1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_edid.h>
29 #include <drm/display/drm_dp_helper.h>
30 #include <drm/display/drm_dsc_helper.h>
31 
32 #include "display/intel_display.h"
33 #include "display/intel_display_types.h"
34 #include "display/intel_gmbus.h"
35 
36 #include "i915_drv.h"
37 #include "i915_reg.h"
38 
39 #define _INTEL_BIOS_PRIVATE
40 #include "intel_vbt_defs.h"
41 
42 /**
43  * DOC: Video BIOS Table (VBT)
44  *
45  * The Video BIOS Table, or VBT, provides platform and board specific
46  * configuration information to the driver that is not discoverable or available
47  * through other means. The configuration is mostly related to display
48  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
49  * the PCI ROM.
50  *
51  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
52  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
53  * contain the actual configuration information. The VBT Header, and thus the
54  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
55  * BDB Header. The data blocks are concatenated after the BDB Header. The data
56  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
57  * data. (Block 53, the MIPI Sequence Block is an exception.)
58  *
59  * The driver parses the VBT during load. The relevant information is stored in
60  * driver private data for ease of use, and the actual VBT is not read after
61  * that.
62  */
63 
64 /* Wrapper for VBT child device config */
65 struct intel_bios_encoder_data {
66 	struct drm_i915_private *i915;
67 
68 	struct child_device_config child;
69 	struct dsc_compression_parameters_entry *dsc;
70 	struct list_head node;
71 };
72 
73 #define	SLAVE_ADDR1	0x70
74 #define	SLAVE_ADDR2	0x72
75 
76 /* Get BDB block size given a pointer to Block ID. */
77 static u32 _get_blocksize(const u8 *block_base)
78 {
79 	/* The MIPI Sequence Block v3+ has a separate size field. */
80 	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
81 		return *((const u32 *)(block_base + 4));
82 	else
83 		return *((const u16 *)(block_base + 1));
84 }
85 
86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
87 static u32 get_blocksize(const void *block_data)
88 {
89 	return _get_blocksize(block_data - 3);
90 }
91 
92 static const void *
93 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
94 {
95 	const struct bdb_header *bdb = _bdb;
96 	const u8 *base = _bdb;
97 	int index = 0;
98 	u32 total, current_size;
99 	enum bdb_block_id current_id;
100 
101 	/* skip to first section */
102 	index += bdb->header_size;
103 	total = bdb->bdb_size;
104 
105 	/* walk the sections looking for section_id */
106 	while (index + 3 < total) {
107 		current_id = *(base + index);
108 		current_size = _get_blocksize(base + index);
109 		index += 3;
110 
111 		if (index + current_size > total)
112 			return NULL;
113 
114 		if (current_id == section_id)
115 			return base + index;
116 
117 		index += current_size;
118 	}
119 
120 	return NULL;
121 }
122 
123 /*
124  * Offset from the start of BDB to the start of the
125  * block data (just past the block header).
126  */
127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
128 {
129 	const void *block;
130 
131 	block = find_raw_section(bdb, section_id);
132 	if (!block)
133 		return 0;
134 
135 	return block - bdb;
136 }
137 
138 struct bdb_block_entry {
139 	struct list_head node;
140 	enum bdb_block_id section_id;
141 	u8 data[];
142 };
143 
144 static const void *
145 find_section(struct drm_i915_private *i915,
146 	     enum bdb_block_id section_id)
147 {
148 	struct bdb_block_entry *entry;
149 
150 	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
151 		if (entry->section_id == section_id)
152 			return entry->data + 3;
153 	}
154 
155 	return NULL;
156 }
157 
158 static const struct {
159 	enum bdb_block_id section_id;
160 	size_t min_size;
161 } bdb_blocks[] = {
162 	{ .section_id = BDB_GENERAL_FEATURES,
163 	  .min_size = sizeof(struct bdb_general_features), },
164 	{ .section_id = BDB_GENERAL_DEFINITIONS,
165 	  .min_size = sizeof(struct bdb_general_definitions), },
166 	{ .section_id = BDB_PSR,
167 	  .min_size = sizeof(struct bdb_psr), },
168 	{ .section_id = BDB_DRIVER_FEATURES,
169 	  .min_size = sizeof(struct bdb_driver_features), },
170 	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
171 	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
172 	{ .section_id = BDB_SDVO_PANEL_DTDS,
173 	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
174 	{ .section_id = BDB_EDP,
175 	  .min_size = sizeof(struct bdb_edp), },
176 	{ .section_id = BDB_LVDS_OPTIONS,
177 	  .min_size = sizeof(struct bdb_lvds_options), },
178 	/*
179 	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
180 	 * so keep the two ordered.
181 	 */
182 	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
183 	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
184 	{ .section_id = BDB_LVDS_LFP_DATA,
185 	  .min_size = 0, /* special case */ },
186 	{ .section_id = BDB_LVDS_BACKLIGHT,
187 	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
188 	{ .section_id = BDB_LFP_POWER,
189 	  .min_size = sizeof(struct bdb_lfp_power), },
190 	{ .section_id = BDB_MIPI_CONFIG,
191 	  .min_size = sizeof(struct bdb_mipi_config), },
192 	{ .section_id = BDB_MIPI_SEQUENCE,
193 	  .min_size = sizeof(struct bdb_mipi_sequence) },
194 	{ .section_id = BDB_COMPRESSION_PARAMETERS,
195 	  .min_size = sizeof(struct bdb_compression_parameters), },
196 	{ .section_id = BDB_GENERIC_DTD,
197 	  .min_size = sizeof(struct bdb_generic_dtd), },
198 };
199 
200 static size_t lfp_data_min_size(struct drm_i915_private *i915)
201 {
202 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
203 	size_t size;
204 
205 	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
206 	if (!ptrs)
207 		return 0;
208 
209 	size = sizeof(struct bdb_lvds_lfp_data);
210 	if (ptrs->panel_name.table_size)
211 		size = max(size, ptrs->panel_name.offset +
212 			   sizeof(struct bdb_lvds_lfp_data_tail));
213 
214 	return size;
215 }
216 
217 static bool validate_lfp_data_ptrs(const void *bdb,
218 				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
219 {
220 	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
221 	int data_block_size, lfp_data_size;
222 	const void *data_block;
223 	int i;
224 
225 	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
226 	if (!data_block)
227 		return false;
228 
229 	data_block_size = get_blocksize(data_block);
230 	if (data_block_size == 0)
231 		return false;
232 
233 	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
234 	if (ptrs->lvds_entries != 3)
235 		return false;
236 
237 	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
238 	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
239 	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
240 	panel_name_size = ptrs->panel_name.table_size;
241 
242 	/* fp_timing has variable size */
243 	if (fp_timing_size < 32 ||
244 	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
245 	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
246 		return false;
247 
248 	/* panel_name is not present in old VBTs */
249 	if (panel_name_size != 0 &&
250 	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
251 		return false;
252 
253 	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
254 	if (16 * lfp_data_size > data_block_size)
255 		return false;
256 
257 	/* make sure the table entries have uniform size */
258 	for (i = 1; i < 16; i++) {
259 		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
260 		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
261 		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
262 			return false;
263 
264 		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
265 		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
266 		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
267 			return false;
268 	}
269 
270 	/*
271 	 * Except for vlv/chv machines all real VBTs seem to have 6
272 	 * unaccounted bytes in the fp_timing table. And it doesn't
273 	 * appear to be a really intentional hole as the fp_timing
274 	 * 0xffff terminator is always within those 6 missing bytes.
275 	 */
276 	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
277 		fp_timing_size += 6;
278 
279 	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
280 		return false;
281 
282 	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
283 	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
284 	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
285 		return false;
286 
287 	/* make sure the tables fit inside the data block */
288 	for (i = 0; i < 16; i++) {
289 		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
290 		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
291 		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
292 			return false;
293 	}
294 
295 	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
296 		return false;
297 
298 	/* make sure fp_timing terminators are present at expected locations */
299 	for (i = 0; i < 16; i++) {
300 		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
301 			fp_timing_size - 2;
302 
303 		if (*t != 0xffff)
304 			return false;
305 	}
306 
307 	return true;
308 }
309 
310 /* make the data table offsets relative to the data block */
311 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
312 {
313 	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
314 	u32 offset;
315 	int i;
316 
317 	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
318 
319 	for (i = 0; i < 16; i++) {
320 		if (ptrs->ptr[i].fp_timing.offset < offset ||
321 		    ptrs->ptr[i].dvo_timing.offset < offset ||
322 		    ptrs->ptr[i].panel_pnp_id.offset < offset)
323 			return false;
324 
325 		ptrs->ptr[i].fp_timing.offset -= offset;
326 		ptrs->ptr[i].dvo_timing.offset -= offset;
327 		ptrs->ptr[i].panel_pnp_id.offset -= offset;
328 	}
329 
330 	if (ptrs->panel_name.table_size) {
331 		if (ptrs->panel_name.offset < offset)
332 			return false;
333 
334 		ptrs->panel_name.offset -= offset;
335 	}
336 
337 	return validate_lfp_data_ptrs(bdb, ptrs);
338 }
339 
340 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
341 			     int table_size, int total_size)
342 {
343 	if (total_size < table_size)
344 		return total_size;
345 
346 	table->table_size = table_size;
347 	table->offset = total_size - table_size;
348 
349 	return total_size - table_size;
350 }
351 
352 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
353 			      const struct lvds_lfp_data_ptr_table *prev,
354 			      int size)
355 {
356 	next->table_size = prev->table_size;
357 	next->offset = prev->offset + size;
358 }
359 
360 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
361 				    const void *bdb)
362 {
363 	int i, size, table_size, block_size, offset, fp_timing_size;
364 	struct bdb_lvds_lfp_data_ptrs *ptrs;
365 	const void *block;
366 	void *ptrs_block;
367 
368 	/*
369 	 * The hardcoded fp_timing_size is only valid for
370 	 * modernish VBTs. All older VBTs definitely should
371 	 * include block 41 and thus we don't need to
372 	 * generate one.
373 	 */
374 	if (i915->display.vbt.version < 155)
375 		return NULL;
376 
377 	fp_timing_size = 38;
378 
379 	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
380 	if (!block)
381 		return NULL;
382 
383 	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
384 
385 	block_size = get_blocksize(block);
386 
387 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
388 		sizeof(struct lvds_pnp_id);
389 	if (size * 16 > block_size)
390 		return NULL;
391 
392 	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
393 	if (!ptrs_block)
394 		return NULL;
395 
396 	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
397 	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
398 	ptrs = ptrs_block + 3;
399 
400 	table_size = sizeof(struct lvds_pnp_id);
401 	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
402 
403 	table_size = sizeof(struct lvds_dvo_timing);
404 	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
405 
406 	table_size = fp_timing_size;
407 	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
408 
409 	if (ptrs->ptr[0].fp_timing.table_size)
410 		ptrs->lvds_entries++;
411 	if (ptrs->ptr[0].dvo_timing.table_size)
412 		ptrs->lvds_entries++;
413 	if (ptrs->ptr[0].panel_pnp_id.table_size)
414 		ptrs->lvds_entries++;
415 
416 	if (size != 0 || ptrs->lvds_entries != 3) {
417 		kfree(ptrs);
418 		return NULL;
419 	}
420 
421 	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
422 		sizeof(struct lvds_pnp_id);
423 	for (i = 1; i < 16; i++) {
424 		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
425 		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
426 		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
427 	}
428 
429 	table_size = sizeof(struct lvds_lfp_panel_name);
430 
431 	if (16 * (size + table_size) <= block_size) {
432 		ptrs->panel_name.table_size = table_size;
433 		ptrs->panel_name.offset = size * 16;
434 	}
435 
436 	offset = block - bdb;
437 
438 	for (i = 0; i < 16; i++) {
439 		ptrs->ptr[i].fp_timing.offset += offset;
440 		ptrs->ptr[i].dvo_timing.offset += offset;
441 		ptrs->ptr[i].panel_pnp_id.offset += offset;
442 	}
443 
444 	if (ptrs->panel_name.table_size)
445 		ptrs->panel_name.offset += offset;
446 
447 	return ptrs_block;
448 }
449 
450 static void
451 init_bdb_block(struct drm_i915_private *i915,
452 	       const void *bdb, enum bdb_block_id section_id,
453 	       size_t min_size)
454 {
455 	struct bdb_block_entry *entry;
456 	void *temp_block = NULL;
457 	const void *block;
458 	size_t block_size;
459 
460 	block = find_raw_section(bdb, section_id);
461 
462 	/* Modern VBTs lack the LFP data table pointers block, make one up */
463 	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
464 		temp_block = generate_lfp_data_ptrs(i915, bdb);
465 		if (temp_block)
466 			block = temp_block + 3;
467 	}
468 	if (!block)
469 		return;
470 
471 	drm_WARN(&i915->drm, min_size == 0,
472 		 "Block %d min_size is zero\n", section_id);
473 
474 	block_size = get_blocksize(block);
475 
476 	/*
477 	 * Version number and new block size are considered
478 	 * part of the header for MIPI sequenece block v3+.
