1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/dp/drm_dp_helper.h>
29 
30 #include "display/intel_display.h"
31 #include "display/intel_display_types.h"
32 #include "display/intel_gmbus.h"
33 
34 #include "i915_drv.h"
35 #include "i915_reg.h"
36 
37 #define _INTEL_BIOS_PRIVATE
38 #include "intel_vbt_defs.h"
39 
40 /**
41  * DOC: Video BIOS Table (VBT)
42  *
43  * The Video BIOS Table, or VBT, provides platform and board specific
44  * configuration information to the driver that is not discoverable or available
45  * through other means. The configuration is mostly related to display
46  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
47  * the PCI ROM.
48  *
49  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
50  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
51  * contain the actual configuration information. The VBT Header, and thus the
52  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
53  * BDB Header. The data blocks are concatenated after the BDB Header. The data
54  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
55  * data. (Block 53, the MIPI Sequence Block is an exception.)
56  *
57  * The driver parses the VBT during load. The relevant information is stored in
58  * driver private data for ease of use, and the actual VBT is not read after
59  * that.
60  */
61 
62 /* Wrapper for VBT child device config */
63 struct intel_bios_encoder_data {
64 	struct drm_i915_private *i915;
65 
66 	struct child_device_config child;
67 	struct dsc_compression_parameters_entry *dsc;
68 	struct list_head node;
69 };
70 
71 #define	SLAVE_ADDR1	0x70
72 #define	SLAVE_ADDR2	0x72
73 
74 /* Get BDB block size given a pointer to Block ID. */
75 static u32 _get_blocksize(const u8 *block_base)
76 {
77 	/* The MIPI Sequence Block v3+ has a separate size field. */
78 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
79 		return *((const u32 *)(block_base + 4));
80 	else
81 		return *((const u16 *)(block_base + 1));
82 }
83 
84 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
85 static u32 get_blocksize(const void *block_data)
86 {
87 	return _get_blocksize(block_data - 3);
88 }
89 
90 static const void *
91 find_section(const void *_bdb, enum bdb_block_id section_id)
92 {
93 	const struct bdb_header *bdb = _bdb;
94 	const u8 *base = _bdb;
95 	int index = 0;
96 	u32 total, current_size;
97 	enum bdb_block_id current_id;
98 
99 	/* skip to first section */
100 	index += bdb->header_size;
101 	total = bdb->bdb_size;
102 
103 	/* walk the sections looking for section_id */
104 	while (index + 3 < total) {
105 		current_id = *(base + index);
106 		current_size = _get_blocksize(base + index);
107 		index += 3;
108 
109 		if (index + current_size > total)
110 			return NULL;
111 
112 		if (current_id == section_id)
113 			return base + index;
114 
115 		index += current_size;
116 	}
117 
118 	return NULL;
119 }
120 
121 static void
122 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
123 			const struct lvds_dvo_timing *dvo_timing)
124 {
125 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
126 		dvo_timing->hactive_lo;
127 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
128 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
129 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
130 		((dvo_timing->hsync_pulse_width_hi << 8) |
131 			dvo_timing->hsync_pulse_width_lo);
132 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
133 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
134 
135 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
136 		dvo_timing->vactive_lo;
137 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
138 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
139 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
140 		((dvo_timing->vsync_pulse_width_hi << 4) |
141 			dvo_timing->vsync_pulse_width_lo);
142 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
143 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
144 	panel_fixed_mode->clock = dvo_timing->clock * 10;
145 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
146 
147 	if (dvo_timing->hsync_positive)
148 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
149 	else
150 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
151 
152 	if (dvo_timing->vsync_positive)
153 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
154 	else
155 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
156 
157 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
158 		dvo_timing->himage_lo;
159 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
160 		dvo_timing->vimage_lo;
161 
162 	/* Some VBTs have bogus h/vtotal values */
163 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
164 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
165 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
166 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
167 
168 	drm_mode_set_name(panel_fixed_mode);
169 }
170 
171 static const struct lvds_dvo_timing *
172 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
173 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
174 		    int index)
175 {
176 	/*
177 	 * the size of fp_timing varies on the different platform.
178 	 * So calculate the DVO timing relative offset in LVDS data
179 	 * entry to get the DVO timing entry
180 	 */
181 
182 	int lfp_data_size =
183 		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
184 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
185 	int dvo_timing_offset =
186 		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
187 		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
188 	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
189 
190 	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
191 }
192 
193 /* get lvds_fp_timing entry
194  * this function may return NULL if the corresponding entry is invalid
195  */
196 static const struct lvds_fp_timing *
197 get_lvds_fp_timing(const struct bdb_header *bdb,
198 		   const struct bdb_lvds_lfp_data *data,
199 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
200 		   int index)
201 {
202 	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
203 	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
204 	size_t ofs;
205 
206 	if (index >= ARRAY_SIZE(ptrs->ptr))
207 		return NULL;
208 	ofs = ptrs->ptr[index].fp_timing_offset;
209 	if (ofs < data_ofs ||
210 	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
211 		return NULL;
212 	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
213 }
214 
215 /* Parse general panel options */
216 static void
217 parse_panel_options(struct drm_i915_private *i915,
218 		    const struct bdb_header *bdb)
219 {
220 	const struct bdb_lvds_options *lvds_options;
221 	int panel_type;
222 	int drrs_mode;
223 	int ret;
224 
225 	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
226 	if (!lvds_options)
227 		return;
228 
229 	i915->vbt.lvds_dither = lvds_options->pixel_dither;
230 
231 	ret = intel_opregion_get_panel_type(i915);
232 	if (ret >= 0) {
233 		drm_WARN_ON(&i915->drm, ret > 0xf);
234 		panel_type = ret;
235 		drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
236 			    panel_type);
237 	} else {
238 		if (lvds_options->panel_type > 0xf) {
239 			drm_dbg_kms(&i915->drm,
240 				    "Invalid VBT panel type 0x%x\n",
241 				    lvds_options->panel_type);
242 			return;
243 		}
244 		panel_type = lvds_options->panel_type;
245 		drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
246 			    panel_type);
247 	}
248 
249 	i915->vbt.panel_type = panel_type;
250 
251 	drrs_mode = (lvds_options->dps_panel_type_bits
252 				>> (panel_type * 2)) & MODE_MASK;
253 	/*
254 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
255 	 * The below piece of code is required to adjust vbt.drrs_type
256 	 * to match the enum drrs_support_type.
257 	 */
258 	switch (drrs_mode) {
259 	case 0:
260 		i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
261 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
262 		break;
263 	case 2:
264 		i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
265 		drm_dbg_kms(&i915->drm,
266 			    "DRRS supported mode is seamless\n");
267 		break;
268 	default:
269 		i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
270 		drm_dbg_kms(&i915->drm,
271 			    "DRRS not supported (VBT input)\n");
272 		break;
273 	}
274 }
275 
276 /* Try to find integrated panel timing data */
277 static void
278 parse_lfp_panel_dtd(struct drm_i915_private *i915,
279 		    const struct bdb_header *bdb)
280 {
281 	const struct bdb_lvds_lfp_data *lvds_lfp_data;
282 	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
283 	const struct lvds_dvo_timing *panel_dvo_timing;
284 	const struct lvds_fp_timing *fp_timing;
285 	struct drm_display_mode *panel_fixed_mode;
286 	int panel_type = i915->vbt.panel_type;
287 
288 	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
289 	if (!lvds_lfp_data)
290 		return;
291 
292 	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
293 	if (!lvds_lfp_data_ptrs)
294 		return;
295 
296 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
297 					       lvds_lfp_data_ptrs,
298 					       panel_type);
299 
300 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
301 	if (!panel_fixed_mode)
302 		return;
303 
304 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
305 
306 	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
307 
308 	drm_dbg_kms(&i915->drm,
309 		    "Found panel mode in BIOS VBT legacy lfp table:\n");
310 	drm_mode_debug_printmodeline(panel_fixed_mode);
311 
312 	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
313 				       lvds_lfp_data_ptrs,
314 				       panel_type);
315 	if (fp_timing) {
316 		/* check the resolution, just to be sure */
317 		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
318 		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
319 			i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
320 			drm_dbg_kms(&i915->drm,
321 				    "VBT initial LVDS value %x\n",
322 				    i915->vbt.bios_lvds_val);
323 		}
324 	}
325 }
326 
327 static void
328 parse_generic_dtd(struct drm_i915_private *i915,
329 		  const struct bdb_header *bdb)
330 {
331 	const struct bdb_generic_dtd *generic_dtd;
332 	const struct generic_dtd_entry *dtd;
333 	struct drm_display_mode *panel_fixed_mode;
334 	int num_dtd;
335 
336 	generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
337 	if (!generic_dtd)
338 		return;
339 
340 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
341 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
342 			generic_dtd->gdtd_size);
343 		return;
344 	} else if (generic_dtd->gdtd_size !=
345 		   sizeof(struct generic_dtd_entry)) {
346 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
347 			generic_dtd->gdtd_size);
348 		/* DTD has unknown fields, but keep going */
349 	}
350 
351 	num_dtd = (get_blocksize(generic_dtd) -
352 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
353 	if (i915->vbt.panel_type >= num_dtd) {
354 		drm_err(&i915->drm,
355 			"Panel type %d not found in table of %d DTD's\n",
356 			i915->vbt.panel_type, num_dtd);
357 		return;
358 	}
359 
360 	dtd = &generic_dtd->dtd[i915->vbt.panel_type];
361 
362 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
363 	if (!panel_fixed_mode)
364 		return;
365 
366 	panel_fixed_mode->hdisplay = dtd->hactive;
367 	panel_fixed_mode->hsync_start =
368 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
369 	panel_fixed_mode->hsync_end =
370 		panel_fixed_mode->hsync_start + dtd->hsync;
371 	panel_fixed_mode->htotal =
372 		panel_fixed_mode->hdisplay + dtd->hblank;
373 
374 	panel_fixed_mode->vdisplay = dtd->vactive;
375 	panel_fixed_mode->vsync_start =
376 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
377 	panel_fixed_mode->vsync_end =
378 		panel_fixed_mode->vsync_start + dtd->vsync;
379 	panel_fixed_mode->vtotal =
380 		panel_fixed_mode->vdisplay + dtd->vblank;
381 
382 	panel_fixed_mode->clock = dtd->pixel_clock;
383 	panel_fixed_mode->width_mm = dtd->width_mm;
384 	panel_fixed_mode->height_mm = dtd->height_mm;
385 
386 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
387 	drm_mode_set_name(panel_fixed_mode);
388 
389 	if (dtd->hsync_positive_polarity)
390 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
391 	else
392 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
393 
394 	if (dtd->vsync_positive_polarity)
395 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
396 	else
397 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
398 
399 	drm_dbg_kms(&i915->drm,
400 		    "Found panel mode in BIOS VBT generic dtd table:\n");
401 	drm_mode_debug_printmodeline(panel_fixed_mode);
402 
403 	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
404 }
405 
406 static void
407 parse_panel_dtd(struct drm_i915_private *i915,
408 		const struct bdb_header *bdb)
409 {
410 	/*
411 	 * Older VBTs provided provided DTD information for internal displays
412 	 * through the "LFP panel DTD" block (42).  As of VBT revision 229,
413 	 * that block is now deprecated and DTD information should be provided
414 	 * via a newer "generic DTD" block (58).  Just to be safe, we'll
415 	 * try the new generic DTD block first on VBT >= 229, but still fall
416 	 * back to trying the old LFP block if that fails.
