1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_dp_helper.h> 29 30 #include "display/intel_display.h" 31 #include "display/intel_display_types.h" 32 #include "display/intel_gmbus.h" 33 34 #include "i915_drv.h" 35 36 #define _INTEL_BIOS_PRIVATE 37 #include "intel_vbt_defs.h" 38 39 /** 40 * DOC: Video BIOS Table (VBT) 41 * 42 * The Video BIOS Table, or VBT, provides platform and board specific 43 * configuration information to the driver that is not discoverable or available 44 * through other means. The configuration is mostly related to display 45 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 46 * the PCI ROM. 47 * 48 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 49 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 50 * contain the actual configuration information. The VBT Header, and thus the 51 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 52 * BDB Header. The data blocks are concatenated after the BDB Header. The data 53 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 54 * data. (Block 53, the MIPI Sequence Block is an exception.) 55 * 56 * The driver parses the VBT during load. The relevant information is stored in 57 * driver private data for ease of use, and the actual VBT is not read after 58 * that. 59 */ 60 61 /* Wrapper for VBT child device config */ 62 struct intel_bios_encoder_data { 63 struct drm_i915_private *i915; 64 65 struct child_device_config child; 66 struct dsc_compression_parameters_entry *dsc; 67 struct list_head node; 68 }; 69 70 #define SLAVE_ADDR1 0x70 71 #define SLAVE_ADDR2 0x72 72 73 /* Get BDB block size given a pointer to Block ID. */ 74 static u32 _get_blocksize(const u8 *block_base) 75 { 76 /* The MIPI Sequence Block v3+ has a separate size field. */ 77 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 78 return *((const u32 *)(block_base + 4)); 79 else 80 return *((const u16 *)(block_base + 1)); 81 } 82 83 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 84 static u32 get_blocksize(const void *block_data) 85 { 86 return _get_blocksize(block_data - 3); 87 } 88 89 static const void * 90 find_section(const void *_bdb, enum bdb_block_id section_id) 91 { 92 const struct bdb_header *bdb = _bdb; 93 const u8 *base = _bdb; 94 int index = 0; 95 u32 total, current_size; 96 enum bdb_block_id current_id; 97 98 /* skip to first section */ 99 index += bdb->header_size; 100 total = bdb->bdb_size; 101 102 /* walk the sections looking for section_id */ 103 while (index + 3 < total) { 104 current_id = *(base + index); 105 current_size = _get_blocksize(base + index); 106 index += 3; 107 108 if (index + current_size > total) 109 return NULL; 110 111 if (current_id == section_id) 112 return base + index; 113 114 index += current_size; 115 } 116 117 return NULL; 118 } 119 120 static void 121 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 122 const struct lvds_dvo_timing *dvo_timing) 123 { 124 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 125 dvo_timing->hactive_lo; 126 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 127 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 128 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 129 ((dvo_timing->hsync_pulse_width_hi << 8) | 130 dvo_timing->hsync_pulse_width_lo); 131 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 132 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 133 134 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 135 dvo_timing->vactive_lo; 136 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 137 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 138 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 139 ((dvo_timing->vsync_pulse_width_hi << 4) | 140 dvo_timing->vsync_pulse_width_lo); 141 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 142 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 143 panel_fixed_mode->clock = dvo_timing->clock * 10; 144 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 145 146 if (dvo_timing->hsync_positive) 147 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 148 else 149 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 150 151 if (dvo_timing->vsync_positive) 152 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 153 else 154 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 155 156 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 157 dvo_timing->himage_lo; 158 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 159 dvo_timing->vimage_lo; 160 161 /* Some VBTs have bogus h/vtotal values */ 162 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 163 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 164 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 165 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 166 167 drm_mode_set_name(panel_fixed_mode); 168 } 169 170 static const struct lvds_dvo_timing * 171 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data, 172 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs, 173 int index) 174 { 175 /* 176 * the size of fp_timing varies on the different platform. 177 * So calculate the DVO timing relative offset in LVDS data 178 * entry to get the DVO timing entry 179 */ 180 181 int lfp_data_size = 182 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset - 183 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset; 184 int dvo_timing_offset = 185 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset - 186 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset; 187 char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index; 188 189 return (struct lvds_dvo_timing *)(entry + dvo_timing_offset); 190 } 191 192 /* get lvds_fp_timing entry 193 * this function may return NULL if the corresponding entry is invalid 194 */ 195 static const struct lvds_fp_timing * 196 get_lvds_fp_timing(const struct bdb_header *bdb, 197 const struct bdb_lvds_lfp_data *data, 198 const struct bdb_lvds_lfp_data_ptrs *ptrs, 199 int index) 200 { 201 size_t data_ofs = (const u8 *)data - (const u8 *)bdb; 202 u16 data_size = ((const u16 *)data)[-1]; /* stored in header */ 203 size_t ofs; 204 205 if (index >= ARRAY_SIZE(ptrs->ptr)) 206 return NULL; 207 ofs = ptrs->ptr[index].fp_timing_offset; 208 if (ofs < data_ofs || 209 ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size) 210 return NULL; 211 return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs); 212 } 213 214 /* Parse general panel options */ 215 static void 216 parse_panel_options(struct drm_i915_private *i915, 217 const struct bdb_header *bdb) 218 { 219 const struct bdb_lvds_options *lvds_options; 220 int panel_type; 221 int drrs_mode; 222 int ret; 223 224 lvds_options = find_section(bdb, BDB_LVDS_OPTIONS); 225 if (!lvds_options) 226 return; 227 228 i915->vbt.lvds_dither = lvds_options->pixel_dither; 229 230 ret = intel_opregion_get_panel_type(i915); 231 if (ret >= 0) { 232 drm_WARN_ON(&i915->drm, ret > 0xf); 233 panel_type = ret; 234 drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n", 235 panel_type); 236 } else { 237 if (lvds_options->panel_type > 0xf) { 238 drm_dbg_kms(&i915->drm, 239 "Invalid VBT panel type 0x%x\n", 240 lvds_options->panel_type); 241 return; 242 } 243 panel_type = lvds_options->panel_type; 244 drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n", 245 panel_type); 246 } 247 248 i915->vbt.panel_type = panel_type; 249 250 drrs_mode = (lvds_options->dps_panel_type_bits 251 >> (panel_type * 2)) & MODE_MASK; 252 /* 253 * VBT has static DRRS = 0 and seamless DRRS = 2. 254 * The below piece of code is required to adjust vbt.drrs_type 255 * to match the enum drrs_support_type. 256 */ 257 switch (drrs_mode) { 258 case 0: 259 i915->vbt.drrs_type = STATIC_DRRS_SUPPORT; 260 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 261 break; 262 case 2: 263 i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT; 264 drm_dbg_kms(&i915->drm, 265 "DRRS supported mode is seamless\n"); 266 break; 267 default: 268 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED; 269 drm_dbg_kms(&i915->drm, 270 "DRRS not supported (VBT input)\n"); 271 break; 272 } 273 } 274 275 /* Try to find integrated panel timing data */ 276 static void 277 parse_lfp_panel_dtd(struct drm_i915_private *i915, 278 const struct bdb_header *bdb) 279 { 280 const struct bdb_lvds_lfp_data *lvds_lfp_data; 281 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs; 282 const struct lvds_dvo_timing *panel_dvo_timing; 283 const struct lvds_fp_timing *fp_timing; 284 struct drm_display_mode *panel_fixed_mode; 285 int panel_type = i915->vbt.panel_type; 286 287 lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA); 288 if (!lvds_lfp_data) 289 return; 290 291 lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS); 292 if (!lvds_lfp_data_ptrs) 293 return; 294 295 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 296 lvds_lfp_data_ptrs, 297 panel_type); 298 299 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 300 if (!panel_fixed_mode) 301 return; 302 303 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 304 305 i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 306 307 drm_dbg_kms(&i915->drm, 308 "Found panel mode in BIOS VBT legacy lfp table:\n"); 309 drm_mode_debug_printmodeline(panel_fixed_mode); 310 311 fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data, 312 lvds_lfp_data_ptrs, 313 panel_type); 314 if (fp_timing) { 315 /* check the resolution, just to be sure */ 316 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 317 fp_timing->y_res == panel_fixed_mode->vdisplay) { 318 i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 319 drm_dbg_kms(&i915->drm, 320 "VBT initial LVDS value %x\n", 321 i915->vbt.bios_lvds_val); 322 } 323 } 324 } 325 326 static void 327 parse_generic_dtd(struct drm_i915_private *i915, 328 const struct bdb_header *bdb) 329 { 330 const struct bdb_generic_dtd *generic_dtd; 331 const struct generic_dtd_entry *dtd; 332 struct drm_display_mode *panel_fixed_mode; 333 int num_dtd; 334 335 generic_dtd = find_section(bdb, BDB_GENERIC_DTD); 336 if (!generic_dtd) 337 return; 338 339 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 340 drm_err(&i915->drm, "GDTD size %u is too small.