1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_edid.h> 29 #include <drm/display/drm_dp_helper.h> 30 #include <drm/display/drm_dsc_helper.h> 31 32 #include "display/intel_display.h" 33 #include "display/intel_display_types.h" 34 #include "display/intel_gmbus.h" 35 36 #include "i915_drv.h" 37 #include "i915_reg.h" 38 39 #define _INTEL_BIOS_PRIVATE 40 #include "intel_vbt_defs.h" 41 42 /** 43 * DOC: Video BIOS Table (VBT) 44 * 45 * The Video BIOS Table, or VBT, provides platform and board specific 46 * configuration information to the driver that is not discoverable or available 47 * through other means. The configuration is mostly related to display 48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 49 * the PCI ROM. 50 * 51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 53 * contain the actual configuration information. The VBT Header, and thus the 54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 55 * BDB Header. The data blocks are concatenated after the BDB Header. The data 56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 57 * data. (Block 53, the MIPI Sequence Block is an exception.) 58 * 59 * The driver parses the VBT during load. The relevant information is stored in 60 * driver private data for ease of use, and the actual VBT is not read after 61 * that. 62 */ 63 64 /* Wrapper for VBT child device config */ 65 struct intel_bios_encoder_data { 66 struct drm_i915_private *i915; 67 68 struct child_device_config child; 69 struct dsc_compression_parameters_entry *dsc; 70 struct list_head node; 71 }; 72 73 #define SLAVE_ADDR1 0x70 74 #define SLAVE_ADDR2 0x72 75 76 /* Get BDB block size given a pointer to Block ID. */ 77 static u32 _get_blocksize(const u8 *block_base) 78 { 79 /* The MIPI Sequence Block v3+ has a separate size field. */ 80 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 81 return *((const u32 *)(block_base + 4)); 82 else 83 return *((const u16 *)(block_base + 1)); 84 } 85 86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 87 static u32 get_blocksize(const void *block_data) 88 { 89 return _get_blocksize(block_data - 3); 90 } 91 92 static const void * 93 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 94 { 95 const struct bdb_header *bdb = _bdb; 96 const u8 *base = _bdb; 97 int index = 0; 98 u32 total, current_size; 99 enum bdb_block_id current_id; 100 101 /* skip to first section */ 102 index += bdb->header_size; 103 total = bdb->bdb_size; 104 105 /* walk the sections looking for section_id */ 106 while (index + 3 < total) { 107 current_id = *(base + index); 108 current_size = _get_blocksize(base + index); 109 index += 3; 110 111 if (index + current_size > total) 112 return NULL; 113 114 if (current_id == section_id) 115 return base + index; 116 117 index += current_size; 118 } 119 120 return NULL; 121 } 122 123 /* 124 * Offset from the start of BDB to the start of the 125 * block data (just past the block header). 126 */ 127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 128 { 129 const void *block; 130 131 block = find_raw_section(bdb, section_id); 132 if (!block) 133 return 0; 134 135 return block - bdb; 136 } 137 138 struct bdb_block_entry { 139 struct list_head node; 140 enum bdb_block_id section_id; 141 u8 data[]; 142 }; 143 144 static const void * 145 find_section(struct drm_i915_private *i915, 146 enum bdb_block_id section_id) 147 { 148 struct bdb_block_entry *entry; 149 150 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 151 if (entry->section_id == section_id) 152 return entry->data + 3; 153 } 154 155 return NULL; 156 } 157 158 static const struct { 159 enum bdb_block_id section_id; 160 size_t min_size; 161 } bdb_blocks[] = { 162 { .section_id = BDB_GENERAL_FEATURES, 163 .min_size = sizeof(struct bdb_general_features), }, 164 { .section_id = BDB_GENERAL_DEFINITIONS, 165 .min_size = sizeof(struct bdb_general_definitions), }, 166 { .section_id = BDB_PSR, 167 .min_size = sizeof(struct bdb_psr), }, 168 { .section_id = BDB_DRIVER_FEATURES, 169 .min_size = sizeof(struct bdb_driver_features), }, 170 { .section_id = BDB_SDVO_LVDS_OPTIONS, 171 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 172 { .section_id = BDB_SDVO_PANEL_DTDS, 173 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 174 { .section_id = BDB_EDP, 175 .min_size = sizeof(struct bdb_edp), }, 176 { .section_id = BDB_LVDS_OPTIONS, 177 .min_size = sizeof(struct bdb_lvds_options), }, 178 /* 179 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 180 * so keep the two ordered. 181 */ 182 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 183 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 184 { .section_id = BDB_LVDS_LFP_DATA, 185 .min_size = 0, /* special case */ }, 186 { .section_id = BDB_LVDS_BACKLIGHT, 187 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 188 { .section_id = BDB_LFP_POWER, 189 .min_size = sizeof(struct bdb_lfp_power), }, 190 { .section_id = BDB_MIPI_CONFIG, 191 .min_size = sizeof(struct bdb_mipi_config), }, 192 { .section_id = BDB_MIPI_SEQUENCE, 193 .min_size = sizeof(struct bdb_mipi_sequence) }, 194 { .section_id = BDB_COMPRESSION_PARAMETERS, 195 .min_size = sizeof(struct bdb_compression_parameters), }, 196 { .section_id = BDB_GENERIC_DTD, 197 .min_size = sizeof(struct bdb_generic_dtd), }, 198 }; 199 200 static size_t lfp_data_min_size(struct drm_i915_private *i915) 201 { 202 const struct bdb_lvds_lfp_data_ptrs *ptrs; 203 size_t size; 204 205 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 206 if (!ptrs) 207 return 0; 208 209 size = sizeof(struct bdb_lvds_lfp_data); 210 if (ptrs->panel_name.table_size) 211 size = max(size, ptrs->panel_name.offset + 212 sizeof(struct bdb_lvds_lfp_data_tail)); 213 214 return size; 215 } 216 217 static bool validate_lfp_data_ptrs(const void *bdb, 218 const struct bdb_lvds_lfp_data_ptrs *ptrs) 219 { 220 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 221 int data_block_size, lfp_data_size; 222 const void *data_block; 223 int i; 224 225 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 226 if (!data_block) 227 return false; 228 229 data_block_size = get_blocksize(data_block); 230 if (data_block_size == 0) 231 return false; 232 233 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 234 if (ptrs->lvds_entries != 3) 235 return false; 236 237 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 238 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 239 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 240 panel_name_size = ptrs->panel_name.table_size; 241 242 /* fp_timing has variable size */ 243 if (fp_timing_size < 32 || 244 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 245 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 246 return false; 247 248 /* panel_name is not present in old VBTs */ 249 if (panel_name_size != 0 && 250 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 251 return false; 252 253 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 254 if (16 * lfp_data_size > data_block_size) 255 return false; 256 257 /* make sure the table entries have uniform size */ 258 for (i = 1; i < 16; i++) { 259 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 260 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 261 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 262 return false; 263 264 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 265 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 266 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 267 return false; 268 } 269 270 /* 271 * Except for vlv/chv machines all real VBTs seem to have 6 272 * unaccounted bytes in the fp_timing table. And it doesn't 273 * appear to be a really intentional hole as the fp_timing 274 * 0xffff terminator is always within those 6 missing bytes. 275 */ 276 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 277 fp_timing_size += 6; 278 279 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 280 return false; 281 282 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 283 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 284 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 285 return false; 286 287 /* make sure the tables fit inside the data block */ 288 for (i = 0; i < 16; i++) { 289 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 290 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 291 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 292 return false; 293 } 294 295 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 296 return false; 297 298 /* make sure fp_timing terminators are present at expected locations */ 299 for (i = 0; i < 16; i++) { 300 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 301 fp_timing_size - 2; 302 303 if (*t != 0xffff) 304 return false; 305 } 306 307 return true; 308 } 309 310 /* make the data table offsets relative to the data block */ 311 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 312 { 313 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 314 u32 offset; 315 int i; 316 317 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 318 319 for (i = 0; i < 16; i++) { 320 if (ptrs->ptr[i].fp_timing.offset < offset || 321 ptrs->ptr[i].dvo_timing.offset < offset || 322 ptrs->ptr[i].panel_pnp_id.offset < offset) 323 return false; 324 325 ptrs->ptr[i].fp_timing.offset -= offset; 326 ptrs->ptr[i].dvo_timing.offset -= offset; 327 ptrs->ptr[i].panel_pnp_id.offset -= offset; 328 } 329 330 if (ptrs->panel_name.table_size) { 331 if (ptrs->panel_name.offset < offset) 332 return false; 333 334 ptrs->panel_name.offset -= offset; 335 } 336 337 return validate_lfp_data_ptrs(bdb, ptrs); 338 } 339 340 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 341 int table_size, int total_size) 342 { 343 if (total_size < table_size) 344 return total_size; 345 346 table->table_size = table_size; 347 table->offset = total_size - table_size; 348 349 return total_size - table_size; 350 } 351 352 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 353 const struct lvds_lfp_data_ptr_table *prev, 354 int size) 355 { 356 next->table_size = prev->table_size; 357 next->offset = prev->offset + size; 358 } 359 360 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 361 const void *bdb) 362 { 363 int i, size, table_size, block_size, offset, fp_timing_size; 364 struct bdb_lvds_lfp_data_ptrs *ptrs; 365 const void *block; 366 void *ptrs_block; 367 368 /* 369 * The hardcoded fp_timing_size is only valid for 370 * modernish VBTs. All older VBTs definitely should 371 * include block 41 and thus we don't need to 372 * generate one. 373 */ 374 if (i915->display.vbt.version < 155) 375 return NULL; 376 377 fp_timing_size = 38; 378 379 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 380 if (!block) 381 return NULL; 382 383 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 384 385 block_size = get_blocksize(block); 386 387 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 388 sizeof(struct lvds_pnp_id); 389 if (size * 16 > block_size) 390 return NULL; 391 392 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 393 if (!ptrs_block) 394 return NULL; 395 396 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 397 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 398 ptrs = ptrs_block + 3; 399 400 table_size = sizeof(struct lvds_pnp_id); 401 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 402 403 table_size = sizeof(struct lvds_dvo_timing); 404 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 405 406 table_size = fp_timing_size; 407 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 408 409 if (ptrs->ptr[0].fp_timing.table_size) 410 ptrs->lvds_entries++; 411 if (ptrs->ptr[0].dvo_timing.table_size) 412 ptrs->lvds_entries++; 413 if (ptrs->ptr[0].panel_pnp_id.table_size) 414 ptrs->lvds_entries++; 415 416 if (size != 0 || ptrs->lvds_entries != 3) { 417 kfree(ptrs); 418 return NULL; 419 } 420 421 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 422 sizeof(struct lvds_pnp_id); 423 for (i = 1; i < 16; i++) { 424 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 425 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 426 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 427 } 428 429 table_size = sizeof(struct lvds_lfp_panel_name); 430 431 if (16 * (size + table_size) <= block_size) { 432 ptrs->panel_name.table_size = table_size; 433 ptrs->panel_name.offset = size * 16; 434 } 435 436 offset = block - bdb; 437 438 for (i = 0; i < 16; i++) { 439 ptrs->ptr[i].fp_timing.offset += offset; 440 ptrs->ptr[i].dvo_timing.offset += offset; 441 ptrs->ptr[i].panel_pnp_id.offset += offset; 442 } 443 444 if (ptrs->panel_name.table_size) 445 ptrs->panel_name.offset += offset; 446 447 return ptrs_block; 448 } 449 450 static void 451 init_bdb_block(struct drm_i915_private *i915, 452 const void *bdb, enum bdb_block_id section_id, 453 size_t min_size) 454 { 455 struct bdb_block_entry *entry; 456 void *temp_block = NULL; 457 const void *block; 458 size_t block_size; 459 460 block = find_raw_section(bdb, section_id); 461 462 /* Modern VBTs lack the LFP data table pointers block, make one up */ 463 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 464 temp_block = generate_lfp_data_ptrs(i915, bdb); 465 if (temp_block) 466 block = temp_block + 3; 467 } 468 if (!block) 469 return; 470 471 drm_WARN(&i915->drm, min_size == 0, 472 "Block %d min_size is zero\n", section_id); 473 474 block_size = get_blocksize(block); 475 476 /* 477 * Version number and new block size are considered 478 * part of the header for MIPI sequenece block v3+. 479 */ 480 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 481 block_size += 5; 482 483 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 484 GFP_KERNEL); 485 if (!entry) { 486 kfree(temp_block); 487 return; 488 } 489 490 entry->section_id = section_id; 491 memcpy(entry->data, block - 3, block_size + 3); 492 493 kfree(temp_block); 494 495 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 496 section_id, block_size, min_size); 497 498 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 499 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 500 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 501 kfree(entry); 502 return; 503 } 504 505 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 506 } 507 508 static void init_bdb_blocks(struct drm_i915_private *i915, 509 const void *bdb) 510 { 511 int i; 512 513 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 514 enum bdb_block_id section_id = bdb_blocks[i].section_id; 515 size_t min_size = bdb_blocks[i].min_size; 516 517 if (section_id == BDB_LVDS_LFP_DATA) 518 min_size = lfp_data_min_size(i915); 519 520 init_bdb_block(i915, bdb, section_id, min_size); 521 } 522 } 523 524 static void 525 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 526 const struct lvds_dvo_timing *dvo_timing) 527 { 528 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 529 dvo_timing->hactive_lo; 530 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 531 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 532 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 533 ((dvo_timing->hsync_pulse_width_hi << 8) | 534 dvo_timing->hsync_pulse_width_lo); 535 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 536 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 537 538 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 539 dvo_timing->vactive_lo; 540 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 541 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 542 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 543 ((dvo_timing->vsync_pulse_width_hi << 4) | 544 dvo_timing->vsync_pulse_width_lo); 545 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 546 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 547 panel_fixed_mode->clock = dvo_timing->clock * 10; 548 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 549 550 if (dvo_timing->hsync_positive) 551 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 552 else 553 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 554 555 if (dvo_timing->vsync_positive) 556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 557 else 558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 559 560 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 561 dvo_timing->himage_lo; 562 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 563 dvo_timing->vimage_lo; 564 565 /* Some VBTs have bogus h/vtotal values */ 566 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 567 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 568 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 569 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 570 571 drm_mode_set_name(panel_fixed_mode); 572 } 573 574 static const struct lvds_dvo_timing * 575 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 576 const struct bdb_lvds_lfp_data_ptrs *ptrs, 577 int index) 578 { 579 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 580 } 581 582 static const struct lvds_fp_timing * 583 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 584 const struct bdb_lvds_lfp_data_ptrs *ptrs, 585 int index) 586 { 587 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 588 } 589 590 static const struct lvds_pnp_id * 591 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 592 const struct bdb_lvds_lfp_data_ptrs *ptrs, 593 int index) 594 { 595 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 596 } 597 598 static const struct bdb_lvds_lfp_data_tail * 599 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 600 const struct bdb_lvds_lfp_data_ptrs *ptrs) 601 { 602 if (ptrs->panel_name.table_size) 603 return (const void *)data + ptrs->panel_name.offset; 604 else 605 return NULL; 606 } 607 608 static void dump_pnp_id(struct drm_i915_private *i915, 609 const struct lvds_pnp_id *pnp_id, 610 const char *name) 611 { 612 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name); 613 char vend[4]; 614 615 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n", 616 name, drm_edid_decode_mfg_id(mfg_name, vend), 617 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial, 618 pnp_id->mfg_week, pnp_id->mfg_year + 1990); 619 } 620 621 static int opregion_get_panel_type(struct drm_i915_private *i915, 622 const struct intel_bios_encoder_data *devdata, 623 const struct edid *edid) 624 { 625 return intel_opregion_get_panel_type(i915); 626 } 627 628 static int vbt_get_panel_type(struct drm_i915_private *i915, 629 const struct intel_bios_encoder_data *devdata, 630 const struct edid *edid) 631 { 632 const struct bdb_lvds_options *lvds_options; 633 634 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 635 if (!lvds_options) 636 return -1; 637 638 if (lvds_options->panel_type > 0xf && 639 lvds_options->panel_type != 0xff) { 640 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 641 lvds_options->panel_type); 642 return -1; 643 } 644 645 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 646 return lvds_options->panel_type2; 647 648 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 649 650 return lvds_options->panel_type; 651 } 652 653 static int pnpid_get_panel_type(struct drm_i915_private *i915, 654 const struct intel_bios_encoder_data *devdata, 655 const struct edid *edid) 656 { 657 const struct bdb_lvds_lfp_data *data; 658 const struct bdb_lvds_lfp_data_ptrs *ptrs; 659 const struct lvds_pnp_id *edid_id; 660 struct lvds_pnp_id edid_id_nodate; 661 int i, best = -1; 662 663 if (!edid) 664 return -1; 665 666 edid_id = (const void *)&edid->mfg_id[0]; 667 668 edid_id_nodate = *edid_id; 669 edid_id_nodate.mfg_week = 0; 670 edid_id_nodate.mfg_year = 0; 671 672 dump_pnp_id(i915, edid_id, "EDID"); 673 674 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 675 if (!ptrs) 676 return -1; 677 678 data = find_section(i915, BDB_LVDS_LFP_DATA); 679 if (!data) 680 return -1; 681 682 for (i = 0; i < 16; i++) { 683 const struct lvds_pnp_id *vbt_id = 684 get_lvds_pnp_id(data, ptrs, i); 685 686 /* full match? */ 687 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 688 return i; 689 690 /* 691 * Accept a match w/o date if no full match is found, 692 * and the VBT entry does not specify a date. 693 */ 694 if (best < 0 && 695 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 696 best = i; 697 } 698 699 return best; 700 } 701 702 static int fallback_get_panel_type(struct drm_i915_private *i915, 703 const struct intel_bios_encoder_data *devdata, 704 const struct edid *edid) 705 { 706 return 0; 707 } 708 709 enum panel_type { 710 PANEL_TYPE_OPREGION, 711 PANEL_TYPE_VBT, 712 PANEL_TYPE_PNPID, 713 PANEL_TYPE_FALLBACK, 714 }; 715 716 static int get_panel_type(struct drm_i915_private *i915, 717 const struct intel_bios_encoder_data *devdata, 718 const struct edid *edid) 719 { 720 struct { 721 const char *name; 722 int (*get_panel_type)(struct drm_i915_private *i915, 723 const struct intel_bios_encoder_data *devdata, 724 const struct edid *edid); 725 int panel_type; 726 } panel_types[] = { 727 [PANEL_TYPE_OPREGION] = { 