594 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1595 {
1596 	const struct intel_bios_encoder_data *devdata;
1597 	enum port port;
1598 
1599 	if (!ddc_pin)
1600 		return PORT_NONE;
1601 
1602 	for_each_port(port) {
1603 		devdata = i915->vbt.ports[port];
1604 
1605 		if (devdata && ddc_pin == devdata->child.ddc_pin)
1606 			return port;
1607 	}
1608 
1609 	return PORT_NONE;
1610 }
1611 
1612 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
1613 			     enum port port)
1614 {
1615 	struct drm_i915_private *i915 = devdata->i915;
1616 	struct child_device_config *child;
1617 	u8 mapped_ddc_pin;
1618 	enum port p;
1619 
1620 	if (!devdata->child.ddc_pin)
1621 		return;
1622 
1623 	mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
1624 	if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
1625 		drm_dbg_kms(&i915->drm,
1626 			    "Port %c has invalid DDC pin %d, "
1627 			    "sticking to defaults\n",
1628 			    port_name(port), mapped_ddc_pin);
1629 		devdata->child.ddc_pin = 0;
1630 		return;
1631 	}
1632 
1633 	p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
1634 	if (p == PORT_NONE)
1635 		return;
1636 
1637 	drm_dbg_kms(&i915->drm,
1638 		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
1639 		    "disabling port %c DVI/HDMI support\n",
1640 		    port_name(port), mapped_ddc_pin,
1641 		    port_name(p), port_name(p));
1642 
1643 	/*
1644 	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
1645 	 * couldn't exist on the shared port. Otherwise they share the same ddc
1646 	 * pin and system couldn't communicate with them separately.
1647 	 *
1648 	 * Give inverse child device order the priority, last one wins. Yes,
1649 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1650 	 * port A and port E with the same AUX ch and we must pick port E :(
1651 	 */
1652 	child = &i915->vbt.ports[p]->child;
1653 
1654 	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1655 	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1656 
1657 	child->ddc_pin = 0;
1658 }
1659 
1660 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1661 {
1662 	const struct intel_bios_encoder_data *devdata;
1663 	enum port port;
1664 
1665 	if (!aux_ch)
1666 		return PORT_NONE;
1667 
1668 	for_each_port(port) {
1669 		devdata = i915->vbt.ports[port];
1670 
1671 		if (devdata && aux_ch == devdata->child.aux_channel)
1672 			return port;
1673 	}
1674 
1675 	return PORT_NONE;
1676 }
1677 
1678 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
1679 			    enum port port)
1680 {
1681 	struct drm_i915_private *i915 = devdata->i915;
1682 	struct child_device_config *child;
1683 	enum port p;
1684 
1685 	p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
1686 	if (p == PORT_NONE)
1687 		return;
1688 
1689 	drm_dbg_kms(&i915->drm,
1690 		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
1691 		    "disabling port %c DP support\n",
1692 		    port_name(port), devdata->child.aux_channel,
1693 		    port_name(p), port_name(p));
1694 
1695 	/*
1696 	 * If we have multiple ports supposedly sharing the aux channel, then DP
1697 	 * couldn't exist on the shared port. Otherwise they share the same aux
1698 	 * channel and system couldn't communicate with them separately.
1699 	 *
1700 	 * Give inverse child device order the priority, last one wins. Yes,
1701 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1702 	 * port A and port E with the same AUX ch and we must pick port E :(
1703 	 */
1704 	child = &i915->vbt.ports[p]->child;
1705 
1706 	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1707 	child->aux_channel = 0;
1708 }
1709 
1710 static u8 dvo_port_type(u8 dvo_port)
1711 {
1712 	switch (dvo_port) {
1713 	case DVO_PORT_HDMIA:
1714 	case DVO_PORT_HDMIB:
1715 	case DVO_PORT_HDMIC:
1716 	case DVO_PORT_HDMID:
1717 	case DVO_PORT_HDMIE:
1718 	case DVO_PORT_HDMIF:
1719 	case DVO_PORT_HDMIG:
1720 	case DVO_PORT_HDMIH:
1721 	case DVO_PORT_HDMII:
1722 		return DVO_PORT_HDMIA;
1723 	case DVO_PORT_DPA:
1724 	case DVO_PORT_DPB:
1725 	case DVO_PORT_DPC:
1726 	case DVO_PORT_DPD:
1727 	case DVO_PORT_DPE:
1728 	case DVO_PORT_DPF:
1729 	case DVO_PORT_DPG:
1730 	case DVO_PORT_DPH:
1731 	case DVO_PORT_DPI:
1732 		return DVO_PORT_DPA;
1733 	case DVO_PORT_MIPIA:
1734 	case DVO_PORT_MIPIB:
1735 	case DVO_PORT_MIPIC:
1736 	case DVO_PORT_MIPID:
1737 		return DVO_PORT_MIPIA;
1738 	default:
1739 		return dvo_port;
1740 	}
1741 }
1742 
1743 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
1744 				    const int port_mapping[][3], u8 dvo_port)
1745 {
1746 	enum port port;
1747 	int i;
1748 
1749 	for (port = PORT_A; port < n_ports; port++) {
1750 		for (i = 0; i < n_dvo; i++) {
1751 			if (port_mapping[port][i] == -1)
1752 				break;
1753 
1754 			if (dvo_port == port_mapping[port][i])
1755 				return port;
1756 		}
1757 	}
1758 
1759 	return PORT_NONE;
1760 }
1761 
1762 static enum port dvo_port_to_port(struct drm_i915_private *i915,
1763 				  u8 dvo_port)
1764 {
1765 	/*
1766 	 * Each DDI port can have more than one value on the "DVO Port" field,
1767 	 * so look for all the possible values for each port.