479 	 */
480 	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
481 		block_size += 5;
482 
483 	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
484 			GFP_KERNEL);
485 	if (!entry) {
486 		kfree(temp_block);
487 		return;
488 	}
489 
490 	entry->section_id = section_id;
491 	memcpy(entry->data, block - 3, block_size + 3);
492 
493 	kfree(temp_block);
494 
495 	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
496 		    section_id, block_size, min_size);
497 
498 	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
499 	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
500 		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
501 		kfree(entry);
502 		return;
503 	}
504 
505 	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
506 }
507 
508 static void init_bdb_blocks(struct drm_i915_private *i915,
509 			    const void *bdb)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
514 		enum bdb_block_id section_id = bdb_blocks[i].section_id;
515 		size_t min_size = bdb_blocks[i].min_size;
516 
517 		if (section_id == BDB_LVDS_LFP_DATA)
518 			min_size = lfp_data_min_size(i915);
519 
520 		init_bdb_block(i915, bdb, section_id, min_size);
521 	}
522 }
523 
524 static void
525 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
526 			const struct lvds_dvo_timing *dvo_timing)
527 {
528 	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529 		dvo_timing->hactive_lo;
530 	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531 		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532 	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533 		((dvo_timing->hsync_pulse_width_hi << 8) |
534 			dvo_timing->hsync_pulse_width_lo);
535 	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536 		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537 
538 	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539 		dvo_timing->vactive_lo;
540 	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541 		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542 	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543 		((dvo_timing->vsync_pulse_width_hi << 4) |
544 			dvo_timing->vsync_pulse_width_lo);
545 	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546 		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547 	panel_fixed_mode->clock = dvo_timing->clock * 10;
548 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549 
550 	if (dvo_timing->hsync_positive)
551 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552 	else
553 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554 
555 	if (dvo_timing->vsync_positive)
556 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557 	else
558 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559 
560 	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561 		dvo_timing->himage_lo;
562 	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563 		dvo_timing->vimage_lo;
564 
565 	/* Some VBTs have bogus h/vtotal values */
566 	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
567 		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
568 	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
569 		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
570 
571 	drm_mode_set_name(panel_fixed_mode);
572 }
573 
574 static const struct lvds_dvo_timing *
575 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
576 		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
577 		    int index)
578 {
579 	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
580 }
581 
582 static const struct lvds_fp_timing *
583 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
584 		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
585 		   int index)
586 {
587 	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
588 }
589 
590 static const struct lvds_pnp_id *
591 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
592 		const struct bdb_lvds_lfp_data_ptrs *ptrs,
593 		int index)
594 {
595 	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
596 }
597 
598 static const struct bdb_lvds_lfp_data_tail *
599 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
600 		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
601 {
602 	if (ptrs->panel_name.table_size)
603 		return (const void *)data + ptrs->panel_name.offset;
604 	else
605 		return NULL;
606 }
607 
608 static void dump_pnp_id(struct drm_i915_private *i915,
609 			const struct lvds_pnp_id *pnp_id,
610 			const char *name)
611 {
612 	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
613 	char vend[4];
614 
615 	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
616 		    name, drm_edid_decode_mfg_id(mfg_name, vend),
617 		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
618 		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
619 }
620 
621 static int opregion_get_panel_type(struct drm_i915_private *i915,
622 				   const struct intel_bios_encoder_data *devdata,
623 				   const struct edid *edid)
624 {
625 	return intel_opregion_get_panel_type(i915);
626 }
627 
628 static int vbt_get_panel_type(struct drm_i915_private *i915,
629 			      const struct intel_bios_encoder_data *devdata,
630 			      const struct edid *edid)
631 {
632 	const struct bdb_lvds_options *lvds_options;
633 
634 	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
635 	if (!lvds_options)
636 		return -1;
637 
638 	if (lvds_options->panel_type > 0xf &&
639 	    lvds_options->panel_type != 0xff) {
640 		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
641 			    lvds_options->panel_type);
642 		return -1;
643 	}
644 
645 	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
646 		return lvds_options->panel_type2;
647 
648 	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
649 
650 	return lvds_options->panel_type;
651 }
652 
653 static int pnpid_get_panel_type(struct drm_i915_private *i915,
654 				const struct intel_bios_encoder_data *devdata,
655 				const struct edid *edid)
656 {
657 	const struct bdb_lvds_lfp_data *data;
658 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
659 	const struct lvds_pnp_id *edid_id;
660 	struct lvds_pnp_id edid_id_nodate;
661 	int i, best = -1;
662 
663 	if (!edid)
664 		return -1;
665 
666 	edid_id = (const void *)&edid->mfg_id[0];
667 
668 	edid_id_nodate = *edid_id;
669 	edid_id_nodate.mfg_week = 0;
670 	edid_id_nodate.mfg_year = 0;
671 
672 	dump_pnp_id(i915, edid_id, "EDID");
673 
674 	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675 	if (!ptrs)
676 		return -1;
677 
678 	data = find_section(i915, BDB_LVDS_LFP_DATA);
679 	if (!data)
680 		return -1;
681 
682 	for (i = 0; i < 16; i++) {
683 		const struct lvds_pnp_id *vbt_id =
684 			get_lvds_pnp_id(data, ptrs, i);
685 
686 		/* full match? */
687 		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688 			return i;
689 
690 		/*
691 		 * Accept a match w/o date if no full match is found,
692 		 * and the VBT entry does not specify a date.
693 		 */
694 		if (best < 0 &&
695 		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696 			best = i;
697 	}
698 
699 	return best;
700 }
701 
702 static int fallback_get_panel_type(struct drm_i915_private *i915,
703 				   const struct intel_bios_encoder_data *devdata,
704 				   const struct edid *edid)
705 {
706 	return 0;
707 }
708 
709 enum panel_type {
710 	PANEL_TYPE_OPREGION,
711 	PANEL_TYPE_VBT,
712 	PANEL_TYPE_PNPID,
713 	PANEL_TYPE_FALLBACK,
714 };
715 
716 static int get_panel_type(struct drm_i915_private *i915,
717 			  const struct intel_bios_encoder_data *devdata,
718 			  const struct edid *edid)
719 {
720 	struct {
721 		const char *name;
722 		int (*get_panel_type)(struct drm_i915_private *i915,
723 				      const struct intel_bios_encoder_data *devdata,
724 				      const struct edid *edid);
725 		int panel_type;
726 	} panel_types[] = {
727 		[PANEL_TYPE_OPREGION] = {
728 			.name = "OpRegion",
729 			.get_panel_type = opregion_get_panel_type,
730 		},
731 		[PANEL_TYPE_VBT] = {
732 			.name = "VBT",
733 			.get_panel_type = vbt_get_panel_type,
734 		},
735 		[PANEL_TYPE_PNPID] = {
736 			.name = "PNPID",
737 			.get_panel_type = pnpid_get_panel_type,
738 		},
739 		[PANEL_TYPE_FALLBACK] = {
740 			.name = "fallback",
741 			.get_panel_type = fallback_get_panel_type,
742 		},
743 	};
744 	int i;
745 
746 	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747 		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid);
748 
749 		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
750 			    panel_types[i].panel_type != 0xff);
751 
752 		if (panel_types[i].panel_type >= 0)
753 			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
754 				    panel_types[i].name, panel_types[i].panel_type);
755 	}
756 
757 	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
758 		i = PANEL_TYPE_OPREGION;
759 	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
760 		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
761 		i = PANEL_TYPE_PNPID;
762 	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
763 		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
764 		i = PANEL_TYPE_VBT;
765 	else
766 		i = PANEL_TYPE_FALLBACK;
767 
768 	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
769 		    panel_types[i].name, panel_types[i].panel_type);
770 
771 	return panel_types[i].panel_type;
772 }
773 
774 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
775 {
776 	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
777 }
778 
779 static bool panel_bool(unsigned int value, int panel_type)
780 {
781 	return panel_bits(value, panel_type, 1);
782 }
783 
784 /* Parse general panel options */
785 static void
786 parse_panel_options(struct drm_i915_private *i915,
787 		    struct intel_panel *panel)
788 {
789 	const struct bdb_lvds_options *lvds_options;
790 	int panel_type = panel->vbt.panel_type;
791 	int drrs_mode;
792 
793 	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
794 	if (!lvds_options)
795 		return;
796 
797 	panel->vbt.lvds_dither = lvds_options->pixel_dither;
798 
799 	/*
800 	 * Empirical evidence indicates the block size can be
801 	 * either 4,14,16,24+ bytes. For older VBTs no clear
802 	 * relationship between the block size vs. BDB version.
803 	 */
804 	if (get_blocksize(lvds_options) < 16)
805 		return;
806 
807 	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
808 			       panel_type, 2);
809 	/*
810 	 * VBT has static DRRS = 0 and seamless DRRS = 2.
811 	 * The below piece of code is required to adjust vbt.drrs_type
812 	 * to match the enum drrs_support_type.
813 	 */
814 	switch (drrs_mode) {
815 	case 0:
816 		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
817 		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
818 		break;
819 	case 2:
820 		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
821 		drm_dbg_kms(&i915->drm,
822 			    "DRRS supported mode is seamless\n");
823 		break;
824 	default:
825 		panel->vbt.drrs_type = DRRS_TYPE_NONE;
826 		drm_dbg_kms(&i915->drm,
827 			    "DRRS not supported (VBT input)\n");
828 		break;
829 	}
830 }
831 
832 static void
833 parse_lfp_panel_dtd(struct drm_i915_private *i915,
834 		    struct intel_panel *panel,
835 		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
836 		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
837 {
838 	const struct lvds_dvo_timing *panel_dvo_timing;
839 	const struct lvds_fp_timing *fp_timing;
840 	struct drm_display_mode *panel_fixed_mode;
841 	int panel_type = panel->vbt.panel_type;
842 
843 	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
844 					       lvds_lfp_data_ptrs,
845 					       panel_type);
846 
847 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
848 	if (!panel_fixed_mode)
849 		return;
850 
851 	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
852 
853 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
854 
855 	drm_dbg_kms(&i915->drm,
856 		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
857 		    DRM_MODE_ARG(panel_fixed_mode));
858 
859 	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
860 				       lvds_lfp_data_ptrs,
861 				       panel_type);
862 
863 	/* check the resolution, just to be sure */
864 	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
865 	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
866 		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
867 		drm_dbg_kms(&i915->drm,
868 			    "VBT initial LVDS value %x\n",
869 			    panel->vbt.bios_lvds_val);
870 	}
871 }
872 
873 static void
874 parse_lfp_data(struct drm_i915_private *i915,
875 	       struct intel_panel *panel)
876 {
877 	const struct bdb_lvds_lfp_data *data;
878 	const struct bdb_lvds_lfp_data_tail *tail;
879 	const struct bdb_lvds_lfp_data_ptrs *ptrs;
880 	const struct lvds_pnp_id *pnp_id;
881 	int panel_type = panel->vbt.panel_type;
882 
883 	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
884 	if (!ptrs)
885 		return;
886 
887 	data = find_section(i915, BDB_LVDS_LFP_DATA);
888 	if (!data)
889 		return;
890 
891 	if (!panel->vbt.lfp_lvds_vbt_mode)
892 		parse_lfp_panel_dtd(i915, panel, data, ptrs);
893 
894 	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
895 	dump_pnp_id(i915, pnp_id, "Panel");
896 
897 	tail = get_lfp_data_tail(data, ptrs);
898 	if (!tail)
899 		return;
900 
901 	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
902 		    (int)sizeof(tail->panel_name[0].name),
903 		    tail->panel_name[panel_type].name);
904 
905 	if (i915->display.vbt.version >= 188) {
906 		panel->vbt.seamless_drrs_min_refresh_rate =
907 			tail->seamless_drrs_min_refresh_rate[panel_type];
908 		drm_dbg_kms(&i915->drm,
909 			    "Seamless DRRS min refresh rate: %d Hz\n",
910 			    panel->vbt.seamless_drrs_min_refresh_rate);
911 	}
912 }
913 
914 static void
915 parse_generic_dtd(struct drm_i915_private *i915,
916 		  struct intel_panel *panel)
917 {
918 	const struct bdb_generic_dtd *generic_dtd;
919 	const struct generic_dtd_entry *dtd;
920 	struct drm_display_mode *panel_fixed_mode;
921 	int num_dtd;
922 
923 	/*
924 	 * Older VBTs provided DTD information for internal displays through
925 	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
926 	 * DTD information should be provided via a newer "generic DTD"
927 	 * block (58).  Just to be safe, we'll try the new generic DTD block
928 	 * first on VBT >= 229, but still fall back to trying the old LFP
929 	 * block if that fails.
