1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30 #include <drm/drm_edid.h>
31 
32 #include "i915_drv.h"
33 #include "i915_reg.h"
34 #include "intel_display.h"
35 #include "intel_display_types.h"
36 #include "intel_gmbus.h"
37 
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40 
41 /**
42  * DOC: Video BIOS Table (VBT)
43  *
44  * The Video BIOS Table, or VBT, provides platform and board specific
45  * configuration information to the driver that is not discoverable or available
46  * through other means. The configuration is mostly related to display
47  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48  * the PCI ROM.
49  *
50  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52  * contain the actual configuration information. The VBT Header, and thus the
53  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54  * BDB Header. The data blocks are concatenated after the BDB Header. The data
55  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56  * data. (Block 53, the MIPI Sequence Block is an exception.)
57  *
58  * The driver parses the VBT during load. The relevant information is stored in
59  * driver private data for ease of use, and the actual VBT is not read after
60  * that.
61  */
62 
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65 	struct drm_i915_private *i915;
66 
67 	struct child_device_config child;
68 	struct dsc_compression_parameters_entry *dsc;
69 	struct list_head node;
70 };
71 
72 #define	SLAVE_ADDR1	0x70
73 #define	SLAVE_ADDR2	0x72
74 
75 /* Get BDB block size given a pointer to Block ID. */
76 static u32 _get_blocksize(const u8 *block_base)
77 {
78 	/* The MIPI Sequence Block v3+ has a separate size field. */
79 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 		return *((const u32 *)(block_base + 4));
81 	else
82 		return *((const u16 *)(block_base + 1));
83 }
84 
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
86 static u32 get_blocksize(const void *block_data)
87 {
88 	return _get_blocksize(block_data - 3);
89 }
90 
91 static const void *
92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94 	const struct bdb_header *bdb = _bdb;
95 	const u8 *base = _bdb;
96 	int index = 0;
97 	u32 total, current_size;
98 	enum bdb_block_id current_id;
99 
100 	/* skip to first section */
101 	index += bdb->header_size;
102 	total = bdb->bdb_size;
103 
104 	/* walk the sections looking for section_id */
105 	while (index + 3 < total) {
106 		current_id = *(base + index);
107 		current_size = _get_blocksize(base + index);
108 		index += 3;
109 
110 		if (index + current_size > total)
111 			return NULL;
112 
113 		if (current_id == section_id)
114 			return base + index;
115 
116 		index += current_size;
117 	}
118 
119 	return NULL;
120 }
121 
122 /*
123  * Offset from the start of BDB to the start of the
124  * block data (just past the block header).
125  */
126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128 	const void *block;
129 
130 	block = find_raw_section(bdb, section_id);
131 	if (!block)
132 		return 0;
133 
134 	return block - bdb;
135 }
136 
137 struct bdb_block_entry {
138 	struct list_head node;
139 	enum bdb_block_id section_id;
140 	u8 data[];
141 };
142 
143 static const void *
144 bdb_find_section(struct drm_i915_private *i915,
145 		 enum bdb_block_id section_id)
146 {
147 	struct bdb_block_entry *entry;
148 
149 	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150 		if (entry->section_id == section_id)
151 			return entry->data + 3;
152 	}
153 
154 	return NULL;
155 }
156 
157 static const struct {
158 	enum bdb_block_id section_id;
159 	size_t min_size;
160 } bdb_blocks[] = {
161 	{ .section_id = BDB_GENERAL_FEATURES,
162 	  .min_size = sizeof(struct bdb_general_features), },
163 	{ .section_id = BDB_GENERAL_DEFINITIONS,
164 	  .min_size = sizeof(struct bdb_general_definitions), },
165 	{ .section_id = BDB_PSR,
166 	  .min_size = sizeof(struct bdb_psr), },
167 	{ .section_id = BDB_DRIVER_FEATURES,
168 	  .min_size = sizeof(struct bdb_driver_features), },
169 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
170 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171 	{ .section_id = BDB_SDVO_PANEL_DTDS,
172 	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173 	{ .section_id = BDB_EDP,
174 	  .min_size = sizeof(struct bdb_edp), },
175 	{ .section_id = BDB_LVDS_OPTIONS,
176 	  .min_size = sizeof(struct bdb_lvds_options), },
177 	/*
178 	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179 	 * so keep the two ordered.
180 	 */
181 	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
182 	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183 	{ .section_id = BDB_LVDS_LFP_DATA,
184 	  .min_size = 0, /* special case */ },
185 	{ .section_id = BDB_LVDS_BACKLIGHT,
186 	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
187 	{ .section_id = BDB_LFP_POWER,
188 	  .min_size = sizeof(struct bdb_lfp_power), },
189 	{ .section_id = BDB_MIPI_CONFIG,
190 	  .min_size = sizeof(struct bdb_mipi_config), },
191 	{ .section_id = BDB_MIPI_SEQUENCE,
192 	  .min_size = sizeof(struct bdb_mipi_sequence) },
193 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
194 	  .min_size = sizeof(struct bdb_compression_parameters), },
195 	{ .section_id = BDB_GENERIC_DTD,
196 	  .min_size = sizeof(struct bdb_generic_dtd), },
197 };
198 
199 static size_t lfp_data_min_size(struct drm_i915_private *i915)
200 {
201 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
202 	size_t size;
203 
204 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205 	if (!ptrs)
206 		return 0;
207 
208 	size = sizeof(struct bdb_lvds_lfp_data);
209 	if (ptrs->panel_name.table_size)
210 		size = max(size, ptrs->panel_name.offset +
211 			   sizeof(struct bdb_lvds_lfp_data_tail));
212 
213 	return size;
214 }
215 
216 static bool validate_lfp_data_ptrs(const void *bdb,
217 				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
218 {
219 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220 	int data_block_size, lfp_data_size;
221 	const void *data_block;
222 	int i;
223 
224 	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225 	if (!data_block)
226 		return false;
227 
228 	data_block_size = get_blocksize(data_block);
229 	if (data_block_size == 0)
230 		return false;
231 
232 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233 	if (ptrs->lvds_entries != 3)
234 		return false;
235 
236 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239 	panel_name_size = ptrs->panel_name.table_size;
240 
241 	/* fp_timing has variable size */
242 	if (fp_timing_size < 32 ||
243 	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244 	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245 		return false;
246 
247 	/* panel_name is not present in old VBTs */
248 	if (panel_name_size != 0 &&
249 	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
250 		return false;
251 
252 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253 	if (16 * lfp_data_size > data_block_size)
254 		return false;
255 
256 	/* make sure the table entries have uniform size */
257 	for (i = 1; i < 16; i++) {
258 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261 			return false;
262 
263 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266 			return false;
267 	}
268 
269 	/*
270 	 * Except for vlv/chv machines all real VBTs seem to have 6
271 	 * unaccounted bytes in the fp_timing table. And it doesn't
272 	 * appear to be a really intentional hole as the fp_timing
273 	 * 0xffff terminator is always within those 6 missing bytes.
274 	 */
275 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276 		fp_timing_size += 6;
277 
278 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279 		return false;
280 
281 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284 		return false;
285 
286 	/* make sure the tables fit inside the data block */
287 	for (i = 0; i < 16; i++) {
288 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291 			return false;
292 	}
293 
294 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295 		return false;
296 
297 	/* make sure fp_timing terminators are present at expected locations */
298 	for (i = 0; i < 16; i++) {
299 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300 			fp_timing_size - 2;
301 
302 		if (*t != 0xffff)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
309 /* make the data table offsets relative to the data block */
310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311 {
312 	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313 	u32 offset;
314 	int i;
315 
316 	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317 
318 	for (i = 0; i < 16; i++) {
319 		if (ptrs->ptr[i].fp_timing.offset < offset ||
320 		    ptrs->ptr[i].dvo_timing.offset < offset ||
321 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
322 			return false;
323 
324 		ptrs->ptr[i].fp_timing.offset -= offset;
325 		ptrs->ptr[i].dvo_timing.offset -= offset;
326 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
327 	}
328 
329 	if (ptrs->panel_name.table_size) {
330 		if (ptrs->panel_name.offset < offset)
331 			return false;
332 
333 		ptrs->panel_name.offset -= offset;
334 	}
335 
336 	return validate_lfp_data_ptrs(bdb, ptrs);
337 }
338 
339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340 			     int table_size, int total_size)
341 {
342 	if (total_size < table_size)
343 		return total_size;
344 
345 	table->table_size = table_size;
346 	table->offset = total_size - table_size;
347 
348 	return total_size - table_size;
349 }
350 
351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352 			      const struct lvds_lfp_data_ptr_table *prev,
353 			      int size)
354 {
355 	next->table_size = prev->table_size;
356 	next->offset = prev->offset + size;
357 }
358 
359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360 				    const void *bdb)
361 {
362 	int i, size, table_size, block_size, offset, fp_timing_size;
363 	struct bdb_lvds_lfp_data_ptrs *ptrs;
364 	const void *block;
365 	void *ptrs_block;
366 
367 	/*
368 	 * The hardcoded fp_timing_size is only valid for
369 	 * modernish VBTs. All older VBTs definitely should
370 	 * include block 41 and thus we don't need to
371 	 * generate one.
372 	 */
373 	if (i915->display.vbt.version < 155)
374 		return NULL;
375 
376 	fp_timing_size = 38;
377 
378 	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379 	if (!block)
380 		return NULL;
381 
382 	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383 
384 	block_size = get_blocksize(block);
385 
386 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387 		sizeof(struct lvds_pnp_id);
388 	if (size * 16 > block_size)
389 		return NULL;
390 
391 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392 	if (!ptrs_block)
393 		return NULL;
394 
395 	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397 	ptrs = ptrs_block + 3;
398 
399 	table_size = sizeof(struct lvds_pnp_id);
400 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401 
402 	table_size = sizeof(struct lvds_dvo_timing);
403 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404 
405 	table_size = fp_timing_size;
406 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407 
408 	if (ptrs->ptr[0].fp_timing.table_size)
409 		ptrs->lvds_entries++;
410 	if (ptrs->ptr[0].dvo_timing.table_size)
411 		ptrs->lvds_entries++;
412 	if (ptrs->ptr[0].panel_pnp_id.table_size)
413 		ptrs->lvds_entries++;
414 
415 	if (size != 0 || ptrs->lvds_entries != 3) {
416 		kfree(ptrs_block);
417 		return NULL;
418 	}
419 
420 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421 		sizeof(struct lvds_pnp_id);
422 	for (i = 1; i < 16; i++) {
423 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426 	}
427 
428 	table_size = sizeof(struct lvds_lfp_panel_name);
429 
430 	if (16 * (size + table_size) <= block_size) {
431 		ptrs->panel_name.table_size = table_size;
432 		ptrs->panel_name.offset = size * 16;
433 	}
434 
435 	offset = block - bdb;
436 
437 	for (i = 0; i < 16; i++) {
438 		ptrs->ptr[i].fp_timing.offset += offset;
439 		ptrs->ptr[i].dvo_timing.offset += offset;
440 		ptrs->ptr[i].panel_pnp_id.offset += offset;
441 	}
442 
443 	if (ptrs->panel_name.table_size)
444 		ptrs->panel_name.offset += offset;
445 
446 	return ptrs_block;
447 }
448 
449 static void
450 init_bdb_block(struct drm_i915_private *i915,
451 	       const void *bdb, enum bdb_block_id section_id,
452 	       size_t min_size)
453 {
454 	struct bdb_block_entry *entry;
455 	void *temp_block = NULL;
456 	const void *block;
457 	size_t block_size;
458 
459 	block = find_raw_section(bdb, section_id);
460 
461 	/* Modern VBTs lack the LFP data table pointers block, make one up */
462 	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463 		temp_block = generate_lfp_data_ptrs(i915, bdb);
464 		if (temp_block)
465 			block = temp_block + 3;
466 	}
467 	if (!block)
468 		return;
469 
470 	drm_WARN(&i915->drm, min_size == 0,
471 		 "Block %d min_size is zero\n", section_id);
472 
473 	block_size = get_blocksize(block);
474 
475 	/*
476 	 * Version number and new block size are considered
477 	 * part of the header for MIPI sequenece block v3+.