1768 	 */
1769 	static const int port_mapping[][3] = {
1770 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1771 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1772 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1773 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1774 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
1775 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1776 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1777 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1778 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1779 	};
1780 	/*
1781 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
1782 	 * map to DDI A,B,TC1,TC2 respectively.
1783 	 */
1784 	static const int rkl_port_mapping[][3] = {
1785 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1786 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1787 		[PORT_C] = { -1 },
1788 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1789 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1790 	};
1791 	/*
1792 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
1793 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
1794 	 */
1795 	static const int adls_port_mapping[][3] = {
1796 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1797 		[PORT_B] = { -1 },
1798 		[PORT_C] = { -1 },
1799 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1800 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1801 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1802 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1803 	};
1804 	static const int xelpd_port_mapping[][3] = {
1805 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1806 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1807 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1808 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1809 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1810 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1811 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1812 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1813 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1814 	};
1815 
1816 	if (DISPLAY_VER(i915) == 13)
1817 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
1818 					  ARRAY_SIZE(xelpd_port_mapping[0]),
1819 					  xelpd_port_mapping,
1820 					  dvo_port);
1821 	else if (IS_ALDERLAKE_S(i915))
1822 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
1823 					  ARRAY_SIZE(adls_port_mapping[0]),
1824 					  adls_port_mapping,
1825 					  dvo_port);
1826 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
1827 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
1828 					  ARRAY_SIZE(rkl_port_mapping[0]),
1829 					  rkl_port_mapping,
1830 					  dvo_port);
1831 	else
1832 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
1833 					  ARRAY_SIZE(port_mapping[0]),
1834 					  port_mapping,
1835 					  dvo_port);
1836 }
1837 
1838 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
1839 {
1840 	switch (vbt_max_link_rate) {
1841 	default:
1842 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
1843 		return 0;
1844 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
1845 		return 2000000;
1846 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
1847 		return 1350000;
1848 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
1849 		return 1000000;
1850 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
1851 		return 810000;
1852 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
1853 		return 540000;
1854 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
1855 		return 270000;
1856 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
1857 		return 162000;
1858 	}
1859 }
1860 
1861 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
1862 {
1863 	switch (vbt_max_link_rate) {
1864 	default:
1865 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
1866 		return 810000;
1867 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
1868 		return 540000;
1869 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
1870 		return 270000;
1871 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
1872 		return 162000;
1873 	}
1874 }
1875 
1876 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
1877 {
1878 	if (!devdata || devdata->i915->vbt.version < 216)
1879 		return 0;
1880 
1881 	if (devdata->i915->vbt.version >= 230)
1882 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
1883 	else
1884 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
1885 }
1886 
1887 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
1888 				 enum port port)
1889 {
1890 	struct drm_i915_private *i915 = devdata->i915;
1891 	bool is_hdmi;
1892 
1893 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
1894 		return;
1895 
1896 	if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
1897 		return;
1898 
1899 	is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
1900 
1901 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
1902 		    is_hdmi ? "/HDMI" : "");
1903 
1904 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1905 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1906 }
1907 
1908 static bool
1909 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
1910 {
1911 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1912 }
1913 
1914 bool
1915 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
1916 {
1917 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1918 }
1919 
1920 bool
1921 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
1922 {
1923 	return intel_bios_encoder_supports_dvi(devdata) &&
1924 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1925 }
1926 
1927 bool
1928 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
1929 {
1930 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1931 }
1932 
1933 static bool
1934 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
1935 {
1936 	return intel_bios_encoder_supports_dp(devdata) &&
1937 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
1938 }
1939 
1940 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
1941 {
1942 	if (!devdata || devdata->i915->vbt.version < 158)
1943 		return -1;
1944 
1945 	return devdata->child.hdmi_level_shifter_value;
1946 }
1947 
1948 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
1949 {
1950 	if (!devdata || devdata->i915->vbt.version < 204)
1951 		return 0;
1952 
1953 	switch (devdata->child.hdmi_max_data_rate) {
1954 	default:
1955 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
1956 		fallthrough;
1957 	case HDMI_MAX_DATA_RATE_PLATFORM:
1958 		return 0;
1959 	case HDMI_MAX_DATA_RATE_297:
1960 		return 297000;
1961 	case HDMI_MAX_DATA_RATE_165:
1962 		return 165000;
1963 	}
1964 }
1965 
1966 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
1967 {
1968 	/*
1969 	 * On some ICL SKUs port F is not present, but broken VBTs mark
1970 	 * the port as present. Only try to initialize port F for the
1971 	 * SKUs that may actually have it.