417 	 */
418 	if (bdb->version >= 229)
419 		parse_generic_dtd(i915, bdb);
420 	if (!i915->vbt.lfp_lvds_vbt_mode)
421 		parse_lfp_panel_dtd(i915, bdb);
422 }
423 
424 static void
425 parse_lfp_backlight(struct drm_i915_private *i915,
426 		    const struct bdb_header *bdb)
427 {
428 	const struct bdb_lfp_backlight_data *backlight_data;
429 	const struct lfp_backlight_data_entry *entry;
430 	int panel_type = i915->vbt.panel_type;
431 	u16 level;
432 
433 	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
434 	if (!backlight_data)
435 		return;
436 
437 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
438 		drm_dbg_kms(&i915->drm,
439 			    "Unsupported backlight data entry size %u\n",
440 			    backlight_data->entry_size);
441 		return;
442 	}
443 
444 	entry = &backlight_data->data[panel_type];
445 
446 	i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
447 	if (!i915->vbt.backlight.present) {
448 		drm_dbg_kms(&i915->drm,
449 			    "PWM backlight not present in VBT (type %u)\n",
450 			    entry->type);
451 		return;
452 	}
453 
454 	i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
455 	if (bdb->version >= 191) {
456 		size_t exp_size;
457 
458 		if (bdb->version >= 236)
459 			exp_size = sizeof(struct bdb_lfp_backlight_data);
460 		else if (bdb->version >= 234)
461 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
462 		else
463 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
464 
465 		if (get_blocksize(backlight_data) >= exp_size) {
466 			const struct lfp_backlight_control_method *method;
467 
468 			method = &backlight_data->backlight_control[panel_type];
469 			i915->vbt.backlight.type = method->type;
470 			i915->vbt.backlight.controller = method->controller;
471 		}
472 	}
473 
474 	i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
475 	i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
476 
477 	if (bdb->version >= 234) {
478 		u16 min_level;
479 		bool scale;
480 
481 		level = backlight_data->brightness_level[panel_type].level;
482 		min_level = backlight_data->brightness_min_level[panel_type].level;
483 
484 		if (bdb->version >= 236)
485 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
486 		else
487 			scale = level > 255;
488 
489 		if (scale)
490 			min_level = min_level / 255;
491 
492 		if (min_level > 255) {
493 			drm_warn(&i915->drm, "Brightness min level > 255\n");
494 			level = 255;
495 		}
496 		i915->vbt.backlight.min_brightness = min_level;
497 
498 		i915->vbt.backlight.brightness_precision_bits =
499 			backlight_data->brightness_precision_bits[panel_type];
500 	} else {
501 		level = backlight_data->level[panel_type];
502 		i915->vbt.backlight.min_brightness = entry->min_brightness;
503 	}
504 
505 	drm_dbg_kms(&i915->drm,
506 		    "VBT backlight PWM modulation frequency %u Hz, "
507 		    "active %s, min brightness %u, level %u, controller %u\n",
508 		    i915->vbt.backlight.pwm_freq_hz,
509 		    i915->vbt.backlight.active_low_pwm ? "low" : "high",
510 		    i915->vbt.backlight.min_brightness,
511 		    level,
512 		    i915->vbt.backlight.controller);
513 }
514 
515 /* Try to find sdvo panel data */
516 static void
517 parse_sdvo_panel_data(struct drm_i915_private *i915,
518 		      const struct bdb_header *bdb)
519 {
520 	const struct bdb_sdvo_panel_dtds *dtds;
521 	struct drm_display_mode *panel_fixed_mode;
522 	int index;
523 
524 	index = i915->params.vbt_sdvo_panel_type;
525 	if (index == -2) {
526 		drm_dbg_kms(&i915->drm,
527 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
528 		return;
529 	}
530 
531 	if (index == -1) {
532 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
533 
534 		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
535 		if (!sdvo_lvds_options)
536 			return;
537 
538 		index = sdvo_lvds_options->panel_type;
539 	}
540 
541 	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
542 	if (!dtds)
543 		return;
544 
545 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
546 	if (!panel_fixed_mode)
547 		return;
548 
549 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
550 
551 	i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
552 
553 	drm_dbg_kms(&i915->drm,
554 		    "Found SDVO panel mode in BIOS VBT tables:\n");
555 	drm_mode_debug_printmodeline(panel_fixed_mode);
556 }
557 
558 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
559 				    bool alternate)
560 {
561 	switch (DISPLAY_VER(i915)) {
562 	case 2:
563 		return alternate ? 66667 : 48000;
564 	case 3:
565 	case 4:
566 		return alternate ? 100000 : 96000;
567 	default:
568 		return alternate ? 100000 : 120000;
569 	}
570 }
571 
572 static void
573 parse_general_features(struct drm_i915_private *i915,
574 		       const struct bdb_header *bdb)
575 {
576 	const struct bdb_general_features *general;
577 
578 	general = find_section(bdb, BDB_GENERAL_FEATURES);
579 	if (!general)
580 		return;
581 
582 	i915->vbt.int_tv_support = general->int_tv_support;
583 	/* int_crt_support can't be trusted on earlier platforms */
584 	if (bdb->version >= 155 &&
585 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
586 		i915->vbt.int_crt_support = general->int_crt_support;
587 	i915->vbt.lvds_use_ssc = general->enable_ssc;
588 	i915->vbt.lvds_ssc_freq =
589 		intel_bios_ssc_frequency(i915, general->ssc_freq);
590 	i915->vbt.display_clock_mode = general->display_clock_mode;
591 	i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
592 	if (bdb->version >= 181) {
593 		i915->vbt.orientation = general->rotate_180 ?
594 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
595 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
596 	} else {
597 		i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
598 	}
599 
600 	if (bdb->version >= 249 && general->afc_startup_config) {
601 		i915->vbt.override_afc_startup = true;
602 		i915->vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
603 	}
604 
605 	drm_dbg_kms(&i915->drm,
606 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
607 		    i915->vbt.int_tv_support,
608 		    i915->vbt.int_crt_support,
609 		    i915->vbt.lvds_use_ssc,
610 		    i915->vbt.lvds_ssc_freq,
611 		    i915->vbt.display_clock_mode,
612 		    i915->vbt.fdi_rx_polarity_inverted);
613 }
614 
615 static const struct child_device_config *
616 child_device_ptr(const struct bdb_general_definitions *defs, int i)
617 {
618 	return (const void *) &defs->devices[i * defs->child_dev_size];
619 }
620 
621 static void
622 parse_sdvo_device_mapping(struct drm_i915_private *i915)
623 {
624 	struct sdvo_device_mapping *mapping;
625 	const struct intel_bios_encoder_data *devdata;
626 	const struct child_device_config *child;
627 	int count = 0;
628 
629 	/*
630 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
631 	 * accurate and doesn't have to be, as long as it's not too strict.
632 	 */
633 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
634 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
635 		return;
636 	}
637 
638 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
639 		child = &devdata->child;
640 
641 		if (child->slave_addr != SLAVE_ADDR1 &&
642 		    child->slave_addr != SLAVE_ADDR2) {
643 			/*
644 			 * If the slave address is neither 0x70 nor 0x72,
645 			 * it is not a SDVO device. Skip it.
646 			 */
647 			continue;
648 		}
649 		if (child->dvo_port != DEVICE_PORT_DVOB &&
650 		    child->dvo_port != DEVICE_PORT_DVOC) {
651 			/* skip the incorrect SDVO port */
652 			drm_dbg_kms(&i915->drm,
653 				    "Incorrect SDVO port. Skip it\n");
654 			continue;
655 		}
656 		drm_dbg_kms(&i915->drm,
657 			    "the SDVO device with slave addr %2x is found on"
658 			    " %s port\n",
659 			    child->slave_addr,
660 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
661 			    "SDVOB" : "SDVOC");
662 		mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
663 		if (!mapping->initialized) {
664 			mapping->dvo_port = child->dvo_port;
665 			mapping->slave_addr = child->slave_addr;
666 			mapping->dvo_wiring = child->dvo_wiring;
667 			mapping->ddc_pin = child->ddc_pin;
668 			mapping->i2c_pin = child->i2c_pin;
669 			mapping->initialized = 1;
670 			drm_dbg_kms(&i915->drm,
671 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
672 				    mapping->dvo_port, mapping->slave_addr,
673 				    mapping->dvo_wiring, mapping->ddc_pin,
674 				    mapping->i2c_pin);
675 		} else {
676 			drm_dbg_kms(&i915->drm,
677 				    "Maybe one SDVO port is shared by "
678 				    "two SDVO device.\n");
679 		}
680 		if (child->slave2_addr) {
681 			/* Maybe this is a SDVO device with multiple inputs */
682 			/* And the mapping info is not added */
683 			drm_dbg_kms(&i915->drm,
684 				    "there exists the slave2_addr. Maybe this"
685 				    " is a SDVO device with multiple inputs.\n");
686 		}
687 		count++;
688 	}
689 
690 	if (!count) {
691 		/* No SDVO device info is found */
692 		drm_dbg_kms(&i915->drm,
693 			    "No SDVO device info is found in VBT\n");
694 	}
695 }
696 
697 static void
698 parse_driver_features(struct drm_i915_private *i915,
699 		      const struct bdb_header *bdb)
700 {
701 	const struct bdb_driver_features *driver;
702 
703 	driver = find_section(bdb, BDB_DRIVER_FEATURES);
704 	if (!driver)
705 		return;
706 
707 	if (DISPLAY_VER(i915) >= 5) {
708 		/*
709 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
710 		 * to mean "eDP". The VBT spec doesn't agree with that
711 		 * interpretation, but real world VBTs seem to.
712 		 */
713 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
714 			i915->vbt.int_lvds_support = 0;
715 	} else {
716 		/*
717 		 * FIXME it's not clear which BDB version has the LVDS config
718 		 * bits defined. Revision history in the VBT spec says:
719 		 * "0.92 | Add two definitions for VBT value of LVDS Active
720 		 *  Config (00b and 11b values defined) | 06/13/2005"
721 		 * but does not the specify the BDB version.
722 		 *
723 		 * So far version 134 (on i945gm) is the oldest VBT observed
724 		 * in the wild with the bits correctly populated. Version
725 		 * 108 (on i85x) does not have the bits correctly populated.
726 		 */
727 		if (bdb->version >= 134 &&
728 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
729 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
730 			i915->vbt.int_lvds_support = 0;
731 	}
732 
733 	if (bdb->version < 228) {
734 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
735 			    driver->drrs_enabled);
736 		/*
737 		 * If DRRS is not supported, drrs_type has to be set to 0.