478 	 */
479 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480 		block_size += 5;
481 
482 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483 			GFP_KERNEL);
484 	if (!entry) {
485 		kfree(temp_block);
486 		return;
487 	}
488 
489 	entry->section_id = section_id;
490 	memcpy(entry->data, block - 3, block_size + 3);
491 
492 	kfree(temp_block);
493 
494 	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495 		    section_id, block_size, min_size);
496 
497 	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499 		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500 		kfree(entry);
501 		return;
502 	}
503 
504 	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505 }
506 
507 static void init_bdb_blocks(struct drm_i915_private *i915,
508 			    const void *bdb)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
514 		size_t min_size = bdb_blocks[i].min_size;
515 
516 		if (section_id == BDB_LVDS_LFP_DATA)
517 			min_size = lfp_data_min_size(i915);
518 
519 		init_bdb_block(i915, bdb, section_id, min_size);
520 	}
521 }
522 
523 static void
524 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
525 			const struct lvds_dvo_timing *dvo_timing)
526 {
527 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
528 		dvo_timing->hactive_lo;
529 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
530 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
531 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
532 		((dvo_timing->hsync_pulse_width_hi << 8) |
533 			dvo_timing->hsync_pulse_width_lo);
534 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
535 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
536 
537 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
538 		dvo_timing->vactive_lo;
539 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
540 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
541 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
542 		((dvo_timing->vsync_pulse_width_hi << 4) |
543 			dvo_timing->vsync_pulse_width_lo);
544 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
545 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
546 	panel_fixed_mode->clock = dvo_timing->clock * 10;
547 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
548 
549 	if (dvo_timing->hsync_positive)
550 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
551 	else
552 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
553 
554 	if (dvo_timing->vsync_positive)
555 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
556 	else
557 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
558 
559 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
560 		dvo_timing->himage_lo;
561 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
562 		dvo_timing->vimage_lo;
563 
564 	/* Some VBTs have bogus h/vtotal values */
565 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
566 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
567 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
568 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
569 
570 	drm_mode_set_name(panel_fixed_mode);
571 }
572 
573 static const struct lvds_dvo_timing *
574 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
575 		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
576 		    int index)
577 {
578 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
579 }
580 
581 static const struct lvds_fp_timing *
582 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
583 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
584 		   int index)
585 {
586 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
587 }
588 
589 static const struct lvds_pnp_id *
590 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
591 		const struct bdb_lvds_lfp_data_ptrs *ptrs,
592 		int index)
593 {
594 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
595 }
596 
597 static const struct bdb_lvds_lfp_data_tail *
598 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
599 		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
600 {
601 	if (ptrs->panel_name.table_size)
602 		return (const void *)data + ptrs->panel_name.offset;
603 	else
604 		return NULL;
605 }
606 
607 static void dump_pnp_id(struct drm_i915_private *i915,
608 			const struct lvds_pnp_id *pnp_id,
609 			const char *name)
610 {
611 	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
612 	char vend[4];
613 
614 	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
615 		    name, drm_edid_decode_mfg_id(mfg_name, vend),
616 		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
617 		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
618 }
619 
620 static int opregion_get_panel_type(struct drm_i915_private *i915,
621 				   const struct intel_bios_encoder_data *devdata,
622 				   const struct drm_edid *drm_edid, bool use_fallback)
623 {
624 	return intel_opregion_get_panel_type(i915);
625 }
626 
627 static int vbt_get_panel_type(struct drm_i915_private *i915,
628 			      const struct intel_bios_encoder_data *devdata,
629 			      const struct drm_edid *drm_edid, bool use_fallback)
630 {
631 	const struct bdb_lvds_options *lvds_options;
632 
633 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
634 	if (!lvds_options)
635 		return -1;
636 
637 	if (lvds_options->panel_type > 0xf &&
638 	    lvds_options->panel_type != 0xff) {
639 		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
640 			    lvds_options->panel_type);
641 		return -1;
642 	}
643 
644 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
645 		return lvds_options->panel_type2;
646 
647 	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
648 
649 	return lvds_options->panel_type;
650 }
651 
652 static int pnpid_get_panel_type(struct drm_i915_private *i915,
653 				const struct intel_bios_encoder_data *devdata,
654 				const struct drm_edid *drm_edid, bool use_fallback)
655 {
656 	const struct bdb_lvds_lfp_data *data;
657 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
658 	const struct lvds_pnp_id *edid_id;
659 	struct lvds_pnp_id edid_id_nodate;
660 	const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
661 	int i, best = -1;
662 
663 	if (!edid)
664 		return -1;
665 
666 	edid_id = (const void *)&edid->mfg_id[0];
667 
668 	edid_id_nodate = *edid_id;
669 	edid_id_nodate.mfg_week = 0;
670 	edid_id_nodate.mfg_year = 0;
671 
672 	dump_pnp_id(i915, edid_id, "EDID");
673 
674 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675 	if (!ptrs)
676 		return -1;
677 
678 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
679 	if (!data)
680 		return -1;
681 
682 	for (i = 0; i < 16; i++) {
683 		const struct lvds_pnp_id *vbt_id =
684 			get_lvds_pnp_id(data, ptrs, i);
685 
686 		/* full match? */
687 		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688 			return i;
689 
690 		/*
691 		 * Accept a match w/o date if no full match is found,
692 		 * and the VBT entry does not specify a date.
693 		 */
694 		if (best < 0 &&
695 		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696 			best = i;
697 	}
698 
699 	return best;
700 }
701 
702 static int fallback_get_panel_type(struct drm_i915_private *i915,
703 				   const struct intel_bios_encoder_data *devdata,
704 				   const struct drm_edid *drm_edid, bool use_fallback)
705 {
706 	return use_fallback ? 0 : -1;
707 }
708 
709 enum panel_type {
710 	PANEL_TYPE_OPREGION,
711 	PANEL_TYPE_VBT,
712 	PANEL_TYPE_PNPID,
713 	PANEL_TYPE_FALLBACK,
714 };
715 
716 static int get_panel_type(struct drm_i915_private *i915,
717 			  const struct intel_bios_encoder_data *devdata,
718 			  const struct drm_edid *drm_edid, bool use_fallback)
719 {
720 	struct {
721 		const char *name;
722 		int (*get_panel_type)(struct drm_i915_private *i915,
723 				      const struct intel_bios_encoder_data *devdata,
724 				      const struct drm_edid *drm_edid, bool use_fallback);
725 		int panel_type;
726 	} panel_types[] = {
727 		[PANEL_TYPE_OPREGION] = {
728 			.name = "OpRegion",
729 			.get_panel_type = opregion_get_panel_type,
730 		},
731 		[PANEL_TYPE_VBT] = {
732 			.name = "VBT",
733 			.get_panel_type = vbt_get_panel_type,
734 		},
735 		[PANEL_TYPE_PNPID] = {
736 			.name = "PNPID",
737 			.get_panel_type = pnpid_get_panel_type,
738 		},
739 		[PANEL_TYPE_FALLBACK] = {
740 			.name = "fallback",
741 			.get_panel_type = fallback_get_panel_type,
742 		},
743 	};
744 	int i;
745 
746 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747 		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
748 									  drm_edid, use_fallback);
749 
750 		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
751 			    panel_types[i].panel_type != 0xff);
752 
753 		if (panel_types[i].panel_type >= 0)
754 			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
755 				    panel_types[i].name, panel_types[i].panel_type);
756 	}
757 
758 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
759 		i = PANEL_TYPE_OPREGION;
760 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
761 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
762 		i = PANEL_TYPE_PNPID;
763 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
764 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
765 		i = PANEL_TYPE_VBT;
766 	else
767 		i = PANEL_TYPE_FALLBACK;
768 
769 	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
770 		    panel_types[i].name, panel_types[i].panel_type);
771 
772 	return panel_types[i].panel_type;
773 }
774 
775 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
776 {
777 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
778 }
779 
780 static bool panel_bool(unsigned int value, int panel_type)
781 {
782 	return panel_bits(value, panel_type, 1);
783 }
784 
785 /* Parse general panel options */
786 static void
787 parse_panel_options(struct drm_i915_private *i915,
788 		    struct intel_panel *panel)
789 {
790 	const struct bdb_lvds_options *lvds_options;
791 	int panel_type = panel->vbt.panel_type;
792 	int drrs_mode;
793 
794 	lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
795 	if (!lvds_options)
796 		return;
797 
798 	panel->vbt.lvds_dither = lvds_options->pixel_dither;
799 
800 	/*
801 	 * Empirical evidence indicates the block size can be
802 	 * either 4,14,16,24+ bytes. For older VBTs no clear
803 	 * relationship between the block size vs. BDB version.
804 	 */
805 	if (get_blocksize(lvds_options) < 16)
806 		return;
807 
808 	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
809 			       panel_type, 2);
810 	/*
811 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
812 	 * The below piece of code is required to adjust vbt.drrs_type
813 	 * to match the enum drrs_support_type.
814 	 */
815 	switch (drrs_mode) {
816 	case 0:
817 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
818 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
819 		break;
820 	case 2:
821 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
822 		drm_dbg_kms(&i915->drm,
823 			    "DRRS supported mode is seamless\n");
824 		break;
825 	default:
826 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
827 		drm_dbg_kms(&i915->drm,
828 			    "DRRS not supported (VBT input)\n");
829 		break;
830 	}
831 }
832 
833 static void
834 parse_lfp_panel_dtd(struct drm_i915_private *i915,
835 		    struct intel_panel *panel,
836 		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
837 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
838 {
839 	const struct lvds_dvo_timing *panel_dvo_timing;
840 	const struct lvds_fp_timing *fp_timing;
841 	struct drm_display_mode *panel_fixed_mode;
842 	int panel_type = panel->vbt.panel_type;
843 
844 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
845 					       lvds_lfp_data_ptrs,
846 					       panel_type);
847 
848 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
849 	if (!panel_fixed_mode)
850 		return;
851 
852 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
853 
854 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
855 
856 	drm_dbg_kms(&i915->drm,
857 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
858 		    DRM_MODE_ARG(panel_fixed_mode));
859 
860 	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
861 				       lvds_lfp_data_ptrs,
862 				       panel_type);
863 
864 	/* check the resolution, just to be sure */
865 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
866 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
867 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
868 		drm_dbg_kms(&i915->drm,
869 			    "VBT initial LVDS value %x\n",
870 			    panel->vbt.bios_lvds_val);
871 	}
872 }
873 
874 static void
875 parse_lfp_data(struct drm_i915_private *i915,
876 	       struct intel_panel *panel)
877 {
878 	const struct bdb_lvds_lfp_data *data;
879 	const struct bdb_lvds_lfp_data_tail *tail;
880 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
881 	const struct lvds_pnp_id *pnp_id;
882 	int panel_type = panel->vbt.panel_type;
883 
884 	ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
885 	if (!ptrs)
886 		return;
887 
888 	data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
889 	if (!data)
890 		return;
891 
892 	if (!panel->vbt.lfp_lvds_vbt_mode)
893 		parse_lfp_panel_dtd(i915, panel, data, ptrs);
894 
895 	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
896 	dump_pnp_id(i915, pnp_id, "Panel");
897 
898 	tail = get_lfp_data_tail(data, ptrs);
899 	if (!tail)
900 		return;
901 
902 	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
903 		    (int)sizeof(tail->panel_name[0].name),
904 		    tail->panel_name[panel_type].name);
905 
906 	if (i915->display.vbt.version >= 188) {
907 		panel->vbt.seamless_drrs_min_refresh_rate =
908 			tail->seamless_drrs_min_refresh_rate[panel_type];
909 		drm_dbg_kms(&i915->drm,
910 			    "Seamless DRRS min refresh rate: %d Hz\n",
911 			    panel->vbt.seamless_drrs_min_refresh_rate);
912 	}
913 }
914 
915 static void
916 parse_generic_dtd(struct drm_i915_private *i915,
917 		  struct intel_panel *panel)
918 {
919 	const struct bdb_generic_dtd *generic_dtd;
920 	const struct generic_dtd_entry *dtd;
921 	struct drm_display_mode *panel_fixed_mode;
922 	int num_dtd;
923 
924 	/*
925 	 * Older VBTs provided DTD information for internal displays through
926 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
927 	 * DTD information should be provided via a newer "generic DTD"
928 	 * block (58).  Just to be safe, we'll try the new generic DTD block
929 	 * first on VBT >= 229, but still fall back to trying the old LFP
930 	 * block if that fails.