930 	 */
931 	if (i915->display.vbt.version < 229)
932 		return;
933 
934 	generic_dtd = find_section(i915, BDB_GENERIC_DTD);
935 	if (!generic_dtd)
936 		return;
937 
938 	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
939 		drm_err(&i915->drm, "GDTD size %u is too small.\n",
940 			generic_dtd->gdtd_size);
941 		return;
942 	} else if (generic_dtd->gdtd_size !=
943 		   sizeof(struct generic_dtd_entry)) {
944 		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
945 			generic_dtd->gdtd_size);
946 		/* DTD has unknown fields, but keep going */
947 	}
948 
949 	num_dtd = (get_blocksize(generic_dtd) -
950 		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
951 	if (panel->vbt.panel_type >= num_dtd) {
952 		drm_err(&i915->drm,
953 			"Panel type %d not found in table of %d DTD's\n",
954 			panel->vbt.panel_type, num_dtd);
955 		return;
956 	}
957 
958 	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
959 
960 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
961 	if (!panel_fixed_mode)
962 		return;
963 
964 	panel_fixed_mode->hdisplay = dtd->hactive;
965 	panel_fixed_mode->hsync_start =
966 		panel_fixed_mode->hdisplay + dtd->hfront_porch;
967 	panel_fixed_mode->hsync_end =
968 		panel_fixed_mode->hsync_start + dtd->hsync;
969 	panel_fixed_mode->htotal =
970 		panel_fixed_mode->hdisplay + dtd->hblank;
971 
972 	panel_fixed_mode->vdisplay = dtd->vactive;
973 	panel_fixed_mode->vsync_start =
974 		panel_fixed_mode->vdisplay + dtd->vfront_porch;
975 	panel_fixed_mode->vsync_end =
976 		panel_fixed_mode->vsync_start + dtd->vsync;
977 	panel_fixed_mode->vtotal =
978 		panel_fixed_mode->vdisplay + dtd->vblank;
979 
980 	panel_fixed_mode->clock = dtd->pixel_clock;
981 	panel_fixed_mode->width_mm = dtd->width_mm;
982 	panel_fixed_mode->height_mm = dtd->height_mm;
983 
984 	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
985 	drm_mode_set_name(panel_fixed_mode);
986 
987 	if (dtd->hsync_positive_polarity)
988 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
989 	else
990 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
991 
992 	if (dtd->vsync_positive_polarity)
993 		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
994 	else
995 		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
996 
997 	drm_dbg_kms(&i915->drm,
998 		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
999 		    DRM_MODE_ARG(panel_fixed_mode));
1000 
1001 	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1002 }
1003 
1004 static void
1005 parse_lfp_backlight(struct drm_i915_private *i915,
1006 		    struct intel_panel *panel)
1007 {
1008 	const struct bdb_lfp_backlight_data *backlight_data;
1009 	const struct lfp_backlight_data_entry *entry;
1010 	int panel_type = panel->vbt.panel_type;
1011 	u16 level;
1012 
1013 	backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
1014 	if (!backlight_data)
1015 		return;
1016 
1017 	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1018 		drm_dbg_kms(&i915->drm,
1019 			    "Unsupported backlight data entry size %u\n",
1020 			    backlight_data->entry_size);
1021 		return;
1022 	}
1023 
1024 	entry = &backlight_data->data[panel_type];
1025 
1026 	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1027 	if (!panel->vbt.backlight.present) {
1028 		drm_dbg_kms(&i915->drm,
1029 			    "PWM backlight not present in VBT (type %u)\n",
1030 			    entry->type);
1031 		return;
1032 	}
1033 
1034 	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1035 	if (i915->display.vbt.version >= 191) {
1036 		size_t exp_size;
1037 
1038 		if (i915->display.vbt.version >= 236)
1039 			exp_size = sizeof(struct bdb_lfp_backlight_data);
1040 		else if (i915->display.vbt.version >= 234)
1041 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1042 		else
1043 			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1044 
1045 		if (get_blocksize(backlight_data) >= exp_size) {
1046 			const struct lfp_backlight_control_method *method;
1047 
1048 			method = &backlight_data->backlight_control[panel_type];
1049 			panel->vbt.backlight.type = method->type;
1050 			panel->vbt.backlight.controller = method->controller;
1051 		}
1052 	}
1053 
1054 	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1055 	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1056 
1057 	if (i915->display.vbt.version >= 234) {
1058 		u16 min_level;
1059 		bool scale;
1060 
1061 		level = backlight_data->brightness_level[panel_type].level;
1062 		min_level = backlight_data->brightness_min_level[panel_type].level;
1063 
1064 		if (i915->display.vbt.version >= 236)
1065 			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1066 		else
1067 			scale = level > 255;
1068 
1069 		if (scale)
1070 			min_level = min_level / 255;
1071 
1072 		if (min_level > 255) {
1073 			drm_warn(&i915->drm, "Brightness min level > 255\n");
1074 			level = 255;
1075 		}
1076 		panel->vbt.backlight.min_brightness = min_level;
1077 
1078 		panel->vbt.backlight.brightness_precision_bits =
1079 			backlight_data->brightness_precision_bits[panel_type];
1080 	} else {
1081 		level = backlight_data->level[panel_type];
1082 		panel->vbt.backlight.min_brightness = entry->min_brightness;
1083 	}
1084 
1085 	drm_dbg_kms(&i915->drm,
1086 		    "VBT backlight PWM modulation frequency %u Hz, "
1087 		    "active %s, min brightness %u, level %u, controller %u\n",
1088 		    panel->vbt.backlight.pwm_freq_hz,
1089 		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1090 		    panel->vbt.backlight.min_brightness,
1091 		    level,
1092 		    panel->vbt.backlight.controller);
1093 }
1094 
1095 /* Try to find sdvo panel data */
1096 static void
1097 parse_sdvo_panel_data(struct drm_i915_private *i915,
1098 		      struct intel_panel *panel)
1099 {
1100 	const struct bdb_sdvo_panel_dtds *dtds;
1101 	struct drm_display_mode *panel_fixed_mode;
1102 	int index;
1103 
1104 	index = i915->params.vbt_sdvo_panel_type;
1105 	if (index == -2) {
1106 		drm_dbg_kms(&i915->drm,
1107 			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1108 		return;
1109 	}
1110 
1111 	if (index == -1) {
1112 		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1113 
1114 		sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1115 		if (!sdvo_lvds_options)
1116 			return;
1117 
1118 		index = sdvo_lvds_options->panel_type;
1119 	}
1120 
1121 	dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1122 	if (!dtds)
1123 		return;
1124 
1125 	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1126 	if (!panel_fixed_mode)
1127 		return;
1128 
1129 	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1130 
1131 	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1132 
1133 	drm_dbg_kms(&i915->drm,
1134 		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1135 		    DRM_MODE_ARG(panel_fixed_mode));
1136 }
1137 
1138 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1139 				    bool alternate)
1140 {
1141 	switch (DISPLAY_VER(i915)) {
1142 	case 2:
1143 		return alternate ? 66667 : 48000;
1144 	case 3:
1145 	case 4:
1146 		return alternate ? 100000 : 96000;
1147 	default:
1148 		return alternate ? 100000 : 120000;
1149 	}
1150 }
1151 
1152 static void
1153 parse_general_features(struct drm_i915_private *i915)
1154 {
1155 	const struct bdb_general_features *general;
1156 
1157 	general = find_section(i915, BDB_GENERAL_FEATURES);
1158 	if (!general)
1159 		return;
1160 
1161 	i915->display.vbt.int_tv_support = general->int_tv_support;
1162 	/* int_crt_support can't be trusted on earlier platforms */
1163 	if (i915->display.vbt.version >= 155 &&
1164 	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1165 		i915->display.vbt.int_crt_support = general->int_crt_support;
1166 	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1167 	i915->display.vbt.lvds_ssc_freq =
1168 		intel_bios_ssc_frequency(i915, general->ssc_freq);
1169 	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1170 	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1171 	if (i915->display.vbt.version >= 181) {
1172 		i915->display.vbt.orientation = general->rotate_180 ?
1173 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1174 			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1175 	} else {
1176 		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1177 	}
1178 
1179 	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1180 		i915->display.vbt.override_afc_startup = true;
1181 		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1182 	}
1183 
1184 	drm_dbg_kms(&i915->drm,
1185 		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1186 		    i915->display.vbt.int_tv_support,
1187 		    i915->display.vbt.int_crt_support,
1188 		    i915->display.vbt.lvds_use_ssc,
1189 		    i915->display.vbt.lvds_ssc_freq,
1190 		    i915->display.vbt.display_clock_mode,
1191 		    i915->display.vbt.fdi_rx_polarity_inverted);
1192 }
1193 
1194 static const struct child_device_config *
1195 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1196 {
1197 	return (const void *) &defs->devices[i * defs->child_dev_size];
1198 }
1199 
1200 static void
1201 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1202 {
1203 	struct sdvo_device_mapping *mapping;
1204 	const struct intel_bios_encoder_data *devdata;
1205 	const struct child_device_config *child;
1206 	int count = 0;
1207 
1208 	/*
1209 	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1210 	 * accurate and doesn't have to be, as long as it's not too strict.
1211 	 */
1212 	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1213 		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1214 		return;
1215 	}
1216 
1217 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1218 		child = &devdata->child;
1219 
1220 		if (child->slave_addr != SLAVE_ADDR1 &&
1221 		    child->slave_addr != SLAVE_ADDR2) {
1222 			/*
1223 			 * If the slave address is neither 0x70 nor 0x72,
1224 			 * it is not a SDVO device. Skip it.
1225 			 */
1226 			continue;
1227 		}
1228 		if (child->dvo_port != DEVICE_PORT_DVOB &&
1229 		    child->dvo_port != DEVICE_PORT_DVOC) {
1230 			/* skip the incorrect SDVO port */
1231 			drm_dbg_kms(&i915->drm,
1232 				    "Incorrect SDVO port. Skip it\n");
1233 			continue;
1234 		}
1235 		drm_dbg_kms(&i915->drm,
1236 			    "the SDVO device with slave addr %2x is found on"
1237 			    " %s port\n",
1238 			    child->slave_addr,
1239 			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1240 			    "SDVOB" : "SDVOC");
1241 		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1242 		if (!mapping->initialized) {
1243 			mapping->dvo_port = child->dvo_port;
1244 			mapping->slave_addr = child->slave_addr;
1245 			mapping->dvo_wiring = child->dvo_wiring;
1246 			mapping->ddc_pin = child->ddc_pin;
1247 			mapping->i2c_pin = child->i2c_pin;
1248 			mapping->initialized = 1;
1249 			drm_dbg_kms(&i915->drm,
1250 				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1251 				    mapping->dvo_port, mapping->slave_addr,
1252 				    mapping->dvo_wiring, mapping->ddc_pin,
1253 				    mapping->i2c_pin);
1254 		} else {
1255 			drm_dbg_kms(&i915->drm,
1256 				    "Maybe one SDVO port is shared by "
1257 				    "two SDVO device.\n");
1258 		}
1259 		if (child->slave2_addr) {
1260 			/* Maybe this is a SDVO device with multiple inputs */
1261 			/* And the mapping info is not added */
1262 			drm_dbg_kms(&i915->drm,
1263 				    "there exists the slave2_addr. Maybe this"
1264 				    " is a SDVO device with multiple inputs.\n");
1265 		}
1266 		count++;
1267 	}
1268 
1269 	if (!count) {
1270 		/* No SDVO device info is found */
1271 		drm_dbg_kms(&i915->drm,
1272 			    "No SDVO device info is found in VBT\n");
1273 	}
1274 }
1275 
1276 static void
1277 parse_driver_features(struct drm_i915_private *i915)
1278 {
1279 	const struct bdb_driver_features *driver;
1280 
1281 	driver = find_section(i915, BDB_DRIVER_FEATURES);
1282 	if (!driver)
1283 		return;
1284 
1285 	if (DISPLAY_VER(i915) >= 5) {
1286 		/*
1287 		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1288 		 * to mean "eDP". The VBT spec doesn't agree with that
1289 		 * interpretation, but real world VBTs seem to.
1290 		 */
1291 		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1292 			i915->display.vbt.int_lvds_support = 0;
1293 	} else {
1294 		/*
1295 		 * FIXME it's not clear which BDB version has the LVDS config
1296 		 * bits defined. Revision history in the VBT spec says:
1297 		 * "0.92 | Add two definitions for VBT value of LVDS Active
1298 		 *  Config (00b and 11b values defined) | 06/13/2005"
1299 		 * but does not the specify the BDB version.
1300 		 *
1301 		 * So far version 134 (on i945gm) is the oldest VBT observed
1302 		 * in the wild with the bits correctly populated. Version
1303 		 * 108 (on i85x) does not have the bits correctly populated.
1304 		 */
1305 		if (i915->display.vbt.version >= 134 &&
1306 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1307 		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1308 			i915->display.vbt.int_lvds_support = 0;
1309 	}
1310 }
1311 
1312 static void
1313 parse_panel_driver_features(struct drm_i915_private *i915,
1314 			    struct intel_panel *panel)
1315 {
1316 	const struct bdb_driver_features *driver;
1317 
1318 	driver = find_section(i915, BDB_DRIVER_FEATURES);
1319 	if (!driver)
1320 		return;
1321 
1322 	if (i915->display.vbt.version < 228) {
1323 		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1324 			    driver->drrs_enabled);
1325 		/*
1326 		 * If DRRS is not supported, drrs_type has to be set to 0.
1327 		 * This is because, VBT is configured in such a way that
1328 		 * static DRRS is 0 and DRRS not supported is represented by
1329 		 * driver->drrs_enabled=false
1330 		 */
1331 		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1332 			/*
1333 			 * FIXME Should DMRRS perhaps be treated as seamless
1334 			 * but without the automatic downclocking?
1335 			 */
1336 			if (driver->dmrrs_enabled)
1337 				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1338 			else
1339 				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1340 		}
1341 
1342 		panel->vbt.psr.enable = driver->psr_enabled;
1343 	}
1344 }
1345 
1346 static void
1347 parse_power_conservation_features(struct drm_i915_private *i915,
1348 				  struct intel_panel *panel)
1349 {
1350 	const struct bdb_lfp_power *power;
1351 	u8 panel_type = panel->vbt.panel_type;
1352 
1353 	panel->vbt.vrr = true; /* matches Windows behaviour */
1354 
1355 	if (i915->display.vbt.version < 228)
1356 		return;
1357 
1358 	power = find_section(i915, BDB_LFP_POWER);
1359 	if (!power)
1360 		return;
1361 
1362 	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1363 
1364 	/*
1365 	 * If DRRS is not supported, drrs_type has to be set to 0.
1366 	 * This is because, VBT is configured in such a way that
1367 	 * static DRRS is 0 and DRRS not supported is represented by
1368 	 * power->drrs & BIT(panel_type)=false
1369 	 */
1370 	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1371 		/*
1372 		 * FIXME Should DMRRS perhaps be treated as seamless
1373 		 * but without the automatic downclocking?