738 		 * This is because, VBT is configured in such a way that
739 		 * static DRRS is 0 and DRRS not supported is represented by
740 		 * driver->drrs_enabled=false
741 		 */
742 		if (!driver->drrs_enabled)
743 			i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
744 
745 		i915->vbt.psr.enable = driver->psr_enabled;
746 	}
747 }
748 
749 static void
750 parse_power_conservation_features(struct drm_i915_private *i915,
751 				  const struct bdb_header *bdb)
752 {
753 	const struct bdb_lfp_power *power;
754 	u8 panel_type = i915->vbt.panel_type;
755 
756 	if (bdb->version < 228)
757 		return;
758 
759 	power = find_section(bdb, BDB_LFP_POWER);
760 	if (!power)
761 		return;
762 
763 	i915->vbt.psr.enable = power->psr & BIT(panel_type);
764 
765 	/*
766 	 * If DRRS is not supported, drrs_type has to be set to 0.
767 	 * This is because, VBT is configured in such a way that
768 	 * static DRRS is 0 and DRRS not supported is represented by
769 	 * power->drrs & BIT(panel_type)=false
770 	 */
771 	if (!(power->drrs & BIT(panel_type)))
772 		i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
773 
774 	if (bdb->version >= 232)
775 		i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
776 }
777 
778 static void
779 parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
780 {
781 	const struct bdb_edp *edp;
782 	const struct edp_power_seq *edp_pps;
783 	const struct edp_fast_link_params *edp_link_params;
784 	int panel_type = i915->vbt.panel_type;
785 
786 	edp = find_section(bdb, BDB_EDP);
787 	if (!edp)
788 		return;
789 
790 	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
791 	case EDP_18BPP:
792 		i915->vbt.edp.bpp = 18;
793 		break;
794 	case EDP_24BPP:
795 		i915->vbt.edp.bpp = 24;
796 		break;
797 	case EDP_30BPP:
798 		i915->vbt.edp.bpp = 30;
799 		break;
800 	}
801 
802 	/* Get the eDP sequencing and link info */
803 	edp_pps = &edp->power_seqs[panel_type];
804 	edp_link_params = &edp->fast_link_params[panel_type];
805 
806 	i915->vbt.edp.pps = *edp_pps;
807 
808 	switch (edp_link_params->rate) {
809 	case EDP_RATE_1_62:
810 		i915->vbt.edp.rate = DP_LINK_BW_1_62;
811 		break;
812 	case EDP_RATE_2_7:
813 		i915->vbt.edp.rate = DP_LINK_BW_2_7;
814 		break;
815 	default:
816 		drm_dbg_kms(&i915->drm,
817 			    "VBT has unknown eDP link rate value %u\n",
818 			     edp_link_params->rate);
819 		break;
820 	}
821 
822 	switch (edp_link_params->lanes) {
823 	case EDP_LANE_1:
824 		i915->vbt.edp.lanes = 1;
825 		break;
826 	case EDP_LANE_2:
827 		i915->vbt.edp.lanes = 2;
828 		break;
829 	case EDP_LANE_4:
830 		i915->vbt.edp.lanes = 4;
831 		break;
832 	default:
833 		drm_dbg_kms(&i915->drm,
834 			    "VBT has unknown eDP lane count value %u\n",
835 			    edp_link_params->lanes);
836 		break;
837 	}
838 
839 	switch (edp_link_params->preemphasis) {
840 	case EDP_PREEMPHASIS_NONE:
841 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
842 		break;
843 	case EDP_PREEMPHASIS_3_5dB:
844 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
845 		break;
846 	case EDP_PREEMPHASIS_6dB:
847 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
848 		break;
849 	case EDP_PREEMPHASIS_9_5dB:
850 		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
851 		break;
852 	default:
853 		drm_dbg_kms(&i915->drm,
854 			    "VBT has unknown eDP pre-emphasis value %u\n",
855 			    edp_link_params->preemphasis);
856 		break;
857 	}
858 
859 	switch (edp_link_params->vswing) {
860 	case EDP_VSWING_0_4V:
861 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
862 		break;
863 	case EDP_VSWING_0_6V:
864 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
865 		break;
866 	case EDP_VSWING_0_8V:
867 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
868 		break;
869 	case EDP_VSWING_1_2V:
870 		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
871 		break;
872 	default:
873 		drm_dbg_kms(&i915->drm,
874 			    "VBT has unknown eDP voltage swing value %u\n",
875 			    edp_link_params->vswing);
876 		break;
877 	}
878 
879 	if (bdb->version >= 173) {
880 		u8 vswing;
881 
882 		/* Don't read from VBT if module parameter has valid value*/
883 		if (i915->params.edp_vswing) {
884 			i915->vbt.edp.low_vswing =
885 				i915->params.edp_vswing == 1;
886 		} else {
887 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
888 			i915->vbt.edp.low_vswing = vswing == 0;
889 		}
890 	}
891 }
892 
893 static void
894 parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
895 {
896 	const struct bdb_psr *psr;
897 	const struct psr_table *psr_table;
898 	int panel_type = i915->vbt.panel_type;
899 
900 	psr = find_section(bdb, BDB_PSR);
901 	if (!psr) {
902 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
903 		return;
904 	}
905 
906 	psr_table = &psr->psr_table[panel_type];
907 
908 	i915->vbt.psr.full_link = psr_table->full_link;
909 	i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
910 
911 	/* Allowed VBT values goes from 0 to 15 */
912 	i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
913 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
914 
915 	/*
916 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
917 	 * Old decimal value is wake up time in multiples of 100 us.
918 	 */
919 	if (bdb->version >= 205 &&
920 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
921 		switch (psr_table->tp1_wakeup_time) {
922 		case 0:
923 			i915->vbt.psr.tp1_wakeup_time_us = 500;
924 			break;
925 		case 1:
926 			i915->vbt.psr.tp1_wakeup_time_us = 100;
927 			break;
928 		case 3:
929 			i915->vbt.psr.tp1_wakeup_time_us = 0;
930 			break;
931 		default:
932 			drm_dbg_kms(&i915->drm,
933 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
934 				    psr_table->tp1_wakeup_time);
935 			fallthrough;
936 		case 2:
937 			i915->vbt.psr.tp1_wakeup_time_us = 2500;
938 			break;
939 		}
940 
941 		switch (psr_table->tp2_tp3_wakeup_time) {
942 		case 0:
943 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
944 			break;
945 		case 1:
946 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
947 			break;
948 		case 3:
949 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
950 			break;
951 		default:
952 			drm_dbg_kms(&i915->drm,
953 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
954 				    psr_table->tp2_tp3_wakeup_time);
955 			fallthrough;
956 		case 2:
957 			i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
958 		break;
959 		}
960 	} else {
961 		i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
962 		i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
963 	}
964 
965 	if (bdb->version >= 226) {
966 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
967 
968 		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
969 		switch (wakeup_time) {
970 		case 0:
971 			wakeup_time = 500;
972 			break;
973 		case 1:
974 			wakeup_time = 100;
975 			break;
976 		case 3:
977 			wakeup_time = 50;
978 			break;
979 		default:
980 		case 2:
981 			wakeup_time = 2500;
982 			break;
983 		}
984 		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
985 	} else {
986 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
987 		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
988 	}
989 }
990 
991 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
992 				      u16 version, enum port port)
993 {
994 	if (!i915->vbt.dsi.config->dual_link || version < 197) {
995 		i915->vbt.dsi.bl_ports = BIT(port);
996 		if (i915->vbt.dsi.config->cabc_supported)
997 			i915->vbt.dsi.cabc_ports = BIT(port);
998 
999 		return;
1000 	}
1001 
1002 	switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1003 	case DL_DCS_PORT_A:
1004 		i915->vbt.dsi.bl_ports = BIT(PORT_A);
1005 		break;
1006 	case DL_DCS_PORT_C:
1007 		i915->vbt.dsi.bl_ports = BIT(PORT_C);
1008 		break;
1009 	default:
1010 	case DL_DCS_PORT_A_AND_C:
1011 		i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1012 		break;
1013 	}
1014 
1015 	if (!i915->vbt.dsi.config->cabc_supported)
1016 		return;
1017 
1018 	switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1019 	case DL_DCS_PORT_A:
1020 		i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1021 		break;
1022 	case DL_DCS_PORT_C:
1023 		i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1024 		break;
1025 	default:
1026 	case DL_DCS_PORT_A_AND_C:
1027 		i915->vbt.dsi.cabc_ports =
1028 					BIT(PORT_A) | BIT(PORT_C);
1029 		break;
1030 	}
1031 }
1032 
1033 static void
1034 parse_mipi_config(struct drm_i915_private *i915,
1035 		  const struct bdb_header *bdb)
1036 {
1037 	const struct bdb_mipi_config *start;
1038 	const struct mipi_config *config;
1039 	const struct mipi_pps_data *pps;
1040 	int panel_type = i915->vbt.panel_type;
1041 	enum port port;
1042 
1043 	/* parse MIPI blocks only if LFP type is MIPI */
1044 	if (!intel_bios_is_dsi_present(i915, &port))
1045 		return;
1046 
1047 	/* Initialize this to undefined indicating no generic MIPI support */
1048 	i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1049 
1050 	/* Block #40 is already parsed and panel_fixed_mode is
1051 	 * stored in i915->lfp_lvds_vbt_mode
1052 	 * resuse this when needed
1053 	 */
1054 
1055 	/* Parse #52 for panel index used from panel_type already
1056 	 * parsed
1057 	 */
1058 	start = find_section(bdb, BDB_MIPI_CONFIG);
1059 	if (!start) {
1060 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1061 		return;
1062 	}
1063 
1064 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1065 		panel_type);
1066 
1067 	/*
1068 	 * get hold of the correct configuration block and pps data as per
1069 	 * the panel_type as index
1070 	 */
1071 	config = &start->config[panel_type];
1072 	pps = &start->pps[panel_type];
1073 
1074 	/* store as of now full data. Trim when we realise all is not needed */
1075 	i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1076 	if (!i915->vbt.dsi.config)
1077 		return;
1078 
1079 	i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1080 	if (!i915->vbt.dsi.pps) {
1081 		kfree(i915->vbt.dsi.config);
1082 		return;
1083 	}
1084 
1085 	parse_dsi_backlight_ports(i915, bdb->version, port);
1086 
1087 	/* FIXME is the 90 vs. 270 correct? */
1088 	switch (config->rotation) {
1089 	case ENABLE_ROTATION_0:
1090 		/*
1091 		 * Most (all?) VBTs claim 0 degrees despite having
1092 		 * an upside down panel, thus we do not trust this.