931 	 */
932 	if (i915->display.vbt.version < 229)
933 		return;
934 
935 	generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
936 	if (!generic_dtd)
937 		return;
938 
939 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
940 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
941 			generic_dtd->gdtd_size);
942 		return;
943 	} else if (generic_dtd->gdtd_size !=
944 		   sizeof(struct generic_dtd_entry)) {
945 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
946 			generic_dtd->gdtd_size);
947 		/* DTD has unknown fields, but keep going */
948 	}
949 
950 	num_dtd = (get_blocksize(generic_dtd) -
951 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
952 	if (panel->vbt.panel_type >= num_dtd) {
953 		drm_err(&i915->drm,
954 			"Panel type %d not found in table of %d DTD's\n",
955 			panel->vbt.panel_type, num_dtd);
956 		return;
957 	}
958 
959 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
960 
961 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
962 	if (!panel_fixed_mode)
963 		return;
964 
965 	panel_fixed_mode->hdisplay = dtd->hactive;
966 	panel_fixed_mode->hsync_start =
967 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
968 	panel_fixed_mode->hsync_end =
969 		panel_fixed_mode->hsync_start + dtd->hsync;
970 	panel_fixed_mode->htotal =
971 		panel_fixed_mode->hdisplay + dtd->hblank;
972 
973 	panel_fixed_mode->vdisplay = dtd->vactive;
974 	panel_fixed_mode->vsync_start =
975 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
976 	panel_fixed_mode->vsync_end =
977 		panel_fixed_mode->vsync_start + dtd->vsync;
978 	panel_fixed_mode->vtotal =
979 		panel_fixed_mode->vdisplay + dtd->vblank;
980 
981 	panel_fixed_mode->clock = dtd->pixel_clock;
982 	panel_fixed_mode->width_mm = dtd->width_mm;
983 	panel_fixed_mode->height_mm = dtd->height_mm;
984 
985 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
986 	drm_mode_set_name(panel_fixed_mode);
987 
988 	if (dtd->hsync_positive_polarity)
989 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
990 	else
991 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
992 
993 	if (dtd->vsync_positive_polarity)
994 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
995 	else
996 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
997 
998 	drm_dbg_kms(&i915->drm,
999 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1000 		    DRM_MODE_ARG(panel_fixed_mode));
1001 
1002 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1003 }
1004 
1005 static void
1006 parse_lfp_backlight(struct drm_i915_private *i915,
1007 		    struct intel_panel *panel)
1008 {
1009 	const struct bdb_lfp_backlight_data *backlight_data;
1010 	const struct lfp_backlight_data_entry *entry;
1011 	int panel_type = panel->vbt.panel_type;
1012 	u16 level;
1013 
1014 	backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1015 	if (!backlight_data)
1016 		return;
1017 
1018 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1019 		drm_dbg_kms(&i915->drm,
1020 			    "Unsupported backlight data entry size %u\n",
1021 			    backlight_data->entry_size);
1022 		return;
1023 	}
1024 
1025 	entry = &backlight_data->data[panel_type];
1026 
1027 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1028 	if (!panel->vbt.backlight.present) {
1029 		drm_dbg_kms(&i915->drm,
1030 			    "PWM backlight not present in VBT (type %u)\n",
1031 			    entry->type);
1032 		return;
1033 	}
1034 
1035 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1036 	panel->vbt.backlight.controller = 0;
1037 	if (i915->display.vbt.version >= 191) {
1038 		const struct lfp_backlight_control_method *method;
1039 
1040 		method = &backlight_data->backlight_control[panel_type];
1041 		panel->vbt.backlight.type = method->type;
1042 		panel->vbt.backlight.controller = method->controller;
1043 	}
1044 
1045 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1046 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1047 
1048 	if (i915->display.vbt.version >= 234) {
1049 		u16 min_level;
1050 		bool scale;
1051 
1052 		level = backlight_data->brightness_level[panel_type].level;
1053 		min_level = backlight_data->brightness_min_level[panel_type].level;
1054 
1055 		if (i915->display.vbt.version >= 236)
1056 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1057 		else
1058 			scale = level > 255;
1059 
1060 		if (scale)
1061 			min_level = min_level / 255;
1062 
1063 		if (min_level > 255) {
1064 			drm_warn(&i915->drm, "Brightness min level > 255\n");
1065 			level = 255;
1066 		}
1067 		panel->vbt.backlight.min_brightness = min_level;
1068 
1069 		panel->vbt.backlight.brightness_precision_bits =
1070 			backlight_data->brightness_precision_bits[panel_type];
1071 	} else {
1072 		level = backlight_data->level[panel_type];
1073 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1074 	}
1075 
1076 	if (i915->display.vbt.version >= 239)
1077 		panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1078 			DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1079 	else
1080 		panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1081 
1082 	drm_dbg_kms(&i915->drm,
1083 		    "VBT backlight PWM modulation frequency %u Hz, "
1084 		    "active %s, min brightness %u, level %u, controller %u\n",
1085 		    panel->vbt.backlight.pwm_freq_hz,
1086 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1087 		    panel->vbt.backlight.min_brightness,
1088 		    level,
1089 		    panel->vbt.backlight.controller);
1090 }
1091 
1092 /* Try to find sdvo panel data */
1093 static void
1094 parse_sdvo_panel_data(struct drm_i915_private *i915,
1095 		      struct intel_panel *panel)
1096 {
1097 	const struct bdb_sdvo_panel_dtds *dtds;
1098 	struct drm_display_mode *panel_fixed_mode;
1099 	int index;
1100 
1101 	index = i915->params.vbt_sdvo_panel_type;
1102 	if (index == -2) {
1103 		drm_dbg_kms(&i915->drm,
1104 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1105 		return;
1106 	}
1107 
1108 	if (index == -1) {
1109 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1110 
1111 		sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1112 		if (!sdvo_lvds_options)
1113 			return;
1114 
1115 		index = sdvo_lvds_options->panel_type;
1116 	}
1117 
1118 	dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1119 	if (!dtds)
1120 		return;
1121 
1122 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1123 	if (!panel_fixed_mode)
1124 		return;
1125 
1126 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1127 
1128 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1129 
1130 	drm_dbg_kms(&i915->drm,
1131 		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1132 		    DRM_MODE_ARG(panel_fixed_mode));
1133 }
1134 
1135 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1136 				    bool alternate)
1137 {
1138 	switch (DISPLAY_VER(i915)) {
1139 	case 2:
1140 		return alternate ? 66667 : 48000;
1141 	case 3:
1142 	case 4:
1143 		return alternate ? 100000 : 96000;
1144 	default:
1145 		return alternate ? 100000 : 120000;
1146 	}
1147 }
1148 
1149 static void
1150 parse_general_features(struct drm_i915_private *i915)
1151 {
1152 	const struct bdb_general_features *general;
1153 
1154 	general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1155 	if (!general)
1156 		return;
1157 
1158 	i915->display.vbt.int_tv_support = general->int_tv_support;
1159 	/* int_crt_support can't be trusted on earlier platforms */
1160 	if (i915->display.vbt.version >= 155 &&
1161 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1162 		i915->display.vbt.int_crt_support = general->int_crt_support;
1163 	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1164 	i915->display.vbt.lvds_ssc_freq =
1165 		intel_bios_ssc_frequency(i915, general->ssc_freq);
1166 	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1167 	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1168 	if (i915->display.vbt.version >= 181) {
1169 		i915->display.vbt.orientation = general->rotate_180 ?
1170 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1171 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1172 	} else {
1173 		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1174 	}
1175 
1176 	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1177 		i915->display.vbt.override_afc_startup = true;
1178 		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1179 	}
1180 
1181 	drm_dbg_kms(&i915->drm,
1182 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1183 		    i915->display.vbt.int_tv_support,
1184 		    i915->display.vbt.int_crt_support,
1185 		    i915->display.vbt.lvds_use_ssc,
1186 		    i915->display.vbt.lvds_ssc_freq,
1187 		    i915->display.vbt.display_clock_mode,
1188 		    i915->display.vbt.fdi_rx_polarity_inverted);
1189 }
1190 
1191 static const struct child_device_config *
1192 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1193 {
1194 	return (const void *) &defs->devices[i * defs->child_dev_size];
1195 }
1196 
1197 static void
1198 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1199 {
1200 	const struct intel_bios_encoder_data *devdata;
1201 	int count = 0;
1202 
1203 	/*
1204 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1205 	 * accurate and doesn't have to be, as long as it's not too strict.
1206 	 */
1207 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1208 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1209 		return;
1210 	}
1211 
1212 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1213 		const struct child_device_config *child = &devdata->child;
1214 		struct sdvo_device_mapping *mapping;
1215 
1216 		if (child->slave_addr != SLAVE_ADDR1 &&
1217 		    child->slave_addr != SLAVE_ADDR2) {
1218 			/*
1219 			 * If the slave address is neither 0x70 nor 0x72,
1220 			 * it is not a SDVO device. Skip it.
1221 			 */
1222 			continue;
1223 		}
1224 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1225 		    child->dvo_port != DEVICE_PORT_DVOC) {
1226 			/* skip the incorrect SDVO port */
1227 			drm_dbg_kms(&i915->drm,
1228 				    "Incorrect SDVO port. Skip it\n");
1229 			continue;
1230 		}
1231 		drm_dbg_kms(&i915->drm,
1232 			    "the SDVO device with slave addr %2x is found on"
1233 			    " %s port\n",
1234 			    child->slave_addr,
1235 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1236 			    "SDVOB" : "SDVOC");
1237 		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1238 		if (!mapping->initialized) {
1239 			mapping->dvo_port = child->dvo_port;
1240 			mapping->slave_addr = child->slave_addr;
1241 			mapping->dvo_wiring = child->dvo_wiring;
1242 			mapping->ddc_pin = child->ddc_pin;
1243 			mapping->i2c_pin = child->i2c_pin;
1244 			mapping->initialized = 1;
1245 			drm_dbg_kms(&i915->drm,
1246 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1247 				    mapping->dvo_port, mapping->slave_addr,
1248 				    mapping->dvo_wiring, mapping->ddc_pin,
1249 				    mapping->i2c_pin);
1250 		} else {
1251 			drm_dbg_kms(&i915->drm,
1252 				    "Maybe one SDVO port is shared by "
1253 				    "two SDVO device.\n");
1254 		}
1255 		if (child->slave2_addr) {
1256 			/* Maybe this is a SDVO device with multiple inputs */
1257 			/* And the mapping info is not added */
1258 			drm_dbg_kms(&i915->drm,
1259 				    "there exists the slave2_addr. Maybe this"
1260 				    " is a SDVO device with multiple inputs.\n");
1261 		}
1262 		count++;
1263 	}
1264 
1265 	if (!count) {
1266 		/* No SDVO device info is found */
1267 		drm_dbg_kms(&i915->drm,
1268 			    "No SDVO device info is found in VBT\n");
1269 	}
1270 }
1271 
1272 static void
1273 parse_driver_features(struct drm_i915_private *i915)
1274 {
1275 	const struct bdb_driver_features *driver;
1276 
1277 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1278 	if (!driver)
1279 		return;
1280 
1281 	if (DISPLAY_VER(i915) >= 5) {
1282 		/*
1283 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1284 		 * to mean "eDP". The VBT spec doesn't agree with that
1285 		 * interpretation, but real world VBTs seem to.
1286 		 */
1287 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1288 			i915->display.vbt.int_lvds_support = 0;
1289 	} else {
1290 		/*
1291 		 * FIXME it's not clear which BDB version has the LVDS config
1292 		 * bits defined. Revision history in the VBT spec says:
1293 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1294 		 *  Config (00b and 11b values defined) | 06/13/2005"
1295 		 * but does not the specify the BDB version.
1296 		 *
1297 		 * So far version 134 (on i945gm) is the oldest VBT observed
1298 		 * in the wild with the bits correctly populated. Version
1299 		 * 108 (on i85x) does not have the bits correctly populated.
1300 		 */
1301 		if (i915->display.vbt.version >= 134 &&
1302 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1303 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1304 			i915->display.vbt.int_lvds_support = 0;
1305 	}
1306 }
1307 
1308 static void
1309 parse_panel_driver_features(struct drm_i915_private *i915,
1310 			    struct intel_panel *panel)
1311 {
1312 	const struct bdb_driver_features *driver;
1313 
1314 	driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1315 	if (!driver)
1316 		return;
1317 
1318 	if (i915->display.vbt.version < 228) {
1319 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1320 			    driver->drrs_enabled);
1321 		/*
1322 		 * If DRRS is not supported, drrs_type has to be set to 0.
1323 		 * This is because, VBT is configured in such a way that
1324 		 * static DRRS is 0 and DRRS not supported is represented by
1325 		 * driver->drrs_enabled=false
1326 		 */
1327 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1328 			/*
1329 			 * FIXME Should DMRRS perhaps be treated as seamless
1330 			 * but without the automatic downclocking?
1331 			 */
1332 			if (driver->dmrrs_enabled)
1333 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1334 			else
1335 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1336 		}
1337 
1338 		panel->vbt.psr.enable = driver->psr_enabled;
1339 	}
1340 }
1341 
1342 static void
1343 parse_power_conservation_features(struct drm_i915_private *i915,
1344 				  struct intel_panel *panel)
1345 {
1346 	const struct bdb_lfp_power *power;
1347 	u8 panel_type = panel->vbt.panel_type;
1348 
1349 	panel->vbt.vrr = true; /* matches Windows behaviour */
1350 
1351 	if (i915->display.vbt.version < 228)
1352 		return;
1353 
1354 	power = bdb_find_section(i915, BDB_LFP_POWER);
1355 	if (!power)
1356 		return;
1357 
1358 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1359 
1360 	/*
1361 	 * If DRRS is not supported, drrs_type has to be set to 0.
1362 	 * This is because, VBT is configured in such a way that
1363 	 * static DRRS is 0 and DRRS not supported is represented by
1364 	 * power->drrs & BIT(panel_type)=false
1365 	 */
1366 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1367 		/*
1368 		 * FIXME Should DMRRS perhaps be treated as seamless
1369 		 * but without the automatic downclocking?