1374 		 */
1375 		if (panel_bool(power->dmrrs, panel_type))
1376 			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1377 		else
1378 			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1379 	}
1380 
1381 	if (i915->display.vbt.version >= 232)
1382 		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1383 
1384 	if (i915->display.vbt.version >= 233)
1385 		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1386 					    panel_type);
1387 }
1388 
1389 static void
1390 parse_edp(struct drm_i915_private *i915,
1391 	  struct intel_panel *panel)
1392 {
1393 	const struct bdb_edp *edp;
1394 	const struct edp_power_seq *edp_pps;
1395 	const struct edp_fast_link_params *edp_link_params;
1396 	int panel_type = panel->vbt.panel_type;
1397 
1398 	edp = find_section(i915, BDB_EDP);
1399 	if (!edp)
1400 		return;
1401 
1402 	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1403 	case EDP_18BPP:
1404 		panel->vbt.edp.bpp = 18;
1405 		break;
1406 	case EDP_24BPP:
1407 		panel->vbt.edp.bpp = 24;
1408 		break;
1409 	case EDP_30BPP:
1410 		panel->vbt.edp.bpp = 30;
1411 		break;
1412 	}
1413 
1414 	/* Get the eDP sequencing and link info */
1415 	edp_pps = &edp->power_seqs[panel_type];
1416 	edp_link_params = &edp->fast_link_params[panel_type];
1417 
1418 	panel->vbt.edp.pps = *edp_pps;
1419 
1420 	if (i915->display.vbt.version >= 224) {
1421 		panel->vbt.edp.rate =
1422 			edp->edp_fast_link_training_rate[panel_type] * 20;
1423 	} else {
1424 		switch (edp_link_params->rate) {
1425 		case EDP_RATE_1_62:
1426 			panel->vbt.edp.rate = 162000;
1427 			break;
1428 		case EDP_RATE_2_7:
1429 			panel->vbt.edp.rate = 270000;
1430 			break;
1431 		case EDP_RATE_5_4:
1432 			panel->vbt.edp.rate = 540000;
1433 			break;
1434 		default:
1435 			drm_dbg_kms(&i915->drm,
1436 				    "VBT has unknown eDP link rate value %u\n",
1437 				    edp_link_params->rate);
1438 			break;
1439 		}
1440 	}
1441 
1442 	switch (edp_link_params->lanes) {
1443 	case EDP_LANE_1:
1444 		panel->vbt.edp.lanes = 1;
1445 		break;
1446 	case EDP_LANE_2:
1447 		panel->vbt.edp.lanes = 2;
1448 		break;
1449 	case EDP_LANE_4:
1450 		panel->vbt.edp.lanes = 4;
1451 		break;
1452 	default:
1453 		drm_dbg_kms(&i915->drm,
1454 			    "VBT has unknown eDP lane count value %u\n",
1455 			    edp_link_params->lanes);
1456 		break;
1457 	}
1458 
1459 	switch (edp_link_params->preemphasis) {
1460 	case EDP_PREEMPHASIS_NONE:
1461 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1462 		break;
1463 	case EDP_PREEMPHASIS_3_5dB:
1464 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1465 		break;
1466 	case EDP_PREEMPHASIS_6dB:
1467 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1468 		break;
1469 	case EDP_PREEMPHASIS_9_5dB:
1470 		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1471 		break;
1472 	default:
1473 		drm_dbg_kms(&i915->drm,
1474 			    "VBT has unknown eDP pre-emphasis value %u\n",
1475 			    edp_link_params->preemphasis);
1476 		break;
1477 	}
1478 
1479 	switch (edp_link_params->vswing) {
1480 	case EDP_VSWING_0_4V:
1481 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1482 		break;
1483 	case EDP_VSWING_0_6V:
1484 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1485 		break;
1486 	case EDP_VSWING_0_8V:
1487 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1488 		break;
1489 	case EDP_VSWING_1_2V:
1490 		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1491 		break;
1492 	default:
1493 		drm_dbg_kms(&i915->drm,
1494 			    "VBT has unknown eDP voltage swing value %u\n",
1495 			    edp_link_params->vswing);
1496 		break;
1497 	}
1498 
1499 	if (i915->display.vbt.version >= 173) {
1500 		u8 vswing;
1501 
1502 		/* Don't read from VBT if module parameter has valid value*/
1503 		if (i915->params.edp_vswing) {
1504 			panel->vbt.edp.low_vswing =
1505 				i915->params.edp_vswing == 1;
1506 		} else {
1507 			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1508 			panel->vbt.edp.low_vswing = vswing == 0;
1509 		}
1510 	}
1511 
1512 	panel->vbt.edp.drrs_msa_timing_delay =
1513 		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1514 
1515 	if (i915->display.vbt.version >= 244)
1516 		panel->vbt.edp.max_link_rate =
1517 			edp->edp_max_port_link_rate[panel_type] * 20;
1518 }
1519 
1520 static void
1521 parse_psr(struct drm_i915_private *i915,
1522 	  struct intel_panel *panel)
1523 {
1524 	const struct bdb_psr *psr;
1525 	const struct psr_table *psr_table;
1526 	int panel_type = panel->vbt.panel_type;
1527 
1528 	psr = find_section(i915, BDB_PSR);
1529 	if (!psr) {
1530 		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1531 		return;
1532 	}
1533 
1534 	psr_table = &psr->psr_table[panel_type];
1535 
1536 	panel->vbt.psr.full_link = psr_table->full_link;
1537 	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1538 
1539 	/* Allowed VBT values goes from 0 to 15 */
1540 	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1541 		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1542 
1543 	/*
1544 	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1545 	 * Old decimal value is wake up time in multiples of 100 us.
1546 	 */
1547 	if (i915->display.vbt.version >= 205 &&
1548 	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1549 		switch (psr_table->tp1_wakeup_time) {
1550 		case 0:
1551 			panel->vbt.psr.tp1_wakeup_time_us = 500;
1552 			break;
1553 		case 1:
1554 			panel->vbt.psr.tp1_wakeup_time_us = 100;
1555 			break;
1556 		case 3:
1557 			panel->vbt.psr.tp1_wakeup_time_us = 0;
1558 			break;
1559 		default:
1560 			drm_dbg_kms(&i915->drm,
1561 				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1562 				    psr_table->tp1_wakeup_time);
1563 			fallthrough;
1564 		case 2:
1565 			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1566 			break;
1567 		}
1568 
1569 		switch (psr_table->tp2_tp3_wakeup_time) {
1570 		case 0:
1571 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1572 			break;
1573 		case 1:
1574 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1575 			break;
1576 		case 3:
1577 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1578 			break;
1579 		default:
1580 			drm_dbg_kms(&i915->drm,
1581 				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1582 				    psr_table->tp2_tp3_wakeup_time);
1583 			fallthrough;
1584 		case 2:
1585 			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1586 		break;
1587 		}
1588 	} else {
1589 		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1590 		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1591 	}
1592 
1593 	if (i915->display.vbt.version >= 226) {
1594 		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1595 
1596 		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1597 		switch (wakeup_time) {
1598 		case 0:
1599 			wakeup_time = 500;
1600 			break;
1601 		case 1:
1602 			wakeup_time = 100;
1603 			break;
1604 		case 3:
1605 			wakeup_time = 50;
1606 			break;
1607 		default:
1608 		case 2:
1609 			wakeup_time = 2500;
1610 			break;
1611 		}
1612 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1613 	} else {
1614 		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1615 		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1616 	}
1617 }
1618 
1619 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1620 				      struct intel_panel *panel,
1621 				      enum port port)
1622 {
1623 	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1624 
1625 	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1626 		panel->vbt.dsi.bl_ports = BIT(port);
1627 		if (panel->vbt.dsi.config->cabc_supported)
1628 			panel->vbt.dsi.cabc_ports = BIT(port);
1629 
1630 		return;
1631 	}
1632 
1633 	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1634 	case DL_DCS_PORT_A:
1635 		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1636 		break;
1637 	case DL_DCS_PORT_C:
1638 		panel->vbt.dsi.bl_ports = BIT(port_bc);
1639 		break;
1640 	default:
1641 	case DL_DCS_PORT_A_AND_C:
1642 		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1643 		break;
1644 	}
1645 
1646 	if (!panel->vbt.dsi.config->cabc_supported)
1647 		return;
1648 
1649 	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1650 	case DL_DCS_PORT_A:
1651 		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1652 		break;
1653 	case DL_DCS_PORT_C:
1654 		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1655 		break;
1656 	default:
1657 	case DL_DCS_PORT_A_AND_C:
1658 		panel->vbt.dsi.cabc_ports =
1659 					BIT(PORT_A) | BIT(port_bc);
1660 		break;
1661 	}
1662 }
1663 
1664 static void
1665 parse_mipi_config(struct drm_i915_private *i915,
1666 		  struct intel_panel *panel)
1667 {
1668 	const struct bdb_mipi_config *start;
1669 	const struct mipi_config *config;
1670 	const struct mipi_pps_data *pps;
1671 	int panel_type = panel->vbt.panel_type;
1672 	enum port port;
1673 
1674 	/* parse MIPI blocks only if LFP type is MIPI */
1675 	if (!intel_bios_is_dsi_present(i915, &port))
1676 		return;
1677 
1678 	/* Initialize this to undefined indicating no generic MIPI support */
1679 	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1680 
1681 	/* Block #40 is already parsed and panel_fixed_mode is
1682 	 * stored in i915->lfp_lvds_vbt_mode
1683 	 * resuse this when needed
1684 	 */
1685 
1686 	/* Parse #52 for panel index used from panel_type already
1687 	 * parsed
1688 	 */
1689 	start = find_section(i915, BDB_MIPI_CONFIG);
1690 	if (!start) {
1691 		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1692 		return;
1693 	}
1694 
1695 	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1696 		panel_type);
1697 
1698 	/*
1699 	 * get hold of the correct configuration block and pps data as per
1700 	 * the panel_type as index
1701 	 */
1702 	config = &start->config[panel_type];
1703 	pps = &start->pps[panel_type];
1704 
1705 	/* store as of now full data. Trim when we realise all is not needed */
1706 	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1707 	if (!panel->vbt.dsi.config)
1708 		return;
1709 
1710 	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1711 	if (!panel->vbt.dsi.pps) {
1712 		kfree(panel->vbt.dsi.config);
1713 		return;
1714 	}
1715 
1716 	parse_dsi_backlight_ports(i915, panel, port);
1717 
1718 	/* FIXME is the 90 vs. 270 correct? */
1719 	switch (config->rotation) {
1720 	case ENABLE_ROTATION_0:
1721 		/*
1722 		 * Most (all?) VBTs claim 0 degrees despite having
1723 		 * an upside down panel, thus we do not trust this.
1724 		 */
1725 		panel->vbt.dsi.orientation =
1726 			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1727 		break;
1728 	case ENABLE_ROTATION_90:
1729 		panel->vbt.dsi.orientation =
1730 			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1731 		break;
1732 	case ENABLE_ROTATION_180:
1733 		panel->vbt.dsi.orientation =
1734 			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1735 		break;
1736 	case ENABLE_ROTATION_270:
1737 		panel->vbt.dsi.orientation =
1738 			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1739 		break;
1740 	}
1741 
1742 	/* We have mandatory mipi config blocks. Initialize as generic panel */
1743 	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1744 }
1745 
1746 /* Find the sequence block and size for the given panel. */
1747 static const u8 *
1748 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1749 			  u16 panel_id, u32 *seq_size)
1750 {
1751 	u32 total = get_blocksize(sequence);
1752 	const u8 *data = &sequence->data[0];
1753 	u8 current_id;
1754 	u32 current_size;
1755 	int header_size = sequence->version >= 3 ? 5 : 3;
1756 	int index = 0;
1757 	int i;
1758 
1759 	/* skip new block size */
1760 	if (sequence->version >= 3)
1761 		data += 4;
1762 
1763 	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1764 		if (index + header_size > total) {
1765 			DRM_ERROR("Invalid sequence block (header)\n");
1766 			return NULL;
1767 		}
1768 
1769 		current_id = *(data + index);
1770 		if (sequence->version >= 3)
1771 			current_size = *((const u32 *)(data + index + 1));
1772 		else
1773 			current_size = *((const u16 *)(data + index + 1));
1774 
1775 		index += header_size;
1776 
1777 		if (index + current_size > total) {
1778 			DRM_ERROR("Invalid sequence block\n");
1779 			return NULL;
1780 		}
1781 
1782 		if (current_id == panel_id) {
1783 			*seq_size = current_size;
1784 			return data + index;
1785 		}
1786 
1787 		index += current_size;
1788 	}
1789 
1790 	DRM_ERROR("Sequence block detected but no valid configuration\n");
1791 
1792 	return NULL;
1793 }
1794 
1795 static int goto_next_sequence(const u8 *data, int index, int total)
1796 {
1797 	u16 len;
1798 
1799 	/* Skip Sequence Byte. */
1800 	for (index = index + 1; index < total; index += len) {
1801 		u8 operation_byte = *(data + index);
1802 		index++;
1803 
1804 		switch (operation_byte) {
1805 		case MIPI_SEQ_ELEM_END:
1806 			return index;
1807 		case MIPI_SEQ_ELEM_SEND_PKT:
1808 			if (index + 4 > total)
1809 				return 0;
1810 
1811 			len = *((const u16 *)(data + index + 2)) + 4;
1812 			break;
1813 		case MIPI_SEQ_ELEM_DELAY:
1814 			len = 4;
1815 			break;
1816 		case MIPI_SEQ_ELEM_GPIO:
1817 			len = 2;
1818 			break;
1819 		case MIPI_SEQ_ELEM_I2C:
1820 			if (index + 7 > total)
1821 				return 0;
1822 			len = *(data + index + 6) + 7;
1823 			break;
1824 		default:
1825 			DRM_ERROR("Unknown operation byte\n");
1826 			return 0;
1827 		}
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1834 {
1835 	int seq_end;
1836 	u16 len;
1837 	u32 size_of_sequence;
1838 
1839 	/*
1840 	 * Could skip sequence based on Size of Sequence alone, but also do some
1841 	 * checking on the structure.