1093 		 */
1094 		i915->vbt.dsi.orientation =
1095 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1096 		break;
1097 	case ENABLE_ROTATION_90:
1098 		i915->vbt.dsi.orientation =
1099 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1100 		break;
1101 	case ENABLE_ROTATION_180:
1102 		i915->vbt.dsi.orientation =
1103 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1104 		break;
1105 	case ENABLE_ROTATION_270:
1106 		i915->vbt.dsi.orientation =
1107 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1108 		break;
1109 	}
1110 
1111 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1112 	i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1113 }
1114 
1115 /* Find the sequence block and size for the given panel. */
1116 static const u8 *
1117 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1118 			  u16 panel_id, u32 *seq_size)
1119 {
1120 	u32 total = get_blocksize(sequence);
1121 	const u8 *data = &sequence->data[0];
1122 	u8 current_id;
1123 	u32 current_size;
1124 	int header_size = sequence->version >= 3 ? 5 : 3;
1125 	int index = 0;
1126 	int i;
1127 
1128 	/* skip new block size */
1129 	if (sequence->version >= 3)
1130 		data += 4;
1131 
1132 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1133 		if (index + header_size > total) {
1134 			DRM_ERROR("Invalid sequence block (header)\n");
1135 			return NULL;
1136 		}
1137 
1138 		current_id = *(data + index);
1139 		if (sequence->version >= 3)
1140 			current_size = *((const u32 *)(data + index + 1));
1141 		else
1142 			current_size = *((const u16 *)(data + index + 1));
1143 
1144 		index += header_size;
1145 
1146 		if (index + current_size > total) {
1147 			DRM_ERROR("Invalid sequence block\n");
1148 			return NULL;
1149 		}
1150 
1151 		if (current_id == panel_id) {
1152 			*seq_size = current_size;
1153 			return data + index;
1154 		}
1155 
1156 		index += current_size;
1157 	}
1158 
1159 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1160 
1161 	return NULL;
1162 }
1163 
1164 static int goto_next_sequence(const u8 *data, int index, int total)
1165 {
1166 	u16 len;
1167 
1168 	/* Skip Sequence Byte. */
1169 	for (index = index + 1; index < total; index += len) {
1170 		u8 operation_byte = *(data + index);
1171 		index++;
1172 
1173 		switch (operation_byte) {
1174 		case MIPI_SEQ_ELEM_END:
1175 			return index;
1176 		case MIPI_SEQ_ELEM_SEND_PKT:
1177 			if (index + 4 > total)
1178 				return 0;
1179 
1180 			len = *((const u16 *)(data + index + 2)) + 4;
1181 			break;
1182 		case MIPI_SEQ_ELEM_DELAY:
1183 			len = 4;
1184 			break;
1185 		case MIPI_SEQ_ELEM_GPIO:
1186 			len = 2;
1187 			break;
1188 		case MIPI_SEQ_ELEM_I2C:
1189 			if (index + 7 > total)
1190 				return 0;
1191 			len = *(data + index + 6) + 7;
1192 			break;
1193 		default:
1194 			DRM_ERROR("Unknown operation byte\n");
1195 			return 0;
1196 		}
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1203 {
1204 	int seq_end;
1205 	u16 len;
1206 	u32 size_of_sequence;
1207 
1208 	/*
1209 	 * Could skip sequence based on Size of Sequence alone, but also do some
1210 	 * checking on the structure.
1211 	 */
1212 	if (total < 5) {
1213 		DRM_ERROR("Too small sequence size\n");
1214 		return 0;
1215 	}
1216 
1217 	/* Skip Sequence Byte. */
1218 	index++;
1219 
1220 	/*
1221 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1222 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1223 	 * byte.
1224 	 */
1225 	size_of_sequence = *((const u32 *)(data + index));
1226 	index += 4;
1227 
1228 	seq_end = index + size_of_sequence;
1229 	if (seq_end > total) {
1230 		DRM_ERROR("Invalid sequence size\n");
1231 		return 0;
1232 	}
1233 
1234 	for (; index < total; index += len) {
1235 		u8 operation_byte = *(data + index);
1236 		index++;
1237 
1238 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1239 			if (index != seq_end) {
1240 				DRM_ERROR("Invalid element structure\n");
1241 				return 0;
1242 			}
1243 			return index;
1244 		}
1245 
1246 		len = *(data + index);
1247 		index++;
1248 
1249 		/*
1250 		 * FIXME: Would be nice to check elements like for v1/v2 in
1251 		 * goto_next_sequence() above.
1252 		 */
1253 		switch (operation_byte) {
1254 		case MIPI_SEQ_ELEM_SEND_PKT:
1255 		case MIPI_SEQ_ELEM_DELAY:
1256 		case MIPI_SEQ_ELEM_GPIO:
1257 		case MIPI_SEQ_ELEM_I2C:
1258 		case MIPI_SEQ_ELEM_SPI:
1259 		case MIPI_SEQ_ELEM_PMIC:
1260 			break;
1261 		default:
1262 			DRM_ERROR("Unknown operation byte %u\n",
1263 				  operation_byte);
1264 			break;
1265 		}
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1273  * skip all delay + gpio operands and stop at the first DSI packet op.
1274  */
1275 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1276 {
1277 	const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1278 	int index, len;
1279 
1280 	if (drm_WARN_ON(&i915->drm,
1281 			!data || i915->vbt.dsi.seq_version != 1))
1282 		return 0;
1283 
1284 	/* index = 1 to skip sequence byte */
1285 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1286 		switch (data[index]) {
1287 		case MIPI_SEQ_ELEM_SEND_PKT:
1288 			return index == 1 ? 0 : index;
1289 		case MIPI_SEQ_ELEM_DELAY:
1290 			len = 5; /* 1 byte for operand + uint32 */
1291 			break;
1292 		case MIPI_SEQ_ELEM_GPIO:
1293 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1294 			break;
1295 		default:
1296 			return 0;
1297 		}
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1305  * The deassert must be done before calling intel_dsi_device_ready, so for
1306  * these devices we split the init OTP sequence into a deassert sequence and
1307  * the actual init OTP part.
1308  */
1309 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1310 {
1311 	u8 *init_otp;
1312 	int len;
1313 
1314 	/* Limit this to VLV for now. */
1315 	if (!IS_VALLEYVIEW(i915))
1316 		return;
1317 
1318 	/* Limit this to v1 vid-mode sequences */
1319 	if (i915->vbt.dsi.config->is_cmd_mode ||
1320 	    i915->vbt.dsi.seq_version != 1)
1321 		return;
1322 
1323 	/* Only do this if there are otp and assert seqs and no deassert seq */
1324 	if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1325 	    !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1326 	    i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1327 		return;
1328 
1329 	/* The deassert-sequence ends at the first DSI packet */
1330 	len = get_init_otp_deassert_fragment_len(i915);
1331 	if (!len)
1332 		return;
1333 
1334 	drm_dbg_kms(&i915->drm,
1335 		    "Using init OTP fragment to deassert reset\n");
1336 
1337 	/* Copy the fragment, update seq byte and terminate it */
1338 	init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1339 	i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1340 	if (!i915->vbt.dsi.deassert_seq)
1341 		return;
1342 	i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1343 	i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1344 	/* Use the copy for deassert */
1345 	i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1346 		i915->vbt.dsi.deassert_seq;
1347 	/* Replace the last byte of the fragment with init OTP seq byte */
1348 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1349 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1350 	i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1351 }
1352 
1353 static void
1354 parse_mipi_sequence(struct drm_i915_private *i915,
1355 		    const struct bdb_header *bdb)
1356 {
1357 	int panel_type = i915->vbt.panel_type;
1358 	const struct bdb_mipi_sequence *sequence;
1359 	const u8 *seq_data;
1360 	u32 seq_size;
1361 	u8 *data;
1362 	int index = 0;
1363 
1364 	/* Only our generic panel driver uses the sequence block. */
1365 	if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1366 		return;
1367 
1368 	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1369 	if (!sequence) {
1370 		drm_dbg_kms(&i915->drm,
1371 			    "No MIPI Sequence found, parsing complete\n");
1372 		return;
1373 	}
1374 
1375 	/* Fail gracefully for forward incompatible sequence block. */
1376 	if (sequence->version >= 4) {
1377 		drm_err(&i915->drm,
1378 			"Unable to parse MIPI Sequence Block v%u\n",
1379 			sequence->version);
1380 		return;
1381 	}
1382 
1383 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1384 		sequence->version);
1385 
1386 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1387 	if (!seq_data)
1388 		return;
1389 
1390 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1391 	if (!data)
1392 		return;
1393 
1394 	/* Parse the sequences, store pointers to each sequence. */
1395 	for (;;) {
1396 		u8 seq_id = *(data + index);
1397 		if (seq_id == MIPI_SEQ_END)
1398 			break;
1399 
1400 		if (seq_id >= MIPI_SEQ_MAX) {
1401 			drm_err(&i915->drm, "Unknown sequence %u\n",
1402 				seq_id);
1403 			goto err;
1404 		}
1405 
1406 		/* Log about presence of sequences we won't run. */
1407 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1408 			drm_dbg_kms(&i915->drm,
1409 				    "Unsupported sequence %u\n", seq_id);
1410 
1411 		i915->vbt.dsi.sequence[seq_id] = data + index;
1412 
1413 		if (sequence->version >= 3)
1414 			index = goto_next_sequence_v3(data, index, seq_size);
1415 		else
1416 			index = goto_next_sequence(data, index, seq_size);
1417 		if (!index) {
1418 			drm_err(&i915->drm, "Invalid sequence %u\n",
1419 				seq_id);
1420 			goto err;
1421 		}
1422 	}
1423 
1424 	i915->vbt.dsi.data = data;
1425 	i915->vbt.dsi.size = seq_size;
1426 	i915->vbt.dsi.seq_version = sequence->version;
1427 
1428 	fixup_mipi_sequences(i915);
1429 
1430 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1431 	return;
1432 
1433 err:
1434 	kfree(data);
1435 	memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1436 }
1437 
1438 static void
1439 parse_compression_parameters(struct drm_i915_private *i915,
1440 			     const struct bdb_header *bdb)
1441 {
1442 	const struct bdb_compression_parameters *params;
1443 	struct intel_bios_encoder_data *devdata;
1444 	const struct child_device_config *child;
1445 	u16 block_size;
1446 	int index;
1447 
1448 	if (bdb->version < 198)
1449 		return;
1450 
1451 	params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1452 	if (params) {
1453 		/* Sanity checks */
1454 		if (params->entry_size != sizeof(params->data[0])) {
1455 			drm_dbg_kms(&i915->drm,
1456 				    "VBT: unsupported compression param entry size\n");
1457 			return;
1458 		}
1459 
1460 		block_size = get_blocksize(params);
1461 		if (block_size < sizeof(*params)) {
1462 			drm_dbg_kms(&i915->drm,
1463 				    "VBT: expected 16 compression param entries\n");
1464 			return;
1465 		}
1466 	}
1467 
1468 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1469 		child = &devdata->child;
1470 
1471 		if (!child->compression_enable)
1472 			continue;
1473 
1474 		if (!params) {
1475 			drm_dbg_kms(&i915->drm,
1476 				    "VBT: compression params not available\n");
1477 			continue;
1478 		}
1479 
1480 		if (child->compression_method_cps) {
1481 			drm_dbg_kms(&i915->drm,
1482 				    "VBT: CPS compression not supported\n");
1483 			continue;
1484 		}
1485 
1486 		index = child->compression_structure_index;
1487 
1488 		devdata->dsc = kmemdup(&params->data[index],
1489 				       sizeof(*devdata->dsc), GFP_KERNEL);
1490 	}
1491 }
1492 
1493 static u8 translate_iboost(u8 val)
1494 {
1495 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1496 
1497 	if (val >= ARRAY_SIZE(mapping)) {
1498 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1499 		return 0;
1500 	}
1501 	return mapping[val];
1502 }
1503 
1504 static const u8 cnp_ddc_pin_map[] = {
1505 	[0] = 0, /* N/A */
1506 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1507 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1508 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1509 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1510 };
1511 
1512 static const u8 icp_ddc_pin_map[] = {
1513 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1514 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1515 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1516 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1517 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1518 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1519 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1520 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1521 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1522 };
1523 
1524 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1525 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1526 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1527 	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1528 	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1529 };
1530 
1531 static const u8 adls_ddc_pin_map[] = {
1532 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1533 	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1534 	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1535 	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1536 	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1537 };
1538 
1539 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1540 	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1541 	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1542 	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1543 };
1544 
1545 static const u8 adlp_ddc_pin_map[] = {
1546 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1547 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1548 	[ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1549 	[ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1550 	[ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1551 	[ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1552 };