728 .name = "OpRegion", 729 .get_panel_type = opregion_get_panel_type, 730 }, 731 [PANEL_TYPE_VBT] = { 732 .name = "VBT", 733 .get_panel_type = vbt_get_panel_type, 734 }, 735 [PANEL_TYPE_PNPID] = { 736 .name = "PNPID", 737 .get_panel_type = pnpid_get_panel_type, 738 }, 739 [PANEL_TYPE_FALLBACK] = { 740 .name = "fallback", 741 .get_panel_type = fallback_get_panel_type, 742 }, 743 }; 744 int i; 745 746 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 747 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid); 748 749 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 750 panel_types[i].panel_type != 0xff); 751 752 if (panel_types[i].panel_type >= 0) 753 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 754 panel_types[i].name, panel_types[i].panel_type); 755 } 756 757 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 758 i = PANEL_TYPE_OPREGION; 759 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 760 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 761 i = PANEL_TYPE_PNPID; 762 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 763 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 764 i = PANEL_TYPE_VBT; 765 else 766 i = PANEL_TYPE_FALLBACK; 767 768 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 769 panel_types[i].name, panel_types[i].panel_type); 770 771 return panel_types[i].panel_type; 772 } 773 774 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 775 { 776 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 777 } 778 779 static bool panel_bool(unsigned int value, int panel_type) 780 { 781 return panel_bits(value, panel_type, 1); 782 } 783 784 /* Parse general panel options */ 785 static void 786 parse_panel_options(struct drm_i915_private *i915, 787 struct intel_panel *panel) 788 { 789 const struct bdb_lvds_options *lvds_options; 790 int panel_type = panel->vbt.panel_type; 791 int drrs_mode; 792 793 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 794 if (!lvds_options) 795 return; 796 797 panel->vbt.lvds_dither = lvds_options->pixel_dither; 798 799 /* 800 * Empirical evidence indicates the block size can be 801 * either 4,14,16,24+ bytes. For older VBTs no clear 802 * relationship between the block size vs. BDB version. 803 */ 804 if (get_blocksize(lvds_options) < 16) 805 return; 806 807 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 808 panel_type, 2); 809 /* 810 * VBT has static DRRS = 0 and seamless DRRS = 2. 811 * The below piece of code is required to adjust vbt.drrs_type 812 * to match the enum drrs_support_type. 813 */ 814 switch (drrs_mode) { 815 case 0: 816 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 817 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 818 break; 819 case 2: 820 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 821 drm_dbg_kms(&i915->drm, 822 "DRRS supported mode is seamless\n"); 823 break; 824 default: 825 panel->vbt.drrs_type = DRRS_TYPE_NONE; 826 drm_dbg_kms(&i915->drm, 827 "DRRS not supported (VBT input)\n"); 828 break; 829 } 830 } 831 832 static void 833 parse_lfp_panel_dtd(struct drm_i915_private *i915, 834 struct intel_panel *panel, 835 const struct bdb_lvds_lfp_data *lvds_lfp_data, 836 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 837 { 838 const struct lvds_dvo_timing *panel_dvo_timing; 839 const struct lvds_fp_timing *fp_timing; 840 struct drm_display_mode *panel_fixed_mode; 841 int panel_type = panel->vbt.panel_type; 842 843 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 844 lvds_lfp_data_ptrs, 845 panel_type); 846 847 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 848 if (!panel_fixed_mode) 849 return; 850 851 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 852 853 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 854 855 drm_dbg_kms(&i915->drm, 856 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 857 DRM_MODE_ARG(panel_fixed_mode)); 858 859 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 860 lvds_lfp_data_ptrs, 861 panel_type); 862 863 /* check the resolution, just to be sure */ 864 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 865 fp_timing->y_res == panel_fixed_mode->vdisplay) { 866 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 867 drm_dbg_kms(&i915->drm, 868 "VBT initial LVDS value %x\n", 869 panel->vbt.bios_lvds_val); 870 } 871 } 872 873 static void 874 parse_lfp_data(struct drm_i915_private *i915, 875 struct intel_panel *panel) 876 { 877 const struct bdb_lvds_lfp_data *data; 878 const struct bdb_lvds_lfp_data_tail *tail; 879 const struct bdb_lvds_lfp_data_ptrs *ptrs; 880 const struct lvds_pnp_id *pnp_id; 881 int panel_type = panel->vbt.panel_type; 882 883 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 884 if (!ptrs) 885 return; 886 887 data = find_section(i915, BDB_LVDS_LFP_DATA); 888 if (!data) 889 return; 890 891 if (!panel->vbt.lfp_lvds_vbt_mode) 892 parse_lfp_panel_dtd(i915, panel, data, ptrs); 893 894 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 895 dump_pnp_id(i915, pnp_id, "Panel"); 896 897 tail = get_lfp_data_tail(data, ptrs); 898 if (!tail) 899 return; 900 901 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 902 (int)sizeof(tail->panel_name[0].name), 903 tail->panel_name[panel_type].name); 904 905 if (i915->display.vbt.version >= 188) { 906 panel->vbt.seamless_drrs_min_refresh_rate = 907 tail->seamless_drrs_min_refresh_rate[panel_type]; 908 drm_dbg_kms(&i915->drm, 909 "Seamless DRRS min refresh rate: %d Hz\n", 910 panel->vbt.seamless_drrs_min_refresh_rate); 911 } 912 } 913 914 static void 915 parse_generic_dtd(struct drm_i915_private *i915, 916 struct intel_panel *panel) 917 { 918 const struct bdb_generic_dtd *generic_dtd; 919 const struct generic_dtd_entry *dtd; 920 struct drm_display_mode *panel_fixed_mode; 921 int num_dtd; 922 923 /* 924 * Older VBTs provided DTD information for internal displays through 925 * the "LFP panel tables" block (42). As of VBT revision 229 the 926 * DTD information should be provided via a newer "generic DTD" 927 * block (58). Just to be safe, we'll try the new generic DTD block 928 * first on VBT >= 229, but still fall back to trying the old LFP 929 * block if that fails. 930 */ 931 if (i915->display.vbt.version < 229) 932 return; 933 934 generic_dtd = find_section(i915, BDB_GENERIC_DTD); 935 if (!generic_dtd) 936 return; 937 938 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 939 drm_err(&i915->drm, "GDTD size %u is too small.\n", 940 generic_dtd->gdtd_size); 941 return; 942 } else if (generic_dtd->gdtd_size != 943 sizeof(struct generic_dtd_entry)) { 944 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 945 generic_dtd->gdtd_size); 946 /* DTD has unknown fields, but keep going */ 947 } 948 949 num_dtd = (get_blocksize(generic_dtd) - 950 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 951 if (panel->vbt.panel_type >= num_dtd) { 952 drm_err(&i915->drm, 953 "Panel type %d not found in table of %d DTD's\n", 954 panel->vbt.panel_type, num_dtd); 955 return; 956 } 957 958 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 959 960 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 961 if (!panel_fixed_mode) 962 return; 963 964 panel_fixed_mode->hdisplay = dtd->hactive; 965 panel_fixed_mode->hsync_start = 966 panel_fixed_mode->hdisplay + dtd->hfront_porch; 967 panel_fixed_mode->hsync_end = 968 panel_fixed_mode->hsync_start + dtd->hsync; 969 panel_fixed_mode->htotal = 970 panel_fixed_mode->hdisplay + dtd->hblank; 971 972 panel_fixed_mode->vdisplay = dtd->vactive; 973 panel_fixed_mode->vsync_start = 974 panel_fixed_mode->vdisplay + dtd->vfront_porch; 975 panel_fixed_mode->vsync_end = 976 panel_fixed_mode->vsync_start + dtd->vsync; 977 panel_fixed_mode->vtotal = 978 panel_fixed_mode->vdisplay + dtd->vblank; 979 980 panel_fixed_mode->clock = dtd->pixel_clock; 981 panel_fixed_mode->width_mm = dtd->width_mm; 982 panel_fixed_mode->height_mm = dtd->height_mm; 983 984 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 985 drm_mode_set_name(panel_fixed_mode); 986 987 if (dtd->hsync_positive_polarity) 988 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 989 else 990 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 991 992 if (dtd->vsync_positive_polarity) 993 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 994 else 995 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 996 997 drm_dbg_kms(&i915->drm, 998 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 999 DRM_MODE_ARG(panel_fixed_mode)); 1000 1001 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1002 } 1003 1004 static void 1005 parse_lfp_backlight(struct drm_i915_private *i915, 1006 struct intel_panel *panel) 1007 { 1008 const struct bdb_lfp_backlight_data *backlight_data; 1009 const struct lfp_backlight_data_entry *entry; 1010 int panel_type = panel->vbt.panel_type; 1011 u16 level; 1012 1013 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT); 1014 if (!backlight_data) 1015 return; 1016 1017 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1018 drm_dbg_kms(&i915->drm, 1019 "Unsupported backlight data entry size %u\n", 1020 backlight_data->entry_size); 1021 return; 1022 } 1023 1024 entry = &backlight_data->data[panel_type]; 1025 1026 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1027 if (!panel->vbt.backlight.present) { 1028 drm_dbg_kms(&i915->drm, 1029 "PWM backlight not present in VBT (type %u)\n", 1030 entry->type); 1031 return; 1032 } 1033 1034 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1035 if (i915->display.vbt.version >= 191) { 1036 size_t exp_size; 1037 1038 if (i915->display.vbt.version >= 236) 1039 exp_size = sizeof(struct bdb_lfp_backlight_data); 1040 else if (i915->display.vbt.version >= 234) 1041 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1042 else 1043 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1044 1045 if (get_blocksize(backlight_data) >= exp_size) { 1046 const struct lfp_backlight_control_method *method; 1047 1048 method = &backlight_data->backlight_control[panel_type]; 1049 panel->vbt.backlight.type = method->type; 1050 panel->vbt.backlight.controller = method->controller; 1051 } 1052 } 1053 1054 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1055 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1056 1057 if (i915->display.vbt.version >= 234) { 1058 u16 min_level; 1059 bool scale; 1060 1061 level = backlight_data->brightness_level[panel_type].level; 1062 min_level = backlight_data->brightness_min_level[panel_type].level; 1063 1064 if (i915->display.vbt.version >= 236) 1065 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1066 else 1067 scale = level > 255; 1068 1069 if (scale) 1070 min_level = min_level / 255; 1071 1072 if (min_level > 255) { 1073 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1074 level = 255; 1075 } 1076 panel->vbt.backlight.min_brightness = min_level; 1077 1078 panel->vbt.backlight.brightness_precision_bits = 1079 backlight_data->brightness_precision_bits[panel_type]; 1080 } else { 1081 level = backlight_data->level[panel_type]; 1082 panel->vbt.backlight.min_brightness = entry->min_brightness; 1083 } 1084 1085 drm_dbg_kms(&i915->drm, 1086 "VBT backlight PWM modulation frequency %u Hz, " 1087 "active %s, min brightness %u, level %u, controller %u\n", 1088 panel->vbt.backlight.pwm_freq_hz, 1089 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1090 panel->vbt.backlight.min_brightness, 1091 level, 1092 panel->vbt.backlight.controller); 1093 } 1094 1095 /* Try to find sdvo panel data */ 1096 static void 1097 parse_sdvo_panel_data(struct drm_i915_private *i915, 1098 struct intel_panel *panel) 1099 { 1100 const struct bdb_sdvo_panel_dtds *dtds; 1101 struct drm_display_mode *panel_fixed_mode; 1102 int index; 1103 1104 index = i915->params.vbt_sdvo_panel_type; 1105 if (index == -2) { 1106 drm_dbg_kms(&i915->drm, 1107 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1108 return; 1109 } 1110 1111 if (index == -1) { 1112 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1113 1114 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1115 if (!sdvo_lvds_options) 1116 return; 1117 1118 index = sdvo_lvds_options->panel_type; 1119 } 1120 1121 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS); 1122 if (!dtds) 1123 return; 1124 1125 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1126 if (!panel_fixed_mode) 1127 return; 1128 1129 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 1130 1131 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1132 1133 drm_dbg_kms(&i915->drm, 1134 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1135 DRM_MODE_ARG(panel_fixed_mode)); 1136 } 1137 1138 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1139 bool alternate) 1140 { 1141 switch (DISPLAY_VER(i915)) { 1142 case 2: 1143 return alternate ? 66667 : 48000; 1144 case 3: 1145 case 4: 1146 return alternate ? 100000 : 96000; 1147 default: 1148 return alternate ? 100000 : 120000; 1149 } 1150 } 1151 1152 static void 1153 parse_general_features(struct drm_i915_private *i915) 1154 { 1155 const struct bdb_general_features *general; 1156 1157 general = find_section(i915, BDB_GENERAL_FEATURES); 1158 if (!general) 1159 return; 1160 1161 i915->display.vbt.int_tv_support = general->int_tv_support; 1162 /* int_crt_support can't be trusted on earlier platforms */ 1163 if (i915->display.vbt.version >= 155 && 1164 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1165 i915->display.vbt.int_crt_support = general->int_crt_support; 1166 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1167 i915->display.vbt.lvds_ssc_freq = 1168 intel_bios_ssc_frequency(i915, general->ssc_freq); 1169 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1170 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1171 if (i915->display.vbt.version >= 181) { 1172 i915->display.vbt.orientation = general->rotate_180 ? 1173 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1174 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1175 } else { 1176 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1177 } 1178 1179 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1180 i915->display.vbt.override_afc_startup = true; 1181 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1182 } 1183 1184 drm_dbg_kms(&i915->drm, 1185 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1186 i915->display.vbt.int_tv_support, 1187 i915->display.vbt.int_crt_support, 1188 i915->display.vbt.lvds_use_ssc, 1189 i915->display.vbt.lvds_ssc_freq, 1190 i915->display.vbt.display_clock_mode, 1191 i915->display.vbt.fdi_rx_polarity_inverted); 1192 } 1193 1194 static const struct child_device_config * 1195 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1196 { 1197 return (const void *) &defs->devices[i * defs->child_dev_size]; 1198 } 1199 1200 static void 1201 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1202 { 1203 struct sdvo_device_mapping *mapping; 1204 const struct intel_bios_encoder_data *devdata; 1205 const struct child_device_config *child; 1206 int count = 0; 1207 1208 /* 1209 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1210 * accurate and doesn't have to be, as long as it's not too strict. 1211 */ 1212 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1213 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1214 return; 1215 } 1216 1217 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1218 child = &devdata->child; 1219 1220 if (child->slave_addr != SLAVE_ADDR1 && 1221 child->slave_addr != SLAVE_ADDR2) { 1222 /* 1223 * If the slave address is neither 0x70 nor 0x72, 1224 * it is not a SDVO device. Skip it. 1225 */ 1226 continue; 1227 } 1228 if (child->dvo_port != DEVICE_PORT_DVOB && 1229 child->dvo_port != DEVICE_PORT_DVOC) { 1230 /* skip the incorrect SDVO port */ 1231 drm_dbg_kms(&i915->drm, 1232 "Incorrect SDVO port. Skip it\n"); 1233 continue; 1234 } 1235 drm_dbg_kms(&i915->drm, 1236 "the SDVO device with slave addr %2x is found on" 1237 " %s port\n", 1238 child->slave_addr, 1239 (child->dvo_port == DEVICE_PORT_DVOB) ? 1240 "SDVOB" : "SDVOC"); 1241 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1242 if (!mapping->initialized) { 1243 mapping->dvo_port = child->dvo_port; 1244 mapping->slave_addr = child->slave_addr; 1245 mapping->dvo_wiring = child->dvo_wiring; 1246 mapping->ddc_pin = child->ddc_pin; 1247 mapping->i2c_pin = child->i2c_pin; 1248 mapping->initialized = 1; 1249 drm_dbg_kms(&i915->drm, 1250 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1251 mapping->dvo_port, mapping->slave_addr, 1252 mapping->dvo_wiring, mapping->ddc_pin, 1253 mapping->i2c_pin); 1254 } else { 1255 drm_dbg_kms(&i915->drm, 1256 "Maybe one SDVO port is shared by " 1257 "two SDVO device.\n"); 1258 } 1259 if (child->slave2_addr) { 1260 /* Maybe this is a SDVO device with multiple inputs */ 1261 /* And the mapping info is not added */ 1262 drm_dbg_kms(&i915->drm, 1263 "there exists the slave2_addr. Maybe this" 1264 " is a SDVO device with multiple inputs.\n"); 1265 } 1266 count++; 1267 } 1268 1269 if (!count) { 1270 /* No SDVO device info is found */ 1271 drm_dbg_kms(&i915->drm, 1272 "No SDVO device info is found in VBT\n"); 1273 } 1274 } 1275 1276 static void 1277 parse_driver_features(struct drm_i915_private *i915) 1278 { 1279 const struct bdb_driver_features *driver; 1280 1281 driver = find_section(i915, BDB_DRIVER_FEATURES); 1282 if (!driver) 1283 return; 1284 1285 if (DISPLAY_VER(i915) >= 5) { 1286 /* 1287 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1288 * to mean "eDP". The VBT spec doesn't agree with that 1289 * interpretation, but real world VBTs seem to. 1290 */ 1291 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1292 i915->display.vbt.int_lvds_support = 0; 1293 } else { 1294 /* 1295 * FIXME it's not clear which BDB version has the LVDS config 1296 * bits defined. Revision history in the VBT spec says: 1297 * "0.92 | Add two definitions for VBT value of LVDS Active 1298 * Config (00b and 11b values defined) | 06/13/2005" 1299 * but does not the specify the BDB version. 1300 * 1301 * So far version 134 (on i945gm) is the oldest VBT observed 1302 * in the wild with the bits correctly populated. Version 1303 * 108 (on i85x) does not have the bits correctly populated. 1304 */ 1305 if (i915->display.vbt.version >= 134 && 1306 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1307 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1308 i915->display.vbt.int_lvds_support = 0; 1309 } 1310 } 1311 1312 static void 1313 parse_panel_driver_features(struct drm_i915_private *i915, 1314 struct intel_panel *panel) 1315 { 1316 const struct bdb_driver_features *driver; 1317 1318 driver = find_section(i915, BDB_DRIVER_FEATURES); 1319 if (!driver) 1320 return; 1321 1322 if (i915->display.vbt.version < 228) { 1323 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1324 driver->drrs_enabled); 1325 /* 1326 * If DRRS is not supported, drrs_type has to be set to 0. 1327 * This is because, VBT is configured in such a way that 1328 * static DRRS is 0 and DRRS not supported is represented by 1329 * driver->drrs_enabled=false 1330 */ 1331 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1332 /* 1333 * FIXME Should DMRRS perhaps be treated as seamless 1334 * but without the automatic downclocking? 1335 */ 1336 if (driver->dmrrs_enabled) 1337 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1338 else 1339 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1340 } 1341 1342 panel->vbt.psr.enable = driver->psr_enabled; 1343 } 1344 } 1345 1346 static void 1347 parse_power_conservation_features(struct drm_i915_private *i915, 1348 struct intel_panel *panel) 1349 { 1350 const struct bdb_lfp_power *power; 1351 u8 panel_type = panel->vbt.panel_type; 1352 1353 panel->vbt.vrr = true; /* matches Windows behaviour */ 1354 1355 if (i915->display.vbt.version < 228) 1356 return; 1357 1358 power = find_section(i915, BDB_LFP_POWER); 1359 if (!power) 1360 return; 1361 1362 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1363 1364 /* 1365 * If DRRS is not supported, drrs_type has to be set to 0. 1366 * This is because, VBT is configured in such a way that 1367 * static DRRS is 0 and DRRS not supported is represented by 1368 * power->drrs & BIT(panel_type)=false 1369 */ 1370 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1371 /* 1372 * FIXME Should DMRRS perhaps be treated as seamless 1373 * but without the automatic downclocking? 