1842 	 */
1843 	if (total < 5) {
1844 		DRM_ERROR("Too small sequence size\n");
1845 		return 0;
1846 	}
1847 
1848 	/* Skip Sequence Byte. */
1849 	index++;
1850 
1851 	/*
1852 	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1853 	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1854 	 * byte.
1855 	 */
1856 	size_of_sequence = *((const u32 *)(data + index));
1857 	index += 4;
1858 
1859 	seq_end = index + size_of_sequence;
1860 	if (seq_end > total) {
1861 		DRM_ERROR("Invalid sequence size\n");
1862 		return 0;
1863 	}
1864 
1865 	for (; index < total; index += len) {
1866 		u8 operation_byte = *(data + index);
1867 		index++;
1868 
1869 		if (operation_byte == MIPI_SEQ_ELEM_END) {
1870 			if (index != seq_end) {
1871 				DRM_ERROR("Invalid element structure\n");
1872 				return 0;
1873 			}
1874 			return index;
1875 		}
1876 
1877 		len = *(data + index);
1878 		index++;
1879 
1880 		/*
1881 		 * FIXME: Would be nice to check elements like for v1/v2 in
1882 		 * goto_next_sequence() above.
1883 		 */
1884 		switch (operation_byte) {
1885 		case MIPI_SEQ_ELEM_SEND_PKT:
1886 		case MIPI_SEQ_ELEM_DELAY:
1887 		case MIPI_SEQ_ELEM_GPIO:
1888 		case MIPI_SEQ_ELEM_I2C:
1889 		case MIPI_SEQ_ELEM_SPI:
1890 		case MIPI_SEQ_ELEM_PMIC:
1891 			break;
1892 		default:
1893 			DRM_ERROR("Unknown operation byte %u\n",
1894 				  operation_byte);
1895 			break;
1896 		}
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1904  * skip all delay + gpio operands and stop at the first DSI packet op.
1905  */
1906 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1907 					      struct intel_panel *panel)
1908 {
1909 	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1910 	int index, len;
1911 
1912 	if (drm_WARN_ON(&i915->drm,
1913 			!data || panel->vbt.dsi.seq_version != 1))
1914 		return 0;
1915 
1916 	/* index = 1 to skip sequence byte */
1917 	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1918 		switch (data[index]) {
1919 		case MIPI_SEQ_ELEM_SEND_PKT:
1920 			return index == 1 ? 0 : index;
1921 		case MIPI_SEQ_ELEM_DELAY:
1922 			len = 5; /* 1 byte for operand + uint32 */
1923 			break;
1924 		case MIPI_SEQ_ELEM_GPIO:
1925 			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1926 			break;
1927 		default:
1928 			return 0;
1929 		}
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1937  * The deassert must be done before calling intel_dsi_device_ready, so for
1938  * these devices we split the init OTP sequence into a deassert sequence and
1939  * the actual init OTP part.
1940  */
1941 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1942 				 struct intel_panel *panel)
1943 {
1944 	u8 *init_otp;
1945 	int len;
1946 
1947 	/* Limit this to VLV for now. */
1948 	if (!IS_VALLEYVIEW(i915))
1949 		return;
1950 
1951 	/* Limit this to v1 vid-mode sequences */
1952 	if (panel->vbt.dsi.config->is_cmd_mode ||
1953 	    panel->vbt.dsi.seq_version != 1)
1954 		return;
1955 
1956 	/* Only do this if there are otp and assert seqs and no deassert seq */
1957 	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1958 	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1959 	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1960 		return;
1961 
1962 	/* The deassert-sequence ends at the first DSI packet */
1963 	len = get_init_otp_deassert_fragment_len(i915, panel);
1964 	if (!len)
1965 		return;
1966 
1967 	drm_dbg_kms(&i915->drm,
1968 		    "Using init OTP fragment to deassert reset\n");
1969 
1970 	/* Copy the fragment, update seq byte and terminate it */
1971 	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1972 	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1973 	if (!panel->vbt.dsi.deassert_seq)
1974 		return;
1975 	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1976 	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1977 	/* Use the copy for deassert */
1978 	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1979 		panel->vbt.dsi.deassert_seq;
1980 	/* Replace the last byte of the fragment with init OTP seq byte */
1981 	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1982 	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1983 	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1984 }
1985 
1986 static void
1987 parse_mipi_sequence(struct drm_i915_private *i915,
1988 		    struct intel_panel *panel)
1989 {
1990 	int panel_type = panel->vbt.panel_type;
1991 	const struct bdb_mipi_sequence *sequence;
1992 	const u8 *seq_data;
1993 	u32 seq_size;
1994 	u8 *data;
1995 	int index = 0;
1996 
1997 	/* Only our generic panel driver uses the sequence block. */
1998 	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1999 		return;
2000 
2001 	sequence = find_section(i915, BDB_MIPI_SEQUENCE);
2002 	if (!sequence) {
2003 		drm_dbg_kms(&i915->drm,
2004 			    "No MIPI Sequence found, parsing complete\n");
2005 		return;
2006 	}
2007 
2008 	/* Fail gracefully for forward incompatible sequence block. */
2009 	if (sequence->version >= 4) {
2010 		drm_err(&i915->drm,
2011 			"Unable to parse MIPI Sequence Block v%u\n",
2012 			sequence->version);
2013 		return;
2014 	}
2015 
2016 	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2017 		sequence->version);
2018 
2019 	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2020 	if (!seq_data)
2021 		return;
2022 
2023 	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2024 	if (!data)
2025 		return;
2026 
2027 	/* Parse the sequences, store pointers to each sequence. */
2028 	for (;;) {
2029 		u8 seq_id = *(data + index);
2030 		if (seq_id == MIPI_SEQ_END)
2031 			break;
2032 
2033 		if (seq_id >= MIPI_SEQ_MAX) {
2034 			drm_err(&i915->drm, "Unknown sequence %u\n",
2035 				seq_id);
2036 			goto err;
2037 		}
2038 
2039 		/* Log about presence of sequences we won't run. */
2040 		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2041 			drm_dbg_kms(&i915->drm,
2042 				    "Unsupported sequence %u\n", seq_id);
2043 
2044 		panel->vbt.dsi.sequence[seq_id] = data + index;
2045 
2046 		if (sequence->version >= 3)
2047 			index = goto_next_sequence_v3(data, index, seq_size);
2048 		else
2049 			index = goto_next_sequence(data, index, seq_size);
2050 		if (!index) {
2051 			drm_err(&i915->drm, "Invalid sequence %u\n",
2052 				seq_id);
2053 			goto err;
2054 		}
2055 	}
2056 
2057 	panel->vbt.dsi.data = data;
2058 	panel->vbt.dsi.size = seq_size;
2059 	panel->vbt.dsi.seq_version = sequence->version;
2060 
2061 	fixup_mipi_sequences(i915, panel);
2062 
2063 	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2064 	return;
2065 
2066 err:
2067 	kfree(data);
2068 	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2069 }
2070 
2071 static void
2072 parse_compression_parameters(struct drm_i915_private *i915)
2073 {
2074 	const struct bdb_compression_parameters *params;
2075 	struct intel_bios_encoder_data *devdata;
2076 	const struct child_device_config *child;
2077 	u16 block_size;
2078 	int index;
2079 
2080 	if (i915->display.vbt.version < 198)
2081 		return;
2082 
2083 	params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
2084 	if (params) {
2085 		/* Sanity checks */
2086 		if (params->entry_size != sizeof(params->data[0])) {
2087 			drm_dbg_kms(&i915->drm,
2088 				    "VBT: unsupported compression param entry size\n");
2089 			return;
2090 		}
2091 
2092 		block_size = get_blocksize(params);
2093 		if (block_size < sizeof(*params)) {
2094 			drm_dbg_kms(&i915->drm,
2095 				    "VBT: expected 16 compression param entries\n");
2096 			return;
2097 		}
2098 	}
2099 
2100 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2101 		child = &devdata->child;
2102 
2103 		if (!child->compression_enable)
2104 			continue;
2105 
2106 		if (!params) {
2107 			drm_dbg_kms(&i915->drm,
2108 				    "VBT: compression params not available\n");
2109 			continue;
2110 		}
2111 
2112 		if (child->compression_method_cps) {
2113 			drm_dbg_kms(&i915->drm,
2114 				    "VBT: CPS compression not supported\n");
2115 			continue;
2116 		}
2117 
2118 		index = child->compression_structure_index;
2119 
2120 		devdata->dsc = kmemdup(&params->data[index],
2121 				       sizeof(*devdata->dsc), GFP_KERNEL);
2122 	}
2123 }
2124 
2125 static u8 translate_iboost(u8 val)
2126 {
2127 	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2128 
2129 	if (val >= ARRAY_SIZE(mapping)) {
2130 		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2131 		return 0;
2132 	}
2133 	return mapping[val];
2134 }
2135 
2136 static const u8 cnp_ddc_pin_map[] = {
2137 	[0] = 0, /* N/A */
2138 	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2139 	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2140 	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2141 	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2142 };
2143 
2144 static const u8 icp_ddc_pin_map[] = {
2145 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2146 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2147 	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2148 	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2149 	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2150 	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2151 	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2152 	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2153 	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2154 };
2155 
2156 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2157 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2158 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2159 	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2160 	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2161 };
2162 
2163 static const u8 adls_ddc_pin_map[] = {
2164 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2165 	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2166 	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2167 	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2168 	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2169 };
2170 
2171 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2172 	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2173 	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2174 	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2175 };
2176 
2177 static const u8 adlp_ddc_pin_map[] = {
2178 	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2179 	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2180 	[ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2181 	[ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2182 	[ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2183 	[ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2184 };
2185 
2186 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2187 {
2188 	const u8 *ddc_pin_map;
2189 	int n_entries;
2190 
2191 	if (IS_ALDERLAKE_P(i915)) {
2192 		ddc_pin_map = adlp_ddc_pin_map;
2193 		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2194 	} else if (IS_ALDERLAKE_S(i915)) {
2195 		ddc_pin_map = adls_ddc_pin_map;
2196 		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2197 	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2198 		return vbt_pin;
2199 	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2200 		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2201 		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2202 	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2203 		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2204 		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2205 	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2206 		ddc_pin_map = icp_ddc_pin_map;
2207 		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2208 	} else if (HAS_PCH_CNP(i915)) {
2209 		ddc_pin_map = cnp_ddc_pin_map;
2210 		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2211 	} else {
2212 		/* Assuming direct map */
2213 		return vbt_pin;
2214 	}
2215 
2216 	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2217 		return ddc_pin_map[vbt_pin];
2218 
2219 	drm_dbg_kms(&i915->drm,
2220 		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2221 		    vbt_pin);
2222 	return 0;
2223 }
2224 
2225 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2226 {
2227 	const struct intel_bios_encoder_data *devdata;
2228 	enum port port;
2229 
2230 	if (!ddc_pin)
2231 		return PORT_NONE;
2232 
2233 	for_each_port(port) {
2234 		devdata = i915->display.vbt.ports[port];
2235 
2236 		if (devdata && ddc_pin == devdata->child.ddc_pin)
2237 			return port;
2238 	}
2239 
2240 	return PORT_NONE;
2241 }
2242 
2243 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2244 			     enum port port)
2245 {
2246 	struct drm_i915_private *i915 = devdata->i915;
2247 	struct child_device_config *child;
2248 	u8 mapped_ddc_pin;
2249 	enum port p;
2250 
2251 	if (!devdata->child.ddc_pin)
2252 		return;
2253 
2254 	mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2255 	if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2256 		drm_dbg_kms(&i915->drm,
2257 			    "Port %c has invalid DDC pin %d, "
2258 			    "sticking to defaults\n",
2259 			    port_name(port), mapped_ddc_pin);
2260 		devdata->child.ddc_pin = 0;
2261 		return;
2262 	}
2263 
2264 	p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2265 	if (p == PORT_NONE)
2266 		return;
2267 
2268 	drm_dbg_kms(&i915->drm,
2269 		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
2270 		    "disabling port %c DVI/HDMI support\n",
2271 		    port_name(port), mapped_ddc_pin,
2272 		    port_name(p), port_name(p));
2273 
2274 	/*
2275 	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2276 	 * couldn't exist on the shared port. Otherwise they share the same ddc
2277 	 * pin and system couldn't communicate with them separately.
2278 	 *
2279 	 * Give inverse child device order the priority, last one wins. Yes,
2280 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2281 	 * port A and port E with the same AUX ch and we must pick port E :(
2282 	 */
2283 	child = &i915->display.vbt.ports[p]->child;
2284 
2285 	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2286 	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2287 
2288 	child->ddc_pin = 0;
2289 }
2290 
2291 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2292 {
2293 	const struct intel_bios_encoder_data *devdata;
2294 	enum port port;
2295 
2296 	if (!aux_ch)
2297 		return PORT_NONE;
2298 
2299 	for_each_port(port) {
2300 		devdata = i915->display.vbt.ports[port];
2301 
2302 		if (devdata && aux_ch == devdata->child.aux_channel)
2303 			return port;
2304 	}
2305 
2306 	return PORT_NONE;
2307 }
2308 
2309 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2310 			    enum port port)
2311 {
2312 	struct drm_i915_private *i915 = devdata->i915;
2313 	struct child_device_config *child;
2314 	enum port p;
2315 
2316 	p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2317 	if (p == PORT_NONE)
2318 		return;
2319 
2320 	drm_dbg_kms(&i915->drm,
2321 		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
2322 		    "disabling port %c DP support\n",
2323 		    port_name(port), devdata->child.aux_channel,
2324 		    port_name(p), port_name(p));
2325 
2326 	/*
2327 	 * If we have multiple ports supposedly sharing the aux channel, then DP
2328 	 * couldn't exist on the shared port. Otherwise they share the same aux
2329 	 * channel and system couldn't communicate with them separately.