1553 
1554 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
1555 {
1556 	const u8 *ddc_pin_map;
1557 	int n_entries;
1558 
1559 	if (IS_ALDERLAKE_P(i915)) {
1560 		ddc_pin_map = adlp_ddc_pin_map;
1561 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
1562 	} else if (IS_ALDERLAKE_S(i915)) {
1563 		ddc_pin_map = adls_ddc_pin_map;
1564 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
1565 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
1566 		return vbt_pin;
1567 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
1568 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
1569 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
1570 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
1571 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
1572 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
1573 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
1574 		ddc_pin_map = icp_ddc_pin_map;
1575 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1576 	} else if (HAS_PCH_CNP(i915)) {
1577 		ddc_pin_map = cnp_ddc_pin_map;
1578 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1579 	} else {
1580 		/* Assuming direct map */
1581 		return vbt_pin;
1582 	}
1583 
1584 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1585 		return ddc_pin_map[vbt_pin];
1586 
1587 	drm_dbg_kms(&i915->drm,
1588 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1589 		    vbt_pin);
1590 	return 0;
1591 }
1592 
1593 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1594 {
1595 	const struct intel_bios_encoder_data *devdata;
1596 	enum port port;
1597 
1598 	if (!ddc_pin)
1599 		return PORT_NONE;
1600 
1601 	for_each_port(port) {
1602 		devdata = i915->vbt.ports[port];
1603 
1604 		if (devdata && ddc_pin == devdata->child.ddc_pin)
1605 			return port;
1606 	}
1607 
1608 	return PORT_NONE;
1609 }
1610 
1611 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
1612 			     enum port port)
1613 {
1614 	struct drm_i915_private *i915 = devdata->i915;
1615 	struct child_device_config *child;
1616 	u8 mapped_ddc_pin;
1617 	enum port p;
1618 
1619 	if (!devdata->child.ddc_pin)
1620 		return;
1621 
1622 	mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
1623 	if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
1624 		drm_dbg_kms(&i915->drm,
1625 			    "Port %c has invalid DDC pin %d, "
1626 			    "sticking to defaults\n",
1627 			    port_name(port), mapped_ddc_pin);
1628 		devdata->child.ddc_pin = 0;
1629 		return;
1630 	}
1631 
1632 	p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
1633 	if (p == PORT_NONE)
1634 		return;
1635 
1636 	drm_dbg_kms(&i915->drm,
1637 		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
1638 		    "disabling port %c DVI/HDMI support\n",
1639 		    port_name(port), mapped_ddc_pin,
1640 		    port_name(p), port_name(p));
1641 
1642 	/*
1643 	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
1644 	 * couldn't exist on the shared port. Otherwise they share the same ddc
1645 	 * pin and system couldn't communicate with them separately.
1646 	 *
1647 	 * Give inverse child device order the priority, last one wins. Yes,
1648 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1649 	 * port A and port E with the same AUX ch and we must pick port E :(
1650 	 */
1651 	child = &i915->vbt.ports[p]->child;
1652 
1653 	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1654 	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1655 
1656 	child->ddc_pin = 0;
1657 }
1658 
1659 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1660 {
1661 	const struct intel_bios_encoder_data *devdata;
1662 	enum port port;
1663 
1664 	if (!aux_ch)
1665 		return PORT_NONE;
1666 
1667 	for_each_port(port) {
1668 		devdata = i915->vbt.ports[port];
1669 
1670 		if (devdata && aux_ch == devdata->child.aux_channel)
1671 			return port;
1672 	}
1673 
1674 	return PORT_NONE;
1675 }
1676 
1677 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
1678 			    enum port port)
1679 {
1680 	struct drm_i915_private *i915 = devdata->i915;
1681 	struct child_device_config *child;
1682 	enum port p;
1683 
1684 	p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
1685 	if (p == PORT_NONE)
1686 		return;
1687 
1688 	drm_dbg_kms(&i915->drm,
1689 		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
1690 		    "disabling port %c DP support\n",
1691 		    port_name(port), devdata->child.aux_channel,
1692 		    port_name(p), port_name(p));
1693 
1694 	/*
1695 	 * If we have multiple ports supposedly sharing the aux channel, then DP
1696 	 * couldn't exist on the shared port. Otherwise they share the same aux
1697 	 * channel and system couldn't communicate with them separately.
1698 	 *
1699 	 * Give inverse child device order the priority, last one wins. Yes,
1700 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1701 	 * port A and port E with the same AUX ch and we must pick port E :(
1702 	 */
1703 	child = &i915->vbt.ports[p]->child;
1704 
1705 	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1706 	child->aux_channel = 0;
1707 }
1708 
1709 static u8 dvo_port_type(u8 dvo_port)
1710 {
1711 	switch (dvo_port) {
1712 	case DVO_PORT_HDMIA:
1713 	case DVO_PORT_HDMIB:
1714 	case DVO_PORT_HDMIC:
1715 	case DVO_PORT_HDMID:
1716 	case DVO_PORT_HDMIE:
1717 	case DVO_PORT_HDMIF:
1718 	case DVO_PORT_HDMIG:
1719 	case DVO_PORT_HDMIH:
1720 	case DVO_PORT_HDMII:
1721 		return DVO_PORT_HDMIA;
1722 	case DVO_PORT_DPA:
1723 	case DVO_PORT_DPB:
1724 	case DVO_PORT_DPC:
1725 	case DVO_PORT_DPD:
1726 	case DVO_PORT_DPE:
1727 	case DVO_PORT_DPF:
1728 	case DVO_PORT_DPG:
1729 	case DVO_PORT_DPH:
1730 	case DVO_PORT_DPI:
1731 		return DVO_PORT_DPA;
1732 	case DVO_PORT_MIPIA:
1733 	case DVO_PORT_MIPIB:
1734 	case DVO_PORT_MIPIC:
1735 	case DVO_PORT_MIPID:
1736 		return DVO_PORT_MIPIA;
1737 	default:
1738 		return dvo_port;
1739 	}
1740 }
1741 
1742 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
1743 				    const int port_mapping[][3], u8 dvo_port)
1744 {
1745 	enum port port;
1746 	int i;
1747 
1748 	for (port = PORT_A; port < n_ports; port++) {
1749 		for (i = 0; i < n_dvo; i++) {
1750 			if (port_mapping[port][i] == -1)
1751 				break;
1752 
1753 			if (dvo_port == port_mapping[port][i])
1754 				return port;
1755 		}
1756 	}
1757 
1758 	return PORT_NONE;
1759 }
1760 
1761 static enum port dvo_port_to_port(struct drm_i915_private *i915,
1762 				  u8 dvo_port)
1763 {
1764 	/*
1765 	 * Each DDI port can have more than one value on the "DVO Port" field,
1766 	 * so look for all the possible values for each port.
1767 	 */
1768 	static const int port_mapping[][3] = {
1769 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1770 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1771 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1772 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1773 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
1774 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1775 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1776 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1777 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1778 	};
1779 	/*
1780 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
1781 	 * map to DDI A,B,TC1,TC2 respectively.
1782 	 */
1783 	static const int rkl_port_mapping[][3] = {
1784 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1785 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1786 		[PORT_C] = { -1 },
1787 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1788 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1789 	};
1790 	/*
1791 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
1792 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
1793 	 */
1794 	static const int adls_port_mapping[][3] = {
1795 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1796 		[PORT_B] = { -1 },
1797 		[PORT_C] = { -1 },
1798 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1799 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1800 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1801 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1802 	};
1803 	static const int xelpd_port_mapping[][3] = {
1804 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1805 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1806 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1807 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1808 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1809 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1810 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1811 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1812 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1813 	};
1814 
1815 	if (DISPLAY_VER(i915) == 13)
1816 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
1817 					  ARRAY_SIZE(xelpd_port_mapping[0]),
1818 					  xelpd_port_mapping,
1819 					  dvo_port);
1820 	else if (IS_ALDERLAKE_S(i915))
1821 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
1822 					  ARRAY_SIZE(adls_port_mapping[0]),
1823 					  adls_port_mapping,
1824 					  dvo_port);
1825 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
1826 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
1827 					  ARRAY_SIZE(rkl_port_mapping[0]),
1828 					  rkl_port_mapping,
1829 					  dvo_port);
1830 	else
1831 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
1832 					  ARRAY_SIZE(port_mapping[0]),
1833 					  port_mapping,
1834 					  dvo_port);
1835 }
1836 
1837 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
1838 {
1839 	switch (vbt_max_link_rate) {
1840 	default:
1841 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
1842 		return 0;
1843 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
1844 		return 2000000;
1845 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
1846 		return 1350000;
1847 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
1848 		return 1000000;
1849 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
1850 		return 810000;
1851 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
1852 		return 540000;
1853 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
1854 		return 270000;
1855 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
1856 		return 162000;
1857 	}
1858 }
1859 
1860 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
1861 {
1862 	switch (vbt_max_link_rate) {
1863 	default:
1864 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
1865 		return 810000;
1866 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
1867 		return 540000;
1868 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
1869 		return 270000;
1870 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
1871 		return 162000;
1872 	}
1873 }
1874 
1875 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
1876 {
1877 	if (!devdata || devdata->i915->vbt.version < 216)
1878 		return 0;
1879 
1880 	if (devdata->i915->vbt.version >= 230)
1881 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
1882 	else
1883 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
1884 }
1885 
1886 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
1887 				 enum port port)
1888 {
1889 	struct drm_i915_private *i915 = devdata->i915;
1890 	bool is_hdmi;
1891 
1892 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
1893 		return;
1894 
1895 	if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
1896 		return;
1897 
1898 	is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
1899 
1900 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
1901 		    is_hdmi ? "/HDMI" : "");
1902 
1903 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1904 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1905 }
1906 
1907 static bool
1908 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
1909 {
1910 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1911 }
1912 
1913 bool
1914 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
1915 {
1916 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1917 }
1918 
1919 bool
1920 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
1921 {
1922 	return intel_bios_encoder_supports_dvi(devdata) &&
1923 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1924 }
1925 
1926 bool
1927 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
1928 {
1929 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1930 }
1931 
1932 static bool
1933 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
1934 {
1935 	return intel_bios_encoder_supports_dp(devdata) &&
1936 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
1937 }
1938 
1939 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
1940 {
1941 	if (!devdata || devdata->i915->vbt.version < 158)
1942 		return -1;
1943 
1944 	return devdata->child.hdmi_level_shifter_value;
1945 }
1946 
1947 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
1948 {
1949 	if (!devdata || devdata->i915->vbt.version < 204)
1950 		return 0;
1951 
1952 	switch (devdata->child.hdmi_max_data_rate) {
1953 	default:
1954 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
1955 		fallthrough;
1956 	case HDMI_MAX_DATA_RATE_PLATFORM:
1957 		return 0;
1958 	case HDMI_MAX_DATA_RATE_297:
1959 		return 297000;
1960 	case HDMI_MAX_DATA_RATE_165:
1961 		return 165000;
1962 	}
1963 }
1964 
1965 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
1966 {
1967 	/*
1968 	 * On some ICL SKUs port F is not present, but broken VBTs mark
1969 	 * the port as present. Only try to initialize port F for the
1970 	 * SKUs that may actually have it.