1374 */ 1375 if (panel_bool(power->dmrrs, panel_type)) 1376 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1377 else 1378 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1379 } 1380 1381 if (i915->display.vbt.version >= 232) 1382 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1383 1384 if (i915->display.vbt.version >= 233) 1385 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1386 panel_type); 1387 } 1388 1389 static void 1390 parse_edp(struct drm_i915_private *i915, 1391 struct intel_panel *panel) 1392 { 1393 const struct bdb_edp *edp; 1394 const struct edp_power_seq *edp_pps; 1395 const struct edp_fast_link_params *edp_link_params; 1396 int panel_type = panel->vbt.panel_type; 1397 1398 edp = find_section(i915, BDB_EDP); 1399 if (!edp) 1400 return; 1401 1402 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1403 case EDP_18BPP: 1404 panel->vbt.edp.bpp = 18; 1405 break; 1406 case EDP_24BPP: 1407 panel->vbt.edp.bpp = 24; 1408 break; 1409 case EDP_30BPP: 1410 panel->vbt.edp.bpp = 30; 1411 break; 1412 } 1413 1414 /* Get the eDP sequencing and link info */ 1415 edp_pps = &edp->power_seqs[panel_type]; 1416 edp_link_params = &edp->fast_link_params[panel_type]; 1417 1418 panel->vbt.edp.pps = *edp_pps; 1419 1420 if (i915->display.vbt.version >= 224) { 1421 panel->vbt.edp.rate = 1422 edp->edp_fast_link_training_rate[panel_type] * 20; 1423 } else { 1424 switch (edp_link_params->rate) { 1425 case EDP_RATE_1_62: 1426 panel->vbt.edp.rate = 162000; 1427 break; 1428 case EDP_RATE_2_7: 1429 panel->vbt.edp.rate = 270000; 1430 break; 1431 case EDP_RATE_5_4: 1432 panel->vbt.edp.rate = 540000; 1433 break; 1434 default: 1435 drm_dbg_kms(&i915->drm, 1436 "VBT has unknown eDP link rate value %u\n", 1437 edp_link_params->rate); 1438 break; 1439 } 1440 } 1441 1442 switch (edp_link_params->lanes) { 1443 case EDP_LANE_1: 1444 panel->vbt.edp.lanes = 1; 1445 break; 1446 case EDP_LANE_2: 1447 panel->vbt.edp.lanes = 2; 1448 break; 1449 case EDP_LANE_4: 1450 panel->vbt.edp.lanes = 4; 1451 break; 1452 default: 1453 drm_dbg_kms(&i915->drm, 1454 "VBT has unknown eDP lane count value %u\n", 1455 edp_link_params->lanes); 1456 break; 1457 } 1458 1459 switch (edp_link_params->preemphasis) { 1460 case EDP_PREEMPHASIS_NONE: 1461 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1462 break; 1463 case EDP_PREEMPHASIS_3_5dB: 1464 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1465 break; 1466 case EDP_PREEMPHASIS_6dB: 1467 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1468 break; 1469 case EDP_PREEMPHASIS_9_5dB: 1470 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1471 break; 1472 default: 1473 drm_dbg_kms(&i915->drm, 1474 "VBT has unknown eDP pre-emphasis value %u\n", 1475 edp_link_params->preemphasis); 1476 break; 1477 } 1478 1479 switch (edp_link_params->vswing) { 1480 case EDP_VSWING_0_4V: 1481 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1482 break; 1483 case EDP_VSWING_0_6V: 1484 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1485 break; 1486 case EDP_VSWING_0_8V: 1487 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1488 break; 1489 case EDP_VSWING_1_2V: 1490 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1491 break; 1492 default: 1493 drm_dbg_kms(&i915->drm, 1494 "VBT has unknown eDP voltage swing value %u\n", 1495 edp_link_params->vswing); 1496 break; 1497 } 1498 1499 if (i915->display.vbt.version >= 173) { 1500 u8 vswing; 1501 1502 /* Don't read from VBT if module parameter has valid value*/ 1503 if (i915->params.edp_vswing) { 1504 panel->vbt.edp.low_vswing = 1505 i915->params.edp_vswing == 1; 1506 } else { 1507 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1508 panel->vbt.edp.low_vswing = vswing == 0; 1509 } 1510 } 1511 1512 panel->vbt.edp.drrs_msa_timing_delay = 1513 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1514 1515 if (i915->display.vbt.version >= 244) 1516 panel->vbt.edp.max_link_rate = 1517 edp->edp_max_port_link_rate[panel_type] * 20; 1518 } 1519 1520 static void 1521 parse_psr(struct drm_i915_private *i915, 1522 struct intel_panel *panel) 1523 { 1524 const struct bdb_psr *psr; 1525 const struct psr_table *psr_table; 1526 int panel_type = panel->vbt.panel_type; 1527 1528 psr = find_section(i915, BDB_PSR); 1529 if (!psr) { 1530 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1531 return; 1532 } 1533 1534 psr_table = &psr->psr_table[panel_type]; 1535 1536 panel->vbt.psr.full_link = psr_table->full_link; 1537 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1538 1539 /* Allowed VBT values goes from 0 to 15 */ 1540 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1541 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1542 1543 /* 1544 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1545 * Old decimal value is wake up time in multiples of 100 us. 1546 */ 1547 if (i915->display.vbt.version >= 205 && 1548 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1549 switch (psr_table->tp1_wakeup_time) { 1550 case 0: 1551 panel->vbt.psr.tp1_wakeup_time_us = 500; 1552 break; 1553 case 1: 1554 panel->vbt.psr.tp1_wakeup_time_us = 100; 1555 break; 1556 case 3: 1557 panel->vbt.psr.tp1_wakeup_time_us = 0; 1558 break; 1559 default: 1560 drm_dbg_kms(&i915->drm, 1561 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1562 psr_table->tp1_wakeup_time); 1563 fallthrough; 1564 case 2: 1565 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1566 break; 1567 } 1568 1569 switch (psr_table->tp2_tp3_wakeup_time) { 1570 case 0: 1571 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1572 break; 1573 case 1: 1574 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1575 break; 1576 case 3: 1577 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1578 break; 1579 default: 1580 drm_dbg_kms(&i915->drm, 1581 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1582 psr_table->tp2_tp3_wakeup_time); 1583 fallthrough; 1584 case 2: 1585 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1586 break; 1587 } 1588 } else { 1589 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1590 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1591 } 1592 1593 if (i915->display.vbt.version >= 226) { 1594 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1595 1596 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1597 switch (wakeup_time) { 1598 case 0: 1599 wakeup_time = 500; 1600 break; 1601 case 1: 1602 wakeup_time = 100; 1603 break; 1604 case 3: 1605 wakeup_time = 50; 1606 break; 1607 default: 1608 case 2: 1609 wakeup_time = 2500; 1610 break; 1611 } 1612 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1613 } else { 1614 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1615 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1616 } 1617 } 1618 1619 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1620 struct intel_panel *panel, 1621 enum port port) 1622 { 1623 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1624 1625 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1626 panel->vbt.dsi.bl_ports = BIT(port); 1627 if (panel->vbt.dsi.config->cabc_supported) 1628 panel->vbt.dsi.cabc_ports = BIT(port); 1629 1630 return; 1631 } 1632 1633 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1634 case DL_DCS_PORT_A: 1635 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1636 break; 1637 case DL_DCS_PORT_C: 1638 panel->vbt.dsi.bl_ports = BIT(port_bc); 1639 break; 1640 default: 1641 case DL_DCS_PORT_A_AND_C: 1642 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1643 break; 1644 } 1645 1646 if (!panel->vbt.dsi.config->cabc_supported) 1647 return; 1648 1649 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1650 case DL_DCS_PORT_A: 1651 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1652 break; 1653 case DL_DCS_PORT_C: 1654 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1655 break; 1656 default: 1657 case DL_DCS_PORT_A_AND_C: 1658 panel->vbt.dsi.cabc_ports = 1659 BIT(PORT_A) | BIT(port_bc); 1660 break; 1661 } 1662 } 1663 1664 static void 1665 parse_mipi_config(struct drm_i915_private *i915, 1666 struct intel_panel *panel) 1667 { 1668 const struct bdb_mipi_config *start; 1669 const struct mipi_config *config; 1670 const struct mipi_pps_data *pps; 1671 int panel_type = panel->vbt.panel_type; 1672 enum port port; 1673 1674 /* parse MIPI blocks only if LFP type is MIPI */ 1675 if (!intel_bios_is_dsi_present(i915, &port)) 1676 return; 1677 1678 /* Initialize this to undefined indicating no generic MIPI support */ 1679 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1680 1681 /* Block #40 is already parsed and panel_fixed_mode is 1682 * stored in i915->lfp_lvds_vbt_mode 1683 * resuse this when needed 1684 */ 1685 1686 /* Parse #52 for panel index used from panel_type already 1687 * parsed 1688 */ 1689 start = find_section(i915, BDB_MIPI_CONFIG); 1690 if (!start) { 1691 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1692 return; 1693 } 1694 1695 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1696 panel_type); 1697 1698 /* 1699 * get hold of the correct configuration block and pps data as per 1700 * the panel_type as index 1701 */ 1702 config = &start->config[panel_type]; 1703 pps = &start->pps[panel_type]; 1704 1705 /* store as of now full data. Trim when we realise all is not needed */ 1706 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1707 if (!panel->vbt.dsi.config) 1708 return; 1709 1710 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1711 if (!panel->vbt.dsi.pps) { 1712 kfree(panel->vbt.dsi.config); 1713 return; 1714 } 1715 1716 parse_dsi_backlight_ports(i915, panel, port); 1717 1718 /* FIXME is the 90 vs. 270 correct? */ 1719 switch (config->rotation) { 1720 case ENABLE_ROTATION_0: 1721 /* 1722 * Most (all?) VBTs claim 0 degrees despite having 1723 * an upside down panel, thus we do not trust this. 1724 */ 1725 panel->vbt.dsi.orientation = 1726 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1727 break; 1728 case ENABLE_ROTATION_90: 1729 panel->vbt.dsi.orientation = 1730 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1731 break; 1732 case ENABLE_ROTATION_180: 1733 panel->vbt.dsi.orientation = 1734 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1735 break; 1736 case ENABLE_ROTATION_270: 1737 panel->vbt.dsi.orientation = 1738 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1739 break; 1740 } 1741 1742 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1743 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1744 } 1745 1746 /* Find the sequence block and size for the given panel. */ 1747 static const u8 * 1748 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1749 u16 panel_id, u32 *seq_size) 1750 { 1751 u32 total = get_blocksize(sequence); 1752 const u8 *data = &sequence->data[0]; 1753 u8 current_id; 1754 u32 current_size; 1755 int header_size = sequence->version >= 3 ? 