\n", 341 generic_dtd->gdtd_size); 342 return; 343 } else if (generic_dtd->gdtd_size != 344 sizeof(struct generic_dtd_entry)) { 345 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 346 generic_dtd->gdtd_size); 347 /* DTD has unknown fields, but keep going */ 348 } 349 350 num_dtd = (get_blocksize(generic_dtd) - 351 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 352 if (i915->vbt.panel_type >= num_dtd) { 353 drm_err(&i915->drm, 354 "Panel type %d not found in table of %d DTD's\n", 355 i915->vbt.panel_type, num_dtd); 356 return; 357 } 358 359 dtd = &generic_dtd->dtd[i915->vbt.panel_type]; 360 361 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 362 if (!panel_fixed_mode) 363 return; 364 365 panel_fixed_mode->hdisplay = dtd->hactive; 366 panel_fixed_mode->hsync_start = 367 panel_fixed_mode->hdisplay + dtd->hfront_porch; 368 panel_fixed_mode->hsync_end = 369 panel_fixed_mode->hsync_start + dtd->hsync; 370 panel_fixed_mode->htotal = 371 panel_fixed_mode->hdisplay + dtd->hblank; 372 373 panel_fixed_mode->vdisplay = dtd->vactive; 374 panel_fixed_mode->vsync_start = 375 panel_fixed_mode->vdisplay + dtd->vfront_porch; 376 panel_fixed_mode->vsync_end = 377 panel_fixed_mode->vsync_start + dtd->vsync; 378 panel_fixed_mode->vtotal = 379 panel_fixed_mode->vdisplay + dtd->vblank; 380 381 panel_fixed_mode->clock = dtd->pixel_clock; 382 panel_fixed_mode->width_mm = dtd->width_mm; 383 panel_fixed_mode->height_mm = dtd->height_mm; 384 385 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 386 drm_mode_set_name(panel_fixed_mode); 387 388 if (dtd->hsync_positive_polarity) 389 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 390 else 391 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 392 393 if (dtd->vsync_positive_polarity) 394 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 395 else 396 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 397 398 drm_dbg_kms(&i915->drm, 399 "Found panel mode in BIOS VBT generic dtd table:\n"); 400 drm_mode_debug_printmodeline(panel_fixed_mode); 401 402 i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 403 } 404 405 static void 406 parse_panel_dtd(struct drm_i915_private *i915, 407 const struct bdb_header *bdb) 408 { 409 /* 410 * Older VBTs provided provided DTD information for internal displays 411 * through the "LFP panel DTD" block (42). As of VBT revision 229, 412 * that block is now deprecated and DTD information should be provided 413 * via a newer "generic DTD" block (58). Just to be safe, we'll 414 * try the new generic DTD block first on VBT >= 229, but still fall 415 * back to trying the old LFP block if that fails. 416 */ 417 if (bdb->version >= 229) 418 parse_generic_dtd(i915, bdb); 419 if (!i915->vbt.lfp_lvds_vbt_mode) 420 parse_lfp_panel_dtd(i915, bdb); 421 } 422 423 static void 424 parse_lfp_backlight(struct drm_i915_private *i915, 425 const struct bdb_header *bdb) 426 { 427 const struct bdb_lfp_backlight_data *backlight_data; 428 const struct lfp_backlight_data_entry *entry; 429 int panel_type = i915->vbt.panel_type; 430 u16 level; 431 432 backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT); 433 if (!backlight_data) 434 return; 435 436 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 437 drm_dbg_kms(&i915->drm, 438 "Unsupported backlight data entry size %u\n", 439 backlight_data->entry_size); 440 return; 441 } 442 443 entry = &backlight_data->data[panel_type]; 444 445 i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 446 if (!i915->vbt.backlight.present) { 447 drm_dbg_kms(&i915->drm, 448 "PWM backlight not present in VBT (type %u)\n", 449 entry->type); 450 return; 451 } 452 453 i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 454 if (bdb->version >= 191 && 455 get_blocksize(backlight_data) >= sizeof(*backlight_data)) { 456 const struct lfp_backlight_control_method *method; 457 458 method = &backlight_data->backlight_control[panel_type]; 459 i915->vbt.backlight.type = method->type; 460 i915->vbt.backlight.controller = method->controller; 461 } 462 463 i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 464 i915->vbt.backlight.active_low_pwm = entry->active_low_pwm; 465 466 if (bdb->version >= 234) { 467 u16 min_level; 468 bool scale; 469 470 level = backlight_data->brightness_level[panel_type].level; 471 min_level = backlight_data->brightness_min_level[panel_type].level; 472 473 if (bdb->version >= 236) 474 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 475 else 476 scale = level > 255; 477 478 if (scale) 479 min_level = min_level / 255; 480 481 if (min_level > 255) { 482 drm_warn(&i915->drm, "Brightness min level > 255\n"); 483 level = 255; 484 } 485 i915->vbt.backlight.min_brightness = min_level; 486 } else { 487 level = backlight_data->level[panel_type]; 488 i915->vbt.backlight.min_brightness = entry->min_brightness; 489 } 490 491 drm_dbg_kms(&i915->drm, 492 "VBT backlight PWM modulation frequency %u Hz, " 493 "active %s, min brightness %u, level %u, controller %u\n", 494 i915->vbt.backlight.pwm_freq_hz, 495 i915->vbt.backlight.active_low_pwm ? "low" : "high", 496 i915->vbt.backlight.min_brightness, 497 level, 498 i915->vbt.backlight.controller); 499 } 500 501 /* Try to find sdvo panel data */ 502 static void 503 parse_sdvo_panel_data(struct drm_i915_private *i915, 504 const struct bdb_header *bdb) 505 { 506 const struct bdb_sdvo_panel_dtds *dtds; 507 struct drm_display_mode *panel_fixed_mode; 508 int index; 509 510 index = i915->params.vbt_sdvo_panel_type; 511 if (index == -2) { 512 drm_dbg_kms(&i915->drm, 513 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 514 return; 515 } 516 517 if (index == -1) { 518 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 519 520 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS); 521 if (!sdvo_lvds_options) 522 return; 523 524 index = sdvo_lvds_options->panel_type; 525 } 526 527 dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS); 528 if (!dtds) 529 return; 530 531 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 532 if (!panel_fixed_mode) 533 return; 534 535 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 536 537 i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 538 539 drm_dbg_kms(&i915->drm, 540 "Found SDVO panel mode in BIOS VBT tables:\n"); 541 drm_mode_debug_printmodeline(panel_fixed_mode); 542 } 543 544 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 545 bool alternate) 546 { 547 switch (DISPLAY_VER(i915)) { 548 case 2: 549 return alternate ? 66667 : 48000; 550 case 3: 551 case 4: 552 return alternate ? 100000 : 96000; 553 default: 554 return alternate ? 100000 : 120000; 555 } 556 } 557 558 static void 559 parse_general_features(struct drm_i915_private *i915, 560 const struct bdb_header *bdb) 561 { 562 const struct bdb_general_features *general; 563 564 general = find_section(bdb, BDB_GENERAL_FEATURES); 565 if (!general) 566 return; 567 568 i915->vbt.int_tv_support = general->int_tv_support; 569 /* int_crt_support can't be trusted on earlier platforms */ 570 if (bdb->version >= 155 && 571 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 572 i915->vbt.int_crt_support = general->int_crt_support; 573 i915->vbt.lvds_use_ssc = general->enable_ssc; 574 i915->vbt.lvds_ssc_freq = 575 intel_bios_ssc_frequency(i915, general->ssc_freq); 576 i915->vbt.display_clock_mode = general->display_clock_mode; 577 i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 578 if (bdb->version >= 181) { 579 i915->vbt.orientation = general->rotate_180 ? 580 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 581 DRM_MODE_PANEL_ORIENTATION_NORMAL; 582 } else { 583 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 584 } 585 drm_dbg_kms(&i915->drm, 586 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 587 i915->vbt.int_tv_support, 588 i915->vbt.int_crt_support, 589 i915->vbt.lvds_use_ssc, 590 i915->vbt.lvds_ssc_freq, 591 i915->vbt.display_clock_mode, 592 i915->vbt.fdi_rx_polarity_inverted); 593 } 594 595 static const struct child_device_config * 596 child_device_ptr(const struct bdb_general_definitions *defs, int i) 597 { 598 return (const void *) &defs->devices[i * defs->child_dev_size]; 599 } 600 601 static void 602 parse_sdvo_device_mapping(struct drm_i915_private *i915) 603 { 604 struct sdvo_device_mapping *mapping; 605 const struct intel_bios_encoder_data *devdata; 606 const struct child_device_config *child; 607 int count = 0; 608 609 /* 610 * Only parse SDVO mappings on gens that could have SDVO. This isn't 611 * accurate and doesn't have to be, as long as it's not too strict. 612 */ 613 if (!IS_DISPLAY_VER(i915, 3, 7)) { 614 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 615 return; 616 } 617 618 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 619 child = &devdata->child; 620 621 if (child->slave_addr != SLAVE_ADDR1 && 622 child->slave_addr != SLAVE_ADDR2) { 623 /* 624 * If the slave address is neither 0x70 nor 0x72, 625 * it is not a SDVO device. Skip it. 626 */ 627 continue; 628 } 629 if (child->dvo_port != DEVICE_PORT_DVOB && 630 child->dvo_port != DEVICE_PORT_DVOC) { 631 /* skip the incorrect SDVO port */ 632 drm_dbg_kms(&i915->drm, 633 "Incorrect SDVO port. Skip it\n"); 634 continue; 635 } 636 drm_dbg_kms(&i915->drm, 637 "the SDVO device with slave addr %2x is found on" 638 " %s port\n", 639 child->slave_addr, 640 (child->dvo_port == DEVICE_PORT_DVOB) ? 641 "SDVOB" : "SDVOC"); 642 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1]; 643 if (!mapping->initialized) { 644 mapping->dvo_port = child->dvo_port; 645 mapping->slave_addr = child->slave_addr; 646 mapping->dvo_wiring = child->dvo_wiring; 647 mapping->ddc_pin = child->ddc_pin; 648 mapping->i2c_pin = child->i2c_pin; 649 mapping->initialized = 1; 650 drm_dbg_kms(&i915->drm, 651 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 652 mapping->dvo_port, mapping->slave_addr, 653 mapping->dvo_wiring, mapping->ddc_pin, 654 mapping->i2c_pin); 655 } else { 656 drm_dbg_kms(&i915->drm, 657 "Maybe one SDVO port is shared by " 658 "two SDVO device.\n"); 659 } 660 if (child->slave2_addr) { 661 /* Maybe this is a SDVO device with multiple inputs */ 662 /* And the mapping info is not added */ 663 drm_dbg_kms(&i915->drm, 664 "there exists the slave2_addr. Maybe this" 665 " is a SDVO device with multiple inputs.\n"); 666 } 667 count++; 668 } 669 670 if (!count) { 671 /* No SDVO device info is found */ 672 drm_dbg_kms(&i915->drm, 673 "No SDVO device info is found in VBT\n"); 674 } 675 } 676 677 static void 678 parse_driver_features(struct drm_i915_private *i915, 679 const struct bdb_header *bdb) 680 { 681 const struct bdb_driver_features *driver; 682 683 driver = find_section(bdb, BDB_DRIVER_FEATURES); 684 if (!driver) 685 return; 686 687 if (DISPLAY_VER(i915) >= 5) { 688 /* 689 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 690 * to mean "eDP". The VBT spec doesn't agree with that 691 * interpretation, but real world VBTs seem to. 692 */ 693 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 694 i915->vbt.int_lvds_support = 0; 695 } else { 696 /* 697 * FIXME it's not clear which BDB version has the LVDS config 698 * bits defined. Revision history in the VBT spec says: 699 * "0.92 | Add two definitions for VBT value of LVDS Active 700 * Config (00b and 11b values defined) | 06/13/2005" 701 * but does not the specify the BDB version. 702 * 703 * So far version 134 (on i945gm) is the oldest VBT observed 704 * in the wild with the bits correctly populated. Version 705 * 108 (on i85x) does not have the bits correctly populated. 706 */ 707 if (bdb->version >= 134 && 708 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 709 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 710 i915->vbt.int_lvds_support = 0; 711 } 712 713 if (bdb->version < 228) { 714 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 715 driver->drrs_enabled); 716 /* 717 * If DRRS is not supported, drrs_type has to be set to 0. 