2330 	 *
2331 	 * Give inverse child device order the priority, last one wins. Yes,
2332 	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2333 	 * port A and port E with the same AUX ch and we must pick port E :(
2334 	 */
2335 	child = &i915->display.vbt.ports[p]->child;
2336 
2337 	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2338 	child->aux_channel = 0;
2339 }
2340 
2341 static u8 dvo_port_type(u8 dvo_port)
2342 {
2343 	switch (dvo_port) {
2344 	case DVO_PORT_HDMIA:
2345 	case DVO_PORT_HDMIB:
2346 	case DVO_PORT_HDMIC:
2347 	case DVO_PORT_HDMID:
2348 	case DVO_PORT_HDMIE:
2349 	case DVO_PORT_HDMIF:
2350 	case DVO_PORT_HDMIG:
2351 	case DVO_PORT_HDMIH:
2352 	case DVO_PORT_HDMII:
2353 		return DVO_PORT_HDMIA;
2354 	case DVO_PORT_DPA:
2355 	case DVO_PORT_DPB:
2356 	case DVO_PORT_DPC:
2357 	case DVO_PORT_DPD:
2358 	case DVO_PORT_DPE:
2359 	case DVO_PORT_DPF:
2360 	case DVO_PORT_DPG:
2361 	case DVO_PORT_DPH:
2362 	case DVO_PORT_DPI:
2363 		return DVO_PORT_DPA;
2364 	case DVO_PORT_MIPIA:
2365 	case DVO_PORT_MIPIB:
2366 	case DVO_PORT_MIPIC:
2367 	case DVO_PORT_MIPID:
2368 		return DVO_PORT_MIPIA;
2369 	default:
2370 		return dvo_port;
2371 	}
2372 }
2373 
2374 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2375 				    const int port_mapping[][3], u8 dvo_port)
2376 {
2377 	enum port port;
2378 	int i;
2379 
2380 	for (port = PORT_A; port < n_ports; port++) {
2381 		for (i = 0; i < n_dvo; i++) {
2382 			if (port_mapping[port][i] == -1)
2383 				break;
2384 
2385 			if (dvo_port == port_mapping[port][i])
2386 				return port;
2387 		}
2388 	}
2389 
2390 	return PORT_NONE;
2391 }
2392 
2393 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2394 				  u8 dvo_port)
2395 {
2396 	/*
2397 	 * Each DDI port can have more than one value on the "DVO Port" field,
2398 	 * so look for all the possible values for each port.
2399 	 */
2400 	static const int port_mapping[][3] = {
2401 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2402 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2403 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2404 		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2405 		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2406 		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2407 		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2408 		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2409 		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2410 	};
2411 	/*
2412 	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2413 	 * map to DDI A,B,TC1,TC2 respectively.
2414 	 */
2415 	static const int rkl_port_mapping[][3] = {
2416 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2417 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2418 		[PORT_C] = { -1 },
2419 		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2420 		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2421 	};
2422 	/*
2423 	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2424 	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2425 	 */
2426 	static const int adls_port_mapping[][3] = {
2427 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2428 		[PORT_B] = { -1 },
2429 		[PORT_C] = { -1 },
2430 		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2431 		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2432 		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2433 		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2434 	};
2435 	static const int xelpd_port_mapping[][3] = {
2436 		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2437 		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2438 		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2439 		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2440 		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2441 		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2442 		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2443 		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2444 		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2445 	};
2446 
2447 	if (DISPLAY_VER(i915) >= 13)
2448 		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2449 					  ARRAY_SIZE(xelpd_port_mapping[0]),
2450 					  xelpd_port_mapping,
2451 					  dvo_port);
2452 	else if (IS_ALDERLAKE_S(i915))
2453 		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2454 					  ARRAY_SIZE(adls_port_mapping[0]),
2455 					  adls_port_mapping,
2456 					  dvo_port);
2457 	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2458 		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2459 					  ARRAY_SIZE(rkl_port_mapping[0]),
2460 					  rkl_port_mapping,
2461 					  dvo_port);
2462 	else
2463 		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2464 					  ARRAY_SIZE(port_mapping[0]),
2465 					  port_mapping,
2466 					  dvo_port);
2467 }
2468 
2469 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2470 {
2471 	switch (vbt_max_link_rate) {
2472 	default:
2473 	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2474 		return 0;
2475 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2476 		return 2000000;
2477 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2478 		return 1350000;
2479 	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2480 		return 1000000;
2481 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2482 		return 810000;
2483 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2484 		return 540000;
2485 	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2486 		return 270000;
2487 	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2488 		return 162000;
2489 	}
2490 }
2491 
2492 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2493 {
2494 	switch (vbt_max_link_rate) {
2495 	default:
2496 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2497 		return 810000;
2498 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2499 		return 540000;
2500 	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2501 		return 270000;
2502 	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2503 		return 162000;
2504 	}
2505 }
2506 
2507 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2508 {
2509 	if (!devdata || devdata->i915->display.vbt.version < 216)
2510 		return 0;
2511 
2512 	if (devdata->i915->display.vbt.version >= 230)
2513 		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2514 	else
2515 		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2516 }
2517 
2518 static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2519 {
2520 	if (!devdata || devdata->i915->display.vbt.version < 244)
2521 		return 0;
2522 
2523 	return devdata->child.dp_max_lane_count + 1;
2524 }
2525 
2526 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2527 				 enum port port)
2528 {
2529 	struct drm_i915_private *i915 = devdata->i915;
2530 	bool is_hdmi;
2531 
2532 	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2533 		return;
2534 
2535 	if (!intel_bios_encoder_supports_dvi(devdata))
2536 		return;
2537 
2538 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2539 
2540 	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2541 		    is_hdmi ? "/HDMI" : "");
2542 
2543 	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2544 	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2545 }
2546 
2547 static bool
2548 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2549 {
2550 	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2551 }
2552 
2553 bool
2554 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2555 {
2556 	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2557 }
2558 
2559 bool
2560 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2561 {
2562 	return intel_bios_encoder_supports_dvi(devdata) &&
2563 		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2564 }
2565 
2566 bool
2567 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2568 {
2569 	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2570 }
2571 
2572 static bool
2573 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2574 {
2575 	return intel_bios_encoder_supports_dp(devdata) &&
2576 		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2577 }
2578 
2579 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2580 {
2581 	if (!devdata || devdata->i915->display.vbt.version < 158)
2582 		return -1;
2583 
2584 	return devdata->child.hdmi_level_shifter_value;
2585 }
2586 
2587 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2588 {
2589 	if (!devdata || devdata->i915->display.vbt.version < 204)
2590 		return 0;
2591 
2592 	switch (devdata->child.hdmi_max_data_rate) {
2593 	default:
2594 		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2595 		fallthrough;
2596 	case HDMI_MAX_DATA_RATE_PLATFORM:
2597 		return 0;
2598 	case HDMI_MAX_DATA_RATE_594:
2599 		return 594000;
2600 	case HDMI_MAX_DATA_RATE_340:
2601 		return 340000;
2602 	case HDMI_MAX_DATA_RATE_300:
2603 		return 300000;
2604 	case HDMI_MAX_DATA_RATE_297:
2605 		return 297000;
2606 	case HDMI_MAX_DATA_RATE_165:
2607 		return 165000;
2608 	}
2609 }
2610 
2611 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2612 {
2613 	/*
2614 	 * On some ICL SKUs port F is not present, but broken VBTs mark
2615 	 * the port as present. Only try to initialize port F for the
2616 	 * SKUs that may actually have it.
2617 	 */
2618 	if (port == PORT_F && IS_ICELAKE(i915))
2619 		return IS_ICL_WITH_PORT_F(i915);
2620 
2621 	return true;
2622 }
2623 
2624 static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2625 			   enum port port)
2626 {
2627 	struct drm_i915_private *i915 = devdata->i915;
2628 	const struct child_device_config *child = &devdata->child;
2629 	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2630 	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2631 
2632 	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2633 	is_dp = intel_bios_encoder_supports_dp(devdata);
2634 	is_crt = intel_bios_encoder_supports_crt(devdata);
2635 	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2636 	is_edp = intel_bios_encoder_supports_edp(devdata);
2637 
2638 	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2639 	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2640 
2641 	drm_dbg_kms(&i915->drm,
2642 		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2643 		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2644 		    HAS_LSPCON(i915) && child->lspcon,
2645 		    supports_typec_usb, supports_tbt,
2646 		    devdata->dsc != NULL);
2647 
2648 	hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2649 	if (hdmi_level_shift >= 0) {
2650 		drm_dbg_kms(&i915->drm,
2651 			    "Port %c VBT HDMI level shift: %d\n",
2652 			    port_name(port), hdmi_level_shift);
2653 	}
2654 
2655 	max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2656 	if (max_tmds_clock)
2657 		drm_dbg_kms(&i915->drm,
2658 			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2659 			    port_name(port), max_tmds_clock);
2660 
2661 	/* I_boost config for SKL and above */
2662 	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2663 	if (dp_boost_level)
2664 		drm_dbg_kms(&i915->drm,
2665 			    "Port %c VBT (e)DP boost level: %d\n",
2666 			    port_name(port), dp_boost_level);
2667 
2668 	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2669 	if (hdmi_boost_level)
2670 		drm_dbg_kms(&i915->drm,
2671 			    "Port %c VBT HDMI boost level: %d\n",
2672 			    port_name(port), hdmi_boost_level);
2673 
2674 	dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2675 	if (dp_max_link_rate)
2676 		drm_dbg_kms(&i915->drm,
2677 			    "Port %c VBT DP max link rate: %d\n",
2678 			    port_name(port), dp_max_link_rate);
2679 }
2680 
2681 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2682 {
2683 	struct drm_i915_private *i915 = devdata->i915;
2684 	const struct child_device_config *child = &devdata->child;
2685 	enum port port;
2686 
2687 	port = dvo_port_to_port(i915, child->dvo_port);
2688 	if (port == PORT_NONE)
2689 		return;
2690 
2691 	if (!is_port_valid(i915, port)) {
2692 		drm_dbg_kms(&i915->drm,
2693 			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2694 			    port_name(port));
2695 		return;
2696 	}
2697 
2698 	if (i915->display.vbt.ports[port]) {
2699 		drm_dbg_kms(&i915->drm,
2700 			    "More than one child device for port %c in VBT, using the first.\n",
2701 			    port_name(port));
2702 		return;
2703 	}
2704 
2705 	sanitize_device_type(devdata, port);
2706 
2707 	if (intel_bios_encoder_supports_dvi(devdata))
2708 		sanitize_ddc_pin(devdata, port);
2709 
2710 	if (intel_bios_encoder_supports_dp(devdata))
2711 		sanitize_aux_ch(devdata, port);
2712 
2713 	i915->display.vbt.ports[port] = devdata;
2714 }
2715 
2716 static bool has_ddi_port_info(struct drm_i915_private *i915)
2717 {
2718 	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2719 }
2720 
2721 static void parse_ddi_ports(struct drm_i915_private *i915)
2722 {
2723 	struct intel_bios_encoder_data *devdata;
2724 	enum port port;
2725 
2726 	if (!has_ddi_port_info(i915))
2727 		return;
2728 
2729 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2730 		parse_ddi_port(devdata);
2731 
2732 	for_each_port(port) {
2733 		if (i915->display.vbt.ports[port])
2734 			print_ddi_port(i915->display.vbt.ports[port], port);
2735 	}
2736 }
2737 
2738 static void
2739 parse_general_definitions(struct drm_i915_private *i915)
2740 {
2741 	const struct bdb_general_definitions *defs;
2742 	struct intel_bios_encoder_data *devdata;
2743 	const struct child_device_config *child;
2744 	int i, child_device_num;
2745 	u8 expected_size;
2746 	u16 block_size;
2747 	int bus_pin;
2748 
2749 	defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2750 	if (!defs) {
2751 		drm_dbg_kms(&i915->drm,
2752 			    "No general definition block is found, no devices defined.\n");
2753 		return;
2754 	}
2755 
2756 	block_size = get_blocksize(defs);
2757 	if (block_size < sizeof(*defs)) {
2758 		drm_dbg_kms(&i915->drm,
2759 			    "General definitions block too small (%u)\n",
2760 			    block_size);
2761 		return;
2762 	}
2763 
2764 	bus_pin = defs->crt_ddc_gmbus_pin;
2765 	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2766 	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2767 		i915->display.vbt.crt_ddc_pin = bus_pin;
2768 
2769 	if (i915->display.vbt.version < 106) {
2770 		expected_size = 22;
2771 	} else if (i915->display.vbt.version < 111) {
2772 		expected_size = 27;
2773 	} else if (i915->display.vbt.version < 195) {
2774 		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2775 	} else if (i915->display.vbt.version == 195) {
2776 		expected_size = 37;
2777 	} else if (i915->display.vbt.version <= 215) {
2778 		expected_size = 38;
2779 	} else if (i915->display.vbt.version <= 237) {
2780 		expected_size = 39;
2781 	} else {
2782 		expected_size = sizeof(*child);
2783 		BUILD_BUG_ON(sizeof(*child) < 39);
2784 		drm_dbg(&i915->drm,
2785 			"Expected child device config size for VBT version %u not known; assuming %u\n",
2786 			i915->display.vbt.version, expected_size);
2787 	}
2788 
2789 	/* Flag an error for unexpected size, but continue anyway. */
2790 	if (defs->child_dev_size != expected_size)
2791 		drm_err(&i915->drm,
2792 			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2793 			defs->child_dev_size, expected_size, i915->display.vbt.version);
2794 
2795 	/* The legacy sized child device config is the minimum we need. */
2796 	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2797 		drm_dbg_kms(&i915->drm,
2798 			    "Child device config size %u is too small.\n",
2799 			    defs->child_dev_size);
2800 		return;
2801 	}
2802 
2803 	/* get the number of child device */
2804 	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2805 
2806 	for (i = 0; i < child_device_num; i++) {
2807 		child = child_device_ptr(defs, i);
2808 		if (!child->device_type)
2809 			continue;
2810 
2811 		drm_dbg_kms(&i915->drm,
2812 			    "Found VBT child device with type 0x%x\n",
2813 			    child->device_type);
2814 
2815 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2816 		if (!devdata)
2817 			break;
2818 
2819 		devdata->i915 = i915;
2820 
2821 		/*
2822 		 * Copy as much as we know (sizeof) and is available
2823 		 * (child_dev_size) of the child device config. Accessing the
2824 		 * data must depend on VBT version.