5 : 3; 1756 int index = 0; 1757 int i; 1758 1759 /* skip new block size */ 1760 if (sequence->version >= 3) 1761 data += 4; 1762 1763 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1764 if (index + header_size > total) { 1765 DRM_ERROR("Invalid sequence block (header)\n"); 1766 return NULL; 1767 } 1768 1769 current_id = *(data + index); 1770 if (sequence->version >= 3) 1771 current_size = *((const u32 *)(data + index + 1)); 1772 else 1773 current_size = *((const u16 *)(data + index + 1)); 1774 1775 index += header_size; 1776 1777 if (index + current_size > total) { 1778 DRM_ERROR("Invalid sequence block\n"); 1779 return NULL; 1780 } 1781 1782 if (current_id == panel_id) { 1783 *seq_size = current_size; 1784 return data + index; 1785 } 1786 1787 index += current_size; 1788 } 1789 1790 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1791 1792 return NULL; 1793 } 1794 1795 static int goto_next_sequence(const u8 *data, int index, int total) 1796 { 1797 u16 len; 1798 1799 /* Skip Sequence Byte. */ 1800 for (index = index + 1; index < total; index += len) { 1801 u8 operation_byte = *(data + index); 1802 index++; 1803 1804 switch (operation_byte) { 1805 case MIPI_SEQ_ELEM_END: 1806 return index; 1807 case MIPI_SEQ_ELEM_SEND_PKT: 1808 if (index + 4 > total) 1809 return 0; 1810 1811 len = *((const u16 *)(data + index + 2)) + 4; 1812 break; 1813 case MIPI_SEQ_ELEM_DELAY: 1814 len = 4; 1815 break; 1816 case MIPI_SEQ_ELEM_GPIO: 1817 len = 2; 1818 break; 1819 case MIPI_SEQ_ELEM_I2C: 1820 if (index + 7 > total) 1821 return 0; 1822 len = *(data + index + 6) + 7; 1823 break; 1824 default: 1825 DRM_ERROR("Unknown operation byte\n"); 1826 return 0; 1827 } 1828 } 1829 1830 return 0; 1831 } 1832 1833 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1834 { 1835 int seq_end; 1836 u16 len; 1837 u32 size_of_sequence; 1838 1839 /* 1840 * Could skip sequence based on Size of Sequence alone, but also do some 1841 * checking on the structure. 1842 */ 1843 if (total < 5) { 1844 DRM_ERROR("Too small sequence size\n"); 1845 return 0; 1846 } 1847 1848 /* Skip Sequence Byte. */ 1849 index++; 1850 1851 /* 1852 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1853 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1854 * byte. 1855 */ 1856 size_of_sequence = *((const u32 *)(data + index)); 1857 index += 4; 1858 1859 seq_end = index + size_of_sequence; 1860 if (seq_end > total) { 1861 DRM_ERROR("Invalid sequence size\n"); 1862 return 0; 1863 } 1864 1865 for (; index < total; index += len) { 1866 u8 operation_byte = *(data + index); 1867 index++; 1868 1869 if (operation_byte == MIPI_SEQ_ELEM_END) { 1870 if (index != seq_end) { 1871 DRM_ERROR("Invalid element structure\n"); 1872 return 0; 1873 } 1874 return index; 1875 } 1876 1877 len = *(data + index); 1878 index++; 1879 1880 /* 1881 * FIXME: Would be nice to check elements like for v1/v2 in 1882 * goto_next_sequence() above. 1883 */ 1884 switch (operation_byte) { 1885 case MIPI_SEQ_ELEM_SEND_PKT: 1886 case MIPI_SEQ_ELEM_DELAY: 1887 case MIPI_SEQ_ELEM_GPIO: 1888 case MIPI_SEQ_ELEM_I2C: 1889 case MIPI_SEQ_ELEM_SPI: 1890 case MIPI_SEQ_ELEM_PMIC: 1891 break; 1892 default: 1893 DRM_ERROR("Unknown operation byte %u\n", 1894 operation_byte); 1895 break; 1896 } 1897 } 1898 1899 return 0; 1900 } 1901 1902 /* 1903 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1904 * skip all delay + gpio operands and stop at the first DSI packet op. 1905 */ 1906 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1907 struct intel_panel *panel) 1908 { 1909 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1910 int index, len; 1911 1912 if (drm_WARN_ON(&i915->drm, 1913 !data || panel->vbt.dsi.seq_version != 1)) 1914 return 0; 1915 1916 /* index = 1 to skip sequence byte */ 1917 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1918 switch (data[index]) { 1919 case MIPI_SEQ_ELEM_SEND_PKT: 1920 return index == 1 ? 0 : index; 1921 case MIPI_SEQ_ELEM_DELAY: 1922 len = 5; /* 1 byte for operand + uint32 */ 1923 break; 1924 case MIPI_SEQ_ELEM_GPIO: 1925 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1926 break; 1927 default: 1928 return 0; 1929 } 1930 } 1931 1932 return 0; 1933 } 1934 1935 /* 1936 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1937 * The deassert must be done before calling intel_dsi_device_ready, so for 1938 * these devices we split the init OTP sequence into a deassert sequence and 1939 * the actual init OTP part. 1940 */ 1941 static void fixup_mipi_sequences(struct drm_i915_private *i915, 1942 struct intel_panel *panel) 1943 { 1944 u8 *init_otp; 1945 int len; 1946 1947 /* Limit this to VLV for now. */ 1948 if (!IS_VALLEYVIEW(i915)) 1949 return; 1950 1951 /* Limit this to v1 vid-mode sequences */ 1952 if (panel->vbt.dsi.config->is_cmd_mode || 1953 panel->vbt.dsi.seq_version != 1) 1954 return; 1955 1956 /* Only do this if there are otp and assert seqs and no deassert seq */ 1957 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1958 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1959 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1960 return; 1961 1962 /* The deassert-sequence ends at the first DSI packet */ 1963 len = get_init_otp_deassert_fragment_len(i915, panel); 1964 if (!len) 1965 return; 1966 1967 drm_dbg_kms(&i915->drm, 1968 "Using init OTP fragment to deassert reset\n"); 1969 1970 /* Copy the fragment, update seq byte and terminate it */ 1971 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1972 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1973 if (!panel->vbt.dsi.deassert_seq) 1974 return; 1975 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1976 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1977 /* Use the copy for deassert */ 1978 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1979 panel->vbt.dsi.deassert_seq; 1980 /* Replace the last byte of the fragment with init OTP seq byte */ 1981 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1982 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1983 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1984 } 1985 1986 static void 1987 parse_mipi_sequence(struct drm_i915_private *i915, 1988 struct intel_panel *panel) 1989 { 1990 int panel_type = panel->vbt.panel_type; 1991 const struct bdb_mipi_sequence *sequence; 1992 const u8 *seq_data; 1993 u32 seq_size; 1994 u8 *data; 1995 int index = 0; 1996 1997 /* Only our generic panel driver uses the sequence block. */ 1998 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 1999 return; 2000 2001 sequence = find_section(i915, BDB_MIPI_SEQUENCE); 2002 if (!sequence) { 2003 drm_dbg_kms(&i915->drm, 2004 "No MIPI Sequence found, parsing complete\n"); 2005 return; 2006 } 2007 2008 /* Fail gracefully for forward incompatible sequence block. */ 2009 if (sequence->version >= 4) { 2010 drm_err(&i915->drm, 2011 "Unable to parse MIPI Sequence Block v%u\n", 2012 sequence->version); 2013 return; 2014 } 2015 2016 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2017 sequence->version); 2018 2019 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 2020 if (!seq_data) 2021 return; 2022 2023 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2024 if (!data) 2025 return; 2026 2027 /* Parse the sequences, store pointers to each sequence. */ 2028 for (;;) { 2029 u8 seq_id = *(data + index); 2030 if (seq_id == MIPI_SEQ_END) 2031 break; 2032 2033 if (seq_id >= MIPI_SEQ_MAX) { 2034 drm_err(&i915->drm, "Unknown sequence %u\n", 2035 seq_id); 2036 goto err; 2037 } 2038 2039 /* Log about presence of sequences we won't run. */ 2040 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2041 drm_dbg_kms(&i915->drm, 2042 "Unsupported sequence %u\n", seq_id); 2043 2044 panel->vbt.dsi.sequence[seq_id] = data + index; 2045 2046 if (sequence->version >= 3) 2047 index = goto_next_sequence_v3(data, index, seq_size); 2048 else 2049 index = goto_next_sequence(data, index, seq_size); 2050 if (!index) { 2051 drm_err(&i915->drm, "Invalid sequence %u\n", 2052 seq_id); 2053 goto err; 2054 } 2055 } 2056 2057 panel->vbt.dsi.data = data; 2058 panel->vbt.dsi.size = seq_size; 2059 panel->vbt.dsi.seq_version = sequence->version; 2060 2061 fixup_mipi_sequences(i915, panel); 2062 2063 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2064 return; 2065 2066 err: 2067 kfree(data); 2068 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2069 } 2070 2071 static void 2072 parse_compression_parameters(struct drm_i915_private *i915) 2073 { 2074 const struct bdb_compression_parameters *params; 2075 struct intel_bios_encoder_data *devdata; 2076 const struct child_device_config *child; 2077 u16 block_size; 2078 int index; 2079 2080 if (i915->display.vbt.version < 198) 2081 return; 2082 2083 params = find_section(i915, BDB_COMPRESSION_PARAMETERS); 2084 if (params) { 2085 /* Sanity checks */ 2086 if (params->entry_size != sizeof(params->data[0])) { 2087 drm_dbg_kms(&i915->drm, 2088 "VBT: unsupported compression param entry size\n"); 2089 return; 2090 } 2091 2092 block_size = get_blocksize(params); 2093 if (block_size < sizeof(*params)) { 2094 drm_dbg_kms(&i915->drm, 2095 "VBT: expected 16 compression param entries\n"); 2096 return; 2097 } 2098 } 2099 2100 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2101 child = &devdata->child; 2102 2103 if (!child->compression_enable) 2104 continue; 2105 2106 if (!params) { 2107 drm_dbg_kms(&i915->drm, 2108 "VBT: compression params not available\n"); 2109 continue; 2110 } 2111 2112 if (child->compression_method_cps) { 2113 drm_dbg_kms(&i915->drm, 2114 "VBT: CPS compression not supported\n"); 2115 continue; 2116 } 2117 2118 index = child->compression_structure_index; 2119 2120 devdata->dsc = kmemdup(¶ms->data[index], 2121 sizeof(*devdata->dsc), GFP_KERNEL); 2122 } 2123 } 2124 2125 static u8 translate_iboost(u8 val) 2126 { 2127 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2128 2129 if (val >= ARRAY_SIZE(mapping)) { 2130 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2131 return 0; 2132 } 2133 return mapping[val]; 2134 } 2135 2136 static const u8 cnp_ddc_pin_map[] = { 2137 [0] = 0, /* N/A */ 2138 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 2139 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 2140 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 2141 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 2142 }; 2143 2144 static const u8 icp_ddc_pin_map[] = { 2145 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2146 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2147 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 2148 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 2149 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 2150 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 