1972 	 */
1973 	if (port == PORT_F && IS_ICELAKE(i915))
1974 		return IS_ICL_WITH_PORT_F(i915);
1975 
1976 	return true;
1977 }
1978 
1979 static void parse_ddi_port(struct drm_i915_private *i915,
1980 			   struct intel_bios_encoder_data *devdata)
1981 {
1982 	const struct child_device_config *child = &devdata->child;
1983 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
1984 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
1985 	enum port port;
1986 
1987 	port = dvo_port_to_port(i915, child->dvo_port);
1988 	if (port == PORT_NONE)
1989 		return;
1990 
1991 	if (!is_port_valid(i915, port)) {
1992 		drm_dbg_kms(&i915->drm,
1993 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
1994 			    port_name(port));
1995 		return;
1996 	}
1997 
1998 	if (i915->vbt.ports[port]) {
1999 		drm_dbg_kms(&i915->drm,
2000 			    "More than one child device for port %c in VBT, using the first.\n",
2001 			    port_name(port));
2002 		return;
2003 	}
2004 
2005 	sanitize_device_type(devdata, port);
2006 
2007 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2008 	is_dp = intel_bios_encoder_supports_dp(devdata);
2009 	is_crt = intel_bios_encoder_supports_crt(devdata);
2010 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2011 	is_edp = intel_bios_encoder_supports_edp(devdata);
2012 
2013 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2014 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2015 
2016 	drm_dbg_kms(&i915->drm,
2017 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2018 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2019 		    HAS_LSPCON(i915) && child->lspcon,
2020 		    supports_typec_usb, supports_tbt,
2021 		    devdata->dsc != NULL);
2022 
2023 	if (is_dvi)
2024 		sanitize_ddc_pin(devdata, port);
2025 
2026 	if (is_dp)
2027 		sanitize_aux_ch(devdata, port);
2028 
2029 	hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2030 	if (hdmi_level_shift >= 0) {
2031 		drm_dbg_kms(&i915->drm,
2032 			    "Port %c VBT HDMI level shift: %d\n",
2033 			    port_name(port), hdmi_level_shift);
2034 	}
2035 
2036 	max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2037 	if (max_tmds_clock)
2038 		drm_dbg_kms(&i915->drm,
2039 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2040 			    port_name(port), max_tmds_clock);
2041 
2042 	/* I_boost config for SKL and above */
2043 	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2044 	if (dp_boost_level)
2045 		drm_dbg_kms(&i915->drm,
2046 			    "Port %c VBT (e)DP boost level: %d\n",
2047 			    port_name(port), dp_boost_level);
2048 
2049 	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2050 	if (hdmi_boost_level)
2051 		drm_dbg_kms(&i915->drm,
2052 			    "Port %c VBT HDMI boost level: %d\n",
2053 			    port_name(port), hdmi_boost_level);
2054 
2055 	dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2056 	if (dp_max_link_rate)
2057 		drm_dbg_kms(&i915->drm,
2058 			    "Port %c VBT DP max link rate: %d\n",
2059 			    port_name(port), dp_max_link_rate);
2060 
2061 	i915->vbt.ports[port] = devdata;
2062 }
2063 
2064 static void parse_ddi_ports(struct drm_i915_private *i915)
2065 {
2066 	struct intel_bios_encoder_data *devdata;
2067 
2068 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2069 		return;
2070 
2071 	if (i915->vbt.version < 155)
2072 		return;
2073 
2074 	list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2075 		parse_ddi_port(i915, devdata);
2076 }
2077 
2078 static void
2079 parse_general_definitions(struct drm_i915_private *i915,
2080 			  const struct bdb_header *bdb)
2081 {
2082 	const struct bdb_general_definitions *defs;
2083 	struct intel_bios_encoder_data *devdata;
2084 	const struct child_device_config *child;
2085 	int i, child_device_num;
2086 	u8 expected_size;
2087 	u16 block_size;
2088 	int bus_pin;
2089 
2090 	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
2091 	if (!defs) {
2092 		drm_dbg_kms(&i915->drm,
2093 			    "No general definition block is found, no devices defined.\n");
2094 		return;
2095 	}
2096 
2097 	block_size = get_blocksize(defs);
2098 	if (block_size < sizeof(*defs)) {
2099 		drm_dbg_kms(&i915->drm,
2100 			    "General definitions block too small (%u)\n",
2101 			    block_size);
2102 		return;
2103 	}
2104 
2105 	bus_pin = defs->crt_ddc_gmbus_pin;
2106 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2107 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2108 		i915->vbt.crt_ddc_pin = bus_pin;
2109 
2110 	if (bdb->version < 106) {
2111 		expected_size = 22;
2112 	} else if (bdb->version < 111) {
2113 		expected_size = 27;
2114 	} else if (bdb->version < 195) {
2115 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2116 	} else if (bdb->version == 195) {
2117 		expected_size = 37;
2118 	} else if (bdb->version <= 215) {
2119 		expected_size = 38;
2120 	} else if (bdb->version <= 237) {
2121 		expected_size = 39;
2122 	} else {
2123 		expected_size = sizeof(*child);
2124 		BUILD_BUG_ON(sizeof(*child) < 39);
2125 		drm_dbg(&i915->drm,
2126 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2127 			bdb->version, expected_size);
2128 	}
2129 
2130 	/* Flag an error for unexpected size, but continue anyway. */
2131 	if (defs->child_dev_size != expected_size)
2132 		drm_err(&i915->drm,
2133 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2134 			defs->child_dev_size, expected_size, bdb->version);
2135 
2136 	/* The legacy sized child device config is the minimum we need. */
2137 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2138 		drm_dbg_kms(&i915->drm,
2139 			    "Child device config size %u is too small.\n",
2140 			    defs->child_dev_size);
2141 		return;
2142 	}
2143 
2144 	/* get the number of child device */
2145 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2146 
2147 	for (i = 0; i < child_device_num; i++) {
2148 		child = child_device_ptr(defs, i);
2149 		if (!child->device_type)
2150 			continue;
2151 
2152 		drm_dbg_kms(&i915->drm,
2153 			    "Found VBT child device with type 0x%x\n",
2154 			    child->device_type);
2155 
2156 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2157 		if (!devdata)
2158 			break;
2159 
2160 		devdata->i915 = i915;
2161 
2162 		/*
2163 		 * Copy as much as we know (sizeof) and is available
2164 		 * (child_dev_size) of the child device config. Accessing the
2165 		 * data must depend on VBT version.