2825 		 */
2826 		memcpy(&devdata->child, child,
2827 		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2828 
2829 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2830 	}
2831 
2832 	if (list_empty(&i915->display.vbt.display_devices))
2833 		drm_dbg_kms(&i915->drm,
2834 			    "no child dev is parsed from VBT\n");
2835 }
2836 
2837 /* Common defaults which may be overridden by VBT. */
2838 static void
2839 init_vbt_defaults(struct drm_i915_private *i915)
2840 {
2841 	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2842 
2843 	/* general features */
2844 	i915->display.vbt.int_tv_support = 1;
2845 	i915->display.vbt.int_crt_support = 1;
2846 
2847 	/* driver features */
2848 	i915->display.vbt.int_lvds_support = 1;
2849 
2850 	/* Default to using SSC */
2851 	i915->display.vbt.lvds_use_ssc = 1;
2852 	/*
2853 	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2854 	 * clock for LVDS.
2855 	 */
2856 	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2857 								   !HAS_PCH_SPLIT(i915));
2858 	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2859 		    i915->display.vbt.lvds_ssc_freq);
2860 }
2861 
2862 /* Common defaults which may be overridden by VBT. */
2863 static void
2864 init_vbt_panel_defaults(struct intel_panel *panel)
2865 {
2866 	/* Default to having backlight */
2867 	panel->vbt.backlight.present = true;
2868 
2869 	/* LFP panel data */
2870 	panel->vbt.lvds_dither = true;
2871 }
2872 
2873 /* Defaults to initialize only if there is no VBT. */
2874 static void
2875 init_vbt_missing_defaults(struct drm_i915_private *i915)
2876 {
2877 	enum port port;
2878 	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2879 		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2880 
2881 	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2882 		return;
2883 
2884 	for_each_port_masked(port, ports) {
2885 		struct intel_bios_encoder_data *devdata;
2886 		struct child_device_config *child;
2887 		enum phy phy = intel_port_to_phy(i915, port);
2888 
2889 		/*
2890 		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2891 		 * to detect it.
2892 		 */
2893 		if (intel_phy_is_tc(i915, phy))
2894 			continue;
2895 
2896 		/* Create fake child device config */
2897 		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2898 		if (!devdata)
2899 			break;
2900 
2901 		devdata->i915 = i915;
2902 		child = &devdata->child;
2903 
2904 		if (port == PORT_F)
2905 			child->dvo_port = DVO_PORT_HDMIF;
2906 		else if (port == PORT_E)
2907 			child->dvo_port = DVO_PORT_HDMIE;
2908 		else
2909 			child->dvo_port = DVO_PORT_HDMIA + port;
2910 
2911 		if (port != PORT_A && port != PORT_E)
2912 			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2913 
2914 		if (port != PORT_E)
2915 			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2916 
2917 		if (port == PORT_A)
2918 			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2919 
2920 		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2921 
2922 		drm_dbg_kms(&i915->drm,
2923 			    "Generating default VBT child device with type 0x04%x on port %c\n",
2924 			    child->device_type, port_name(port));
2925 	}
2926 
2927 	/* Bypass some minimum baseline VBT version checks */
2928 	i915->display.vbt.version = 155;
2929 }
2930 
2931 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2932 {
2933 	const void *_vbt = vbt;
2934 
2935 	return _vbt + vbt->bdb_offset;
2936 }
2937 
2938 /**
2939  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2940  * @buf:	pointer to a buffer to validate
2941  * @size:	size of the buffer
2942  *
2943  * Returns true on valid VBT.
2944  */
2945 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2946 {
2947 	const struct vbt_header *vbt = buf;
2948 	const struct bdb_header *bdb;
2949 
2950 	if (!vbt)
2951 		return false;
2952 
2953 	if (sizeof(struct vbt_header) > size) {
2954 		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2955 		return false;
2956 	}
2957 
2958 	if (memcmp(vbt->signature, "$VBT", 4)) {
2959 		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2960 		return false;
2961 	}
2962 
2963 	if (vbt->vbt_size > size) {
2964 		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2965 		return false;
2966 	}
2967 
2968 	size = vbt->vbt_size;
2969 
2970 	if (range_overflows_t(size_t,
2971 			      vbt->bdb_offset,
2972 			      sizeof(struct bdb_header),
2973 			      size)) {
2974 		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2975 		return false;
2976 	}
2977 
2978 	bdb = get_bdb_header(vbt);
2979 	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2980 		DRM_DEBUG_DRIVER("BDB incomplete\n");
2981 		return false;
2982 	}
2983 
2984 	return vbt;
2985 }
2986 
2987 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2988 {
2989 	u32 count, data, found, store = 0;
2990 	u32 static_region, oprom_offset;
2991 	u32 oprom_size = 0x200000;
2992 	u16 vbt_size;
2993 	u32 *vbt;
2994 
2995 	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2996 	static_region &= OPTIONROM_SPI_REGIONID_MASK;
2997 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2998 
2999 	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3000 	oprom_offset &= OROM_OFFSET_MASK;
3001 
3002 	for (count = 0; count < oprom_size; count += 4) {
3003 		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
3004 		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3005 
3006 		if (data == *((const u32 *)"$VBT")) {
3007 			found = oprom_offset + count;
3008 			break;
3009 		}
3010 	}
3011 
3012 	if (count >= oprom_size)
3013 		goto err_not_found;
3014 
3015 	/* Get VBT size and allocate space for the VBT */
3016 	intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
3017 		   offsetof(struct vbt_header, vbt_size));
3018 	vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3019 	vbt_size &= 0xffff;
3020 
3021 	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3022 	if (!vbt)
3023 		goto err_not_found;
3024 
3025 	for (count = 0; count < vbt_size; count += 4) {
3026 		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
3027 		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3028 		*(vbt + store++) = data;
3029 	}
3030 
3031 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3032 		goto err_free_vbt;
3033 
3034 	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3035 
3036 	return (struct vbt_header *)vbt;
3037 
3038 err_free_vbt:
3039 	kfree(vbt);
3040 err_not_found:
3041 	return NULL;
3042 }
3043 
3044 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3045 {
3046 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3047 	void __iomem *p = NULL, *oprom;
3048 	struct vbt_header *vbt;
3049 	u16 vbt_size;
3050 	size_t i, size;
3051 
3052 	oprom = pci_map_rom(pdev, &size);
3053 	if (!oprom)
3054 		return NULL;
3055 
3056 	/* Scour memory looking for the VBT signature. */
3057 	for (i = 0; i + 4 < size; i += 4) {
3058 		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3059 			continue;
3060 
3061 		p = oprom + i;
3062 		size -= i;
3063 		break;
3064 	}
3065 
3066 	if (!p)
3067 		goto err_unmap_oprom;
3068 
3069 	if (sizeof(struct vbt_header) > size) {
3070 		drm_dbg(&i915->drm, "VBT header incomplete\n");
3071 		goto err_unmap_oprom;
3072 	}
3073 
3074 	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3075 	if (vbt_size > size) {
3076 		drm_dbg(&i915->drm,
3077 			"VBT incomplete (vbt_size overflows)\n");
3078 		goto err_unmap_oprom;
3079 	}
3080 
3081 	/* The rest will be validated by intel_bios_is_valid_vbt() */
3082 	vbt = kmalloc(vbt_size, GFP_KERNEL);
3083 	if (!vbt)
3084 		goto err_unmap_oprom;
3085 
3086 	memcpy_fromio(vbt, p, vbt_size);
3087 
3088 	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3089 		goto err_free_vbt;
3090 
3091 	pci_unmap_rom(pdev, oprom);
3092 
3093 	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3094 
3095 	return vbt;
3096 
3097 err_free_vbt:
3098 	kfree(vbt);
3099 err_unmap_oprom:
3100 	pci_unmap_rom(pdev, oprom);
3101 
3102 	return NULL;
3103 }
3104 
3105 /**
3106  * intel_bios_init - find VBT and initialize settings from the BIOS
3107  * @i915: i915 device instance
3108  *
3109  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3110  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3111  * initialize some defaults if the VBT is not present at all.
3112  */
3113 void intel_bios_init(struct drm_i915_private *i915)
3114 {
3115 	const struct vbt_header *vbt = i915->display.opregion.vbt;
3116 	struct vbt_header *oprom_vbt = NULL;
3117 	const struct bdb_header *bdb;
3118 
3119 	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3120 	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3121 
3122 	if (!HAS_DISPLAY(i915)) {
3123 		drm_dbg_kms(&i915->drm,
3124 			    "Skipping VBT init due to disabled display.\n");
3125 		return;
3126 	}
3127 
3128 	init_vbt_defaults(i915);
3129 
3130 	/*
3131 	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3132 	 * PCI mapping
3133 	 */
3134 	if (!vbt && IS_DGFX(i915)) {
3135 		oprom_vbt = spi_oprom_get_vbt(i915);
3136 		vbt = oprom_vbt;
3137 	}
3138 
3139 	if (!vbt) {
3140 		oprom_vbt = oprom_get_vbt(i915);
3141 		vbt = oprom_vbt;
3142 	}
3143 
3144 	if (!vbt)
3145 		goto out;
3146 
3147 	bdb = get_bdb_header(vbt);
3148 	i915->display.vbt.version = bdb->version;
3149 
3150 	drm_dbg_kms(&i915->drm,
3151 		    "VBT signature \"%.*s\", BDB version %d\n",
3152 		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3153 
3154 	init_bdb_blocks(i915, bdb);
3155 
3156 	/* Grab useful general definitions */
3157 	parse_general_features(i915);
3158 	parse_general_definitions(i915);
3159 	parse_driver_features(i915);
3160 
3161 	/* Depends on child device list */
3162 	parse_compression_parameters(i915);
3163 
3164 out:
3165 	if (!vbt) {
3166 		drm_info(&i915->drm,
3167 			 "Failed to find VBIOS tables (VBT)\n");
3168 		init_vbt_missing_defaults(i915);
3169 	}
3170 
3171 	/* Further processing on pre-parsed or generated child device data */
3172 	parse_sdvo_device_mapping(i915);
3173 	parse_ddi_ports(i915);
3174 
3175 	kfree(oprom_vbt);
3176 }
3177 
3178 void intel_bios_init_panel(struct drm_i915_private *i915,
3179 			   struct intel_panel *panel,
3180 			   const struct intel_bios_encoder_data *devdata,
3181 			   const struct edid *edid)
3182 {
3183 	init_vbt_panel_defaults(panel);
3184 
3185 	panel->vbt.panel_type = get_panel_type(i915, devdata, edid);
3186 
3187 	parse_panel_options(i915, panel);
3188 	parse_generic_dtd(i915, panel);
3189 	parse_lfp_data(i915, panel);
3190 	parse_lfp_backlight(i915, panel);
3191 	parse_sdvo_panel_data(i915, panel);
3192 	parse_panel_driver_features(i915, panel);
3193 	parse_power_conservation_features(i915, panel);
3194 	parse_edp(i915, panel);
3195 	parse_psr(i915, panel);
3196 	parse_mipi_config(i915, panel);
3197 	parse_mipi_sequence(i915, panel);
3198 }
3199 
3200 /**
3201  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3202  * @i915: i915 device instance
3203  */
3204 void intel_bios_driver_remove(struct drm_i915_private *i915)
3205 {
3206 	struct intel_bios_encoder_data *devdata, *nd;
3207 	struct bdb_block_entry *entry, *ne;
3208 
3209 	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3210 		list_del(&devdata->node);
3211 		kfree(devdata->dsc);
3212 		kfree(devdata);
3213 	}
3214 
3215 	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3216 		list_del(&entry->node);
3217 		kfree(entry);
3218 	}
3219 }
3220 
3221 void intel_bios_fini_panel(struct intel_panel *panel)
3222 {
3223 	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3224 	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3225 	kfree(panel->vbt.lfp_lvds_vbt_mode);
3226 	panel->vbt.lfp_lvds_vbt_mode = NULL;
3227 	kfree(panel->vbt.dsi.data);
3228 	panel->vbt.dsi.data = NULL;
3229 	kfree(panel->vbt.dsi.pps);
3230 	panel->vbt.dsi.pps = NULL;
3231 	kfree(panel->vbt.dsi.config);
3232 	panel->vbt.dsi.config = NULL;
3233 	kfree(panel->vbt.dsi.deassert_seq);
3234 	panel->vbt.dsi.deassert_seq = NULL;
3235 }
3236 
3237 /**
3238  * intel_bios_is_tv_present - is integrated TV present in VBT
3239  * @i915: i915 device instance
3240  *
3241  * Return true if TV is present. If no child devices were parsed from VBT,
3242  * assume TV is present.