718 * This is because, VBT is configured in such a way that 719 * static DRRS is 0 and DRRS not supported is represented by 720 * driver->drrs_enabled=false 721 */ 722 if (!driver->drrs_enabled) 723 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED; 724 725 i915->vbt.psr.enable = driver->psr_enabled; 726 } 727 } 728 729 static void 730 parse_power_conservation_features(struct drm_i915_private *i915, 731 const struct bdb_header *bdb) 732 { 733 const struct bdb_lfp_power *power; 734 u8 panel_type = i915->vbt.panel_type; 735 736 if (bdb->version < 228) 737 return; 738 739 power = find_section(bdb, BDB_LFP_POWER); 740 if (!power) 741 return; 742 743 i915->vbt.psr.enable = power->psr & BIT(panel_type); 744 745 /* 746 * If DRRS is not supported, drrs_type has to be set to 0. 747 * This is because, VBT is configured in such a way that 748 * static DRRS is 0 and DRRS not supported is represented by 749 * power->drrs & BIT(panel_type)=false 750 */ 751 if (!(power->drrs & BIT(panel_type))) 752 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED; 753 754 if (bdb->version >= 232) 755 i915->vbt.edp.hobl = power->hobl & BIT(panel_type); 756 } 757 758 static void 759 parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb) 760 { 761 const struct bdb_edp *edp; 762 const struct edp_power_seq *edp_pps; 763 const struct edp_fast_link_params *edp_link_params; 764 int panel_type = i915->vbt.panel_type; 765 766 edp = find_section(bdb, BDB_EDP); 767 if (!edp) 768 return; 769 770 switch ((edp->color_depth >> (panel_type * 2)) & 3) { 771 case EDP_18BPP: 772 i915->vbt.edp.bpp = 18; 773 break; 774 case EDP_24BPP: 775 i915->vbt.edp.bpp = 24; 776 break; 777 case EDP_30BPP: 778 i915->vbt.edp.bpp = 30; 779 break; 780 } 781 782 /* Get the eDP sequencing and link info */ 783 edp_pps = &edp->power_seqs[panel_type]; 784 edp_link_params = &edp->fast_link_params[panel_type]; 785 786 i915->vbt.edp.pps = *edp_pps; 787 788 switch (edp_link_params->rate) { 789 case EDP_RATE_1_62: 790 i915->vbt.edp.rate = DP_LINK_BW_1_62; 791 break; 792 case EDP_RATE_2_7: 793 i915->vbt.edp.rate = DP_LINK_BW_2_7; 794 break; 795 default: 796 drm_dbg_kms(&i915->drm, 797 "VBT has unknown eDP link rate value %u\n", 798 edp_link_params->rate); 799 break; 800 } 801 802 switch (edp_link_params->lanes) { 803 case EDP_LANE_1: 804 i915->vbt.edp.lanes = 1; 805 break; 806 case EDP_LANE_2: 807 i915->vbt.edp.lanes = 2; 808 break; 809 case EDP_LANE_4: 810 i915->vbt.edp.lanes = 4; 811 break; 812 default: 813 drm_dbg_kms(&i915->drm, 814 "VBT has unknown eDP lane count value %u\n", 815 edp_link_params->lanes); 816 break; 817 } 818 819 switch (edp_link_params->preemphasis) { 820 case EDP_PREEMPHASIS_NONE: 821 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 822 break; 823 case EDP_PREEMPHASIS_3_5dB: 824 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 825 break; 826 case EDP_PREEMPHASIS_6dB: 827 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 828 break; 829 case EDP_PREEMPHASIS_9_5dB: 830 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 831 break; 832 default: 833 drm_dbg_kms(&i915->drm, 834 "VBT has unknown eDP pre-emphasis value %u\n", 835 edp_link_params->preemphasis); 836 break; 837 } 838 839 switch (edp_link_params->vswing) { 840 case EDP_VSWING_0_4V: 841 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 842 break; 843 case EDP_VSWING_0_6V: 844 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 845 break; 846 case EDP_VSWING_0_8V: 847 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 848 break; 849 case EDP_VSWING_1_2V: 850 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 851 break; 852 default: 853 drm_dbg_kms(&i915->drm, 854 "VBT has unknown eDP voltage swing value %u\n", 855 edp_link_params->vswing); 856 break; 857 } 858 859 if (bdb->version >= 173) { 860 u8 vswing; 861 862 /* Don't read from VBT if module parameter has valid value*/ 863 if (i915->params.edp_vswing) { 864 i915->vbt.edp.low_vswing = 865 i915->params.edp_vswing == 1; 866 } else { 867 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 868 i915->vbt.edp.low_vswing = vswing == 0; 869 } 870 } 871 } 872 873 static void 874 parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb) 875 { 876 const struct bdb_psr *psr; 877 const struct psr_table *psr_table; 878 int panel_type = i915->vbt.panel_type; 879 880 psr = find_section(bdb, BDB_PSR); 881 if (!psr) { 882 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 883 return; 884 } 885 886 psr_table = &psr->psr_table[panel_type]; 887 888 i915->vbt.psr.full_link = psr_table->full_link; 889 i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 890 891 /* Allowed VBT values goes from 0 to 15 */ 892 i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 893 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 894 895 switch (psr_table->lines_to_wait) { 896 case 0: 897 i915->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT; 898 break; 899 case 1: 900 i915->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT; 901 break; 902 case 2: 903 i915->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT; 904 break; 905 case 3: 906 i915->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT; 907 break; 908 default: 909 drm_dbg_kms(&i915->drm, 910 "VBT has unknown PSR lines to wait %u\n", 911 psr_table->lines_to_wait); 912 break; 913 } 914 915 /* 916 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 917 * Old decimal value is wake up time in multiples of 100 us. 918 */ 919 if (bdb->version >= 205 && 920 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 921 switch (psr_table->tp1_wakeup_time) { 922 case 0: 923 i915->vbt.psr.tp1_wakeup_time_us = 500; 924 break; 925 case 1: 926 i915->vbt.psr.tp1_wakeup_time_us = 100; 927 break; 928 case 3: 929 i915->vbt.psr.tp1_wakeup_time_us = 0; 930 break; 931 default: 932 drm_dbg_kms(&i915->drm, 933 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 934 psr_table->tp1_wakeup_time); 935 fallthrough; 936 case 2: 937 i915->vbt.psr.tp1_wakeup_time_us = 2500; 938 break; 939 } 940 941 switch (psr_table->tp2_tp3_wakeup_time) { 942 case 0: 943 i915->vbt.psr.tp2_tp3_wakeup_time_us = 500; 944 break; 945 case 1: 946 i915->vbt.psr.tp2_tp3_wakeup_time_us = 100; 947 break; 948 case 3: 949 i915->vbt.psr.tp2_tp3_wakeup_time_us = 0; 950 break; 951 default: 952 drm_dbg_kms(&i915->drm, 953 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 954 psr_table->tp2_tp3_wakeup_time); 955 fallthrough; 956 case 2: 957 i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 958 break; 959 } 960 } else { 961 i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 962 i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 963 } 964 965 if (bdb->version >= 226) { 966 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 967 968 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3; 969 switch (wakeup_time) { 970 case 0: 971 wakeup_time = 500; 972 break; 973 case 1: 974 wakeup_time = 100; 975 break; 976 case 3: 977 wakeup_time = 50; 978 break; 979 default: 980 case 2: 981 wakeup_time = 2500; 982 break; 983 } 984 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 985 } else { 986 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 987 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us; 988 } 989 } 990 991 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 992 u16 version, enum port port) 993 { 994 if (!i915->vbt.dsi.config->dual_link || version < 197) { 995 i915->vbt.dsi.bl_ports = BIT(port); 996 if (i915->vbt.dsi.config->cabc_supported) 997 i915->vbt.dsi.cabc_ports = BIT(port); 998 999 return; 1000 } 1001 1002 switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) { 1003 case DL_DCS_PORT_A: 1004 i915->vbt.dsi.bl_ports = BIT(PORT_A); 1005 break; 1006 case DL_DCS_PORT_C: 1007 i915->vbt.dsi.bl_ports = BIT(PORT_C); 1008 break; 1009 default: 1010 case DL_DCS_PORT_A_AND_C: 1011 i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C); 1012 break; 1013 } 1014 1015 if (!i915->vbt.dsi.config->cabc_supported) 1016 return; 1017 1018 switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) { 1019 case DL_DCS_PORT_A: 1020 i915->vbt.dsi.cabc_ports = BIT(PORT_A); 1021 break; 1022 case DL_DCS_PORT_C: 1023 i915->vbt.dsi.cabc_ports = BIT(PORT_C); 1024 break; 1025 default: 1026 case DL_DCS_PORT_A_AND_C: 1027 i915->vbt.dsi.cabc_ports = 1028 BIT(PORT_A) | BIT(PORT_C); 1029 break; 1030 } 1031 } 1032 1033 static void 1034 parse_mipi_config(struct drm_i915_private *i915, 1035 const struct bdb_header *bdb) 1036 { 1037 const struct bdb_mipi_config *start; 1038 const struct mipi_config *config; 1039 const struct mipi_pps_data *pps; 1040 int panel_type = i915->vbt.panel_type; 1041 enum port port; 1042 1043 /* parse MIPI blocks only if LFP type is MIPI */ 1044 if (!intel_bios_is_dsi_present(i915, &port)) 1045 return; 1046 1047 /* Initialize this to undefined indicating no generic MIPI support */ 1048 i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1049 1050 /* Block #40 is already parsed and panel_fixed_mode is 1051 * stored in i915->lfp_lvds_vbt_mode 1052 * resuse this when needed 1053 */ 1054 1055 /* Parse #52 for panel index used from panel_type already 1056 * parsed 1057 */ 1058 start = find_section(bdb, BDB_MIPI_CONFIG); 1059 if (!start) { 1060 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1061 return; 1062 } 1063 1064 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1065 panel_type); 1066 1067 /* 1068 * get hold of the correct configuration block and pps data as per 1069 * the panel_type as index 1070 */ 1071 config = &start->config[panel_type]; 1072 pps = &start->pps[panel_type]; 1073 1074 /* store as of now full data. Trim when we realise all is not needed */ 1075 i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1076 if (!i915->vbt.dsi.config) 1077 return; 1078 1079 i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1080 if (!i915->vbt.dsi.pps) { 1081 kfree(i915->vbt.dsi.config); 1082 return; 1083 } 1084 1085 parse_dsi_backlight_ports(i915, bdb->version, port); 1086 1087 /* FIXME is the 90 vs. 270 correct? */ 1088 switch (config->rotation) { 1089 case ENABLE_ROTATION_0: 1090 /* 1091 * Most (all?) VBTs claim 0 degrees despite having 1092 * an upside down panel, thus we do not trust this. 1093 */ 1094 i915->vbt.dsi.orientation = 1095 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1096 break; 1097 case ENABLE_ROTATION_90: 1098 i915->vbt.dsi.orientation = 1099 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1100 break; 1101 case ENABLE_ROTATION_180: 1102 i915->vbt.dsi.orientation = 1103 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1104 break; 1105 case ENABLE_ROTATION_270: 1106 i915->vbt.dsi.orientation = 1107 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1108 break; 1109 } 1110 1111 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1112 i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1113 } 1114 1115 /* Find the sequence block and size for the given panel. */ 1116 static const u8 * 1117 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1118 u16 panel_id, u32 *seq_size) 1119 { 1120 u32 total = get_blocksize(sequence); 1121 const u8 *data = &sequence->data[0]; 1122 u8 current_id; 1123 u32 current_size; 1124 int header_size = sequence->version >= 3 ? 