2166 		 */
2167 		memcpy(&devdata->child, child,
2168 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2169 
2170 		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2171 	}
2172 
2173 	if (list_empty(&i915->vbt.display_devices))
2174 		drm_dbg_kms(&i915->drm,
2175 			    "no child dev is parsed from VBT\n");
2176 }
2177 
2178 /* Common defaults which may be overridden by VBT. */
2179 static void
2180 init_vbt_defaults(struct drm_i915_private *i915)
2181 {
2182 	i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2183 
2184 	/* Default to having backlight */
2185 	i915->vbt.backlight.present = true;
2186 
2187 	/* LFP panel data */
2188 	i915->vbt.lvds_dither = 1;
2189 
2190 	/* SDVO panel data */
2191 	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2192 
2193 	/* general features */
2194 	i915->vbt.int_tv_support = 1;
2195 	i915->vbt.int_crt_support = 1;
2196 
2197 	/* driver features */
2198 	i915->vbt.int_lvds_support = 1;
2199 
2200 	/* Default to using SSC */
2201 	i915->vbt.lvds_use_ssc = 1;
2202 	/*
2203 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2204 	 * clock for LVDS.
2205 	 */
2206 	i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2207 							   !HAS_PCH_SPLIT(i915));
2208 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2209 		    i915->vbt.lvds_ssc_freq);
2210 }
2211 
2212 /* Defaults to initialize only if there is no VBT. */
2213 static void
2214 init_vbt_missing_defaults(struct drm_i915_private *i915)
2215 {
2216 	enum port port;
2217 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2218 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2219 
2220 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2221 		return;
2222 
2223 	for_each_port_masked(port, ports) {
2224 		struct intel_bios_encoder_data *devdata;
2225 		struct child_device_config *child;
2226 		enum phy phy = intel_port_to_phy(i915, port);
2227 
2228 		/*
2229 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2230 		 * to detect it.
2231 		 */
2232 		if (intel_phy_is_tc(i915, phy))
2233 			continue;
2234 
2235 		/* Create fake child device config */
2236 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2237 		if (!devdata)
2238 			break;
2239 
2240 		devdata->i915 = i915;
2241 		child = &devdata->child;
2242 
2243 		if (port == PORT_F)
2244 			child->dvo_port = DVO_PORT_HDMIF;
2245 		else if (port == PORT_E)
2246 			child->dvo_port = DVO_PORT_HDMIE;
2247 		else
2248 			child->dvo_port = DVO_PORT_HDMIA + port;
2249 
2250 		if (port != PORT_A && port != PORT_E)
2251 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2252 
2253 		if (port != PORT_E)
2254 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2255 
2256 		if (port == PORT_A)
2257 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2258 
2259 		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2260 
2261 		drm_dbg_kms(&i915->drm,
2262 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2263 			    child->device_type, port_name(port));
2264 	}
2265 
2266 	/* Bypass some minimum baseline VBT version checks */
2267 	i915->vbt.version = 155;
2268 }
2269 
2270 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2271 {
2272 	const void *_vbt = vbt;
2273 
2274 	return _vbt + vbt->bdb_offset;
2275 }
2276 
2277 /**
2278  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2279  * @buf:	pointer to a buffer to validate
2280  * @size:	size of the buffer
2281  *
2282  * Returns true on valid VBT.