2151 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 2152 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 2153 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 2154 }; 2155 2156 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2157 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2158 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2159 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 2160 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 2161 }; 2162 2163 static const u8 adls_ddc_pin_map[] = { 2164 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2165 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2166 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2167 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2168 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2169 }; 2170 2171 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2172 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2173 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 2174 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 2175 }; 2176 2177 static const u8 adlp_ddc_pin_map[] = { 2178 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2179 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2180 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2181 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2182 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2183 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2184 }; 2185 2186 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2187 { 2188 const u8 *ddc_pin_map; 2189 int n_entries; 2190 2191 if (IS_ALDERLAKE_P(i915)) { 2192 ddc_pin_map = adlp_ddc_pin_map; 2193 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2194 } else if (IS_ALDERLAKE_S(i915)) { 2195 ddc_pin_map = adls_ddc_pin_map; 2196 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2197 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2198 return vbt_pin; 2199 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2200 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2201 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2202 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2203 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2204 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2205 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2206 ddc_pin_map = icp_ddc_pin_map; 2207 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2208 } else if (HAS_PCH_CNP(i915)) { 2209 ddc_pin_map = cnp_ddc_pin_map; 2210 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2211 } else { 2212 /* Assuming direct map */ 2213 return vbt_pin; 2214 } 2215 2216 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 2217 return ddc_pin_map[vbt_pin]; 2218 2219 drm_dbg_kms(&i915->drm, 2220 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2221 vbt_pin); 2222 return 0; 2223 } 2224 2225 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 2226 { 2227 const struct intel_bios_encoder_data *devdata; 2228 enum port port; 2229 2230 if (!ddc_pin) 2231 return PORT_NONE; 2232 2233 for_each_port(port) { 2234 devdata = i915->display.vbt.ports[port]; 2235 2236 if (devdata && ddc_pin == devdata->child.ddc_pin) 2237 return port; 2238 } 2239 2240 return PORT_NONE; 2241 } 2242 2243 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata, 2244 enum port port) 2245 { 2246 struct drm_i915_private *i915 = devdata->i915; 2247 struct child_device_config *child; 2248 u8 mapped_ddc_pin; 2249 enum port p; 2250 2251 if (!devdata->child.ddc_pin) 2252 return; 2253 2254 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin); 2255 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) { 2256 drm_dbg_kms(&i915->drm, 2257 "Port %c has invalid DDC pin %d, " 2258 "sticking to defaults\n", 2259 port_name(port), mapped_ddc_pin); 2260 devdata->child.ddc_pin = 0; 2261 return; 2262 } 2263 2264 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin); 2265 if (p == PORT_NONE) 2266 return; 2267 2268 drm_dbg_kms(&i915->drm, 2269 "port %c trying to use the same DDC pin (0x%x) as port %c, " 2270 "disabling port %c DVI/HDMI support\n", 2271 port_name(port), mapped_ddc_pin, 2272 port_name(p), port_name(p)); 2273 2274 /* 2275 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi 2276 * couldn't exist on the shared port. Otherwise they share the same ddc 2277 * pin and system couldn't communicate with them separately. 2278 * 2279 * Give inverse child device order the priority, last one wins. Yes, 2280 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2281 * port A and port E with the same AUX ch and we must pick port E :( 2282 */ 2283 child = &i915->display.vbt.ports[p]->child; 2284 2285 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2286 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2287 2288 child->ddc_pin = 0; 2289 } 2290 2291 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 2292 { 2293 const struct intel_bios_encoder_data *devdata; 2294 enum port port; 2295 2296 if (!aux_ch) 2297 return PORT_NONE; 2298 2299 for_each_port(port) { 2300 devdata = i915->display.vbt.ports[port]; 2301 2302 if (devdata && aux_ch == devdata->child.aux_channel) 2303 return port; 2304 } 2305 2306 return PORT_NONE; 2307 } 2308 2309 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata, 2310 enum port port) 2311 { 2312 struct drm_i915_private *i915 = devdata->i915; 2313 struct child_device_config *child; 2314 enum port p; 2315 2316 p = get_port_by_aux_ch(i915, devdata->child.aux_channel); 2317 if (p == PORT_NONE) 2318 return; 2319 2320 drm_dbg_kms(&i915->drm, 2321 "port %c trying to use the same AUX CH (0x%x) as port %c, " 2322 "disabling port %c DP support\n", 2323 port_name(port), devdata->child.aux_channel, 2324 port_name(p), port_name(p)); 2325 2326 /* 2327 * If we have multiple ports supposedly sharing the aux channel, then DP 2328 * couldn't exist on the shared port. Otherwise they share the same aux 2329 * channel and system couldn't communicate with them separately. 2330 * 2331 * Give inverse child device order the priority, last one wins. Yes, 2332 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2333 * port A and port E with the same AUX ch and we must pick port E :( 2334 */ 2335 child = &i915->display.vbt.ports[p]->child; 2336 2337 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2338 child->aux_channel = 0; 2339 } 2340 2341 static u8 dvo_port_type(u8 dvo_port) 2342 { 2343 switch (dvo_port) { 2344 case DVO_PORT_HDMIA: 2345 case DVO_PORT_HDMIB: 2346 case DVO_PORT_HDMIC: 2347 case DVO_PORT_HDMID: 2348 case DVO_PORT_HDMIE: 2349 case DVO_PORT_HDMIF: 2350 case DVO_PORT_HDMIG: 2351 case DVO_PORT_HDMIH: 2352 case DVO_PORT_HDMII: 2353 return DVO_PORT_HDMIA; 2354 case DVO_PORT_DPA: 2355 case DVO_PORT_DPB: 2356 case DVO_PORT_DPC: 2357 case DVO_PORT_DPD: 2358 case DVO_PORT_DPE: 2359 case DVO_PORT_DPF: 2360 case DVO_PORT_DPG: 2361 case DVO_PORT_DPH: 2362 case DVO_PORT_DPI: 2363 return DVO_PORT_DPA; 2364 case DVO_PORT_MIPIA: 2365 case DVO_PORT_MIPIB: 2366 case DVO_PORT_MIPIC: 2367 case DVO_PORT_MIPID: 2368 return DVO_PORT_MIPIA; 2369 default: 2370 return dvo_port; 2371 } 2372 } 2373 2374 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2375 const int port_mapping[][3], u8 dvo_port) 2376 { 2377 enum port port; 2378 int i; 2379 2380 for (port = PORT_A; port < n_ports; port++) { 2381 for (i = 0; i < n_dvo; i++) { 2382 if (port_mapping[port][i] == -1) 2383 break; 2384 2385 if (dvo_port == port_mapping[port][i]) 2386 return port; 2387 } 2388 } 2389 2390 return PORT_NONE; 2391 } 2392 2393 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2394 u8 dvo_port) 2395 { 2396 /* 2397 * Each DDI port can have more than one value on the "DVO Port" field, 2398 * so look for all the possible values for each port. 2399 */ 2400 static const int port_mapping[][3] = { 2401 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2402 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2403 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2404 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2405 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2406 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2407 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2408 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2409 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2410 }; 2411 /* 2412 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2413 * map to DDI A,B,TC1,TC2 respectively. 2414 */ 2415 static const int rkl_port_mapping[][3] = { 2416 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2417 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2418 [PORT_C] = { -1 }, 2419 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2420 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2421 }; 2422 /* 2423 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2424 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2425 */ 2426 static const int adls_port_mapping[][3] = { 2427 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2428 [PORT_B] = { -1 }, 2429 [PORT_C] = { -1 }, 2430 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2431 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2432 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2433 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2434 }; 2435 static const int xelpd_port_mapping[][3] = { 2436 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2437 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2438 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2439 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2440 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2441 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2442 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2443 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2444 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2445 }; 2446 2447 if (DISPLAY_VER(i915) >= 13) 2448 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2449 ARRAY_SIZE(xelpd_port_mapping[0]), 2450 xelpd_port_mapping, 2451 dvo_port); 2452 else if (IS_ALDERLAKE_S(i915)) 2453 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2454 ARRAY_SIZE(adls_port_mapping[0]), 2455 adls_port_mapping, 2456 dvo_port); 2457 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2458 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2459 ARRAY_SIZE(rkl_port_mapping[0]), 2460 rkl_port_mapping, 2461 dvo_port); 