1971 	 */
1972 	if (port == PORT_F && IS_ICELAKE(i915))
1973 		return IS_ICL_WITH_PORT_F(i915);
1974 
1975 	return true;
1976 }
1977 
1978 static void parse_ddi_port(struct drm_i915_private *i915,
1979 			   struct intel_bios_encoder_data *devdata)
1980 {
1981 	const struct child_device_config *child = &devdata->child;
1982 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
1983 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
1984 	enum port port;
1985 
1986 	port = dvo_port_to_port(i915, child->dvo_port);
1987 	if (port == PORT_NONE)
1988 		return;
1989 
1990 	if (!is_port_valid(i915, port)) {
1991 		drm_dbg_kms(&i915->drm,
1992 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
1993 			    port_name(port));
1994 		return;
1995 	}
1996 
1997 	if (i915->vbt.ports[port]) {
1998 		drm_dbg_kms(&i915->drm,
1999 			    "More than one child device for port %c in VBT, using the first.\n",
2000 			    port_name(port));
2001 		return;
2002 	}
2003 
2004 	sanitize_device_type(devdata, port);
2005 
2006 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2007 	is_dp = intel_bios_encoder_supports_dp(devdata);
2008 	is_crt = intel_bios_encoder_supports_crt(devdata);
2009 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2010 	is_edp = intel_bios_encoder_supports_edp(devdata);
2011 
2012 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2013 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2014 
2015 	drm_dbg_kms(&i915->drm,
2016 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2017 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2018 		    HAS_LSPCON(i915) && child->lspcon,
2019 		    supports_typec_usb, supports_tbt,
2020 		    devdata->dsc != NULL);
2021 
2022 	if (is_dvi)
2023 		sanitize_ddc_pin(devdata, port);
2024 
2025 	if (is_dp)
2026 		sanitize_aux_ch(devdata, port);
2027 
2028 	hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2029 	if (hdmi_level_shift >= 0) {
2030 		drm_dbg_kms(&i915->drm,
2031 			    "Port %c VBT HDMI level shift: %d\n",
2032 			    port_name(port), hdmi_level_shift);
2033 	}
2034 
2035 	max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2036 	if (max_tmds_clock)
2037 		drm_dbg_kms(&i915->drm,
2038 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2039 			    port_name(port), max_tmds_clock);
2040 
2041 	/* I_boost config for SKL and above */
2042 	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2043 	if (dp_boost_level)
2044 		drm_dbg_kms(&i915->drm,
2045 			    "Port %c VBT (e)DP boost level: %d\n",
2046 			    port_name(port), dp_boost_level);
2047 
2048 	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2049 	if (hdmi_boost_level)
2050 		drm_dbg_kms(&i915->drm,
2051 			    "Port %c VBT HDMI boost level: %d\n",
2052 			    port_name(port), hdmi_boost_level);
2053 
2054 	dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2055 	if (dp_max_link_rate)
2056 		drm_dbg_kms(&i915->drm,
2057 			    "Port %c VBT DP max link rate: %d\n",
2058 			    port_name(port), dp_max_link_rate);
2059 
2060 	i915->vbt.ports[port] = devdata;
2061 }
2062 
2063 static bool has_ddi_port_info(struct drm_i915_private *i915)
2064 {
2065 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2066 }
2067 
2068 static void parse_ddi_ports(struct drm_i915_private *i915)
2069 {
2070 	struct intel_bios_encoder_data *devdata;
2071 
2072 	if (!has_ddi_port_info(i915))
2073 		return;
2074 
2075 	list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2076 		parse_ddi_port(i915, devdata);
2077 }
2078 
2079 static void
2080 parse_general_definitions(struct drm_i915_private *i915,
2081 			  const struct bdb_header *bdb)
2082 {
2083 	const struct bdb_general_definitions *defs;
2084 	struct intel_bios_encoder_data *devdata;
2085 	const struct child_device_config *child;
2086 	int i, child_device_num;
2087 	u8 expected_size;
2088 	u16 block_size;
2089 	int bus_pin;
2090 
2091 	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
2092 	if (!defs) {
2093 		drm_dbg_kms(&i915->drm,
2094 			    "No general definition block is found, no devices defined.\n");
2095 		return;
2096 	}
2097 
2098 	block_size = get_blocksize(defs);
2099 	if (block_size < sizeof(*defs)) {
2100 		drm_dbg_kms(&i915->drm,
2101 			    "General definitions block too small (%u)\n",
2102 			    block_size);
2103 		return;
2104 	}
2105 
2106 	bus_pin = defs->crt_ddc_gmbus_pin;
2107 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2108 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2109 		i915->vbt.crt_ddc_pin = bus_pin;
2110 
2111 	if (bdb->version < 106) {
2112 		expected_size = 22;
2113 	} else if (bdb->version < 111) {
2114 		expected_size = 27;
2115 	} else if (bdb->version < 195) {
2116 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2117 	} else if (bdb->version == 195) {
2118 		expected_size = 37;
2119 	} else if (bdb->version <= 215) {
2120 		expected_size = 38;
2121 	} else if (bdb->version <= 237) {
2122 		expected_size = 39;
2123 	} else {
2124 		expected_size = sizeof(*child);
2125 		BUILD_BUG_ON(sizeof(*child) < 39);
2126 		drm_dbg(&i915->drm,
2127 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2128 			bdb->version, expected_size);
2129 	}
2130 
2131 	/* Flag an error for unexpected size, but continue anyway. */
2132 	if (defs->child_dev_size != expected_size)
2133 		drm_err(&i915->drm,
2134 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2135 			defs->child_dev_size, expected_size, bdb->version);
2136 
2137 	/* The legacy sized child device config is the minimum we need. */
2138 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2139 		drm_dbg_kms(&i915->drm,
2140 			    "Child device config size %u is too small.\n",
2141 			    defs->child_dev_size);
2142 		return;
2143 	}
2144 
2145 	/* get the number of child device */
2146 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2147 
2148 	for (i = 0; i < child_device_num; i++) {
2149 		child = child_device_ptr(defs, i);
2150 		if (!child->device_type)
2151 			continue;
2152 
2153 		drm_dbg_kms(&i915->drm,
2154 			    "Found VBT child device with type 0x%x\n",
2155 			    child->device_type);
2156 
2157 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2158 		if (!devdata)
2159 			break;
2160 
2161 		devdata->i915 = i915;
2162 
2163 		/*
2164 		 * Copy as much as we know (sizeof) and is available
2165 		 * (child_dev_size) of the child device config. Accessing the
2166 		 * data must depend on VBT version.
2167 		 */
2168 		memcpy(&devdata->child, child,
2169 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2170 
2171 		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2172 	}
2173 
2174 	if (list_empty(&i915->vbt.display_devices))
2175 		drm_dbg_kms(&i915->drm,
2176 			    "no child dev is parsed from VBT\n");
2177 }
2178 
2179 /* Common defaults which may be overridden by VBT. */
2180 static void
2181 init_vbt_defaults(struct drm_i915_private *i915)
2182 {
2183 	i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2184 
2185 	/* Default to having backlight */
2186 	i915->vbt.backlight.present = true;
2187 
2188 	/* LFP panel data */
2189 	i915->vbt.lvds_dither = 1;
2190 
2191 	/* SDVO panel data */
2192 	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2193 
2194 	/* general features */
2195 	i915->vbt.int_tv_support = 1;
2196 	i915->vbt.int_crt_support = 1;
2197 
2198 	/* driver features */
2199 	i915->vbt.int_lvds_support = 1;
2200 
2201 	/* Default to using SSC */
2202 	i915->vbt.lvds_use_ssc = 1;
2203 	/*
2204 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2205 	 * clock for LVDS.
2206 	 */
2207 	i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2208 							   !HAS_PCH_SPLIT(i915));
2209 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2210 		    i915->vbt.lvds_ssc_freq);
2211 }
2212 
2213 /* Defaults to initialize only if there is no VBT. */
2214 static void
2215 init_vbt_missing_defaults(struct drm_i915_private *i915)
2216 {
2217 	enum port port;
2218 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2219 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2220 
2221 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2222 		return;
2223 
2224 	for_each_port_masked(port, ports) {
2225 		struct intel_bios_encoder_data *devdata;
2226 		struct child_device_config *child;
2227 		enum phy phy = intel_port_to_phy(i915, port);
2228 
2229 		/*
2230 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2231 		 * to detect it.
2232 		 */
2233 		if (intel_phy_is_tc(i915, phy))
2234 			continue;
2235 
2236 		/* Create fake child device config */
2237 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2238 		if (!devdata)
2239 			break;
2240 
2241 		devdata->i915 = i915;
2242 		child = &devdata->child;
2243 
2244 		if (port == PORT_F)
2245 			child->dvo_port = DVO_PORT_HDMIF;
2246 		else if (port == PORT_E)
2247 			child->dvo_port = DVO_PORT_HDMIE;
2248 		else
2249 			child->dvo_port = DVO_PORT_HDMIA + port;
2250 
2251 		if (port != PORT_A && port != PORT_E)
2252 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2253 
2254 		if (port != PORT_E)
2255 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2256 
2257 		if (port == PORT_A)
2258 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2259 
2260 		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2261 
2262 		drm_dbg_kms(&i915->drm,
2263 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2264 			    child->device_type, port_name(port));
2265 	}
2266 
2267 	/* Bypass some minimum baseline VBT version checks */
2268 	i915->vbt.version = 155;
2269 }
2270 
2271 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2272 {
2273 	const void *_vbt = vbt;
2274 
2275 	return _vbt + vbt->bdb_offset;
2276 }
2277 
2278 /**
2279  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2280  * @buf:	pointer to a buffer to validate
2281  * @size:	size of the buffer
2282  *
2283  * Returns true on valid VBT.