2283  */
2284 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2285 {
2286 	const struct vbt_header *vbt = buf;
2287 	const struct bdb_header *bdb;
2288 
2289 	if (!vbt)
2290 		return false;
2291 
2292 	if (sizeof(struct vbt_header) > size) {
2293 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2294 		return false;
2295 	}
2296 
2297 	if (memcmp(vbt->signature, "$VBT", 4)) {
2298 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2299 		return false;
2300 	}
2301 
2302 	if (vbt->vbt_size > size) {
2303 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2304 		return false;
2305 	}
2306 
2307 	size = vbt->vbt_size;
2308 
2309 	if (range_overflows_t(size_t,
2310 			      vbt->bdb_offset,
2311 			      sizeof(struct bdb_header),
2312 			      size)) {
2313 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2314 		return false;
2315 	}
2316 
2317 	bdb = get_bdb_header(vbt);
2318 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2319 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2320 		return false;
2321 	}
2322 
2323 	return vbt;
2324 }
2325 
2326 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2327 {
2328 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2329 	void __iomem *p = NULL, *oprom;
2330 	struct vbt_header *vbt;
2331 	u16 vbt_size;
2332 	size_t i, size;
2333 
2334 	oprom = pci_map_rom(pdev, &size);
2335 	if (!oprom)
2336 		return NULL;
2337 
2338 	/* Scour memory looking for the VBT signature. */
2339 	for (i = 0; i + 4 < size; i += 4) {
2340 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2341 			continue;
2342 
2343 		p = oprom + i;
2344 		size -= i;
2345 		break;
2346 	}
2347 
2348 	if (!p)
2349 		goto err_unmap_oprom;
2350 
2351 	if (sizeof(struct vbt_header) > size) {
2352 		drm_dbg(&i915->drm, "VBT header incomplete\n");
2353 		goto err_unmap_oprom;
2354 	}
2355 
2356 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2357 	if (vbt_size > size) {
2358 		drm_dbg(&i915->drm,
2359 			"VBT incomplete (vbt_size overflows)\n");
2360 		goto err_unmap_oprom;
2361 	}
2362 
2363 	/* The rest will be validated by intel_bios_is_valid_vbt() */
2364 	vbt = kmalloc(vbt_size, GFP_KERNEL);
2365 	if (!vbt)
2366 		goto err_unmap_oprom;
2367 
2368 	memcpy_fromio(vbt, p, vbt_size);
2369 
2370 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2371 		goto err_free_vbt;
2372 
2373 	pci_unmap_rom(pdev, oprom);
2374 
2375 	return vbt;
2376 
2377 err_free_vbt:
2378 	kfree(vbt);
2379 err_unmap_oprom:
2380 	pci_unmap_rom(pdev, oprom);
2381 
2382 	return NULL;
2383 }
2384 
2385 /**
2386  * intel_bios_init - find VBT and initialize settings from the BIOS
2387  * @i915: i915 device instance
2388  *
2389  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2390  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2391  * initialize some defaults if the VBT is not present at all.
2392  */
2393 void intel_bios_init(struct drm_i915_private *i915)
2394 {
2395 	const struct vbt_header *vbt = i915->opregion.vbt;
2396 	struct vbt_header *oprom_vbt = NULL;
2397 	const struct bdb_header *bdb;
2398 
2399 	INIT_LIST_HEAD(&i915->vbt.display_devices);
2400 
2401 	if (!HAS_DISPLAY(i915)) {
2402 		drm_dbg_kms(&i915->drm,
2403 			    "Skipping VBT init due to disabled display.\n");
2404 		return;
2405 	}
2406 
2407 	init_vbt_defaults(i915);
2408 
2409 	/* If the OpRegion does not have VBT, look in PCI ROM. */
2410 	if (!vbt) {
2411 		oprom_vbt = oprom_get_vbt(i915);
2412 		if (!oprom_vbt)
2413 			goto out;
2414 
2415 		vbt = oprom_vbt;
2416 
2417 		drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2418 	}
2419 
2420 	bdb = get_bdb_header(vbt);
2421 	i915->vbt.version = bdb->version;
2422 
2423 	drm_dbg_kms(&i915->drm,
2424 		    "VBT signature \"%.*s\", BDB version %d\n",
2425 		    (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2426 
2427 	/* Grab useful general definitions */
2428 	parse_general_features(i915, bdb);
2429 	parse_general_definitions(i915, bdb);
2430 	parse_panel_options(i915, bdb);
2431 	parse_panel_dtd(i915, bdb);
2432 	parse_lfp_backlight(i915, bdb);
2433 	parse_sdvo_panel_data(i915, bdb);
2434 	parse_driver_features(i915, bdb);
2435 	parse_power_conservation_features(i915, bdb);
2436 	parse_edp(i915, bdb);
2437 	parse_psr(i915, bdb);
2438 	parse_mipi_config(i915, bdb);
2439 	parse_mipi_sequence(i915, bdb);
2440 
2441 	/* Depends on child device list */
2442 	parse_compression_parameters(i915, bdb);
2443 
2444 out:
2445 	if (!vbt) {
2446 		drm_info(&i915->drm,
2447 			 "Failed to find VBIOS tables (VBT)\n");
2448 		init_vbt_missing_defaults(i915);
2449 	}
2450 
2451 	/* Further processing on pre-parsed or generated child device data */
2452 	parse_sdvo_device_mapping(i915);
2453 	parse_ddi_ports(i915);
2454 
2455 	kfree(oprom_vbt);
2456 }
2457 
2458 /**
2459  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2460  * @i915: i915 device instance
2461  */
2462 void intel_bios_driver_remove(struct drm_i915_private *i915)
2463 {
2464 	struct intel_bios_encoder_data *devdata, *n;
2465 
2466 	list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
2467 		list_del(&devdata->node);
2468 		kfree(devdata->dsc);
2469 		kfree(devdata);
2470 	}
2471 
2472 	kfree(i915->vbt.sdvo_lvds_vbt_mode);
2473 	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2474 	kfree(i915->vbt.lfp_lvds_vbt_mode);
2475 	i915->vbt.lfp_lvds_vbt_mode = NULL;
2476 	kfree(i915->vbt.dsi.data);
2477 	i915->vbt.dsi.data = NULL;
2478 	kfree(i915->vbt.dsi.pps);
2479 	i915->vbt.dsi.pps = NULL;
2480 	kfree(i915->vbt.dsi.config);
2481 	i915->vbt.dsi.config = NULL;
2482 	kfree(i915->vbt.dsi.deassert_seq);
2483 	i915->vbt.dsi.deassert_seq = NULL;
2484 }
2485 
2486 /**
2487  * intel_bios_is_tv_present - is integrated TV present in VBT
2488  * @i915: i915 device instance
2489  *
2490  * Return true if TV is present. If no child devices were parsed from VBT,
2491  * assume TV is present.