3243  */
3244 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3245 {
3246 	const struct intel_bios_encoder_data *devdata;
3247 	const struct child_device_config *child;
3248 
3249 	if (!i915->display.vbt.int_tv_support)
3250 		return false;
3251 
3252 	if (list_empty(&i915->display.vbt.display_devices))
3253 		return true;
3254 
3255 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3256 		child = &devdata->child;
3257 
3258 		/*
3259 		 * If the device type is not TV, continue.
3260 		 */
3261 		switch (child->device_type) {
3262 		case DEVICE_TYPE_INT_TV:
3263 		case DEVICE_TYPE_TV:
3264 		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3265 			break;
3266 		default:
3267 			continue;
3268 		}
3269 		/* Only when the addin_offset is non-zero, it is regarded
3270 		 * as present.
3271 		 */
3272 		if (child->addin_offset)
3273 			return true;
3274 	}
3275 
3276 	return false;
3277 }
3278 
3279 /**
3280  * intel_bios_is_lvds_present - is LVDS present in VBT
3281  * @i915:	i915 device instance
3282  * @i2c_pin:	i2c pin for LVDS if present
3283  *
3284  * Return true if LVDS is present. If no child devices were parsed from VBT,
3285  * assume LVDS is present.
3286  */
3287 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3288 {
3289 	const struct intel_bios_encoder_data *devdata;
3290 	const struct child_device_config *child;
3291 
3292 	if (list_empty(&i915->display.vbt.display_devices))
3293 		return true;
3294 
3295 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3296 		child = &devdata->child;
3297 
3298 		/* If the device type is not LFP, continue.
3299 		 * We have to check both the new identifiers as well as the
3300 		 * old for compatibility with some BIOSes.
3301 		 */
3302 		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3303 		    child->device_type != DEVICE_TYPE_LFP)
3304 			continue;
3305 
3306 		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3307 			*i2c_pin = child->i2c_pin;
3308 
3309 		/* However, we cannot trust the BIOS writers to populate
3310 		 * the VBT correctly.  Since LVDS requires additional
3311 		 * information from AIM blocks, a non-zero addin offset is
3312 		 * a good indicator that the LVDS is actually present.
3313 		 */
3314 		if (child->addin_offset)
3315 			return true;
3316 
3317 		/* But even then some BIOS writers perform some black magic
3318 		 * and instantiate the device without reference to any
3319 		 * additional data.  Trust that if the VBT was written into
3320 		 * the OpRegion then they have validated the LVDS's existence.
3321 		 */
3322 		if (i915->display.opregion.vbt)
3323 			return true;
3324 	}
3325 
3326 	return false;
3327 }
3328 
3329 /**
3330  * intel_bios_is_port_present - is the specified digital port present
3331  * @i915:	i915 device instance
3332  * @port:	port to check
3333  *
3334  * Return true if the device in %port is present.
3335  */
3336 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3337 {
3338 	if (WARN_ON(!has_ddi_port_info(i915)))
3339 		return true;
3340 
3341 	return i915->display.vbt.ports[port];
3342 }
3343 
3344 /**
3345  * intel_bios_is_port_edp - is the device in given port eDP
3346  * @i915:	i915 device instance
3347  * @port:	port to check
3348  *
3349  * Return true if the device in %port is eDP.
3350  */
3351 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3352 {
3353 	const struct intel_bios_encoder_data *devdata =
3354 		intel_bios_encoder_data_lookup(i915, port);
3355 
3356 	return devdata && intel_bios_encoder_supports_edp(devdata);
3357 }
3358 
3359 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3360 {
3361 	const struct child_device_config *child = &devdata->child;
3362 
3363 	if (!intel_bios_encoder_supports_dp(devdata) ||
3364 	    !intel_bios_encoder_supports_hdmi(devdata))
3365 		return false;
3366 
3367 	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3368 		return true;
3369 
3370 	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3371 	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3372 	    child->aux_channel != 0)
3373 		return true;
3374 
3375 	return false;
3376 }
3377 
3378 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3379 				     enum port port)
3380 {
3381 	const struct intel_bios_encoder_data *devdata =
3382 		intel_bios_encoder_data_lookup(i915, port);
3383 
3384 	return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3385 }
3386 
3387 /**
3388  * intel_bios_is_dsi_present - is DSI present in VBT
3389  * @i915:	i915 device instance
3390  * @port:	port for DSI if present
3391  *
3392  * Return true if DSI is present, and return the port in %port.
3393  */
3394 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3395 			       enum port *port)
3396 {
3397 	const struct intel_bios_encoder_data *devdata;
3398 	const struct child_device_config *child;
3399 	u8 dvo_port;
3400 
3401 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3402 		child = &devdata->child;
3403 
3404 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3405 			continue;
3406 
3407 		dvo_port = child->dvo_port;
3408 
3409 		if (dvo_port == DVO_PORT_MIPIA ||
3410 		    (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
3411 		    (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
3412 			if (port)
3413 				*port = dvo_port - DVO_PORT_MIPIA;
3414 			return true;
3415 		} else if (dvo_port == DVO_PORT_MIPIB ||
3416 			   dvo_port == DVO_PORT_MIPIC ||
3417 			   dvo_port == DVO_PORT_MIPID) {
3418 			drm_dbg_kms(&i915->drm,
3419 				    "VBT has unsupported DSI port %c\n",
3420 				    port_name(dvo_port - DVO_PORT_MIPIA));
3421 		}
3422 	}
3423 
3424 	return false;
3425 }
3426 
3427 static void fill_dsc(struct intel_crtc_state *crtc_state,
3428 		     struct dsc_compression_parameters_entry *dsc,
3429 		     int dsc_max_bpc)
3430 {
3431 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3432 	int bpc = 8;
3433 
3434 	vdsc_cfg->dsc_version_major = dsc->version_major;
3435 	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3436 
3437 	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3438 		bpc = 12;
3439 	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3440 		bpc = 10;
3441 	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3442 		bpc = 8;
3443 	else
3444 		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3445 			      dsc_max_bpc);
3446 
3447 	crtc_state->pipe_bpp = bpc * 3;
3448 
3449 	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3450 					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3451 
3452 	/*
3453 	 * FIXME: This is ugly, and slice count should take DSC engine
3454 	 * throughput etc. into account.
3455 	 *
3456 	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3457 	 */
3458 	if (dsc->slices_per_line & BIT(2)) {
3459 		crtc_state->dsc.slice_count = 4;
3460 	} else if (dsc->slices_per_line & BIT(1)) {
3461 		crtc_state->dsc.slice_count = 2;
3462 	} else {
3463 		/* FIXME */
3464 		if (!(dsc->slices_per_line & BIT(0)))
3465 			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3466 
3467 		crtc_state->dsc.slice_count = 1;
3468 	}
3469 
3470 	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3471 	    crtc_state->dsc.slice_count != 0)
3472 		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3473 			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3474 			      crtc_state->dsc.slice_count);
3475 
3476 	/*
3477 	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3478 	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3479 	 */
3480 	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3481 							    dsc->rc_buffer_size);
3482 
3483 	/* FIXME: DSI spec says bpc + 1 for this one */
3484 	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3485 
3486 	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3487 
3488 	vdsc_cfg->slice_height = dsc->slice_height;
3489 }
3490 
3491 /* FIXME: initially DSI specific */
3492 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3493 			       struct intel_crtc_state *crtc_state,
3494 			       int dsc_max_bpc)
3495 {
3496 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3497 	const struct intel_bios_encoder_data *devdata;
3498 	const struct child_device_config *child;
3499 
3500 	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3501 		child = &devdata->child;
3502 
3503 		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3504 			continue;
3505 
3506 		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
3507 			if (!devdata->dsc)
3508 				return false;
3509 
3510 			if (crtc_state)
3511 				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3512 
3513 			return true;
3514 		}
3515 	}
3516 
3517 	return false;
3518 }
3519 
3520 /**
3521  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3522  * @i915:	i915 device instance
3523  * @port:	port to check
3524  *
3525  * Return true if HPD should be inverted for %port.
3526  */
3527 bool
3528 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3529 				enum port port)
3530 {
3531 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3532 
3533 	if (drm_WARN_ON_ONCE(&i915->drm,
3534 			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3535 		return false;
3536 
3537 	return devdata && devdata->child.hpd_invert;
3538 }
3539 
3540 /**
3541  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3542  * @i915:	i915 device instance
3543  * @port:	port to check
3544  *
3545  * Return true if LSPCON is present on this port
3546  */
3547 bool
3548 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3549 			     enum port port)
3550 {
3551 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3552 
3553 	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3554 }
3555 
3556 /**
3557  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3558  * @i915:       i915 device instance
3559  * @port:       port to check
3560  *
3561  * Return true if port requires lane reversal
3562  */
3563 bool
3564 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3565 				   enum port port)
3566 {
3567 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3568 
3569 	return devdata && devdata->child.lane_reversal;
3570 }
3571 
3572 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3573 				   enum port port)
3574 {
3575 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3576 	enum aux_ch aux_ch;
3577 
3578 	if (!devdata || !devdata->child.aux_channel) {
3579 		aux_ch = (enum aux_ch)port;
3580 
3581 		drm_dbg_kms(&i915->drm,
3582 			    "using AUX %c for port %c (platform default)\n",
3583 			    aux_ch_name(aux_ch), port_name(port));
3584 		return aux_ch;
3585 	}
3586 
3587 	/*
3588 	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3589 	 * map to DDI A,B,TC1,TC2 respectively.
3590 	 *
3591 	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3592 	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3593 	 */
3594 	switch (devdata->child.aux_channel) {
3595 	case DP_AUX_A:
3596 		aux_ch = AUX_CH_A;
3597 		break;
3598 	case DP_AUX_B:
3599 		if (IS_ALDERLAKE_S(i915))
3600 			aux_ch = AUX_CH_USBC1;
3601 		else
3602 			aux_ch = AUX_CH_B;
3603 		break;
3604 	case DP_AUX_C:
3605 		if (IS_ALDERLAKE_S(i915))
3606 			aux_ch = AUX_CH_USBC2;
3607 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3608 			aux_ch = AUX_CH_USBC1;
3609 		else
3610 			aux_ch = AUX_CH_C;
3611 		break;
3612 	case DP_AUX_D:
3613 		if (DISPLAY_VER(i915) >= 13)
3614 			aux_ch = AUX_CH_D_XELPD;
3615 		else if (IS_ALDERLAKE_S(i915))
3616 			aux_ch = AUX_CH_USBC3;
3617 		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3618 			aux_ch = AUX_CH_USBC2;
3619 		else
3620 			aux_ch = AUX_CH_D;
3621 		break;
3622 	case DP_AUX_E:
3623 		if (DISPLAY_VER(i915) >= 13)
3624 			aux_ch = AUX_CH_E_XELPD;
3625 		else if (IS_ALDERLAKE_S(i915))
3626 			aux_ch = AUX_CH_USBC4;
3627 		else
3628 			aux_ch = AUX_CH_E;
3629 		break;
3630 	case DP_AUX_F:
3631 		if (DISPLAY_VER(i915) >= 13)
3632 			aux_ch = AUX_CH_USBC1;
3633 		else
3634 			aux_ch = AUX_CH_F;
3635 		break;
3636 	case DP_AUX_G:
3637 		if (DISPLAY_VER(i915) >= 13)
3638 			aux_ch = AUX_CH_USBC2;
3639 		else
3640 			aux_ch = AUX_CH_G;
3641 		break;
3642 	case DP_AUX_H:
3643 		if (DISPLAY_VER(i915) >= 13)
3644 			aux_ch = AUX_CH_USBC3;
3645 		else
3646 			aux_ch = AUX_CH_H;
3647 		break;
3648 	case DP_AUX_I:
3649 		if (DISPLAY_VER(i915) >= 13)
3650 			aux_ch = AUX_CH_USBC4;
3651 		else
3652 			aux_ch = AUX_CH_I;
3653 		break;
3654 	default:
3655 		MISSING_CASE(devdata->child.aux_channel);
3656 		aux_ch = AUX_CH_A;
3657 		break;
3658 	}
3659 
3660 	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3661 		    aux_ch_name(aux_ch), port_name(port));
3662 
3663 	return aux_ch;
3664 }
3665 
3666 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3667 {
3668 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3669 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3670 
3671 	return _intel_bios_max_tmds_clock(devdata);
3672 }
3673 
3674 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3675 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3676 {
3677 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3678 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3679 
3680 	return _intel_bios_hdmi_level_shift(devdata);
3681 }
3682 
3683 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3684 {
3685 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3686 		return 0;
3687 
3688 	return translate_iboost(devdata->child.dp_iboost_level);
3689 }
3690 
3691 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3692 {
3693 	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3694 		return 0;
3695 
3696 	return translate_iboost(devdata->child.hdmi_iboost_level);
3697 }
3698 
3699 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3700 {
3701 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3702 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3703 
3704 	return _intel_bios_dp_max_link_rate(devdata);
3705 }
3706 
3707 int intel_bios_dp_max_lane_count(struct intel_encoder *encoder)
3708 {
3709 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3710 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3711 
3712 	return _intel_bios_dp_max_lane_count(devdata);
3713 }
3714 
3715 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3716 {
3717 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3718 	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3719 
3720 	if (!devdata || !devdata->child.ddc_pin)
3721 		return 0;
3722 
3723 	return map_ddc_pin(i915, devdata->child.ddc_pin);
3724 }
3725 
3726 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3727 {
3728 	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3729 }
3730 
3731 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3732 {
3733 	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3734 }
3735 
3736 const struct intel_bios_encoder_data *
3737 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3738 {
3739 	return i915->display.vbt.ports[port];
3740 }
3741