1370 		 */
1371 		if (panel_bool(power->dmrrs, panel_type))
1372 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1373 		else
1374 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1375 	}
1376 
1377 	if (i915->display.vbt.version >= 232)
1378 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1379 
1380 	if (i915->display.vbt.version >= 233)
1381 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1382 					    panel_type);
1383 }
1384 
1385 static void
1386 parse_edp(struct drm_i915_private *i915,
1387 	  struct intel_panel *panel)
1388 {
1389 	const struct bdb_edp *edp;
1390 	const struct edp_power_seq *edp_pps;
1391 	const struct edp_fast_link_params *edp_link_params;
1392 	int panel_type = panel->vbt.panel_type;
1393 
1394 	edp = bdb_find_section(i915, BDB_EDP);
1395 	if (!edp)
1396 		return;
1397 
1398 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1399 	case EDP_18BPP:
1400 		panel->vbt.edp.bpp = 18;
1401 		break;
1402 	case EDP_24BPP:
1403 		panel->vbt.edp.bpp = 24;
1404 		break;
1405 	case EDP_30BPP:
1406 		panel->vbt.edp.bpp = 30;
1407 		break;
1408 	}
1409 
1410 	/* Get the eDP sequencing and link info */
1411 	edp_pps = &edp->power_seqs[panel_type];
1412 	edp_link_params = &edp->fast_link_params[panel_type];
1413 
1414 	panel->vbt.edp.pps = *edp_pps;
1415 
1416 	if (i915->display.vbt.version >= 224) {
1417 		panel->vbt.edp.rate =
1418 			edp->edp_fast_link_training_rate[panel_type] * 20;
1419 	} else {
1420 		switch (edp_link_params->rate) {
1421 		case EDP_RATE_1_62:
1422 			panel->vbt.edp.rate = 162000;
1423 			break;
1424 		case EDP_RATE_2_7:
1425 			panel->vbt.edp.rate = 270000;
1426 			break;
1427 		case EDP_RATE_5_4:
1428 			panel->vbt.edp.rate = 540000;
1429 			break;
1430 		default:
1431 			drm_dbg_kms(&i915->drm,
1432 				    "VBT has unknown eDP link rate value %u\n",
1433 				    edp_link_params->rate);
1434 			break;
1435 		}
1436 	}
1437 
1438 	switch (edp_link_params->lanes) {
1439 	case EDP_LANE_1:
1440 		panel->vbt.edp.lanes = 1;
1441 		break;
1442 	case EDP_LANE_2:
1443 		panel->vbt.edp.lanes = 2;
1444 		break;
1445 	case EDP_LANE_4:
1446 		panel->vbt.edp.lanes = 4;
1447 		break;
1448 	default:
1449 		drm_dbg_kms(&i915->drm,
1450 			    "VBT has unknown eDP lane count value %u\n",
1451 			    edp_link_params->lanes);
1452 		break;
1453 	}
1454 
1455 	switch (edp_link_params->preemphasis) {
1456 	case EDP_PREEMPHASIS_NONE:
1457 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1458 		break;
1459 	case EDP_PREEMPHASIS_3_5dB:
1460 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1461 		break;
1462 	case EDP_PREEMPHASIS_6dB:
1463 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1464 		break;
1465 	case EDP_PREEMPHASIS_9_5dB:
1466 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1467 		break;
1468 	default:
1469 		drm_dbg_kms(&i915->drm,
1470 			    "VBT has unknown eDP pre-emphasis value %u\n",
1471 			    edp_link_params->preemphasis);
1472 		break;
1473 	}
1474 
1475 	switch (edp_link_params->vswing) {
1476 	case EDP_VSWING_0_4V:
1477 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1478 		break;
1479 	case EDP_VSWING_0_6V:
1480 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1481 		break;
1482 	case EDP_VSWING_0_8V:
1483 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1484 		break;
1485 	case EDP_VSWING_1_2V:
1486 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1487 		break;
1488 	default:
1489 		drm_dbg_kms(&i915->drm,
1490 			    "VBT has unknown eDP voltage swing value %u\n",
1491 			    edp_link_params->vswing);
1492 		break;
1493 	}
1494 
1495 	if (i915->display.vbt.version >= 173) {
1496 		u8 vswing;
1497 
1498 		/* Don't read from VBT if module parameter has valid value*/
1499 		if (i915->params.edp_vswing) {
1500 			panel->vbt.edp.low_vswing =
1501 				i915->params.edp_vswing == 1;
1502 		} else {
1503 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1504 			panel->vbt.edp.low_vswing = vswing == 0;
1505 		}
1506 	}
1507 
1508 	panel->vbt.edp.drrs_msa_timing_delay =
1509 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1510 
1511 	if (i915->display.vbt.version >= 244)
1512 		panel->vbt.edp.max_link_rate =
1513 			edp->edp_max_port_link_rate[panel_type] * 20;
1514 }
1515 
1516 static void
1517 parse_psr(struct drm_i915_private *i915,
1518 	  struct intel_panel *panel)
1519 {
1520 	const struct bdb_psr *psr;
1521 	const struct psr_table *psr_table;
1522 	int panel_type = panel->vbt.panel_type;
1523 
1524 	psr = bdb_find_section(i915, BDB_PSR);
1525 	if (!psr) {
1526 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1527 		return;
1528 	}
1529 
1530 	psr_table = &psr->psr_table[panel_type];
1531 
1532 	panel->vbt.psr.full_link = psr_table->full_link;
1533 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1534 
1535 	/* Allowed VBT values goes from 0 to 15 */
1536 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1537 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1538 
1539 	/*
1540 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1541 	 * Old decimal value is wake up time in multiples of 100 us.
1542 	 */
1543 	if (i915->display.vbt.version >= 205 &&
1544 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1545 		switch (psr_table->tp1_wakeup_time) {
1546 		case 0:
1547 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1548 			break;
1549 		case 1:
1550 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1551 			break;
1552 		case 3:
1553 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1554 			break;
1555 		default:
1556 			drm_dbg_kms(&i915->drm,
1557 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1558 				    psr_table->tp1_wakeup_time);
1559 			fallthrough;
1560 		case 2:
1561 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1562 			break;
1563 		}
1564 
1565 		switch (psr_table->tp2_tp3_wakeup_time) {
1566 		case 0:
1567 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1568 			break;
1569 		case 1:
1570 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1571 			break;
1572 		case 3:
1573 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1574 			break;
1575 		default:
1576 			drm_dbg_kms(&i915->drm,
1577 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1578 				    psr_table->tp2_tp3_wakeup_time);
1579 			fallthrough;
1580 		case 2:
1581 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1582 		break;
1583 		}
1584 	} else {
1585 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1586 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1587 	}
1588 
1589 	if (i915->display.vbt.version >= 226) {
1590 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1591 
1592 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1593 		switch (wakeup_time) {
1594 		case 0:
1595 			wakeup_time = 500;
1596 			break;
1597 		case 1:
1598 			wakeup_time = 100;
1599 			break;
1600 		case 3:
1601 			wakeup_time = 50;
1602 			break;
1603 		default:
1604 		case 2:
1605 			wakeup_time = 2500;
1606 			break;
1607 		}
1608 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1609 	} else {
1610 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1611 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1612 	}
1613 }
1614 
1615 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1616 				      struct intel_panel *panel,
1617 				      enum port port)
1618 {
1619 	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1620 
1621 	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1622 		panel->vbt.dsi.bl_ports = BIT(port);
1623 		if (panel->vbt.dsi.config->cabc_supported)
1624 			panel->vbt.dsi.cabc_ports = BIT(port);
1625 
1626 		return;
1627 	}
1628 
1629 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1630 	case DL_DCS_PORT_A:
1631 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1632 		break;
1633 	case DL_DCS_PORT_C:
1634 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1635 		break;
1636 	default:
1637 	case DL_DCS_PORT_A_AND_C:
1638 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1639 		break;
1640 	}
1641 
1642 	if (!panel->vbt.dsi.config->cabc_supported)
1643 		return;
1644 
1645 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1646 	case DL_DCS_PORT_A:
1647 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1648 		break;
1649 	case DL_DCS_PORT_C:
1650 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1651 		break;
1652 	default:
1653 	case DL_DCS_PORT_A_AND_C:
1654 		panel->vbt.dsi.cabc_ports =
1655 					BIT(PORT_A) | BIT(port_bc);
1656 		break;
1657 	}
1658 }
1659 
1660 static void
1661 parse_mipi_config(struct drm_i915_private *i915,
1662 		  struct intel_panel *panel)
1663 {
1664 	const struct bdb_mipi_config *start;
1665 	const struct mipi_config *config;
1666 	const struct mipi_pps_data *pps;
1667 	int panel_type = panel->vbt.panel_type;
1668 	enum port port;
1669 
1670 	/* parse MIPI blocks only if LFP type is MIPI */
1671 	if (!intel_bios_is_dsi_present(i915, &port))
1672 		return;
1673 
1674 	/* Initialize this to undefined indicating no generic MIPI support */
1675 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1676 
1677 	/* Block #40 is already parsed and panel_fixed_mode is
1678 	 * stored in i915->lfp_lvds_vbt_mode
1679 	 * resuse this when needed
1680 	 */
1681 
1682 	/* Parse #52 for panel index used from panel_type already
1683 	 * parsed
1684 	 */
1685 	start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1686 	if (!start) {
1687 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1688 		return;
1689 	}
1690 
1691 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1692 		panel_type);
1693 
1694 	/*
1695 	 * get hold of the correct configuration block and pps data as per
1696 	 * the panel_type as index
1697 	 */
1698 	config = &start->config[panel_type];
1699 	pps = &start->pps[panel_type];
1700 
1701 	/* store as of now full data. Trim when we realise all is not needed */
1702 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1703 	if (!panel->vbt.dsi.config)
1704 		return;
1705 
1706 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1707 	if (!panel->vbt.dsi.pps) {
1708 		kfree(panel->vbt.dsi.config);
1709 		return;
1710 	}
1711 
1712 	parse_dsi_backlight_ports(i915, panel, port);
1713 
1714 	/* FIXME is the 90 vs. 270 correct? */
1715 	switch (config->rotation) {
1716 	case ENABLE_ROTATION_0:
1717 		/*
1718 		 * Most (all?) VBTs claim 0 degrees despite having
1719 		 * an upside down panel, thus we do not trust this.
1720 		 */
1721 		panel->vbt.dsi.orientation =
1722 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1723 		break;
1724 	case ENABLE_ROTATION_90:
1725 		panel->vbt.dsi.orientation =
1726 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1727 		break;
1728 	case ENABLE_ROTATION_180:
1729 		panel->vbt.dsi.orientation =
1730 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1731 		break;
1732 	case ENABLE_ROTATION_270:
1733 		panel->vbt.dsi.orientation =
1734 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1735 		break;
1736 	}
1737 
1738 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1739 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1740 }
1741 
1742 /* Find the sequence block and size for the given panel. */
1743 static const u8 *
1744 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1745 			  u16 panel_id, u32 *seq_size)
1746 {
1747 	u32 total = get_blocksize(sequence);
1748 	const u8 *data = &sequence->data[0];
1749 	u8 current_id;
1750 	u32 current_size;
1751 	int header_size = sequence->version >= 3 ? 5 : 3;
1752 	int index = 0;
1753 	int i;
1754 
1755 	/* skip new block size */
1756 	if (sequence->version >= 3)
1757 		data += 4;
1758 
1759 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1760 		if (index + header_size > total) {
1761 			DRM_ERROR("Invalid sequence block (header)\n");
1762 			return NULL;
1763 		}
1764 
1765 		current_id = *(data + index);
1766 		if (sequence->version >= 3)
1767 			current_size = *((const u32 *)(data + index + 1));
1768 		else
1769 			current_size = *((const u16 *)(data + index + 1));
1770 
1771 		index += header_size;
1772 
1773 		if (index + current_size > total) {
1774 			DRM_ERROR("Invalid sequence block\n");
1775 			return NULL;
1776 		}
1777 
1778 		if (current_id == panel_id) {
1779 			*seq_size = current_size;
1780 			return data + index;
1781 		}
1782 
1783 		index += current_size;
1784 	}
1785 
1786 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1787 
1788 	return NULL;
1789 }
1790 
1791 static int goto_next_sequence(const u8 *data, int index, int total)
1792 {
1793 	u16 len;
1794 
1795 	/* Skip Sequence Byte. */
1796 	for (index = index + 1; index < total; index += len) {
1797 		u8 operation_byte = *(data + index);
1798 		index++;
1799 
1800 		switch (operation_byte) {
1801 		case MIPI_SEQ_ELEM_END:
1802 			return index;
1803 		case MIPI_SEQ_ELEM_SEND_PKT:
1804 			if (index + 4 > total)
1805 				return 0;
1806 
1807 			len = *((const u16 *)(data + index + 2)) + 4;
1808 			break;
1809 		case MIPI_SEQ_ELEM_DELAY:
1810 			len = 4;
1811 			break;
1812 		case MIPI_SEQ_ELEM_GPIO:
1813 			len = 2;
1814 			break;
1815 		case MIPI_SEQ_ELEM_I2C:
1816 			if (index + 7 > total)
1817 				return 0;
1818 			len = *(data + index + 6) + 7;
1819 			break;
1820 		default:
1821 			DRM_ERROR("Unknown operation byte\n");
1822 			return 0;
1823 		}
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1830 {
1831 	int seq_end;
1832 	u16 len;
1833 	u32 size_of_sequence;
1834 
1835 	/*
1836 	 * Could skip sequence based on Size of Sequence alone, but also do some
1837 	 * checking on the structure.