2492  */
2493 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
2494 {
2495 	const struct intel_bios_encoder_data *devdata;
2496 	const struct child_device_config *child;
2497 
2498 	if (!i915->vbt.int_tv_support)
2499 		return false;
2500 
2501 	if (list_empty(&i915->vbt.display_devices))
2502 		return true;
2503 
2504 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2505 		child = &devdata->child;
2506 
2507 		/*
2508 		 * If the device type is not TV, continue.
2509 		 */
2510 		switch (child->device_type) {
2511 		case DEVICE_TYPE_INT_TV:
2512 		case DEVICE_TYPE_TV:
2513 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2514 			break;
2515 		default:
2516 			continue;
2517 		}
2518 		/* Only when the addin_offset is non-zero, it is regarded
2519 		 * as present.
2520 		 */
2521 		if (child->addin_offset)
2522 			return true;
2523 	}
2524 
2525 	return false;
2526 }
2527 
2528 /**
2529  * intel_bios_is_lvds_present - is LVDS present in VBT
2530  * @i915:	i915 device instance
2531  * @i2c_pin:	i2c pin for LVDS if present
2532  *
2533  * Return true if LVDS is present. If no child devices were parsed from VBT,
2534  * assume LVDS is present.
2535  */
2536 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
2537 {
2538 	const struct intel_bios_encoder_data *devdata;
2539 	const struct child_device_config *child;
2540 
2541 	if (list_empty(&i915->vbt.display_devices))
2542 		return true;
2543 
2544 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2545 		child = &devdata->child;
2546 
2547 		/* If the device type is not LFP, continue.
2548 		 * We have to check both the new identifiers as well as the
2549 		 * old for compatibility with some BIOSes.
2550 		 */
2551 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
2552 		    child->device_type != DEVICE_TYPE_LFP)
2553 			continue;
2554 
2555 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
2556 			*i2c_pin = child->i2c_pin;
2557 
2558 		/* However, we cannot trust the BIOS writers to populate
2559 		 * the VBT correctly.  Since LVDS requires additional
2560 		 * information from AIM blocks, a non-zero addin offset is
2561 		 * a good indicator that the LVDS is actually present.
2562 		 */
2563 		if (child->addin_offset)
2564 			return true;
2565 
2566 		/* But even then some BIOS writers perform some black magic
2567 		 * and instantiate the device without reference to any
2568 		 * additional data.  Trust that if the VBT was written into
2569 		 * the OpRegion then they have validated the LVDS's existence.
2570 		 */
2571 		if (i915->opregion.vbt)
2572 			return true;
2573 	}
2574 
2575 	return false;
2576 }
2577 
2578 /**
2579  * intel_bios_is_port_present - is the specified digital port present
2580  * @i915:	i915 device instance
2581  * @port:	port to check
2582  *
2583  * Return true if the device in %port is present.
2584  */
2585 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
2586 {
2587 	const struct intel_bios_encoder_data *devdata;
2588 	const struct child_device_config *child;
2589 	static const struct {
2590 		u16 dp, hdmi;
2591 	} port_mapping[] = {
2592 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2593 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2594 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2595 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2596 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2597 	};
2598 
2599 	if (HAS_DDI(i915))
2600 		return i915->vbt.ports[port];
2601 
2602 	/* FIXME maybe deal with port A as well? */
2603 	if (drm_WARN_ON(&i915->drm,
2604 			port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2605 		return false;
2606 
2607 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2608 		child = &devdata->child;
2609 
2610 		if ((child->dvo_port == port_mapping[port].dp ||
2611 		     child->dvo_port == port_mapping[port].hdmi) &&
2612 		    (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2613 					   DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2614 			return true;
2615 	}
2616 
2617 	return false;
2618 }
2619 
2620 /**
2621  * intel_bios_is_port_edp - is the device in given port eDP
2622  * @i915:	i915 device instance
2623  * @port:	port to check
2624  *
2625  * Return true if the device in %port is eDP.
2626  */
2627 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
2628 {
2629 	const struct intel_bios_encoder_data *devdata;
2630 	const struct child_device_config *child;
2631 	static const short port_mapping[] = {
2632 		[PORT_B] = DVO_PORT_DPB,
2633 		[PORT_C] = DVO_PORT_DPC,
2634 		[PORT_D] = DVO_PORT_DPD,
2635 		[PORT_E] = DVO_PORT_DPE,
2636 		[PORT_F] = DVO_PORT_DPF,
2637 	};
2638 
2639 	if (HAS_DDI(i915)) {
2640 		const struct intel_bios_encoder_data *devdata;
2641 
2642 		devdata = intel_bios_encoder_data_lookup(i915, port);
2643 
2644 		return devdata && intel_bios_encoder_supports_edp(devdata);
2645 	}
2646 
2647 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2648 		child = &devdata->child;
2649 
2650 		if (child->dvo_port == port_mapping[port] &&
2651 		    (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2652 		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2653 			return true;
2654 	}
2655 
2656 	return false;
2657 }
2658 
2659 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child)
2660 {
2661 	if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2662 	    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2663 		return false;
2664 
2665 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
2666 		return true;
2667 
2668 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2669 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
2670 	    child->aux_channel != 0)
2671 		return true;
2672 
2673 	return false;
2674 }
2675 
2676 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
2677 				     enum port port)
2678 {
2679 	static const struct {
2680 		u16 dp, hdmi;
2681 	} port_mapping[] = {
2682 		/*
2683 		 * Buggy VBTs may declare DP ports as having
2684 		 * HDMI type dvo_port :( So let's check both.