5 : 3; 1125 int index = 0; 1126 int i; 1127 1128 /* skip new block size */ 1129 if (sequence->version >= 3) 1130 data += 4; 1131 1132 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1133 if (index + header_size > total) { 1134 DRM_ERROR("Invalid sequence block (header)\n"); 1135 return NULL; 1136 } 1137 1138 current_id = *(data + index); 1139 if (sequence->version >= 3) 1140 current_size = *((const u32 *)(data + index + 1)); 1141 else 1142 current_size = *((const u16 *)(data + index + 1)); 1143 1144 index += header_size; 1145 1146 if (index + current_size > total) { 1147 DRM_ERROR("Invalid sequence block\n"); 1148 return NULL; 1149 } 1150 1151 if (current_id == panel_id) { 1152 *seq_size = current_size; 1153 return data + index; 1154 } 1155 1156 index += current_size; 1157 } 1158 1159 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1160 1161 return NULL; 1162 } 1163 1164 static int goto_next_sequence(const u8 *data, int index, int total) 1165 { 1166 u16 len; 1167 1168 /* Skip Sequence Byte. */ 1169 for (index = index + 1; index < total; index += len) { 1170 u8 operation_byte = *(data + index); 1171 index++; 1172 1173 switch (operation_byte) { 1174 case MIPI_SEQ_ELEM_END: 1175 return index; 1176 case MIPI_SEQ_ELEM_SEND_PKT: 1177 if (index + 4 > total) 1178 return 0; 1179 1180 len = *((const u16 *)(data + index + 2)) + 4; 1181 break; 1182 case MIPI_SEQ_ELEM_DELAY: 1183 len = 4; 1184 break; 1185 case MIPI_SEQ_ELEM_GPIO: 1186 len = 2; 1187 break; 1188 case MIPI_SEQ_ELEM_I2C: 1189 if (index + 7 > total) 1190 return 0; 1191 len = *(data + index + 6) + 7; 1192 break; 1193 default: 1194 DRM_ERROR("Unknown operation byte\n"); 1195 return 0; 1196 } 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1203 { 1204 int seq_end; 1205 u16 len; 1206 u32 size_of_sequence; 1207 1208 /* 1209 * Could skip sequence based on Size of Sequence alone, but also do some 1210 * checking on the structure. 1211 */ 1212 if (total < 5) { 1213 DRM_ERROR("Too small sequence size\n"); 1214 return 0; 1215 } 1216 1217 /* Skip Sequence Byte. */ 1218 index++; 1219 1220 /* 1221 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1222 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1223 * byte. 1224 */ 1225 size_of_sequence = *((const u32 *)(data + index)); 1226 index += 4; 1227 1228 seq_end = index + size_of_sequence; 1229 if (seq_end > total) { 1230 DRM_ERROR("Invalid sequence size\n"); 1231 return 0; 1232 } 1233 1234 for (; index < total; index += len) { 1235 u8 operation_byte = *(data + index); 1236 index++; 1237 1238 if (operation_byte == MIPI_SEQ_ELEM_END) { 1239 if (index != seq_end) { 1240 DRM_ERROR("Invalid element structure\n"); 1241 return 0; 1242 } 1243 return index; 1244 } 1245 1246 len = *(data + index); 1247 index++; 1248 1249 /* 1250 * FIXME: Would be nice to check elements like for v1/v2 in 1251 * goto_next_sequence() above. 1252 */ 1253 switch (operation_byte) { 1254 case MIPI_SEQ_ELEM_SEND_PKT: 1255 case MIPI_SEQ_ELEM_DELAY: 1256 case MIPI_SEQ_ELEM_GPIO: 1257 case MIPI_SEQ_ELEM_I2C: 1258 case MIPI_SEQ_ELEM_SPI: 1259 case MIPI_SEQ_ELEM_PMIC: 1260 break; 1261 default: 1262 DRM_ERROR("Unknown operation byte %u\n", 1263 operation_byte); 1264 break; 1265 } 1266 } 1267 1268 return 0; 1269 } 1270 1271 /* 1272 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1273 * skip all delay + gpio operands and stop at the first DSI packet op. 1274 */ 1275 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915) 1276 { 1277 const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1278 int index, len; 1279 1280 if (drm_WARN_ON(&i915->drm, 1281 !data || i915->vbt.dsi.seq_version != 1)) 1282 return 0; 1283 1284 /* index = 1 to skip sequence byte */ 1285 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1286 switch (data[index]) { 1287 case MIPI_SEQ_ELEM_SEND_PKT: 1288 return index == 1 ? 0 : index; 1289 case MIPI_SEQ_ELEM_DELAY: 1290 len = 5; /* 1 byte for operand + uint32 */ 1291 break; 1292 case MIPI_SEQ_ELEM_GPIO: 1293 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1294 break; 1295 default: 1296 return 0; 1297 } 1298 } 1299 1300 return 0; 1301 } 1302 1303 /* 1304 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1305 * The deassert must be done before calling intel_dsi_device_ready, so for 1306 * these devices we split the init OTP sequence into a deassert sequence and 1307 * the actual init OTP part. 1308 */ 1309 static void fixup_mipi_sequences(struct drm_i915_private *i915) 1310 { 1311 u8 *init_otp; 1312 int len; 1313 1314 /* Limit this to VLV for now. */ 1315 if (!IS_VALLEYVIEW(i915)) 1316 return; 1317 1318 /* Limit this to v1 vid-mode sequences */ 1319 if (i915->vbt.dsi.config->is_cmd_mode || 1320 i915->vbt.dsi.seq_version != 1) 1321 return; 1322 1323 /* Only do this if there are otp and assert seqs and no deassert seq */ 1324 if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1325 !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1326 i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1327 return; 1328 1329 /* The deassert-sequence ends at the first DSI packet */ 1330 len = get_init_otp_deassert_fragment_len(i915); 1331 if (!len) 1332 return; 1333 1334 drm_dbg_kms(&i915->drm, 1335 "Using init OTP fragment to deassert reset\n"); 1336 1337 /* Copy the fragment, update seq byte and terminate it */ 1338 init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1339 i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1340 if (!i915->vbt.dsi.deassert_seq) 1341 return; 1342 i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1343 i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1344 /* Use the copy for deassert */ 1345 i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1346 i915->vbt.dsi.deassert_seq; 1347 /* Replace the last byte of the fragment with init OTP seq byte */ 1348 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1349 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1350 i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1351 } 1352 1353 static void 1354 parse_mipi_sequence(struct drm_i915_private *i915, 1355 const struct bdb_header *bdb) 1356 { 1357 int panel_type = i915->vbt.panel_type; 1358 const struct bdb_mipi_sequence *sequence; 1359 const u8 *seq_data; 1360 u32 seq_size; 1361 u8 *data; 1362 int index = 0; 1363 1364 /* Only our generic panel driver uses the sequence block. */ 1365 if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 1366 return; 1367 1368 sequence = find_section(bdb, BDB_MIPI_SEQUENCE); 1369 if (!sequence) { 1370 drm_dbg_kms(&i915->drm, 1371 "No MIPI Sequence found, parsing complete\n"); 1372 return; 1373 } 1374 1375 /* Fail gracefully for forward incompatible sequence block. */ 1376 if (sequence->version >= 4) { 1377 drm_err(&i915->drm, 1378 "Unable to parse MIPI Sequence Block v%u\n", 1379 sequence->version); 1380 return; 1381 } 1382 1383 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 1384 sequence->version); 1385 1386 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 1387 if (!seq_data) 1388 return; 1389 1390 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 1391 if (!data) 1392 return; 1393 1394 /* Parse the sequences, store pointers to each sequence. */ 1395 for (;;) { 1396 u8 seq_id = *(data + index); 1397 if (seq_id == MIPI_SEQ_END) 1398 break; 1399 1400 if (seq_id >= MIPI_SEQ_MAX) { 1401 drm_err(&i915->drm, "Unknown sequence %u\n", 1402 seq_id); 1403 goto err; 1404 } 1405 1406 /* Log about presence of sequences we won't run. */ 1407 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 1408 drm_dbg_kms(&i915->drm, 1409 "Unsupported sequence %u\n", seq_id); 1410 1411 i915->vbt.dsi.sequence[seq_id] = data + index; 1412 1413 if (sequence->version >= 3) 1414 index = goto_next_sequence_v3(data, index, seq_size); 1415 else 1416 index = goto_next_sequence(data, index, seq_size); 1417 if (!index) { 1418 drm_err(&i915->drm, "Invalid sequence %u\n", 1419 seq_id); 1420 goto err; 1421 } 1422 } 1423 1424 i915->vbt.dsi.data = data; 1425 i915->vbt.dsi.size = seq_size; 1426 i915->vbt.dsi.seq_version = sequence->version; 1427 1428 fixup_mipi_sequences(i915); 1429 1430 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 1431 return; 1432 1433 err: 1434 kfree(data); 1435 memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence)); 1436 } 1437 1438 static void 1439 parse_compression_parameters(struct drm_i915_private *i915, 1440 const struct bdb_header *bdb) 1441 { 1442 const struct bdb_compression_parameters *params; 1443 struct intel_bios_encoder_data *devdata; 1444 const struct child_device_config *child; 1445 u16 block_size; 1446 int index; 1447 1448 if (bdb->version < 198) 1449 return; 1450 1451 params = find_section(bdb, BDB_COMPRESSION_PARAMETERS); 1452 if (params) { 1453 /* Sanity checks */ 1454 if (params->entry_size != sizeof(params->data[0])) { 1455 drm_dbg_kms(&i915->drm, 1456 "VBT: unsupported compression param entry size\n"); 1457 return; 1458 } 1459 1460 block_size = get_blocksize(params); 1461 if (block_size < sizeof(*params)) { 1462 drm_dbg_kms(&i915->drm, 1463 "VBT: expected 16 compression param entries\n"); 1464 return; 1465 } 1466 } 1467 1468 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 1469 child = &devdata->child; 1470 1471 if (!child->compression_enable) 1472 continue; 1473 1474 if (!params) { 1475 drm_dbg_kms(&i915->drm, 1476 "VBT: compression params not available\n"); 1477 continue; 1478 } 1479 1480 if (child->compression_method_cps) { 1481 drm_dbg_kms(&i915->drm, 1482 "VBT: CPS compression not supported\n"); 1483 continue; 1484 } 1485 1486 index = child->compression_structure_index; 1487 1488 devdata->dsc = kmemdup(¶ms->data[index], 1489 sizeof(*devdata->dsc), GFP_KERNEL); 1490 } 1491 } 1492 1493 static u8 translate_iboost(u8 val) 1494 { 1495 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 1496 1497 if (val >= ARRAY_SIZE(mapping)) { 1498 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 1499 return 0; 1500 } 1501 return mapping[val]; 1502 } 1503 1504 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 1505 { 1506 const struct ddi_vbt_port_info *info; 1507 enum port port; 1508 1509 if (!ddc_pin) 1510 return PORT_NONE; 1511 1512 for_each_port(port) { 1513 info = &i915->vbt.ddi_port_info[port]; 1514 1515 if (info->devdata && ddc_pin == info->alternate_ddc_pin) 1516 return port; 1517 } 1518 1519 return PORT_NONE; 1520 } 1521 1522 static void sanitize_ddc_pin(struct drm_i915_private *i915, 1523 enum port port) 1524 { 1525 struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port]; 1526 struct child_device_config *child; 1527 enum port p; 1528 1529 p = get_port_by_ddc_pin(i915, info->alternate_ddc_pin); 1530 if (p == PORT_NONE) 1531 return; 1532 1533 drm_dbg_kms(&i915->drm, 1534 "port %c trying to use the same DDC pin (0x%x) as port %c, " 1535 "disabling port %c DVI/HDMI support\n", 1536 port_name(port), info->alternate_ddc_pin, 1537 port_name(p), port_name(p)); 1538 1539 /* 1540 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi 1541 * couldn't exist on the shared port. Otherwise they share the same ddc 1542 * pin and system couldn't communicate with them separately. 