2284  */
2285 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2286 {
2287 	const struct vbt_header *vbt = buf;
2288 	const struct bdb_header *bdb;
2289 
2290 	if (!vbt)
2291 		return false;
2292 
2293 	if (sizeof(struct vbt_header) > size) {
2294 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2295 		return false;
2296 	}
2297 
2298 	if (memcmp(vbt->signature, "$VBT", 4)) {
2299 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2300 		return false;
2301 	}
2302 
2303 	if (vbt->vbt_size > size) {
2304 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2305 		return false;
2306 	}
2307 
2308 	size = vbt->vbt_size;
2309 
2310 	if (range_overflows_t(size_t,
2311 			      vbt->bdb_offset,
2312 			      sizeof(struct bdb_header),
2313 			      size)) {
2314 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2315 		return false;
2316 	}
2317 
2318 	bdb = get_bdb_header(vbt);
2319 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2320 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2321 		return false;
2322 	}
2323 
2324 	return vbt;
2325 }
2326 
2327 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2328 {
2329 	u32 count, data, found, store = 0;
2330 	u32 static_region, oprom_offset;
2331 	u32 oprom_size = 0x200000;
2332 	u16 vbt_size;
2333 	u32 *vbt;
2334 
2335 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2336 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2337 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2338 
2339 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2340 	oprom_offset &= OROM_OFFSET_MASK;
2341 
2342 	for (count = 0; count < oprom_size; count += 4) {
2343 		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
2344 		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2345 
2346 		if (data == *((const u32 *)"$VBT")) {
2347 			found = oprom_offset + count;
2348 			break;
2349 		}
2350 	}
2351 
2352 	if (count >= oprom_size)
2353 		goto err_not_found;
2354 
2355 	/* Get VBT size and allocate space for the VBT */
2356 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
2357 		   offsetof(struct vbt_header, vbt_size));
2358 	vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2359 	vbt_size &= 0xffff;
2360 
2361 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2362 	if (!vbt)
2363 		goto err_not_found;
2364 
2365 	for (count = 0; count < vbt_size; count += 4) {
2366 		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
2367 		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2368 		*(vbt + store++) = data;
2369 	}
2370 
2371 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2372 		goto err_free_vbt;
2373 
2374 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2375 
2376 	return (struct vbt_header *)vbt;
2377 
2378 err_free_vbt:
2379 	kfree(vbt);
2380 err_not_found:
2381 	return NULL;
2382 }
2383 
2384 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2385 {
2386 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2387 	void __iomem *p = NULL, *oprom;
2388 	struct vbt_header *vbt;
2389 	u16 vbt_size;
2390 	size_t i, size;
2391 
2392 	oprom = pci_map_rom(pdev, &size);
2393 	if (!oprom)
2394 		return NULL;
2395 
2396 	/* Scour memory looking for the VBT signature. */
2397 	for (i = 0; i + 4 < size; i += 4) {
2398 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2399 			continue;
2400 
2401 		p = oprom + i;
2402 		size -= i;
2403 		break;
2404 	}
2405 
2406 	if (!p)
2407 		goto err_unmap_oprom;
2408 
2409 	if (sizeof(struct vbt_header) > size) {
2410 		drm_dbg(&i915->drm, "VBT header incomplete\n");
2411 		goto err_unmap_oprom;
2412 	}
2413 
2414 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2415 	if (vbt_size > size) {
2416 		drm_dbg(&i915->drm,
2417 			"VBT incomplete (vbt_size overflows)\n");
2418 		goto err_unmap_oprom;
2419 	}
2420 
2421 	/* The rest will be validated by intel_bios_is_valid_vbt() */
2422 	vbt = kmalloc(vbt_size, GFP_KERNEL);
2423 	if (!vbt)
2424 		goto err_unmap_oprom;
2425 
2426 	memcpy_fromio(vbt, p, vbt_size);
2427 
2428 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2429 		goto err_free_vbt;
2430 
2431 	pci_unmap_rom(pdev, oprom);
2432 
2433 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2434 
2435 	return vbt;
2436 
2437 err_free_vbt:
2438 	kfree(vbt);
2439 err_unmap_oprom:
2440 	pci_unmap_rom(pdev, oprom);
2441 
2442 	return NULL;
2443 }
2444 
2445 /**
2446  * intel_bios_init - find VBT and initialize settings from the BIOS
2447  * @i915: i915 device instance
2448  *
2449  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2450  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2451  * initialize some defaults if the VBT is not present at all.
2452  */
2453 void intel_bios_init(struct drm_i915_private *i915)
2454 {
2455 	const struct vbt_header *vbt = i915->opregion.vbt;
2456 	struct vbt_header *oprom_vbt = NULL;
2457 	const struct bdb_header *bdb;
2458 
2459 	INIT_LIST_HEAD(&i915->vbt.display_devices);
2460 
2461 	if (!HAS_DISPLAY(i915)) {
2462 		drm_dbg_kms(&i915->drm,
2463 			    "Skipping VBT init due to disabled display.\n");
2464 		return;
2465 	}
2466 
2467 	init_vbt_defaults(i915);
2468 
2469 	/*
2470 	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
2471 	 * PCI mapping
2472 	 */
2473 	if (!vbt && IS_DGFX(i915)) {
2474 		oprom_vbt = spi_oprom_get_vbt(i915);
2475 		vbt = oprom_vbt;
2476 	}
2477 
2478 	if (!vbt) {
2479 		oprom_vbt = oprom_get_vbt(i915);
2480 		vbt = oprom_vbt;
2481 	}
2482 
2483 	if (!vbt)
2484 		goto out;
2485 
2486 	bdb = get_bdb_header(vbt);
2487 	i915->vbt.version = bdb->version;
2488 
2489 	drm_dbg_kms(&i915->drm,
2490 		    "VBT signature \"%.*s\", BDB version %d\n",
2491 		    (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2492 
2493 	/* Grab useful general definitions */
2494 	parse_general_features(i915, bdb);
2495 	parse_general_definitions(i915, bdb);
2496 	parse_panel_options(i915, bdb);
2497 	parse_panel_dtd(i915, bdb);
2498 	parse_lfp_backlight(i915, bdb);
2499 	parse_sdvo_panel_data(i915, bdb);
2500 	parse_driver_features(i915, bdb);
2501 	parse_power_conservation_features(i915, bdb);
2502 	parse_edp(i915, bdb);
2503 	parse_psr(i915, bdb);
2504 	parse_mipi_config(i915, bdb);
2505 	parse_mipi_sequence(i915, bdb);
2506 
2507 	/* Depends on child device list */
2508 	parse_compression_parameters(i915, bdb);
2509 
2510 out:
2511 	if (!vbt) {
2512 		drm_info(&i915->drm,
2513 			 "Failed to find VBIOS tables (VBT)\n");
2514 		init_vbt_missing_defaults(i915);
2515 	}
2516 
2517 	/* Further processing on pre-parsed or generated child device data */
2518 	parse_sdvo_device_mapping(i915);
2519 	parse_ddi_ports(i915);
2520 
2521 	kfree(oprom_vbt);
2522 }
2523 
2524 /**
2525  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2526  * @i915: i915 device instance
2527  */
2528 void intel_bios_driver_remove(struct drm_i915_private *i915)
2529 {
2530 	struct intel_bios_encoder_data *devdata, *n;
2531 
2532 	list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
2533 		list_del(&devdata->node);
2534 		kfree(devdata->dsc);
2535 		kfree(devdata);
2536 	}
2537 
2538 	kfree(i915->vbt.sdvo_lvds_vbt_mode);
2539 	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2540 	kfree(i915->vbt.lfp_lvds_vbt_mode);
2541 	i915->vbt.lfp_lvds_vbt_mode = NULL;
2542 	kfree(i915->vbt.dsi.data);
2543 	i915->vbt.dsi.data = NULL;
2544 	kfree(i915->vbt.dsi.pps);
2545 	i915->vbt.dsi.pps = NULL;
2546 	kfree(i915->vbt.dsi.config);
2547 	i915->vbt.dsi.config = NULL;
2548 	kfree(i915->vbt.dsi.deassert_seq);
2549 	i915->vbt.dsi.deassert_seq = NULL;
2550 }
2551 
2552 /**
2553  * intel_bios_is_tv_present - is integrated TV present in VBT
2554  * @i915: i915 device instance
2555  *
2556  * Return true if TV is present. If no child devices were parsed from VBT,
2557  * assume TV is present.
2558  */
2559 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
2560 {
2561 	const struct intel_bios_encoder_data *devdata;
2562 	const struct child_device_config *child;
2563 
2564 	if (!i915->vbt.int_tv_support)
2565 		return false;
2566 
2567 	if (list_empty(&i915->vbt.display_devices))
2568 		return true;
2569 
2570 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2571 		child = &devdata->child;
2572 
2573 		/*
2574 		 * If the device type is not TV, continue.
2575 		 */
2576 		switch (child->device_type) {
2577 		case DEVICE_TYPE_INT_TV:
2578 		case DEVICE_TYPE_TV:
2579 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2580 			break;
2581 		default:
2582 			continue;
2583 		}
2584 		/* Only when the addin_offset is non-zero, it is regarded
2585 		 * as present.
2586 		 */
2587 		if (child->addin_offset)
2588 			return true;
2589 	}
2590 
2591 	return false;
2592 }
2593 
2594 /**
2595  * intel_bios_is_lvds_present - is LVDS present in VBT
2596  * @i915:	i915 device instance
2597  * @i2c_pin:	i2c pin for LVDS if present
2598  *
2599  * Return true if LVDS is present. If no child devices were parsed from VBT,
2600  * assume LVDS is present.
2601  */
2602 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
2603 {
2604 	const struct intel_bios_encoder_data *devdata;
2605 	const struct child_device_config *child;
2606 
2607 	if (list_empty(&i915->vbt.display_devices))
2608 		return true;
2609 
2610 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2611 		child = &devdata->child;
2612 
2613 		/* If the device type is not LFP, continue.
2614 		 * We have to check both the new identifiers as well as the
2615 		 * old for compatibility with some BIOSes.
2616 		 */
2617 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
2618 		    child->device_type != DEVICE_TYPE_LFP)
2619 			continue;
2620 
2621 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
2622 			*i2c_pin = child->i2c_pin;
2623 
2624 		/* However, we cannot trust the BIOS writers to populate
2625 		 * the VBT correctly.  Since LVDS requires additional
2626 		 * information from AIM blocks, a non-zero addin offset is
2627 		 * a good indicator that the LVDS is actually present.
2628 		 */
2629 		if (child->addin_offset)
2630 			return true;
2631 
2632 		/* But even then some BIOS writers perform some black magic
2633 		 * and instantiate the device without reference to any
2634 		 * additional data.  Trust that if the VBT was written into
2635 		 * the OpRegion then they have validated the LVDS's existence.