2685 		 */
2686 		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2687 		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2688 		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2689 		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2690 		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2691 	};
2692 	const struct intel_bios_encoder_data *devdata;
2693 
2694 	if (HAS_DDI(i915)) {
2695 		const struct intel_bios_encoder_data *devdata;
2696 
2697 		devdata = intel_bios_encoder_data_lookup(i915, port);
2698 
2699 		return devdata && child_dev_is_dp_dual_mode(&devdata->child);
2700 	}
2701 
2702 	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2703 		return false;
2704 
2705 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2706 		if ((devdata->child.dvo_port == port_mapping[port].dp ||
2707 		     devdata->child.dvo_port == port_mapping[port].hdmi) &&
2708 		    child_dev_is_dp_dual_mode(&devdata->child))
2709 			return true;
2710 	}
2711 
2712 	return false;
2713 }
2714 
2715 /**
2716  * intel_bios_is_dsi_present - is DSI present in VBT
2717  * @i915:	i915 device instance
2718  * @port:	port for DSI if present
2719  *
2720  * Return true if DSI is present, and return the port in %port.
2721  */
2722 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
2723 			       enum port *port)
2724 {
2725 	const struct intel_bios_encoder_data *devdata;
2726 	const struct child_device_config *child;
2727 	u8 dvo_port;
2728 
2729 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2730 		child = &devdata->child;
2731 
2732 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2733 			continue;
2734 
2735 		dvo_port = child->dvo_port;
2736 
2737 		if (dvo_port == DVO_PORT_MIPIA ||
2738 		    (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
2739 		    (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
2740 			if (port)
2741 				*port = dvo_port - DVO_PORT_MIPIA;
2742 			return true;
2743 		} else if (dvo_port == DVO_PORT_MIPIB ||
2744 			   dvo_port == DVO_PORT_MIPIC ||
2745 			   dvo_port == DVO_PORT_MIPID) {
2746 			drm_dbg_kms(&i915->drm,
2747 				    "VBT has unsupported DSI port %c\n",
2748 				    port_name(dvo_port - DVO_PORT_MIPIA));
2749 		}
2750 	}
2751 
2752 	return false;
2753 }
2754 
2755 static void fill_dsc(struct intel_crtc_state *crtc_state,
2756 		     struct dsc_compression_parameters_entry *dsc,
2757 		     int dsc_max_bpc)
2758 {
2759 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2760 	int bpc = 8;
2761 
2762 	vdsc_cfg->dsc_version_major = dsc->version_major;
2763 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
2764 
2765 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
2766 		bpc = 12;
2767 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2768 		bpc = 10;
2769 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2770 		bpc = 8;
2771 	else
2772 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2773 			      dsc_max_bpc);
2774 
2775 	crtc_state->pipe_bpp = bpc * 3;
2776 
2777 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2778 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
2779 
2780 	/*
2781 	 * FIXME: This is ugly, and slice count should take DSC engine
2782 	 * throughput etc. into account.
2783 	 *
2784 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2785 	 */
2786 	if (dsc->slices_per_line & BIT(2)) {
2787 		crtc_state->dsc.slice_count = 4;
2788 	} else if (dsc->slices_per_line & BIT(1)) {
2789 		crtc_state->dsc.slice_count = 2;
2790 	} else {
2791 		/* FIXME */
2792 		if (!(dsc->slices_per_line & BIT(0)))
2793 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2794 
2795 		crtc_state->dsc.slice_count = 1;
2796 	}
2797 
2798 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2799 	    crtc_state->dsc.slice_count != 0)
2800 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2801 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
2802 			      crtc_state->dsc.slice_count);
2803 
2804 	/*
2805 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
2806 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
2807 	 */
2808 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
2809 							    dsc->rc_buffer_size);
2810 
2811 	/* FIXME: DSI spec says bpc + 1 for this one */
2812 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2813 
2814 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2815 
2816 	vdsc_cfg->slice_height = dsc->slice_height;
2817 }
2818 
2819 /* FIXME: initially DSI specific */
2820 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2821 			       struct intel_crtc_state *crtc_state,
2822 			       int dsc_max_bpc)
2823 {
2824 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2825 	const struct intel_bios_encoder_data *devdata;
2826 	const struct child_device_config *child;
2827 
2828 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2829 		child = &devdata->child;
2830 
2831 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2832 			continue;
2833 
2834 		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2835 			if (!devdata->dsc)
2836 				return false;
2837 
2838 			if (crtc_state)
2839 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2840 
2841 			return true;
2842 		}
2843 	}
2844 
2845 	return false;
2846 }
2847 
2848 /**
2849  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2850  * @i915:	i915 device instance
2851  * @port:	port to check
2852  *
2853  * Return true if HPD should be inverted for %port.