1838 	 */
1839 	if (total < 5) {
1840 		DRM_ERROR("Too small sequence size\n");
1841 		return 0;
1842 	}
1843 
1844 	/* Skip Sequence Byte. */
1845 	index++;
1846 
1847 	/*
1848 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1849 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1850 	 * byte.
1851 	 */
1852 	size_of_sequence = *((const u32 *)(data + index));
1853 	index += 4;
1854 
1855 	seq_end = index + size_of_sequence;
1856 	if (seq_end > total) {
1857 		DRM_ERROR("Invalid sequence size\n");
1858 		return 0;
1859 	}
1860 
1861 	for (; index < total; index += len) {
1862 		u8 operation_byte = *(data + index);
1863 		index++;
1864 
1865 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1866 			if (index != seq_end) {
1867 				DRM_ERROR("Invalid element structure\n");
1868 				return 0;
1869 			}
1870 			return index;
1871 		}
1872 
1873 		len = *(data + index);
1874 		index++;
1875 
1876 		/*
1877 		 * FIXME: Would be nice to check elements like for v1/v2 in
1878 		 * goto_next_sequence() above.
1879 		 */
1880 		switch (operation_byte) {
1881 		case MIPI_SEQ_ELEM_SEND_PKT:
1882 		case MIPI_SEQ_ELEM_DELAY:
1883 		case MIPI_SEQ_ELEM_GPIO:
1884 		case MIPI_SEQ_ELEM_I2C:
1885 		case MIPI_SEQ_ELEM_SPI:
1886 		case MIPI_SEQ_ELEM_PMIC:
1887 			break;
1888 		default:
1889 			DRM_ERROR("Unknown operation byte %u\n",
1890 				  operation_byte);
1891 			break;
1892 		}
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 /*
1899  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1900  * skip all delay + gpio operands and stop at the first DSI packet op.
1901  */
1902 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1903 					      struct intel_panel *panel)
1904 {
1905 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1906 	int index, len;
1907 
1908 	if (drm_WARN_ON(&i915->drm,
1909 			!data || panel->vbt.dsi.seq_version != 1))
1910 		return 0;
1911 
1912 	/* index = 1 to skip sequence byte */
1913 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1914 		switch (data[index]) {
1915 		case MIPI_SEQ_ELEM_SEND_PKT:
1916 			return index == 1 ? 0 : index;
1917 		case MIPI_SEQ_ELEM_DELAY:
1918 			len = 5; /* 1 byte for operand + uint32 */
1919 			break;
1920 		case MIPI_SEQ_ELEM_GPIO:
1921 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1922 			break;
1923 		default:
1924 			return 0;
1925 		}
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1933  * The deassert must be done before calling intel_dsi_device_ready, so for
1934  * these devices we split the init OTP sequence into a deassert sequence and
1935  * the actual init OTP part.
1936  */
1937 static void vlv_fixup_mipi_sequences(struct drm_i915_private *i915,
1938 				     struct intel_panel *panel)
1939 {
1940 	u8 *init_otp;
1941 	int len;
1942 
1943 	/* Limit this to v1 vid-mode sequences */
1944 	if (panel->vbt.dsi.config->is_cmd_mode ||
1945 	    panel->vbt.dsi.seq_version != 1)
1946 		return;
1947 
1948 	/* Only do this if there are otp and assert seqs and no deassert seq */
1949 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1950 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1951 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1952 		return;
1953 
1954 	/* The deassert-sequence ends at the first DSI packet */
1955 	len = get_init_otp_deassert_fragment_len(i915, panel);
1956 	if (!len)
1957 		return;
1958 
1959 	drm_dbg_kms(&i915->drm,
1960 		    "Using init OTP fragment to deassert reset\n");
1961 
1962 	/* Copy the fragment, update seq byte and terminate it */
1963 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1964 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1965 	if (!panel->vbt.dsi.deassert_seq)
1966 		return;
1967 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1968 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1969 	/* Use the copy for deassert */
1970 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1971 		panel->vbt.dsi.deassert_seq;
1972 	/* Replace the last byte of the fragment with init OTP seq byte */
1973 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1974 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1975 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1976 }
1977 
1978 /*
1979  * Some machines (eg. Lenovo 82TQ) appear to have broken
1980  * VBT sequences:
1981  * - INIT_OTP is not present at all
1982  * - what should be in INIT_OTP is in DISPLAY_ON
1983  * - what should be in DISPLAY_ON is in BACKLIGHT_ON
1984  *   (along with the actual backlight stuff)
1985  *
1986  * To make those work we simply swap DISPLAY_ON and INIT_OTP.
1987  *
1988  * TODO: Do we need to limit this to specific machines,
1989  *       or examine the contents of the sequences to
1990  *       avoid false positives?
1991  */
1992 static void icl_fixup_mipi_sequences(struct drm_i915_private *i915,
1993 				     struct intel_panel *panel)
1994 {
1995 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] &&
1996 	    panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]) {
1997 		drm_dbg_kms(&i915->drm, "Broken VBT: Swapping INIT_OTP and DISPLAY_ON sequences\n");
1998 
1999 		swap(panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP],
2000 		     panel->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]);
2001 	}
2002 }
2003 
2004 static void fixup_mipi_sequences(struct drm_i915_private *i915,
2005 				 struct intel_panel *panel)
2006 {
2007 	if (DISPLAY_VER(i915) >= 11)
2008 		icl_fixup_mipi_sequences(i915, panel);
2009 	else if (IS_VALLEYVIEW(i915))
2010 		vlv_fixup_mipi_sequences(i915, panel);
2011 }
2012 
2013 static void
2014 parse_mipi_sequence(struct drm_i915_private *i915,
2015 		    struct intel_panel *panel)
2016 {
2017 	int panel_type = panel->vbt.panel_type;
2018 	const struct bdb_mipi_sequence *sequence;
2019 	const u8 *seq_data;
2020 	u32 seq_size;
2021 	u8 *data;
2022 	int index = 0;
2023 
2024 	/* Only our generic panel driver uses the sequence block. */
2025 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2026 		return;
2027 
2028 	sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2029 	if (!sequence) {
2030 		drm_dbg_kms(&i915->drm,
2031 			    "No MIPI Sequence found, parsing complete\n");
2032 		return;
2033 	}
2034 
2035 	/* Fail gracefully for forward incompatible sequence block. */
2036 	if (sequence->version >= 4) {
2037 		drm_err(&i915->drm,
2038 			"Unable to parse MIPI Sequence Block v%u\n",
2039 			sequence->version);
2040 		return;
2041 	}
2042 
2043 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2044 		sequence->version);
2045 
2046 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2047 	if (!seq_data)
2048 		return;
2049 
2050 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2051 	if (!data)
2052 		return;
2053 
2054 	/* Parse the sequences, store pointers to each sequence. */
2055 	for (;;) {
2056 		u8 seq_id = *(data + index);
2057 		if (seq_id == MIPI_SEQ_END)
2058 			break;
2059 
2060 		if (seq_id >= MIPI_SEQ_MAX) {
2061 			drm_err(&i915->drm, "Unknown sequence %u\n",
2062 				seq_id);
2063 			goto err;
2064 		}
2065 
2066 		/* Log about presence of sequences we won't run. */
2067 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2068 			drm_dbg_kms(&i915->drm,
2069 				    "Unsupported sequence %u\n", seq_id);
2070 
2071 		panel->vbt.dsi.sequence[seq_id] = data + index;
2072 
2073 		if (sequence->version >= 3)
2074 			index = goto_next_sequence_v3(data, index, seq_size);
2075 		else
2076 			index = goto_next_sequence(data, index, seq_size);
2077 		if (!index) {
2078 			drm_err(&i915->drm, "Invalid sequence %u\n",
2079 				seq_id);
2080 			goto err;
2081 		}
2082 	}
2083 
2084 	panel->vbt.dsi.data = data;
2085 	panel->vbt.dsi.size = seq_size;
2086 	panel->vbt.dsi.seq_version = sequence->version;
2087 
2088 	fixup_mipi_sequences(i915, panel);
2089 
2090 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2091 	return;
2092 
2093 err:
2094 	kfree(data);
2095 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2096 }
2097 
2098 static void
2099 parse_compression_parameters(struct drm_i915_private *i915)
2100 {
2101 	const struct bdb_compression_parameters *params;
2102 	struct intel_bios_encoder_data *devdata;
2103 	u16 block_size;
2104 	int index;
2105 
2106 	if (i915->display.vbt.version < 198)
2107 		return;
2108 
2109 	params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2110 	if (params) {
2111 		/* Sanity checks */
2112 		if (params->entry_size != sizeof(params->data[0])) {
2113 			drm_dbg_kms(&i915->drm,
2114 				    "VBT: unsupported compression param entry size\n");
2115 			return;
2116 		}
2117 
2118 		block_size = get_blocksize(params);
2119 		if (block_size < sizeof(*params)) {
2120 			drm_dbg_kms(&i915->drm,
2121 				    "VBT: expected 16 compression param entries\n");
2122 			return;
2123 		}
2124 	}
2125 
2126 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2127 		const struct child_device_config *child = &devdata->child;
2128 
2129 		if (!child->compression_enable)
2130 			continue;
2131 
2132 		if (!params) {
2133 			drm_dbg_kms(&i915->drm,
2134 				    "VBT: compression params not available\n");
2135 			continue;
2136 		}
2137 
2138 		if (child->compression_method_cps) {
2139 			drm_dbg_kms(&i915->drm,
2140 				    "VBT: CPS compression not supported\n");
2141 			continue;
2142 		}
2143 
2144 		index = child->compression_structure_index;
2145 
2146 		devdata->dsc = kmemdup(&params->data[index],
2147 				       sizeof(*devdata->dsc), GFP_KERNEL);
2148 	}
2149 }
2150 
2151 static u8 translate_iboost(u8 val)
2152 {
2153 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2154 
2155 	if (val >= ARRAY_SIZE(mapping)) {
2156 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2157 		return 0;
2158 	}
2159 	return mapping[val];
2160 }
2161 
2162 static const u8 cnp_ddc_pin_map[] = {
2163 	[0] = 0, /* N/A */
2164 	[GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2165 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2166 	[GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2167 	[GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2168 };
2169 
2170 static const u8 icp_ddc_pin_map[] = {
2171 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2172 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2173 	[GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2174 	[GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2175 	[GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2176 	[GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2177 	[GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2178 	[GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2179 	[GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2180 };
2181 
2182 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2183 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2184 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2185 	[GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2186 	[GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2187 };
2188 
2189 static const u8 adls_ddc_pin_map[] = {
2190 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2191 	[GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2192 	[GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2193 	[GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2194 	[GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2195 };
2196 
2197 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2198 	[GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2199 	[GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2200 	[GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2201 };
2202 
2203 static const u8 adlp_ddc_pin_map[] = {
2204 	[GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2205 	[GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2206 	[GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2207 	[GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2208 	[GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2209 	[GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2210 };
2211 
2212 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2213 {
2214 	const u8 *ddc_pin_map;
2215 	int i, n_entries;
2216 
2217 	if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
2218 		ddc_pin_map = adlp_ddc_pin_map;
2219 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2220 	} else if (IS_ALDERLAKE_S(i915)) {
2221 		ddc_pin_map = adls_ddc_pin_map;
2222 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2223 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2224 		return vbt_pin;
2225 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2226 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2227 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2228 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2229 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2230 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2231 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2232 		ddc_pin_map = icp_ddc_pin_map;
2233 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2234 	} else if (HAS_PCH_CNP(i915)) {
2235 		ddc_pin_map = cnp_ddc_pin_map;
2236 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2237 	} else {
2238 		/* Assuming direct map */
2239 		return vbt_pin;
2240 	}
2241 
2242 	for (i = 0; i < n_entries; i++) {
2243 		if (ddc_pin_map[i] == vbt_pin)
2244 			return i;
2245 	}
2246 
2247 	drm_dbg_kms(&i915->drm,
2248 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2249 		    vbt_pin);
2250 	return 0;
2251 }
2252 
2253 static u8 dvo_port_type(u8 dvo_port)
2254 {
2255 	switch (dvo_port) {
2256 	case DVO_PORT_HDMIA:
2257 	case DVO_PORT_HDMIB:
2258 	case DVO_PORT_HDMIC:
2259 	case DVO_PORT_HDMID:
2260 	case DVO_PORT_HDMIE:
2261 	case DVO_PORT_HDMIF:
2262 	case DVO_PORT_HDMIG:
2263 	case DVO_PORT_HDMIH:
2264 	case DVO_PORT_HDMII:
2265 		return DVO_PORT_HDMIA;
2266 	case DVO_PORT_DPA:
2267 	case DVO_PORT_DPB:
2268 	case DVO_PORT_DPC:
2269 	case DVO_PORT_DPD:
2270 	case DVO_PORT_DPE:
2271 	case DVO_PORT_DPF:
2272 	case DVO_PORT_DPG:
2273 	case DVO_PORT_DPH:
2274 	case DVO_PORT_DPI:
2275 		return DVO_PORT_DPA;
2276 	case DVO_PORT_MIPIA:
2277 	case DVO_PORT_MIPIB:
2278 	case DVO_PORT_MIPIC:
2279 	case DVO_PORT_MIPID:
2280 		return DVO_PORT_MIPIA;
2281 	default:
2282 		return dvo_port;
2283 	}
2284 }
2285 
2286 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2287 				    const int port_mapping[][3], u8 dvo_port)
2288 {
2289 	enum port port;
2290 	int i;
2291 
2292 	for (port = PORT_A; port < n_ports; port++) {
2293 		for (i = 0; i < n_dvo; i++) {
2294 			if (port_mapping[port][i] == -1)
2295 				break;
2296 
2297 			if (dvo_port == port_mapping[port][i])
2298 				return port;
2299 		}
2300 	}
2301 
2302 	return PORT_NONE;
2303 }
2304 
2305 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2306 				  u8 dvo_port)
2307 {
2308 	/*
2309 	 * Each DDI port can have more than one value on the "DVO Port" field,
2310 	 * so look for all the possible values for each port.