2636 		 */
2637 		if (i915->opregion.vbt)
2638 			return true;
2639 	}
2640 
2641 	return false;
2642 }
2643 
2644 /**
2645  * intel_bios_is_port_present - is the specified digital port present
2646  * @i915:	i915 device instance
2647  * @port:	port to check
2648  *
2649  * Return true if the device in %port is present.
2650  */
2651 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
2652 {
2653 	if (WARN_ON(!has_ddi_port_info(i915)))
2654 		return true;
2655 
2656 	return i915->vbt.ports[port];
2657 }
2658 
2659 /**
2660  * intel_bios_is_port_edp - is the device in given port eDP
2661  * @i915:	i915 device instance
2662  * @port:	port to check
2663  *
2664  * Return true if the device in %port is eDP.
2665  */
2666 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
2667 {
2668 	const struct intel_bios_encoder_data *devdata =
2669 		intel_bios_encoder_data_lookup(i915, port);
2670 
2671 	return devdata && intel_bios_encoder_supports_edp(devdata);
2672 }
2673 
2674 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
2675 {
2676 	const struct child_device_config *child = &devdata->child;
2677 
2678 	if (!intel_bios_encoder_supports_dp(devdata) ||
2679 	    !intel_bios_encoder_supports_hdmi(devdata))
2680 		return false;
2681 
2682 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
2683 		return true;
2684 
2685 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2686 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
2687 	    child->aux_channel != 0)
2688 		return true;
2689 
2690 	return false;
2691 }
2692 
2693 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
2694 				     enum port port)
2695 {
2696 	const struct intel_bios_encoder_data *devdata =
2697 		intel_bios_encoder_data_lookup(i915, port);
2698 
2699 	return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
2700 }
2701 
2702 /**
2703  * intel_bios_is_dsi_present - is DSI present in VBT
2704  * @i915:	i915 device instance
2705  * @port:	port for DSI if present
2706  *
2707  * Return true if DSI is present, and return the port in %port.
2708  */
2709 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
2710 			       enum port *port)
2711 {
2712 	const struct intel_bios_encoder_data *devdata;
2713 	const struct child_device_config *child;
2714 	u8 dvo_port;
2715 
2716 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2717 		child = &devdata->child;
2718 
2719 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2720 			continue;
2721 
2722 		dvo_port = child->dvo_port;
2723 
2724 		if (dvo_port == DVO_PORT_MIPIA ||
2725 		    (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
2726 		    (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
2727 			if (port)
2728 				*port = dvo_port - DVO_PORT_MIPIA;
2729 			return true;
2730 		} else if (dvo_port == DVO_PORT_MIPIB ||
2731 			   dvo_port == DVO_PORT_MIPIC ||
2732 			   dvo_port == DVO_PORT_MIPID) {
2733 			drm_dbg_kms(&i915->drm,
2734 				    "VBT has unsupported DSI port %c\n",
2735 				    port_name(dvo_port - DVO_PORT_MIPIA));
2736 		}
2737 	}
2738 
2739 	return false;
2740 }
2741 
2742 static void fill_dsc(struct intel_crtc_state *crtc_state,
2743 		     struct dsc_compression_parameters_entry *dsc,
2744 		     int dsc_max_bpc)
2745 {
2746 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2747 	int bpc = 8;
2748 
2749 	vdsc_cfg->dsc_version_major = dsc->version_major;
2750 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
2751 
2752 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
2753 		bpc = 12;
2754 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2755 		bpc = 10;
2756 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2757 		bpc = 8;
2758 	else
2759 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2760 			      dsc_max_bpc);
2761 
2762 	crtc_state->pipe_bpp = bpc * 3;
2763 
2764 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2765 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
2766 
2767 	/*
2768 	 * FIXME: This is ugly, and slice count should take DSC engine
2769 	 * throughput etc. into account.
2770 	 *
2771 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2772 	 */
2773 	if (dsc->slices_per_line & BIT(2)) {
2774 		crtc_state->dsc.slice_count = 4;
2775 	} else if (dsc->slices_per_line & BIT(1)) {
2776 		crtc_state->dsc.slice_count = 2;
2777 	} else {
2778 		/* FIXME */
2779 		if (!(dsc->slices_per_line & BIT(0)))
2780 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2781 
2782 		crtc_state->dsc.slice_count = 1;
2783 	}
2784 
2785 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2786 	    crtc_state->dsc.slice_count != 0)
2787 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2788 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
2789 			      crtc_state->dsc.slice_count);
2790 
2791 	/*
2792 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
2793 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
2794 	 */
2795 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
2796 							    dsc->rc_buffer_size);
2797 
2798 	/* FIXME: DSI spec says bpc + 1 for this one */
2799 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2800 
2801 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2802 
2803 	vdsc_cfg->slice_height = dsc->slice_height;
2804 }
2805 
2806 /* FIXME: initially DSI specific */
2807 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2808 			       struct intel_crtc_state *crtc_state,
2809 			       int dsc_max_bpc)
2810 {
2811 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2812 	const struct intel_bios_encoder_data *devdata;
2813 	const struct child_device_config *child;
2814 
2815 	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2816 		child = &devdata->child;
2817 
2818 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2819 			continue;
2820 
2821 		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2822 			if (!devdata->dsc)
2823 				return false;
2824 
2825 			if (crtc_state)
2826 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2827 
2828 			return true;
2829 		}
2830 	}
2831 
2832 	return false;
2833 }
2834 
2835 /**
2836  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2837  * @i915:	i915 device instance
2838  * @port:	port to check
2839  *
2840  * Return true if HPD should be inverted for %port.
2841  */
2842 bool
2843 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2844 				enum port port)
2845 {
2846 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2847 
2848 	if (drm_WARN_ON_ONCE(&i915->drm,
2849 			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
2850 		return false;
2851 
2852 	return devdata && devdata->child.hpd_invert;
2853 }
2854 
2855 /**
2856  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2857  * @i915:	i915 device instance
2858  * @port:	port to check
2859  *
2860  * Return true if LSPCON is present on this port
2861  */
2862 bool
2863 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2864 			     enum port port)
2865 {
2866 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2867 
2868 	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
2869 }
2870 
2871 /**
2872  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
2873  * @i915:       i915 device instance
2874  * @port:       port to check
2875  *
2876  * Return true if port requires lane reversal
2877  */
2878 bool
2879 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
2880 				   enum port port)
2881 {
2882 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2883 
2884 	return devdata && devdata->child.lane_reversal;
2885 }
2886 
2887 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
2888 				   enum port port)
2889 {
2890 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
2891 	enum aux_ch aux_ch;
2892 
2893 	if (!devdata || !devdata->child.aux_channel) {
2894 		aux_ch = (enum aux_ch)port;
2895 
2896 		drm_dbg_kms(&i915->drm,
2897 			    "using AUX %c for port %c (platform default)\n",
2898 			    aux_ch_name(aux_ch), port_name(port));
2899 		return aux_ch;
2900 	}
2901 
2902 	/*
2903 	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
2904 	 * map to DDI A,B,TC1,TC2 respectively.
2905 	 *
2906 	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
2907 	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
2908 	 */
2909 	switch (devdata->child.aux_channel) {
2910 	case DP_AUX_A:
2911 		aux_ch = AUX_CH_A;
2912 		break;
2913 	case DP_AUX_B:
2914 		if (IS_ALDERLAKE_S(i915))
2915 			aux_ch = AUX_CH_USBC1;
2916 		else
2917 			aux_ch = AUX_CH_B;
2918 		break;
2919 	case DP_AUX_C:
2920 		if (IS_ALDERLAKE_S(i915))
2921 			aux_ch = AUX_CH_USBC2;
2922 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2923 			aux_ch = AUX_CH_USBC1;
2924 		else
2925 			aux_ch = AUX_CH_C;
2926 		break;
2927 	case DP_AUX_D:
2928 		if (DISPLAY_VER(i915) == 13)
2929 			aux_ch = AUX_CH_D_XELPD;
2930 		else if (IS_ALDERLAKE_S(i915))
2931 			aux_ch = AUX_CH_USBC3;
2932 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2933 			aux_ch = AUX_CH_USBC2;
2934 		else
2935 			aux_ch = AUX_CH_D;
2936 		break;
2937 	case DP_AUX_E:
2938 		if (DISPLAY_VER(i915) == 13)
2939 			aux_ch = AUX_CH_E_XELPD;
2940 		else if (IS_ALDERLAKE_S(i915))
2941 			aux_ch = AUX_CH_USBC4;
2942 		else
2943 			aux_ch = AUX_CH_E;
2944 		break;
2945 	case DP_AUX_F:
2946 		if (DISPLAY_VER(i915) == 13)
2947 			aux_ch = AUX_CH_USBC1;
2948 		else
2949 			aux_ch = AUX_CH_F;
2950 		break;
2951 	case DP_AUX_G:
2952 		if (DISPLAY_VER(i915) == 13)
2953 			aux_ch = AUX_CH_USBC2;
2954 		else
2955 			aux_ch = AUX_CH_G;
2956 		break;
2957 	case DP_AUX_H:
2958 		if (DISPLAY_VER(i915) == 13)
2959 			aux_ch = AUX_CH_USBC3;
2960 		else
2961 			aux_ch = AUX_CH_H;
2962 		break;
2963 	case DP_AUX_I:
2964 		if (DISPLAY_VER(i915) == 13)
2965 			aux_ch = AUX_CH_USBC4;
2966 		else
2967 			aux_ch = AUX_CH_I;
2968 		break;
2969 	default:
2970 		MISSING_CASE(devdata->child.aux_channel);
2971 		aux_ch = AUX_CH_A;
2972 		break;
2973 	}
2974 
2975 	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
2976 		    aux_ch_name(aux_ch), port_name(port));
2977 
2978 	return aux_ch;
2979 }
2980 
2981 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2982 {
2983 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2984 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
2985 
2986 	return _intel_bios_max_tmds_clock(devdata);
2987 }
2988 
2989 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
2990 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
2991 {
2992 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2993 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
2994 
2995 	return _intel_bios_hdmi_level_shift(devdata);
2996 }
2997 
2998 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
2999 {
3000 	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3001 		return 0;
3002 
3003 	return translate_iboost(devdata->child.dp_iboost_level);
3004 }
3005 
3006 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3007 {
3008 	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3009 		return 0;
3010 
3011 	return translate_iboost(devdata->child.hdmi_iboost_level);
3012 }
3013 
3014 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3015 {
3016 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3017 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3018 
3019 	return _intel_bios_dp_max_link_rate(devdata);
3020 }
3021 
3022 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3023 {
3024 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3025 	const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3026 
3027 	if (!devdata || !devdata->child.ddc_pin)
3028 		return 0;
3029 
3030 	return map_ddc_pin(i915, devdata->child.ddc_pin);
3031 }
3032 
3033 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3034 {
3035 	return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3036 }
3037 
3038 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3039 {
3040 	return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3041 }
3042 
3043 const struct intel_bios_encoder_data *
3044 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3045 {
3046 	return i915->vbt.ports[port];
3047 }
3048