1543 * 1544 * Give inverse child device order the priority, last one wins. Yes, 1545 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 1546 * port A and port E with the same AUX ch and we must pick port E :( 1547 */ 1548 info = &i915->vbt.ddi_port_info[p]; 1549 child = &info->devdata->child; 1550 1551 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 1552 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 1553 1554 info->alternate_ddc_pin = 0; 1555 } 1556 1557 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 1558 { 1559 const struct ddi_vbt_port_info *info; 1560 enum port port; 1561 1562 if (!aux_ch) 1563 return PORT_NONE; 1564 1565 for_each_port(port) { 1566 info = &i915->vbt.ddi_port_info[port]; 1567 1568 if (info->devdata && aux_ch == info->alternate_aux_channel) 1569 return port; 1570 } 1571 1572 return PORT_NONE; 1573 } 1574 1575 static void sanitize_aux_ch(struct drm_i915_private *i915, 1576 enum port port) 1577 { 1578 struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port]; 1579 struct child_device_config *child; 1580 enum port p; 1581 1582 p = get_port_by_aux_ch(i915, info->alternate_aux_channel); 1583 if (p == PORT_NONE) 1584 return; 1585 1586 drm_dbg_kms(&i915->drm, 1587 "port %c trying to use the same AUX CH (0x%x) as port %c, " 1588 "disabling port %c DP support\n", 1589 port_name(port), info->alternate_aux_channel, 1590 port_name(p), port_name(p)); 1591 1592 /* 1593 * If we have multiple ports supposedly sharing the aux channel, then DP 1594 * couldn't exist on the shared port. Otherwise they share the same aux 1595 * channel and system couldn't communicate with them separately. 1596 * 1597 * Give inverse child device order the priority, last one wins. Yes, 1598 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 1599 * port A and port E with the same AUX ch and we must pick port E :( 1600 */ 1601 info = &i915->vbt.ddi_port_info[p]; 1602 child = &info->devdata->child; 1603 1604 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT; 1605 info->alternate_aux_channel = 0; 1606 } 1607 1608 static const u8 cnp_ddc_pin_map[] = { 1609 [0] = 0, /* N/A */ 1610 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 1611 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 1612 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 1613 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 1614 }; 1615 1616 static const u8 icp_ddc_pin_map[] = { 1617 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 1618 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 1619 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 1620 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 1621 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 1622 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 1623 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 1624 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 1625 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 1626 }; 1627 1628 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 1629 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 1630 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 1631 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 1632 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 1633 }; 1634 1635 static const u8 adls_ddc_pin_map[] = { 1636 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 1637 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 1638 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 1639 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 1640 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 1641 }; 1642 1643 static const u8 gen9bc_tgp_ddc_pin_map[] = { 1644 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 1645 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 1646 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 1647 }; 1648 1649 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 1650 { 1651 const u8 *ddc_pin_map; 1652 int n_entries; 1653 1654 if (IS_ALDERLAKE_S(i915)) { 1655 ddc_pin_map = adls_ddc_pin_map; 1656 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 1657 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 1658 return vbt_pin; 1659 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 1660 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 1661 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 1662 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 1663 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 1664 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 1665 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 1666 ddc_pin_map = icp_ddc_pin_map; 1667 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 1668 } else if (HAS_PCH_CNP(i915)) { 1669 ddc_pin_map = cnp_ddc_pin_map; 1670 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 1671 } else { 1672 /* Assuming direct map */ 1673 return vbt_pin; 1674 } 1675 1676 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 1677 return ddc_pin_map[vbt_pin]; 1678 1679 drm_dbg_kms(&i915->drm, 1680 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 1681 vbt_pin); 1682 return 0; 1683 } 1684 1685 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 1686 const int port_mapping[][3], u8 dvo_port) 1687 { 1688 enum port port; 1689 int i; 1690 1691 for (port = PORT_A; port < n_ports; port++) { 1692 for (i = 0; i < n_dvo; i++) { 1693 if (port_mapping[port][i] == -1) 1694 break; 1695 1696 if (dvo_port == port_mapping[port][i]) 1697 return port; 1698 } 1699 } 1700 1701 return PORT_NONE; 1702 } 1703 1704 static enum port dvo_port_to_port(struct drm_i915_private *i915, 1705 u8 dvo_port) 1706 { 1707 /* 1708 * Each DDI port can have more than one value on the "DVO Port" field, 1709 * so look for all the possible values for each port. 1710 */ 1711 static const int port_mapping[][3] = { 1712 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1713 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1714 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1715 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1716 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 1717 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 1718 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 1719 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 1720 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 1721 }; 1722 /* 1723 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 1724 * map to DDI A,B,TC1,TC2 respectively. 1725 */ 1726 static const int rkl_port_mapping[][3] = { 1727 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1728 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1729 [PORT_C] = { -1 }, 1730 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1731 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1732 }; 1733 /* 1734 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 1735 * PORT_F and PORT_G, we need to map that to correct VBT sections. 1736 */ 1737 static const int adls_port_mapping[][3] = { 1738 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1739 [PORT_B] = { -1 }, 1740 [PORT_C] = { -1 }, 1741 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1742 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1743 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1744 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 1745 }; 1746 static const int xelpd_port_mapping[][3] = { 1747 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1748 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1749 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1750 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1751 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 1752 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 1753 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 1754 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 1755 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 1756 }; 1757 1758 if (DISPLAY_VER(i915) == 13) 1759 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 1760 ARRAY_SIZE(xelpd_port_mapping[0]), 1761 xelpd_port_mapping, 1762 dvo_port); 1763 else if (IS_ALDERLAKE_S(i915)) 1764 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 1765 ARRAY_SIZE(adls_port_mapping[0]), 1766 adls_port_mapping, 1767 dvo_port); 1768 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 1769 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 1770 ARRAY_SIZE(rkl_port_mapping[0]), 1771 rkl_port_mapping, 1772 dvo_port); 1773 else 1774 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 1775 ARRAY_SIZE(port_mapping[0]), 1776 port_mapping, 1777 dvo_port); 1778 } 1779 1780 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 1781 { 1782 switch (vbt_max_link_rate) { 1783 default: 1784 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 1785 return 0; 1786 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 1787 return 2000000; 1788 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 1789 return 1350000; 1790 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 1791 return 1000000; 1792 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 1793 return 810000; 1794 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 1795 return 540000; 1796 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 1797 return 270000; 1798 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 1799 return 162000; 1800 } 1801 } 1802 1803 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 1804 { 1805 switch (vbt_max_link_rate) { 1806 default: 1807 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 1808 return 810000; 1809 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 1810 return 540000; 1811 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 1812 return 270000; 1813 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 1814 return 162000; 1815 } 1816 } 1817 1818 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 1819 enum port port) 1820 { 1821 struct drm_i915_private *i915 = devdata->i915; 1822 bool is_hdmi; 1823 1824 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 1825 return; 1826 1827 if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING)) 1828 return; 1829 1830 is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT); 1831 1832 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 1833 is_hdmi ? "/HDMI" : ""); 1834 1835 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 1836 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 1837 } 1838 1839 static bool 1840 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 1841 { 1842 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 1843 } 1844 1845 bool 1846 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 1847 { 1848 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 1849 } 1850 1851 bool 1852 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 1853 { 1854 return intel_bios_encoder_supports_dvi(devdata) && 1855 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 1856 } 1857 1858 bool 1859 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 1860 { 1861 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 1862 } 1863 1864 static bool 1865 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 1866 { 1867 return intel_bios_encoder_supports_dp(devdata) && 1868 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 1869 } 1870 1871 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 1872 { 1873 /* 1874 * On some ICL/CNL SKUs port F is not present, but broken VBTs mark 1875 * the port as present. Only try to initialize port F for the 1876 * SKUs that may actually have it. 1877 */ 1878 if (port == PORT_F && (IS_ICELAKE(i915) || IS_CANNONLAKE(i915))) 1879 return IS_ICL_WITH_PORT_F(i915) || IS_CNL_WITH_PORT_F(i915); 1880 1881 return true; 1882 } 1883 1884 static void parse_ddi_port(struct drm_i915_private *i915, 1885 struct intel_bios_encoder_data *devdata) 1886 { 1887 const struct child_device_config *child = &devdata->child; 1888 struct ddi_vbt_port_info *info; 1889 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt; 1890 int dp_boost_level, hdmi_boost_level; 1891 enum port port; 1892 1893 port = dvo_port_to_port(i915, child->dvo_port); 1894 if (port == PORT_NONE) 1895 return; 1896 1897 if (!is_port_valid(i915, port)) { 1898 drm_dbg_kms(&i915->drm, 1899 "VBT reports port %c as supported, but that can't be true: skipping\n", 1900 port_name(port)); 1901 return; 1902 } 1903 1904 info = &i915->vbt.ddi_port_info[port]; 1905 1906 if (info->devdata) { 1907 drm_dbg_kms(&i915->drm, 1908 "More than one child device for port %c in VBT, using the first.