2311 	 */
2312 	static const int port_mapping[][3] = {
2313 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2314 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2315 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2316 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2317 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2318 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2319 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2320 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2321 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2322 	};
2323 	/*
2324 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2325 	 * map to DDI A,B,TC1,TC2 respectively.
2326 	 */
2327 	static const int rkl_port_mapping[][3] = {
2328 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2329 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2330 		[PORT_C] = { -1 },
2331 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2332 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2333 	};
2334 	/*
2335 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2336 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2337 	 */
2338 	static const int adls_port_mapping[][3] = {
2339 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2340 		[PORT_B] = { -1 },
2341 		[PORT_C] = { -1 },
2342 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2343 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2344 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2345 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2346 	};
2347 	static const int xelpd_port_mapping[][3] = {
2348 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2349 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2350 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2351 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2352 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2353 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2354 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2355 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2356 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2357 	};
2358 
2359 	if (DISPLAY_VER(i915) >= 13)
2360 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2361 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2362 					  xelpd_port_mapping,
2363 					  dvo_port);
2364 	else if (IS_ALDERLAKE_S(i915))
2365 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2366 					  ARRAY_SIZE(adls_port_mapping[0]),
2367 					  adls_port_mapping,
2368 					  dvo_port);
2369 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2370 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2371 					  ARRAY_SIZE(rkl_port_mapping[0]),
2372 					  rkl_port_mapping,
2373 					  dvo_port);
2374 	else
2375 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2376 					  ARRAY_SIZE(port_mapping[0]),
2377 					  port_mapping,
2378 					  dvo_port);
2379 }
2380 
2381 static enum port
2382 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2383 {
2384 	switch (dvo_port) {
2385 	case DVO_PORT_MIPIA:
2386 		return PORT_A;
2387 	case DVO_PORT_MIPIC:
2388 		if (DISPLAY_VER(i915) >= 11)
2389 			return PORT_B;
2390 		else
2391 			return PORT_C;
2392 	default:
2393 		return PORT_NONE;
2394 	}
2395 }
2396 
2397 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2398 {
2399 	struct drm_i915_private *i915 = devdata->i915;
2400 	const struct child_device_config *child = &devdata->child;
2401 	enum port port;
2402 
2403 	port = dvo_port_to_port(i915, child->dvo_port);
2404 	if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2405 		port = dsi_dvo_port_to_port(i915, child->dvo_port);
2406 
2407 	return port;
2408 }
2409 
2410 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2411 {
2412 	switch (vbt_max_link_rate) {
2413 	default:
2414 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2415 		return 0;
2416 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2417 		return 2000000;
2418 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2419 		return 1350000;
2420 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2421 		return 1000000;
2422 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2423 		return 810000;
2424 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2425 		return 540000;
2426 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2427 		return 270000;
2428 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2429 		return 162000;
2430 	}
2431 }
2432 
2433 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2434 {
2435 	switch (vbt_max_link_rate) {
2436 	default:
2437 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2438 		return 810000;
2439 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2440 		return 540000;
2441 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2442 		return 270000;
2443 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2444 		return 162000;
2445 	}
2446 }
2447 
2448 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2449 {
2450 	if (!devdata || devdata->i915->display.vbt.version < 216)
2451 		return 0;
2452 
2453 	if (devdata->i915->display.vbt.version >= 230)
2454 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2455 	else
2456 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2457 }
2458 
2459 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2460 {
2461 	if (!devdata || devdata->i915->display.vbt.version < 244)
2462 		return 0;
2463 
2464 	return devdata->child.dp_max_lane_count + 1;
2465 }
2466 
2467 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2468 				 enum port port)
2469 {
2470 	struct drm_i915_private *i915 = devdata->i915;
2471 	bool is_hdmi;
2472 
2473 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2474 		return;
2475 
2476 	if (!intel_bios_encoder_supports_dvi(devdata))
2477 		return;
2478 
2479 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2480 
2481 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2482 		    is_hdmi ? "/HDMI" : "");
2483 
2484 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2485 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2486 }
2487 
2488 static bool
2489 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2490 {
2491 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2492 }
2493 
2494 bool
2495 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2496 {
2497 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2498 }
2499 
2500 bool
2501 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2502 {
2503 	return intel_bios_encoder_supports_dvi(devdata) &&
2504 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2505 }
2506 
2507 bool
2508 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2509 {
2510 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2511 }
2512 
2513 bool
2514 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2515 {
2516 	return intel_bios_encoder_supports_dp(devdata) &&
2517 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2518 }
2519 
2520 bool
2521 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2522 {
2523 	return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2524 }
2525 
2526 bool
2527 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2528 {
2529 	return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2530 }
2531 
2532 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2533 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2534 {
2535 	if (!devdata || devdata->i915->display.vbt.version < 158 ||
2536 	    DISPLAY_VER(devdata->i915) >= 14)
2537 		return -1;
2538 
2539 	return devdata->child.hdmi_level_shifter_value;
2540 }
2541 
2542 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2543 {
2544 	if (!devdata || devdata->i915->display.vbt.version < 204)
2545 		return 0;
2546 
2547 	switch (devdata->child.hdmi_max_data_rate) {
2548 	default:
2549 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2550 		fallthrough;
2551 	case HDMI_MAX_DATA_RATE_PLATFORM:
2552 		return 0;
2553 	case HDMI_MAX_DATA_RATE_594:
2554 		return 594000;
2555 	case HDMI_MAX_DATA_RATE_340:
2556 		return 340000;
2557 	case HDMI_MAX_DATA_RATE_300:
2558 		return 300000;
2559 	case HDMI_MAX_DATA_RATE_297:
2560 		return 297000;
2561 	case HDMI_MAX_DATA_RATE_165:
2562 		return 165000;
2563 	}
2564 }
2565 
2566 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2567 {
2568 	/*
2569 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2570 	 * the port as present. Only try to initialize port F for the
2571 	 * SKUs that may actually have it.
2572 	 */
2573 	if (port == PORT_F && IS_ICELAKE(i915))
2574 		return IS_ICL_WITH_PORT_F(i915);
2575 
2576 	return true;
2577 }
2578 
2579 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2580 {
2581 	struct drm_i915_private *i915 = devdata->i915;
2582 	const struct child_device_config *child = &devdata->child;
2583 	bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2584 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2585 	enum port port;
2586 
2587 	port = intel_bios_encoder_port(devdata);
2588 	if (port == PORT_NONE)
2589 		return;
2590 
2591 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2592 	is_dp = intel_bios_encoder_supports_dp(devdata);
2593 	is_crt = intel_bios_encoder_supports_crt(devdata);
2594 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2595 	is_edp = intel_bios_encoder_supports_edp(devdata);
2596 	is_dsi = intel_bios_encoder_supports_dsi(devdata);
2597 
2598 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2599 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2600 
2601 	drm_dbg_kms(&i915->drm,
2602 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2603 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2604 		    intel_bios_encoder_supports_dp_dual_mode(devdata),
2605 		    intel_bios_encoder_is_lspcon(devdata),
2606 		    supports_typec_usb, supports_tbt,
2607 		    devdata->dsc != NULL);
2608 
2609 	hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2610 	if (hdmi_level_shift >= 0) {
2611 		drm_dbg_kms(&i915->drm,
2612 			    "Port %c VBT HDMI level shift: %d\n",
2613 			    port_name(port), hdmi_level_shift);
2614 	}
2615 
2616 	max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2617 	if (max_tmds_clock)
2618 		drm_dbg_kms(&i915->drm,
2619 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2620 			    port_name(port), max_tmds_clock);
2621 
2622 	/* I_boost config for SKL and above */
2623 	dp_boost_level = intel_bios_dp_boost_level(devdata);
2624 	if (dp_boost_level)
2625 		drm_dbg_kms(&i915->drm,
2626 			    "Port %c VBT (e)DP boost level: %d\n",
2627 			    port_name(port), dp_boost_level);
2628 
2629 	hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2630 	if (hdmi_boost_level)
2631 		drm_dbg_kms(&i915->drm,
2632 			    "Port %c VBT HDMI boost level: %d\n",
2633 			    port_name(port), hdmi_boost_level);
2634 
2635 	dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2636 	if (dp_max_link_rate)
2637 		drm_dbg_kms(&i915->drm,
2638 			    "Port %c VBT DP max link rate: %d\n",
2639 			    port_name(port), dp_max_link_rate);
2640 
2641 	/*
2642 	 * FIXME need to implement support for VBT
2643 	 * vswing/preemph tables should this ever trigger.
2644 	 */
2645 	drm_WARN(&i915->drm, child->use_vbt_vswing,
2646 		 "Port %c asks to use VBT vswing/preemph tables\n",
2647 		 port_name(port));
2648 }
2649 
2650 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2651 {
2652 	struct drm_i915_private *i915 = devdata->i915;
2653 	enum port port;
2654 
2655 	port = intel_bios_encoder_port(devdata);
2656 	if (port == PORT_NONE)
2657 		return;
2658 
2659 	if (!is_port_valid(i915, port)) {
2660 		drm_dbg_kms(&i915->drm,
2661 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2662 			    port_name(port));
2663 		return;
2664 	}
2665 
2666 	sanitize_device_type(devdata, port);
2667 }
2668 
2669 static bool has_ddi_port_info(struct drm_i915_private *i915)
2670 {
2671 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2672 }
2673 
2674 static void parse_ddi_ports(struct drm_i915_private *i915)
2675 {
2676 	struct intel_bios_encoder_data *devdata;
2677 
2678 	if (!has_ddi_port_info(i915))
2679 		return;
2680 
2681 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2682 		parse_ddi_port(devdata);
2683 
2684 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2685 		print_ddi_port(devdata);
2686 }
2687 
2688 static void
2689 parse_general_definitions(struct drm_i915_private *i915)
2690 {
2691 	const struct bdb_general_definitions *defs;
2692 	struct intel_bios_encoder_data *devdata;
2693 	const struct child_device_config *child;
2694 	int i, child_device_num;
2695 	u8 expected_size;
2696 	u16 block_size;
2697 	int bus_pin;
2698 
2699 	defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2700 	if (!defs) {
2701 		drm_dbg_kms(&i915->drm,
2702 			    "No general definition block is found, no devices defined.\n");
2703 		return;
2704 	}
2705 
2706 	block_size = get_blocksize(defs);
2707 	if (block_size < sizeof(*defs)) {
2708 		drm_dbg_kms(&i915->drm,
2709 			    "General definitions block too small (%u)\n",
2710 			    block_size);
2711 		return;
2712 	}
2713 
2714 	bus_pin = defs->crt_ddc_gmbus_pin;
2715 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2716 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2717 		i915->display.vbt.crt_ddc_pin = bus_pin;
2718 
2719 	if (i915->display.vbt.version < 106) {
2720 		expected_size = 22;
2721 	} else if (i915->display.vbt.version < 111) {
2722 		expected_size = 27;
2723 	} else if (i915->display.vbt.version < 195) {
2724 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2725 	} else if (i915->display.vbt.version == 195) {
2726 		expected_size = 37;
2727 	} else if (i915->display.vbt.version <= 215) {
2728 		expected_size = 38;
2729 	} else if (i915->display.vbt.version <= 250) {
2730 		expected_size = 39;
2731 	} else {
2732 		expected_size = sizeof(*child);
2733 		BUILD_BUG_ON(sizeof(*child) < 39);
2734 		drm_dbg(&i915->drm,
2735 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2736 			i915->display.vbt.version, expected_size);
2737 	}
2738 
2739 	/* Flag an error for unexpected size, but continue anyway. */
2740 	if (defs->child_dev_size != expected_size)
2741 		drm_err(&i915->drm,
2742 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2743 			defs->child_dev_size, expected_size, i915->display.vbt.version);
2744 
2745 	/* The legacy sized child device config is the minimum we need. */
2746 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2747 		drm_dbg_kms(&i915->drm,
2748 			    "Child device config size %u is too small.\n",
2749 			    defs->child_dev_size);
2750 		return;
2751 	}
2752 
2753 	/* get the number of child device */
2754 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2755 
2756 	for (i = 0; i < child_device_num; i++) {
2757 		child = child_device_ptr(defs, i);
2758 		if (!child->device_type)
2759 			continue;
2760 
2761 		drm_dbg_kms(&i915->drm,
2762 			    "Found VBT child device with type 0x%x\n",
2763 			    child->device_type);
2764 
2765 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2766 		if (!devdata)
2767 			break;
2768 
2769 		devdata->i915 = i915;
2770 
2771 		/*
2772 		 * Copy as much as we know (sizeof) and is available
2773 		 * (child_dev_size) of the child device config. Accessing the
2774 		 * data must depend on VBT version.