2854  */
2855 bool
2856 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2857 				enum port port)
2858 {
2859 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2860 
2861 	if (drm_WARN_ON_ONCE(&i915->drm,
2862 			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
2863 		return false;
2864 
2865 	return devdata && devdata->child.hpd_invert;
2866 }
2867 
2868 /**
2869  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2870  * @i915:	i915 device instance
2871  * @port:	port to check
2872  *
2873  * Return true if LSPCON is present on this port
2874  */
2875 bool
2876 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2877 			     enum port port)
2878 {
2879 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2880 
2881 	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
2882 }
2883 
2884 /**
2885  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
2886  * @i915:       i915 device instance
2887  * @port:       port to check
2888  *
2889  * Return true if port requires lane reversal
2890  */
2891 bool
2892 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
2893 				   enum port port)
2894 {
2895 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2896 
2897 	return devdata && devdata->child.lane_reversal;
2898 }
2899 
2900 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
2901 				   enum port port)
2902 {
2903 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2904 	enum aux_ch aux_ch;
2905 
2906 	if (!devdata || !devdata->child.aux_channel) {
2907 		aux_ch = (enum aux_ch)port;
2908 
2909 		drm_dbg_kms(&i915->drm,
2910 			    "using AUX %c for port %c (platform default)\n",
2911 			    aux_ch_name(aux_ch), port_name(port));
2912 		return aux_ch;
2913 	}
2914 
2915 	/*
2916 	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
2917 	 * map to DDI A,B,TC1,TC2 respectively.
2918 	 *
2919 	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
2920 	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
2921 	 */
2922 	switch (devdata->child.aux_channel) {
2923 	case DP_AUX_A:
2924 		aux_ch = AUX_CH_A;
2925 		break;
2926 	case DP_AUX_B:
2927 		if (IS_ALDERLAKE_S(i915))
2928 			aux_ch = AUX_CH_USBC1;
2929 		else
2930 			aux_ch = AUX_CH_B;
2931 		break;
2932 	case DP_AUX_C:
2933 		if (IS_ALDERLAKE_S(i915))
2934 			aux_ch = AUX_CH_USBC2;
2935 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2936 			aux_ch = AUX_CH_USBC1;
2937 		else
2938 			aux_ch = AUX_CH_C;
2939 		break;
2940 	case DP_AUX_D:
2941 		if (DISPLAY_VER(i915) == 13)
2942 			aux_ch = AUX_CH_D_XELPD;
2943 		else if (IS_ALDERLAKE_S(i915))
2944 			aux_ch = AUX_CH_USBC3;
2945 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2946 			aux_ch = AUX_CH_USBC2;
2947 		else
2948 			aux_ch = AUX_CH_D;
2949 		break;
2950 	case DP_AUX_E:
2951 		if (DISPLAY_VER(i915) == 13)
2952 			aux_ch = AUX_CH_E_XELPD;
2953 		else if (IS_ALDERLAKE_S(i915))
2954 			aux_ch = AUX_CH_USBC4;
2955 		else
2956 			aux_ch = AUX_CH_E;
2957 		break;
2958 	case DP_AUX_F:
2959 		if (DISPLAY_VER(i915) == 13)
2960 			aux_ch = AUX_CH_USBC1;
2961 		else
2962 			aux_ch = AUX_CH_F;
2963 		break;
2964 	case DP_AUX_G:
2965 		if (DISPLAY_VER(i915) == 13)
2966 			aux_ch = AUX_CH_USBC2;
2967 		else
2968 			aux_ch = AUX_CH_G;
2969 		break;
2970 	case DP_AUX_H:
2971 		if (DISPLAY_VER(i915) == 13)
2972 			aux_ch = AUX_CH_USBC3;
2973 		else
2974 			aux_ch = AUX_CH_H;
2975 		break;
2976 	case DP_AUX_I:
2977 		if (DISPLAY_VER(i915) == 13)
2978 			aux_ch = AUX_CH_USBC4;
2979 		else
2980 			aux_ch = AUX_CH_I;
2981 		break;
2982 	default:
2983 		MISSING_CASE(devdata->child.aux_channel);
2984 		aux_ch = AUX_CH_A;
2985 		break;
2986 	}
2987 
2988 	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
2989 		    aux_ch_name(aux_ch), port_name(port));
2990 
2991 	return aux_ch;
2992 }
2993 
2994 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2995 {
2996 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2997 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
2998 
2999 	return _intel_bios_max_tmds_clock(devdata);
3000 }
3001 
3002 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3003 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3004 {
3005 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3006 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3007 
3008 	return _intel_bios_hdmi_level_shift(devdata);
3009 }
3010 
3011 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3012 {
3013 	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3014 		return 0;
3015 
3016 	return translate_iboost(devdata->child.dp_iboost_level);
3017 }
3018 
3019 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3020 {
3021 	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3022 		return 0;
3023 
3024 	return translate_iboost(devdata->child.hdmi_iboost_level);
3025 }
3026 
3027 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3028 {
3029 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3030 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3031 
3032 	return _intel_bios_dp_max_link_rate(devdata);
3033 }
3034 
3035 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3036 {
3037 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3038 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3039 
3040 	if (!devdata || !devdata->child.ddc_pin)
3041 		return 0;
3042 
3043 	return map_ddc_pin(i915, devdata->child.ddc_pin);
3044 }
3045 
3046 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3047 {
3048 	return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3049 }
3050 
3051 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3052 {
3053 	return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3054 }
3055 
3056 const struct intel_bios_encoder_data *
3057 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3058 {
3059 	return i915->vbt.ports[port];
3060 }
3061