\n", 1909 port_name(port)); 1910 return; 1911 } 1912 1913 sanitize_device_type(devdata, port); 1914 1915 is_dvi = intel_bios_encoder_supports_dvi(devdata); 1916 is_dp = intel_bios_encoder_supports_dp(devdata); 1917 is_crt = intel_bios_encoder_supports_crt(devdata); 1918 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 1919 is_edp = intel_bios_encoder_supports_edp(devdata); 1920 1921 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 1922 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 1923 1924 drm_dbg_kms(&i915->drm, 1925 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 1926 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, 1927 HAS_LSPCON(i915) && child->lspcon, 1928 supports_typec_usb, supports_tbt, 1929 devdata->dsc != NULL); 1930 1931 if (is_dvi) { 1932 u8 ddc_pin; 1933 1934 ddc_pin = map_ddc_pin(i915, child->ddc_pin); 1935 if (intel_gmbus_is_valid_pin(i915, ddc_pin)) { 1936 info->alternate_ddc_pin = ddc_pin; 1937 sanitize_ddc_pin(i915, port); 1938 } else { 1939 drm_dbg_kms(&i915->drm, 1940 "Port %c has invalid DDC pin %d, " 1941 "sticking to defaults\n", 1942 port_name(port), ddc_pin); 1943 } 1944 } 1945 1946 if (is_dp) { 1947 info->alternate_aux_channel = child->aux_channel; 1948 1949 sanitize_aux_ch(i915, port); 1950 } 1951 1952 if (i915->vbt.version >= 158) { 1953 /* The VBT HDMI level shift values match the table we have. */ 1954 u8 hdmi_level_shift = child->hdmi_level_shifter_value; 1955 drm_dbg_kms(&i915->drm, 1956 "Port %c VBT HDMI level shift: %d\n", 1957 port_name(port), 1958 hdmi_level_shift); 1959 info->hdmi_level_shift = hdmi_level_shift; 1960 info->hdmi_level_shift_set = true; 1961 } 1962 1963 if (i915->vbt.version >= 204) { 1964 int max_tmds_clock; 1965 1966 switch (child->hdmi_max_data_rate) { 1967 default: 1968 MISSING_CASE(child->hdmi_max_data_rate); 1969 fallthrough; 1970 case HDMI_MAX_DATA_RATE_PLATFORM: 1971 max_tmds_clock = 0; 1972 break; 1973 case HDMI_MAX_DATA_RATE_297: 1974 max_tmds_clock = 297000; 1975 break; 1976 case HDMI_MAX_DATA_RATE_165: 1977 max_tmds_clock = 165000; 1978 break; 1979 } 1980 1981 if (max_tmds_clock) 1982 drm_dbg_kms(&i915->drm, 1983 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 1984 port_name(port), max_tmds_clock); 1985 info->max_tmds_clock = max_tmds_clock; 1986 } 1987 1988 /* I_boost config for SKL and above */ 1989 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata); 1990 if (dp_boost_level) 1991 drm_dbg_kms(&i915->drm, 1992 "Port %c VBT (e)DP boost level: %d\n", 1993 port_name(port), dp_boost_level); 1994 1995 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata); 1996 if (hdmi_boost_level) 1997 drm_dbg_kms(&i915->drm, 1998 "Port %c VBT HDMI boost level: %d\n", 1999 port_name(port), hdmi_boost_level); 2000 2001 /* DP max link rate for CNL+ */ 2002 if (i915->vbt.version >= 216) { 2003 if (i915->vbt.version >= 230) 2004 info->dp_max_link_rate = parse_bdb_230_dp_max_link_rate(child->dp_max_link_rate); 2005 else 2006 info->dp_max_link_rate = parse_bdb_216_dp_max_link_rate(child->dp_max_link_rate); 2007 2008 drm_dbg_kms(&i915->drm, 2009 "Port %c VBT DP max link rate: %d\n", 2010 port_name(port), info->dp_max_link_rate); 2011 } 2012 2013 info->devdata = devdata; 2014 } 2015 2016 static void parse_ddi_ports(struct drm_i915_private *i915) 2017 { 2018 struct intel_bios_encoder_data *devdata; 2019 2020 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2021 return; 2022 2023 if (i915->vbt.version < 155) 2024 return; 2025 2026 list_for_each_entry(devdata, &i915->vbt.display_devices, node) 2027 parse_ddi_port(i915, devdata); 2028 } 2029 2030 static void 2031 parse_general_definitions(struct drm_i915_private *i915, 2032 const struct bdb_header *bdb) 2033 { 2034 const struct bdb_general_definitions *defs; 2035 struct intel_bios_encoder_data *devdata; 2036 const struct child_device_config *child; 2037 int i, child_device_num; 2038 u8 expected_size; 2039 u16 block_size; 2040 int bus_pin; 2041 2042 defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); 2043 if (!defs) { 2044 drm_dbg_kms(&i915->drm, 2045 "No general definition block is found, no devices defined.\n"); 2046 return; 2047 } 2048 2049 block_size = get_blocksize(defs); 2050 if (block_size < sizeof(*defs)) { 2051 drm_dbg_kms(&i915->drm, 2052 "General definitions block too small (%u)\n", 2053 block_size); 2054 return; 2055 } 2056 2057 bus_pin = defs->crt_ddc_gmbus_pin; 2058 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2059 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2060 i915->vbt.crt_ddc_pin = bus_pin; 2061 2062 if (bdb->version < 106) { 2063 expected_size = 22; 2064 } else if (bdb->version < 111) { 2065 expected_size = 27; 2066 } else if (bdb->version < 195) { 2067 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2068 } else if (bdb->version == 195) { 2069 expected_size = 37; 2070 } else if (bdb->version <= 215) { 2071 expected_size = 38; 2072 } else if (bdb->version <= 237) { 2073 expected_size = 39; 2074 } else { 2075 expected_size = sizeof(*child); 2076 BUILD_BUG_ON(sizeof(*child) < 39); 2077 drm_dbg(&i915->drm, 2078 "Expected child device config size for VBT version %u not known; assuming %u\n", 2079 bdb->version, expected_size); 2080 } 2081 2082 /* Flag an error for unexpected size, but continue anyway. */ 2083 if (defs->child_dev_size != expected_size) 2084 drm_err(&i915->drm, 2085 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2086 defs->child_dev_size, expected_size, bdb->version); 2087 2088 /* The legacy sized child device config is the minimum we need. */ 2089 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2090 drm_dbg_kms(&i915->drm, 2091 "Child device config size %u is too small.\n", 2092 defs->child_dev_size); 2093 return; 2094 } 2095 2096 /* get the number of child device */ 2097 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2098 2099 for (i = 0; i < child_device_num; i++) { 2100 child = child_device_ptr(defs, i); 2101 if (!child->device_type) 2102 continue; 2103 2104 drm_dbg_kms(&i915->drm, 2105 "Found VBT child device with type 0x%x\n", 2106 child->device_type); 2107 2108 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2109 if (!devdata) 2110 break; 2111 2112 devdata->i915 = i915; 2113 2114 /* 2115 * Copy as much as we know (sizeof) and is available 2116 * (child_dev_size) of the child device config. Accessing the 2117 * data must depend on VBT version. 2118 */ 2119 memcpy(&devdata->child, child, 2120 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2121 2122 list_add_tail(&devdata->node, &i915->vbt.display_devices); 2123 } 2124 2125 if (list_empty(&i915->vbt.display_devices)) 2126 drm_dbg_kms(&i915->drm, 2127 "no child dev is parsed from VBT\n"); 2128 } 2129 2130 /* Common defaults which may be overridden by VBT. */ 2131 static void 2132 init_vbt_defaults(struct drm_i915_private *i915) 2133 { 2134 i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2135 2136 /* Default to having backlight */ 2137 i915->vbt.backlight.present = true; 2138 2139 /* LFP panel data */ 2140 i915->vbt.lvds_dither = 1; 2141 2142 /* SDVO panel data */ 2143 i915->vbt.sdvo_lvds_vbt_mode = NULL; 2144 2145 /* general features */ 2146 i915->vbt.int_tv_support = 1; 2147 i915->vbt.int_crt_support = 1; 2148 2149 /* driver features */ 2150 i915->vbt.int_lvds_support = 1; 2151 2152 /* Default to using SSC */ 2153 i915->vbt.lvds_use_ssc = 1; 2154 /* 2155 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2156 * clock for LVDS. 2157 */ 2158 i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2159 !HAS_PCH_SPLIT(i915)); 2160 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2161 i915->vbt.lvds_ssc_freq); 2162 } 2163 2164 /* Defaults to initialize only if there is no VBT. */ 2165 static void 2166 init_vbt_missing_defaults(struct drm_i915_private *i915) 2167 { 2168 enum port port; 2169 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2170 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2171 2172 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2173 return; 2174 2175 for_each_port_masked(port, ports) { 2176 struct intel_bios_encoder_data *devdata; 2177 struct child_device_config *child; 2178 enum phy phy = intel_port_to_phy(i915, port); 2179 2180 /* 2181 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2182 * to detect it. 2183 */ 2184 if (intel_phy_is_tc(i915, phy)) 2185 continue; 2186 2187 /* Create fake child device config */ 2188 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2189 if (!devdata) 2190 break; 2191 2192 devdata->i915 = i915; 2193 child = &devdata->child; 2194 2195 if (port == PORT_F) 2196 child->dvo_port = DVO_PORT_HDMIF; 2197 else if (port == PORT_E) 2198 child->dvo_port = DVO_PORT_HDMIE; 2199 else 2200 child->dvo_port = DVO_PORT_HDMIA + port; 2201 2202 if (port != PORT_A && port != PORT_E) 2203 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2204 2205 if (port != PORT_E) 2206 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2207 2208 if (port == PORT_A) 2209 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2210 2211 list_add_tail(&devdata->node, &i915->vbt.display_devices); 2212 2213 drm_dbg_kms(&i915->drm, 2214 "Generating default VBT child device with type 0x04%x on port %c\n", 2215 child->device_type, port_name(port)); 2216 } 2217 2218 /* Bypass some minimum baseline VBT version checks */ 2219 i915->vbt.version = 155; 2220 } 2221 2222 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2223 { 2224 