2775 		 */
2776 		memcpy(&devdata->child, child,
2777 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2778 
2779 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2780 	}
2781 
2782 	if (list_empty(&i915->display.vbt.display_devices))
2783 		drm_dbg_kms(&i915->drm,
2784 			    "no child dev is parsed from VBT\n");
2785 }
2786 
2787 /* Common defaults which may be overridden by VBT. */
2788 static void
2789 init_vbt_defaults(struct drm_i915_private *i915)
2790 {
2791 	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2792 
2793 	/* general features */
2794 	i915->display.vbt.int_tv_support = 1;
2795 	i915->display.vbt.int_crt_support = 1;
2796 
2797 	/* driver features */
2798 	i915->display.vbt.int_lvds_support = 1;
2799 
2800 	/* Default to using SSC */
2801 	i915->display.vbt.lvds_use_ssc = 1;
2802 	/*
2803 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2804 	 * clock for LVDS.
2805 	 */
2806 	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2807 								   !HAS_PCH_SPLIT(i915));
2808 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2809 		    i915->display.vbt.lvds_ssc_freq);
2810 }
2811 
2812 /* Common defaults which may be overridden by VBT. */
2813 static void
2814 init_vbt_panel_defaults(struct intel_panel *panel)
2815 {
2816 	/* Default to having backlight */
2817 	panel->vbt.backlight.present = true;
2818 
2819 	/* LFP panel data */
2820 	panel->vbt.lvds_dither = true;
2821 }
2822 
2823 /* Defaults to initialize only if there is no VBT. */
2824 static void
2825 init_vbt_missing_defaults(struct drm_i915_private *i915)
2826 {
2827 	enum port port;
2828 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2829 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2830 
2831 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2832 		return;
2833 
2834 	for_each_port_masked(port, ports) {
2835 		struct intel_bios_encoder_data *devdata;
2836 		struct child_device_config *child;
2837 		enum phy phy = intel_port_to_phy(i915, port);
2838 
2839 		/*
2840 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2841 		 * to detect it.
2842 		 */
2843 		if (intel_phy_is_tc(i915, phy))
2844 			continue;
2845 
2846 		/* Create fake child device config */
2847 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2848 		if (!devdata)
2849 			break;
2850 
2851 		devdata->i915 = i915;
2852 		child = &devdata->child;
2853 
2854 		if (port == PORT_F)
2855 			child->dvo_port = DVO_PORT_HDMIF;
2856 		else if (port == PORT_E)
2857 			child->dvo_port = DVO_PORT_HDMIE;
2858 		else
2859 			child->dvo_port = DVO_PORT_HDMIA + port;
2860 
2861 		if (port != PORT_A && port != PORT_E)
2862 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2863 
2864 		if (port != PORT_E)
2865 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2866 
2867 		if (port == PORT_A)
2868 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2869 
2870 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2871 
2872 		drm_dbg_kms(&i915->drm,
2873 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2874 			    child->device_type, port_name(port));
2875 	}
2876 
2877 	/* Bypass some minimum baseline VBT version checks */
2878 	i915->display.vbt.version = 155;
2879 }
2880 
2881 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2882 {
2883 	const void *_vbt = vbt;
2884 
2885 	return _vbt + vbt->bdb_offset;
2886 }
2887 
2888 /**
2889  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2890  * @buf:	pointer to a buffer to validate
2891  * @size:	size of the buffer
2892  *
2893  * Returns true on valid VBT.
2894  */
2895 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2896 {
2897 	const struct vbt_header *vbt = buf;
2898 	const struct bdb_header *bdb;
2899 
2900 	if (!vbt)
2901 		return false;
2902 
2903 	if (sizeof(struct vbt_header) > size) {
2904 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2905 		return false;
2906 	}
2907 
2908 	if (memcmp(vbt->signature, "$VBT", 4)) {
2909 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2910 		return false;
2911 	}
2912 
2913 	if (vbt->vbt_size > size) {
2914 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2915 		return false;
2916 	}
2917 
2918 	size = vbt->vbt_size;
2919 
2920 	if (range_overflows_t(size_t,
2921 			      vbt->bdb_offset,
2922 			      sizeof(struct bdb_header),
2923 			      size)) {
2924 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2925 		return false;
2926 	}
2927 
2928 	bdb = get_bdb_header(vbt);
2929 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2930 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2931 		return false;
2932 	}
2933 
2934 	return vbt;
2935 }
2936 
2937 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2938 {
2939 	intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2940 
2941 	return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2942 }
2943 
2944 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2945 {
2946 	u32 count, data, found, store = 0;
2947 	u32 static_region, oprom_offset;
2948 	u32 oprom_size = 0x200000;
2949 	u16 vbt_size;
2950 	u32 *vbt;
2951 
2952 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2953 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2954 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2955 
2956 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2957 	oprom_offset &= OROM_OFFSET_MASK;
2958 
2959 	for (count = 0; count < oprom_size; count += 4) {
2960 		data = intel_spi_read(&i915->uncore, oprom_offset + count);
2961 		if (data == *((const u32 *)"$VBT")) {
2962 			found = oprom_offset + count;
2963 			break;
2964 		}
2965 	}
2966 
2967 	if (count >= oprom_size)
2968 		goto err_not_found;
2969 
2970 	/* Get VBT size and allocate space for the VBT */
2971 	vbt_size = intel_spi_read(&i915->uncore,
2972 				  found + offsetof(struct vbt_header, vbt_size));
2973 	vbt_size &= 0xffff;
2974 
2975 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2976 	if (!vbt)
2977 		goto err_not_found;
2978 
2979 	for (count = 0; count < vbt_size; count += 4)
2980 		*(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
2981 
2982 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2983 		goto err_free_vbt;
2984 
2985 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2986 
2987 	return (struct vbt_header *)vbt;
2988 
2989 err_free_vbt:
2990 	kfree(vbt);
2991 err_not_found:
2992 	return NULL;
2993 }
2994 
2995 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2996 {
2997 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2998 	void __iomem *p = NULL, *oprom;
2999 	struct vbt_header *vbt;
3000 	u16 vbt_size;
3001 	size_t i, size;
3002 
3003 	oprom = pci_map_rom(pdev, &size);
3004 	if (!oprom)
3005 		return NULL;
3006 
3007 	/* Scour memory looking for the VBT signature. */
3008 	for (i = 0; i + 4 < size; i += 4) {
3009 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3010 			continue;
3011 
3012 		p = oprom + i;
3013 		size -= i;
3014 		break;
3015 	}
3016 
3017 	if (!p)
3018 		goto err_unmap_oprom;
3019 
3020 	if (sizeof(struct vbt_header) > size) {
3021 		drm_dbg(&i915->drm, "VBT header incomplete\n");
3022 		goto err_unmap_oprom;
3023 	}
3024 
3025 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3026 	if (vbt_size > size) {
3027 		drm_dbg(&i915->drm,
3028 			"VBT incomplete (vbt_size overflows)\n");
3029 		goto err_unmap_oprom;
3030 	}
3031 
3032 	/* The rest will be validated by intel_bios_is_valid_vbt() */
3033 	vbt = kmalloc(vbt_size, GFP_KERNEL);
3034 	if (!vbt)
3035 		goto err_unmap_oprom;
3036 
3037 	memcpy_fromio(vbt, p, vbt_size);
3038 
3039 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3040 		goto err_free_vbt;
3041 
3042 	pci_unmap_rom(pdev, oprom);
3043 
3044 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3045 
3046 	return vbt;
3047 
3048 err_free_vbt:
3049 	kfree(vbt);
3050 err_unmap_oprom:
3051 	pci_unmap_rom(pdev, oprom);
3052 
3053 	return NULL;
3054 }
3055 
3056 /**
3057  * intel_bios_init - find VBT and initialize settings from the BIOS
3058  * @i915: i915 device instance
3059  *
3060  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3061  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3062  * initialize some defaults if the VBT is not present at all.
3063  */
3064 void intel_bios_init(struct drm_i915_private *i915)
3065 {
3066 	const struct vbt_header *vbt = i915->display.opregion.vbt;
3067 	struct vbt_header *oprom_vbt = NULL;
3068 	const struct bdb_header *bdb;
3069 
3070 	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3071 	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3072 
3073 	if (!HAS_DISPLAY(i915)) {
3074 		drm_dbg_kms(&i915->drm,
3075 			    "Skipping VBT init due to disabled display.\n");
3076 		return;
3077 	}
3078 
3079 	init_vbt_defaults(i915);
3080 
3081 	/*
3082 	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3083 	 * PCI mapping
3084 	 */
3085 	if (!vbt && IS_DGFX(i915)) {
3086 		oprom_vbt = spi_oprom_get_vbt(i915);
3087 		vbt = oprom_vbt;
3088 	}
3089 
3090 	if (!vbt) {
3091 		oprom_vbt = oprom_get_vbt(i915);
3092 		vbt = oprom_vbt;
3093 	}
3094 
3095 	if (!vbt)
3096 		goto out;
3097 
3098 	bdb = get_bdb_header(vbt);
3099 	i915->display.vbt.version = bdb->version;
3100 
3101 	drm_dbg_kms(&i915->drm,
3102 		    "VBT signature \"%.*s\", BDB version %d\n",
3103 		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3104 
3105 	init_bdb_blocks(i915, bdb);
3106 
3107 	/* Grab useful general definitions */
3108 	parse_general_features(i915);
3109 	parse_general_definitions(i915);
3110 	parse_driver_features(i915);
3111 
3112 	/* Depends on child device list */
3113 	parse_compression_parameters(i915);
3114 
3115 out:
3116 	if (!vbt) {
3117 		drm_info(&i915->drm,
3118 			 "Failed to find VBIOS tables (VBT)\n");
3119 		init_vbt_missing_defaults(i915);
3120 	}
3121 
3122 	/* Further processing on pre-parsed or generated child device data */
3123 	parse_sdvo_device_mapping(i915);
3124 	parse_ddi_ports(i915);
3125 
3126 	kfree(oprom_vbt);
3127 }
3128 
3129 static void intel_bios_init_panel(struct drm_i915_private *i915,
3130 				  struct intel_panel *panel,
3131 				  const struct intel_bios_encoder_data *devdata,
3132 				  const struct drm_edid *drm_edid,
3133 				  bool use_fallback)
3134 {
3135 	/* already have it? */
3136 	if (panel->vbt.panel_type >= 0) {
3137 		drm_WARN_ON(&i915->drm, !use_fallback);
3138 		return;
3139 	}
3140 
3141 	panel->vbt.panel_type = get_panel_type(i915, devdata,
3142 					       drm_edid, use_fallback);
3143 	if (panel->vbt.panel_type < 0) {
3144 		drm_WARN_ON(&i915->drm, use_fallback);
3145 		return;
3146 	}
3147 
3148 	init_vbt_panel_defaults(panel);
3149 
3150 	parse_panel_options(i915, panel);
3151 	parse_generic_dtd(i915, panel);
3152 	parse_lfp_data(i915, panel);
3153 	parse_lfp_backlight(i915, panel);
3154 	parse_sdvo_panel_data(i915, panel);
3155 	parse_panel_driver_features(i915, panel);
3156 	parse_power_conservation_features(i915, panel);
3157 	parse_edp(i915, panel);
3158 	parse_psr(i915, panel);
3159 	parse_mipi_config(i915, panel);
3160 	parse_mipi_sequence(i915, panel);
3161 }
3162 
3163 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3164 				 struct intel_panel *panel,
3165 				 const struct intel_bios_encoder_data *devdata)
3166 {
3167 	intel_bios_init_panel(i915, panel, devdata, NULL, false);
3168 }
3169 
3170 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3171 				struct intel_panel *panel,
3172 				const struct intel_bios_encoder_data *devdata,
3173 				const struct drm_edid *drm_edid)
3174 {
3175 	intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3176 }
3177 
3178 /**
3179  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3180  * @i915: i915 device instance
3181  */
3182 void intel_bios_driver_remove(struct drm_i915_private *i915)
3183 {
3184 	struct intel_bios_encoder_data *devdata, *nd;
3185 	struct bdb_block_entry *entry, *ne;
3186 
3187 	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3188 		list_del(&devdata->node);
3189 		kfree(devdata->dsc);
3190 		kfree(devdata);
3191 	}
3192 
3193 	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3194 		list_del(&entry->node);
3195 		kfree(entry);
3196 	}
3197 }
3198 
3199 void intel_bios_fini_panel(struct intel_panel *panel)
3200 {
3201 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3202 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3203 	kfree(panel->vbt.lfp_lvds_vbt_mode);
3204 	panel->vbt.lfp_lvds_vbt_mode = NULL;
3205 	kfree(panel->vbt.dsi.data);
3206 	panel->vbt.dsi.data = NULL;
3207 	kfree(panel->vbt.dsi.pps);
3208 	panel->vbt.dsi.pps = NULL;
3209 	kfree(panel->vbt.dsi.config);
3210 	panel->vbt.dsi.config = NULL;
3211 	kfree(panel->vbt.dsi.deassert_seq);
3212 	panel->vbt.dsi.deassert_seq = NULL;
3213 }
3214 
3215 /**
3216  * intel_bios_is_tv_present - is integrated TV present in VBT
3217  * @i915: i915 device instance
3218  *
3219  * Return true if TV is present. If no child devices were parsed from VBT,
3220  * assume TV is present.