const void *_vbt = vbt; 2225 2226 return _vbt + vbt->bdb_offset; 2227 } 2228 2229 /** 2230 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2231 * @buf: pointer to a buffer to validate 2232 * @size: size of the buffer 2233 * 2234 * Returns true on valid VBT. 2235 */ 2236 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2237 { 2238 const struct vbt_header *vbt = buf; 2239 const struct bdb_header *bdb; 2240 2241 if (!vbt) 2242 return false; 2243 2244 if (sizeof(struct vbt_header) > size) { 2245 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2246 return false; 2247 } 2248 2249 if (memcmp(vbt->signature, "$VBT", 4)) { 2250 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2251 return false; 2252 } 2253 2254 if (vbt->vbt_size > size) { 2255 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2256 return false; 2257 } 2258 2259 size = vbt->vbt_size; 2260 2261 if (range_overflows_t(size_t, 2262 vbt->bdb_offset, 2263 sizeof(struct bdb_header), 2264 size)) { 2265 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 2266 return false; 2267 } 2268 2269 bdb = get_bdb_header(vbt); 2270 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2271 DRM_DEBUG_DRIVER("BDB incomplete\n"); 2272 return false; 2273 } 2274 2275 return vbt; 2276 } 2277 2278 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 2279 { 2280 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 2281 void __iomem *p = NULL, *oprom; 2282 struct vbt_header *vbt; 2283 u16 vbt_size; 2284 size_t i, size; 2285 2286 oprom = pci_map_rom(pdev, &size); 2287 if (!oprom) 2288 return NULL; 2289 2290 /* Scour memory looking for the VBT signature. */ 2291 for (i = 0; i + 4 < size; i += 4) { 2292 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 2293 continue; 2294 2295 p = oprom + i; 2296 size -= i; 2297 break; 2298 } 2299 2300 if (!p) 2301 goto err_unmap_oprom; 2302 2303 if (sizeof(struct vbt_header) > size) { 2304 drm_dbg(&i915->drm, "VBT header incomplete\n"); 2305 goto err_unmap_oprom; 2306 } 2307 2308 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 2309 if (vbt_size > size) { 2310 drm_dbg(&i915->drm, 2311 "VBT incomplete (vbt_size overflows)\n"); 2312 goto err_unmap_oprom; 2313 } 2314 2315 /* The rest will be validated by intel_bios_is_valid_vbt() */ 2316 vbt = kmalloc(vbt_size, GFP_KERNEL); 2317 if (!vbt) 2318 goto err_unmap_oprom; 2319 2320 memcpy_fromio(vbt, p, vbt_size); 2321 2322 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 2323 goto err_free_vbt; 2324 2325 pci_unmap_rom(pdev, oprom); 2326 2327 return vbt; 2328 2329 err_free_vbt: 2330 kfree(vbt); 2331 err_unmap_oprom: 2332 pci_unmap_rom(pdev, oprom); 2333 2334 return NULL; 2335 } 2336 2337 /** 2338 * intel_bios_init - find VBT and initialize settings from the BIOS 2339 * @i915: i915 device instance 2340 * 2341 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 2342 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 2343 * initialize some defaults if the VBT is not present at all. 2344 */ 2345 void intel_bios_init(struct drm_i915_private *i915) 2346 { 2347 const struct vbt_header *vbt = i915->opregion.vbt; 2348 struct vbt_header *oprom_vbt = NULL; 2349 const struct bdb_header *bdb; 2350 2351 INIT_LIST_HEAD(&i915->vbt.display_devices); 2352 2353 if (!HAS_DISPLAY(i915)) { 2354 drm_dbg_kms(&i915->drm, 2355 "Skipping VBT init due to disabled display.\n"); 2356 return; 2357 } 2358 2359 init_vbt_defaults(i915); 2360 2361 /* If the OpRegion does not have VBT, look in PCI ROM. */ 2362 if (!vbt) { 2363 oprom_vbt = oprom_get_vbt(i915); 2364 if (!oprom_vbt) 2365 goto out; 2366 2367 vbt = oprom_vbt; 2368 2369 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 2370 } 2371 2372 bdb = get_bdb_header(vbt); 2373 i915->vbt.version = bdb->version; 2374 2375 drm_dbg_kms(&i915->drm, 2376 "VBT signature \"%.*s\", BDB version %d\n", 2377 (int)sizeof(vbt->signature), vbt->signature, bdb->version); 2378 2379 /* Grab useful general definitions */ 2380 parse_general_features(i915, bdb); 2381 parse_general_definitions(i915, bdb); 2382 parse_panel_options(i915, bdb); 2383 parse_panel_dtd(i915, bdb); 2384 parse_lfp_backlight(i915, bdb); 2385 parse_sdvo_panel_data(i915, bdb); 2386 parse_driver_features(i915, bdb); 2387 parse_power_conservation_features(i915, bdb); 2388 parse_edp(i915, bdb); 2389 parse_psr(i915, bdb); 2390 parse_mipi_config(i915, bdb); 2391 parse_mipi_sequence(i915, bdb); 2392 2393 /* Depends on child device list */ 2394 parse_compression_parameters(i915, bdb); 2395 2396 out: 2397 if (!vbt) { 2398 drm_info(&i915->drm, 2399 "Failed to find VBIOS tables (VBT)\n"); 2400 init_vbt_missing_defaults(i915); 2401 } 2402 2403 /* Further processing on pre-parsed or generated child device data */ 2404 parse_sdvo_device_mapping(i915); 2405 parse_ddi_ports(i915); 2406 2407 kfree(oprom_vbt); 2408 } 2409 2410 /** 2411 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 2412 * @i915: i915 device instance 2413 */ 2414 void intel_bios_driver_remove(struct drm_i915_private *i915) 2415 { 2416 struct intel_bios_encoder_data *devdata, *n; 2417 2418 list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) { 2419 list_del(&devdata->node); 2420 kfree(devdata->dsc); 2421 kfree(devdata); 2422 } 2423 2424 kfree(i915->vbt.sdvo_lvds_vbt_mode); 2425 i915->vbt.sdvo_lvds_vbt_mode = NULL; 2426 kfree(i915->vbt.lfp_lvds_vbt_mode); 2427 i915->vbt.lfp_lvds_vbt_mode = NULL; 2428 kfree(i915->vbt.dsi.data); 2429 i915->vbt.dsi.data = NULL; 2430 kfree(i915->vbt.dsi.pps); 2431 i915->vbt.dsi.pps = NULL; 2432 kfree(i915->vbt.dsi.config); 2433 i915->vbt.dsi.config = NULL; 2434 kfree(i915->vbt.dsi.deassert_seq); 2435 i915->vbt.dsi.deassert_seq = NULL; 2436 } 2437 2438 /** 2439 * intel_bios_is_tv_present - is integrated TV present in VBT 2440 * @i915: i915 device instance 2441 * 2442 * Return true if TV is present. If no child devices were parsed from VBT, 2443 * assume TV is present. 2444 */ 2445 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 2446 { 2447 const struct intel_bios_encoder_data *devdata; 2448 const struct child_device_config *child; 2449 2450 if (!i915->vbt.int_tv_support) 2451 return false; 2452 2453 if (list_empty(&i915->vbt.display_devices)) 2454 return true; 2455 2456 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2457 child = &devdata->child; 2458 2459 /* 2460 * If the device type is not TV, continue. 2461 */ 2462 switch (child->device_type) { 2463 case DEVICE_TYPE_INT_TV: 2464 case DEVICE_TYPE_TV: 2465 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 2466 break; 2467 default: 2468 continue; 2469 } 2470 /* Only when the addin_offset is non-zero, it is regarded 2471 * as present. 2472 */ 2473 if (child->addin_offset) 2474 return true; 2475 } 2476 2477 return false; 2478 } 2479 2480 /** 2481 * intel_bios_is_lvds_present - is LVDS present in VBT 2482 * @i915: i915 device instance 2483 * @i2c_pin: i2c pin for LVDS if present 2484 * 2485 * Return true if LVDS is present. If no child devices were parsed from VBT, 2486 * assume LVDS is present. 2487 */ 2488 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 2489 { 2490 const struct intel_bios_encoder_data *devdata; 2491 const struct child_device_config *child; 2492 2493 if (list_empty(&i915->vbt.display_devices)) 2494 return true; 2495 2496 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2497 child = &devdata->child; 2498 2499 /* If the device type is not LFP, continue. 2500 * We have to check both the new identifiers as well as the 2501 * old for compatibility with some BIOSes. 2502 */ 2503 if (child->device_type != DEVICE_TYPE_INT_LFP && 2504 child->device_type != DEVICE_TYPE_LFP) 2505 continue; 2506 2507 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 2508 *i2c_pin = child->i2c_pin; 2509 2510 /* However, we cannot trust the BIOS writers to populate 2511 * the VBT correctly. Since LVDS requires additional 2512 * information from AIM blocks, a non-zero addin offset is 2513 * a good indicator that the LVDS is actually present. 2514 */ 2515 if (child->addin_offset) 2516 return true; 2517 2518 /* But even then some BIOS writers perform some black magic 2519 * and instantiate the device without reference to any 2520 * additional data. Trust that if the VBT was written into 2521 * the OpRegion then they have validated the LVDS's existence. 2522 */ 2523 if (i915->opregion.vbt) 2524 return true; 2525 } 2526 2527 return false; 2528 } 2529 2530 /** 2531 * intel_bios_is_port_present - is the specified digital port present 2532 * @i915: i915 device instance 2533 * @port: port to check 2534 * 2535 * Return true if the device in %port is present. 2536 */ 2537 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 2538 { 2539 const struct intel_bios_encoder_data *devdata; 2540 const struct child_device_config *child; 2541 static const struct { 2542 u16 dp, hdmi; 2543 } port_mapping[] = { 2544 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, }, 2545 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, }, 2546 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, }, 2547 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, }, 2548 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, }, 2549 }; 2550 2551 if (HAS_DDI(i915)) { 2552 const struct ddi_vbt_port_info *port_info = 2553 &i915->vbt.ddi_port_info[port]; 2554 2555 return port_info->devdata; 2556 } 2557 2558 /* FIXME maybe deal with port A as well? */ 2559 if (drm_WARN_ON(&i915->drm, 2560 port == PORT_A) || port >= ARRAY_SIZE(port_mapping)) 2561 return false; 2562 2563 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2564 child = &devdata->child; 2565 2566 if ((child->dvo_port == port_mapping[port].dp || 2567 child->dvo_port == port_mapping[port].hdmi) && 2568 (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING | 2569 DEVICE_TYPE_DISPLAYPORT_OUTPUT))) 2570 return true; 2571 } 2572 2573 return false; 2574 } 2575 2576 /** 2577 * intel_bios_is_port_edp - is the device in given port eDP 2578 * @i915: i915 device instance 2579 * @port: port to check 2580 * 2581 * Return true if the device in %port is eDP. 2582 */ 2583 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port) 2584 { 2585 const struct intel_bios_encoder_data *devdata; 2586 const struct child_device_config *child; 2587 static const short port_mapping[] = { 2588 [PORT_B] = DVO_PORT_DPB, 2589 [PORT_C] = DVO_PORT_DPC, 2590 [PORT_D] = DVO_PORT_DPD, 2591 [PORT_E] = DVO_PORT_DPE, 2592 [PORT_F] = DVO_PORT_DPF, 2593 }; 2594 2595 if (HAS_DDI(i915)) { 2596 const struct intel_bios_encoder_data *devdata; 2597 2598 devdata = intel_bios_encoder_data_lookup(i915, port); 2599 2600 return devdata && intel_bios_encoder_supports_edp(devdata); 2601 } 2602 2603 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2604 child = &devdata->child; 2605 2606 if (child->dvo_port == port_mapping[port] && 2607 (child->device_type & DEVICE_TYPE_eDP_BITS) == 2608 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) 2609 return true; 2610 } 2611 2612 return false; 2613 } 2614 2615 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child, 2616 enum port port) 2617 { 2618 static const struct { 2619 u16 dp, hdmi; 2620 } port_mapping[] = { 2621 /* 2622 * Buggy VBTs may declare DP ports as having 2623 * HDMI type dvo_port :( So let's check both. 2624 */ 2625 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, }, 2626 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, }, 2627 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, }, 2628 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, }, 2629 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, }, 2630 }; 2631 2632 if (port == PORT_A || port >= ARRAY_SIZE(port_mapping)) 2633 return false; 2634 2635 if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) != 2636 (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS)) 2637 return false; 2638 2639 if (child->dvo_port == port_mapping[port].dp) 2640 return true; 2641 2642 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 2643 if (child->dvo_port == port_mapping[port].hdmi && 2644 child->aux_channel != 0) 2645 return true; 2646 2647 return false; 2648 } 2649 2650 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915, 2651 enum port port) 2652 { 2653 const struct intel_bios_encoder_data *devdata; 2654 2655 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2656 if (child_dev_is_dp_dual_mode(&devdata->child, port)) 2657 return true; 2658 } 2659 2660 return false; 2661 } 2662 2663 /** 2664 * intel_bios_is_dsi_present - is DSI present in VBT 2665 * @i915: i915 device instance 2666 * @port: port for DSI if present 2667 * 2668 * Return true if DSI is present, and return the port in %port. 2669 */ 2670 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 2671 enum port *port) 2672 { 2673 const struct intel_bios_encoder_data *devdata; 2674 const struct child_device_config *child; 2675 u8 dvo_port; 2676 2677 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2678 child = &devdata->child; 2679 2680 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 2681 continue; 2682 2683 dvo_port = child->dvo_port; 2684 2685 if (dvo_port == DVO_PORT_MIPIA || 2686 (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) || 2687 (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) { 2688 if (port) 2689 *port = dvo_port - DVO_PORT_MIPIA; 2690 return true; 2691 } else if (dvo_port == DVO_PORT_MIPIB || 2692 dvo_port == DVO_PORT_MIPIC || 2693 dvo_port == DVO_PORT_MIPID) { 2694 drm_dbg_kms(&i915->drm, 2695 "VBT has unsupported DSI port %c\n", 2696 port_name(dvo_port - DVO_PORT_MIPIA)); 2697 } 2698 } 2699 2700 return false; 2701 } 2702 2703 static void fill_dsc(struct intel_crtc_state *crtc_state, 2704 struct dsc_compression_parameters_entry *dsc, 2705 int dsc_max_bpc) 2706 { 2707 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2708 int bpc = 8; 2709 2710 vdsc_cfg->dsc_version_major = dsc->version_major; 2711 vdsc_cfg->dsc_version_minor = dsc->version_minor; 2712 2713 if (dsc->support_12bpc && dsc_max_bpc >= 12) 2714 bpc = 12; 2715 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 2716 bpc = 10; 2717 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 2718 bpc = 8; 2719 else 2720 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 2721 dsc_max_bpc); 2722 2723 crtc_state->pipe_bpp = bpc * 3; 2724 2725 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 2726 VBT_DSC_MAX_BPP(dsc->max_bpp)); 2727 2728 /* 2729 * FIXME: This is ugly, and slice count should take DSC engine 2730 * throughput etc. into account. 2731 * 2732 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 2733 */ 2734 if (dsc->slices_per_line & BIT(2)) { 2735 crtc_state->dsc.slice_count = 4; 2736 } else if (dsc->slices_per_line & BIT(1)) { 2737 crtc_state->dsc.slice_count = 2; 2738 } else { 2739 /* FIXME */ 2740 if (!(dsc->slices_per_line & BIT(0))) 2741 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 2742 2743 crtc_state->dsc.slice_count = 1; 2744 } 2745 2746 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 2747 crtc_state->dsc.slice_count != 0) 2748 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 2749 crtc_state->hw.adjusted_mode.crtc_hdisplay, 2750 crtc_state->dsc.slice_count); 2751 2752 /* 2753 * The VBT rc_buffer_block_size and rc_buffer_size definitions 2754 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 2755 */ 2756 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 2757 dsc->rc_buffer_size); 2758 2759 /* FIXME: DSI spec says bpc + 1 for this one */ 2760 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 2761 2762 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 2763 2764 vdsc_cfg->slice_height = dsc->slice_height; 2765 } 2766 2767 /* FIXME: initially DSI specific */ 2768 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 2769 struct intel_crtc_state *crtc_state, 2770 int dsc_max_bpc) 2771 { 2772 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2773 const struct intel_bios_encoder_data *devdata; 2774 const struct child_device_config *child; 2775 2776 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2777 child = &devdata->child; 2778 2779 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 2780 continue; 2781 2782 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) { 2783 if (!devdata->dsc) 2784 return false; 2785 2786 if (crtc_state) 2787 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 2788 2789 return true; 2790 } 2791 } 2792 2793 return false; 2794 } 2795 2796 /** 2797 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 2798 * @i915: i915 device instance 2799 * @port: port to check 2800 * 2801 * Return true if HPD should be inverted for %port. 2802 */ 2803 bool 2804 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 2805 enum port port) 2806 { 2807 const struct intel_bios_encoder_data *devdata = 2808 i915->vbt.ddi_port_info[port].devdata; 2809 2810 if (drm_WARN_ON_ONCE(&i915->drm, 2811 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915))) 2812 return false; 2813 2814 return devdata && devdata->child.hpd_invert; 2815 } 2816 2817 /** 2818 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 2819 * @i915: i915 device instance 2820 * @port: port to check 2821 * 2822 * Return true if LSPCON is present on this port 2823 */ 2824 bool 2825 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 2826 enum port port) 2827 { 2828 const struct intel_bios_encoder_data *devdata = 2829 i915->vbt.ddi_port_info[port].devdata; 2830 2831 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon; 2832 } 2833 2834 /** 2835 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 2836 * @i915: i915 device instance 2837 * @port: port to check 2838 * 2839 * Return true if port requires lane reversal 2840 */ 2841 bool 2842 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 2843 enum port port) 2844 { 2845 const struct intel_bios_encoder_data *devdata = 2846 i915->vbt.ddi_port_info[port].devdata; 2847 2848 return devdata && devdata->child.lane_reversal; 2849 } 2850 2851 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915, 2852 enum port port) 2853 { 2854 const struct ddi_vbt_port_info *info = 2855 &i915->vbt.ddi_port_info[port]; 2856 enum aux_ch aux_ch; 2857 2858 if (!info->alternate_aux_channel) { 2859 aux_ch = (enum aux_ch)port; 2860 2861 drm_dbg_kms(&i915->drm, 2862 "using AUX %c for port %c (platform default)\n", 2863 aux_ch_name(aux_ch), port_name(port)); 2864 return aux_ch; 2865 } 2866 2867 /* 2868 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 2869 * map to DDI A,B,TC1,TC2 respectively. 2870 * 2871 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 2872 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 2873 */ 2874 switch (info->alternate_aux_channel) { 2875 case DP_AUX_A: 2876 aux_ch = AUX_CH_A; 2877 break; 2878 case DP_AUX_B: 2879 if (IS_ALDERLAKE_S(i915)) 2880 aux_ch = AUX_CH_USBC1; 2881 else 2882 aux_ch = AUX_CH_B; 2883 break; 2884 case DP_AUX_C: 2885 if (IS_ALDERLAKE_S(i915)) 2886 aux_ch = AUX_CH_USBC2; 2887 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2888 aux_ch = AUX_CH_USBC1; 2889 else 2890 aux_ch = AUX_CH_C; 2891 break; 2892 case DP_AUX_D: 2893 if (DISPLAY_VER(i915) == 13) 2894 aux_ch = AUX_CH_D_XELPD; 2895 else if (IS_ALDERLAKE_S(i915)) 2896 aux_ch = AUX_CH_USBC3; 2897 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2898 aux_ch = AUX_CH_USBC2; 2899 else 2900 aux_ch = AUX_CH_D; 2901 break; 2902 case DP_AUX_E: 2903 if (DISPLAY_VER(i915) == 13) 2904 aux_ch = AUX_CH_E_XELPD; 2905 else if (IS_ALDERLAKE_S(i915)) 2906 aux_ch = AUX_CH_USBC4; 2907 else 2908 aux_ch = AUX_CH_E; 2909 break; 2910 case DP_AUX_F: 2911 if (DISPLAY_VER(i915) == 13) 2912 aux_ch = AUX_CH_USBC1; 2913 else 2914 aux_ch = AUX_CH_F; 2915 break; 2916 case DP_AUX_G: 2917 if (DISPLAY_VER(i915) == 13) 2918 aux_ch = AUX_CH_USBC2; 2919 else 2920 aux_ch = AUX_CH_G; 2921 break; 2922 case DP_AUX_H: 2923 if (DISPLAY_VER(i915) == 13) 2924 aux_ch = AUX_CH_USBC3; 2925 else 2926 aux_ch = AUX_CH_H; 2927 break; 2928 case DP_AUX_I: 2929 if (DISPLAY_VER(i915) == 13) 2930 aux_ch = AUX_CH_USBC4; 2931 else 2932 aux_ch = AUX_CH_I; 2933 break; 2934 default: 2935 MISSING_CASE(info->alternate_aux_channel); 2936 aux_ch = AUX_CH_A; 2937 break; 2938 } 2939 2940 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n", 2941 aux_ch_name(aux_ch), port_name(port)); 2942 2943 return aux_ch; 2944 } 2945 2946 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 2947 { 2948 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2949 2950 return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock; 2951 } 2952 2953 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 2954 { 2955 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2956 const struct ddi_vbt_port_info *info = 2957 &i915->vbt.ddi_port_info[encoder->port]; 2958 2959 return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1; 2960 } 2961 2962 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata) 2963 { 2964 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost) 2965 return 0; 2966 2967 return translate_iboost(devdata->child.dp_iboost_level); 2968 } 2969 2970 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 2971 { 2972 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost) 2973 return 0; 2974 2975 return translate_iboost(devdata->child.hdmi_iboost_level); 2976 } 2977 2978 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 2979 { 2980 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2981 2982 return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate; 2983 } 2984 2985 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 2986 { 2987 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2988 2989 return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin; 2990 } 2991 2992 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 2993 { 2994 return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c; 2995 } 2996 2997 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 2998 { 2999 return devdata->i915->vbt.version >= 209 && devdata->child.tbt; 3000 } 3001 3002 const struct intel_bios_encoder_data * 3003 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3004 { 3005 return i915->vbt.ddi_port_info[port].devdata; 3006 } 3007