3221  */
3222 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3223 {
3224 	const struct intel_bios_encoder_data *devdata;
3225 
3226 	if (!i915->display.vbt.int_tv_support)
3227 		return false;
3228 
3229 	if (list_empty(&i915->display.vbt.display_devices))
3230 		return true;
3231 
3232 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3233 		const struct child_device_config *child = &devdata->child;
3234 
3235 		/*
3236 		 * If the device type is not TV, continue.
3237 		 */
3238 		switch (child->device_type) {
3239 		case DEVICE_TYPE_INT_TV:
3240 		case DEVICE_TYPE_TV:
3241 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3242 			break;
3243 		default:
3244 			continue;
3245 		}
3246 		/* Only when the addin_offset is non-zero, it is regarded
3247 		 * as present.
3248 		 */
3249 		if (child->addin_offset)
3250 			return true;
3251 	}
3252 
3253 	return false;
3254 }
3255 
3256 /**
3257  * intel_bios_is_lvds_present - is LVDS present in VBT
3258  * @i915:	i915 device instance
3259  * @i2c_pin:	i2c pin for LVDS if present
3260  *
3261  * Return true if LVDS is present. If no child devices were parsed from VBT,
3262  * assume LVDS is present.
3263  */
3264 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3265 {
3266 	const struct intel_bios_encoder_data *devdata;
3267 
3268 	if (list_empty(&i915->display.vbt.display_devices))
3269 		return true;
3270 
3271 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3272 		const struct child_device_config *child = &devdata->child;
3273 
3274 		/* If the device type is not LFP, continue.
3275 		 * We have to check both the new identifiers as well as the
3276 		 * old for compatibility with some BIOSes.
3277 		 */
3278 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3279 		    child->device_type != DEVICE_TYPE_LFP)
3280 			continue;
3281 
3282 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3283 			*i2c_pin = child->i2c_pin;
3284 
3285 		/* However, we cannot trust the BIOS writers to populate
3286 		 * the VBT correctly.  Since LVDS requires additional
3287 		 * information from AIM blocks, a non-zero addin offset is
3288 		 * a good indicator that the LVDS is actually present.
3289 		 */
3290 		if (child->addin_offset)
3291 			return true;
3292 
3293 		/* But even then some BIOS writers perform some black magic
3294 		 * and instantiate the device without reference to any
3295 		 * additional data.  Trust that if the VBT was written into
3296 		 * the OpRegion then they have validated the LVDS's existence.
3297 		 */
3298 		if (i915->display.opregion.vbt)
3299 			return true;
3300 	}
3301 
3302 	return false;
3303 }
3304 
3305 /**
3306  * intel_bios_is_port_present - is the specified digital port present
3307  * @i915:	i915 device instance
3308  * @port:	port to check
3309  *
3310  * Return true if the device in %port is present.
3311  */
3312 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3313 {
3314 	const struct intel_bios_encoder_data *devdata;
3315 
3316 	if (WARN_ON(!has_ddi_port_info(i915)))
3317 		return true;
3318 
3319 	if (!is_port_valid(i915, port))
3320 		return false;
3321 
3322 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3323 		const struct child_device_config *child = &devdata->child;
3324 
3325 		if (dvo_port_to_port(i915, child->dvo_port) == port)
3326 			return true;
3327 	}
3328 
3329 	return false;
3330 }
3331 
3332 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3333 {
3334 	const struct child_device_config *child = &devdata->child;
3335 
3336 	if (!devdata)
3337 		return false;
3338 
3339 	if (!intel_bios_encoder_supports_dp(devdata) ||
3340 	    !intel_bios_encoder_supports_hdmi(devdata))
3341 		return false;
3342 
3343 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3344 		return true;
3345 
3346 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3347 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3348 	    child->aux_channel != 0)
3349 		return true;
3350 
3351 	return false;
3352 }
3353 
3354 /**
3355  * intel_bios_is_dsi_present - is DSI present in VBT
3356  * @i915:	i915 device instance
3357  * @port:	port for DSI if present
3358  *
3359  * Return true if DSI is present, and return the port in %port.
3360  */
3361 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3362 			       enum port *port)
3363 {
3364 	const struct intel_bios_encoder_data *devdata;
3365 
3366 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3367 		const struct child_device_config *child = &devdata->child;
3368 		u8 dvo_port = child->dvo_port;
3369 
3370 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3371 			continue;
3372 
3373 		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3374 			drm_dbg_kms(&i915->drm,
3375 				    "VBT has unsupported DSI port %c\n",
3376 				    port_name(dvo_port - DVO_PORT_MIPIA));
3377 			continue;
3378 		}
3379 
3380 		if (port)
3381 			*port = dsi_dvo_port_to_port(i915, dvo_port);
3382 		return true;
3383 	}
3384 
3385 	return false;
3386 }
3387 
3388 static void fill_dsc(struct intel_crtc_state *crtc_state,
3389 		     struct dsc_compression_parameters_entry *dsc,
3390 		     int dsc_max_bpc)
3391 {
3392 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3393 	int bpc = 8;
3394 
3395 	vdsc_cfg->dsc_version_major = dsc->version_major;
3396 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3397 
3398 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3399 		bpc = 12;
3400 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3401 		bpc = 10;
3402 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3403 		bpc = 8;
3404 	else
3405 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3406 			      dsc_max_bpc);
3407 
3408 	crtc_state->pipe_bpp = bpc * 3;
3409 
3410 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3411 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3412 
3413 	/*
3414 	 * FIXME: This is ugly, and slice count should take DSC engine
3415 	 * throughput etc. into account.
3416 	 *
3417 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3418 	 */
3419 	if (dsc->slices_per_line & BIT(2)) {
3420 		crtc_state->dsc.slice_count = 4;
3421 	} else if (dsc->slices_per_line & BIT(1)) {
3422 		crtc_state->dsc.slice_count = 2;
3423 	} else {
3424 		/* FIXME */
3425 		if (!(dsc->slices_per_line & BIT(0)))
3426 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3427 
3428 		crtc_state->dsc.slice_count = 1;
3429 	}
3430 
3431 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3432 	    crtc_state->dsc.slice_count != 0)
3433 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3434 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3435 			      crtc_state->dsc.slice_count);
3436 
3437 	/*
3438 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3439 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3440 	 */
3441 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3442 							    dsc->rc_buffer_size);
3443 
3444 	/* FIXME: DSI spec says bpc + 1 for this one */
3445 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3446 
3447 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3448 
3449 	vdsc_cfg->slice_height = dsc->slice_height;
3450 }
3451 
3452 /* FIXME: initially DSI specific */
3453 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3454 			       struct intel_crtc_state *crtc_state,
3455 			       int dsc_max_bpc)
3456 {
3457 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3458 	const struct intel_bios_encoder_data *devdata;
3459 
3460 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3461 		const struct child_device_config *child = &devdata->child;
3462 
3463 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3464 			continue;
3465 
3466 		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3467 			if (!devdata->dsc)
3468 				return false;
3469 
3470 			if (crtc_state)
3471 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3472 
3473 			return true;
3474 		}
3475 	}
3476 
3477 	return false;
3478 }
3479 
3480 static const u8 adlp_aux_ch_map[] = {
3481 	[AUX_CH_A] = DP_AUX_A,
3482 	[AUX_CH_B] = DP_AUX_B,
3483 	[AUX_CH_C] = DP_AUX_C,
3484 	[AUX_CH_D_XELPD] = DP_AUX_D,
3485 	[AUX_CH_E_XELPD] = DP_AUX_E,
3486 	[AUX_CH_USBC1] = DP_AUX_F,
3487 	[AUX_CH_USBC2] = DP_AUX_G,
3488 	[AUX_CH_USBC3] = DP_AUX_H,
3489 	[AUX_CH_USBC4] = DP_AUX_I,
3490 };
3491 
3492 /*
3493  * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3494  * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3495  */
3496 static const u8 adls_aux_ch_map[] = {
3497 	[AUX_CH_A] = DP_AUX_A,
3498 	[AUX_CH_USBC1] = DP_AUX_B,
3499 	[AUX_CH_USBC2] = DP_AUX_C,
3500 	[AUX_CH_USBC3] = DP_AUX_D,
3501 	[AUX_CH_USBC4] = DP_AUX_E,
3502 };
3503 
3504 /*
3505  * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3506  * map to DDI A,B,TC1,TC2 respectively.
3507  */
3508 static const u8 rkl_aux_ch_map[] = {
3509 	[AUX_CH_A] = DP_AUX_A,
3510 	[AUX_CH_B] = DP_AUX_B,
3511 	[AUX_CH_USBC1] = DP_AUX_C,
3512 	[AUX_CH_USBC2] = DP_AUX_D,
3513 };
3514 
3515 static const u8 direct_aux_ch_map[] = {
3516 	[AUX_CH_A] = DP_AUX_A,
3517 	[AUX_CH_B] = DP_AUX_B,
3518 	[AUX_CH_C] = DP_AUX_C,
3519 	[AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3520 	[AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3521 	[AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3522 	[AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3523 	[AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3524 	[AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3525 };
3526 
3527 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3528 {
3529 	const u8 *aux_ch_map;
3530 	int i, n_entries;
3531 
3532 	if (DISPLAY_VER(i915) >= 13) {
3533 		aux_ch_map = adlp_aux_ch_map;
3534 		n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3535 	} else if (IS_ALDERLAKE_S(i915)) {
3536 		aux_ch_map = adls_aux_ch_map;
3537 		n_entries = ARRAY_SIZE(adls_aux_ch_map);
3538 	} else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3539 		aux_ch_map = rkl_aux_ch_map;
3540 		n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3541 	} else {
3542 		aux_ch_map = direct_aux_ch_map;
3543 		n_entries = ARRAY_SIZE(direct_aux_ch_map);
3544 	}
3545 
3546 	for (i = 0; i < n_entries; i++) {
3547 		if (aux_ch_map[i] == aux_channel)
3548 			return i;
3549 	}
3550 
3551 	drm_dbg_kms(&i915->drm,
3552 		    "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3553 		    aux_channel);
3554 
3555 	return AUX_CH_NONE;
3556 }
3557 
3558 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3559 {
3560 	if (!devdata || !devdata->child.aux_channel)
3561 		return AUX_CH_NONE;
3562 
3563 	return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3564 }
3565 
3566 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3567 {
3568 	struct drm_i915_private *i915;
3569 	u8 aux_channel;
3570 	int count = 0;
3571 
3572 	if (!devdata || !devdata->child.aux_channel)
3573 		return false;
3574 
3575 	i915 = devdata->i915;
3576 	aux_channel = devdata->child.aux_channel;
3577 
3578 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3579 		if (intel_bios_encoder_supports_dp(devdata) &&
3580 		    aux_channel == devdata->child.aux_channel)
3581 			count++;
3582 	}
3583 
3584 	return count > 1;
3585 }
3586 
3587 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3588 {
3589 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3590 		return 0;
3591 
3592 	return translate_iboost(devdata->child.dp_iboost_level);
3593 }
3594 
3595 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3596 {
3597 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3598 		return 0;
3599 
3600 	return translate_iboost(devdata->child.hdmi_iboost_level);
3601 }
3602 
3603 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3604 {
3605 	if (!devdata || !devdata->child.ddc_pin)
3606 		return 0;
3607 
3608 	return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3609 }
3610 
3611 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3612 {
3613 	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3614 }
3615 
3616 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3617 {
3618 	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3619 }
3620 
3621 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3622 {
3623 	return devdata && devdata->child.lane_reversal;
3624 }
3625 
3626 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3627 {
3628 	return devdata && devdata->child.hpd_invert;
3629 }
3630 
3631 const struct intel_bios_encoder_data *
3632 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3633 {
3634 	struct intel_bios_encoder_data *devdata;
3635 
3636 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3637 		if (intel_bios_encoder_port(devdata) == port)
3638 			return devdata;
3639 	}
3640 
3641 	return NULL;
3642 }
3643 
3644 void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3645 				 void (*func)(struct drm_i915_private *i915,
3646 					      const struct intel_bios_encoder_data *devdata))
3647 {
3648 	struct intel_bios_encoder_data *devdata;
3649 
3650 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3651 		func(i915, devdata);
3652 }
3653