2462 else 2463 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2464 ARRAY_SIZE(port_mapping[0]), 2465 port_mapping, 2466 dvo_port); 2467 } 2468 2469 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2470 { 2471 switch (vbt_max_link_rate) { 2472 default: 2473 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2474 return 0; 2475 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2476 return 2000000; 2477 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2478 return 1350000; 2479 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2480 return 1000000; 2481 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2482 return 810000; 2483 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2484 return 540000; 2485 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2486 return 270000; 2487 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2488 return 162000; 2489 } 2490 } 2491 2492 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2493 { 2494 switch (vbt_max_link_rate) { 2495 default: 2496 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2497 return 810000; 2498 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2499 return 540000; 2500 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2501 return 270000; 2502 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2503 return 162000; 2504 } 2505 } 2506 2507 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2508 { 2509 if (!devdata || devdata->i915->display.vbt.version < 216) 2510 return 0; 2511 2512 if (devdata->i915->display.vbt.version >= 230) 2513 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2514 else 2515 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2516 } 2517 2518 static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2519 { 2520 if (!devdata || devdata->i915->display.vbt.version < 244) 2521 return 0; 2522 2523 return devdata->child.dp_max_lane_count + 1; 2524 } 2525 2526 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2527 enum port port) 2528 { 2529 struct drm_i915_private *i915 = devdata->i915; 2530 bool is_hdmi; 2531 2532 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2533 return; 2534 2535 if (!intel_bios_encoder_supports_dvi(devdata)) 2536 return; 2537 2538 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2539 2540 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2541 is_hdmi ? "/HDMI" : ""); 2542 2543 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2544 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2545 } 2546 2547 static bool 2548 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2549 { 2550 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2551 } 2552 2553 bool 2554 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2555 { 2556 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2557 } 2558 2559 bool 2560 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2561 { 2562 return intel_bios_encoder_supports_dvi(devdata) && 2563 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2564 } 2565 2566 bool 2567 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2568 { 2569 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2570 } 2571 2572 static bool 2573 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2574 { 2575 return intel_bios_encoder_supports_dp(devdata) && 2576 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2577 } 2578 2579 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2580 { 2581 if (!devdata || devdata->i915->display.vbt.version < 158) 2582 return -1; 2583 2584 return devdata->child.hdmi_level_shifter_value; 2585 } 2586 2587 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2588 { 2589 if (!devdata || devdata->i915->display.vbt.version < 204) 2590 return 0; 2591 2592 switch (devdata->child.hdmi_max_data_rate) { 2593 default: 2594 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2595 fallthrough; 2596 case HDMI_MAX_DATA_RATE_PLATFORM: 2597 return 0; 2598 case HDMI_MAX_DATA_RATE_594: 2599 return 594000; 2600 case HDMI_MAX_DATA_RATE_340: 2601 return 340000; 2602 case HDMI_MAX_DATA_RATE_300: 2603 return 300000; 2604 case HDMI_MAX_DATA_RATE_297: 2605 return 297000; 2606 case HDMI_MAX_DATA_RATE_165: 2607 return 165000; 2608 } 2609 } 2610 2611 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2612 { 2613 /* 2614 * On some ICL SKUs port F is not present, but broken VBTs mark 2615 * the port as present. Only try to initialize port F for the 2616 * SKUs that may actually have it. 2617 */ 2618 if (port == PORT_F && IS_ICELAKE(i915)) 2619 return IS_ICL_WITH_PORT_F(i915); 2620 2621 return true; 2622 } 2623 2624 static void print_ddi_port(const struct intel_bios_encoder_data *devdata, 2625 enum port port) 2626 { 2627 struct drm_i915_private *i915 = devdata->i915; 2628 const struct child_device_config *child = &devdata->child; 2629 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt; 2630 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2631 2632 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2633 is_dp = intel_bios_encoder_supports_dp(devdata); 2634 is_crt = intel_bios_encoder_supports_crt(devdata); 2635 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2636 is_edp = intel_bios_encoder_supports_edp(devdata); 2637 2638 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2639 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2640 2641 drm_dbg_kms(&i915->drm, 2642 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2643 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, 2644 HAS_LSPCON(i915) && child->lspcon, 2645 supports_typec_usb, supports_tbt, 2646 devdata->dsc != NULL); 2647 2648 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata); 2649 if (hdmi_level_shift >= 0) { 2650 drm_dbg_kms(&i915->drm, 2651 "Port %c VBT HDMI level shift: %d\n", 2652 port_name(port), hdmi_level_shift); 2653 } 2654 2655 max_tmds_clock = _intel_bios_max_tmds_clock(devdata); 2656 if (max_tmds_clock) 2657 drm_dbg_kms(&i915->drm, 2658 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2659 port_name(port), max_tmds_clock); 2660 2661 /* I_boost config for SKL and above */ 2662 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata); 2663 if (dp_boost_level) 2664 drm_dbg_kms(&i915->drm, 2665 "Port %c VBT (e)DP boost level: %d\n", 2666 port_name(port), dp_boost_level); 2667 2668 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata); 2669 if (hdmi_boost_level) 2670 drm_dbg_kms(&i915->drm, 2671 "Port %c VBT HDMI boost level: %d\n", 2672 port_name(port), hdmi_boost_level); 2673 2674 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata); 2675 if (dp_max_link_rate) 2676 drm_dbg_kms(&i915->drm, 2677 "Port %c VBT DP max link rate: %d\n", 2678 port_name(port), dp_max_link_rate); 2679 } 2680 2681 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2682 { 2683 struct drm_i915_private *i915 = devdata->i915; 2684 const struct child_device_config *child = &devdata->child; 2685 enum port port; 2686 2687 port = dvo_port_to_port(i915, child->dvo_port); 2688 if (port == PORT_NONE) 2689 return; 2690 2691 if (!is_port_valid(i915, port)) { 2692 drm_dbg_kms(&i915->drm, 2693 "VBT reports port %c as supported, but that can't be true: skipping\n", 2694 port_name(port)); 2695 return; 2696 } 2697 2698 if (i915->display.vbt.ports[port]) { 2699 drm_dbg_kms(&i915->drm, 2700 "More than one child device for port %c in VBT, using the first.\n", 2701 port_name(port)); 2702 return; 2703 } 2704 2705 sanitize_device_type(devdata, port); 2706 2707 if (intel_bios_encoder_supports_dvi(devdata)) 2708 sanitize_ddc_pin(devdata, port); 2709 2710 if (intel_bios_encoder_supports_dp(devdata)) 2711 sanitize_aux_ch(devdata, port); 2712 2713 i915->display.vbt.ports[port] = devdata; 2714 } 2715 2716 static bool has_ddi_port_info(struct drm_i915_private *i915) 2717 { 2718 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2719 } 2720 2721 static void parse_ddi_ports(struct drm_i915_private *i915) 2722 { 2723 struct intel_bios_encoder_data *devdata; 2724 enum port port; 2725 2726 if (!has_ddi_port_info(i915)) 2727 return; 2728 2729 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2730 parse_ddi_port(devdata); 2731 2732 for_each_port(port) { 2733 if (i915->display.vbt.ports[port]) 2734 print_ddi_port(i915->display.vbt.ports[port], port); 2735 } 2736 } 2737 2738 static void 2739 parse_general_definitions(struct drm_i915_private *i915) 2740 { 2741 const struct bdb_general_definitions *defs; 2742 struct intel_bios_encoder_data *devdata; 2743 const struct child_device_config *child; 2744 int i, child_device_num; 2745 u8 expected_size; 2746 u16 block_size; 2747 int bus_pin; 2748 2749 defs = find_section(i915, BDB_GENERAL_DEFINITIONS); 2750 if (!defs) { 2751 drm_dbg_kms(&i915->drm, 2752 "No general definition block is found, no devices defined.\n"); 2753 return; 2754 } 2755 2756 block_size = get_blocksize(defs); 2757 if (block_size < sizeof(*defs)) { 2758 drm_dbg_kms(&i915->drm, 2759 "General definitions block too small (%u)\n", 2760 block_size); 2761 return; 2762 } 2763 2764 bus_pin = defs->crt_ddc_gmbus_pin; 2765 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2766 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2767 i915->display.vbt.crt_ddc_pin = bus_pin; 2768 2769 if (i915->display.vbt.version < 106) { 2770 expected_size = 22; 2771 } else if (i915->display.vbt.version < 111) { 2772 expected_size = 27; 2773 } else if (i915->display.vbt.version < 195) { 2774 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2775 } else if (i915->display.vbt.version == 195) { 2776 expected_size = 37; 2777 } else if (i915->display.vbt.version <= 215) { 2778 expected_size = 38; 2779 } else if (i915->display.vbt.version <= 237) { 2780 expected_size = 39; 2781 } else { 2782 expected_size = sizeof(*child); 2783 BUILD_BUG_ON(sizeof(*child) < 39); 2784 drm_dbg(&i915->drm, 2785 "Expected child device config size for VBT version %u not known; assuming %u\n", 2786 i915->display.vbt.version, expected_size); 2787 } 2788 2789 /* Flag an error for unexpected size, but continue anyway. */ 2790 if (defs->child_dev_size != expected_size) 2791 drm_err(&i915->drm, 2792 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2793 defs->child_dev_size, expected_size, i915->display.vbt.version); 2794 2795 /* The legacy sized child device config is the minimum we need. */ 2796 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2797 drm_dbg_kms(&i915->drm, 2798 "Child device config size %u is too small.\n", 2799 defs->child_dev_size); 2800 return; 2801 } 2802 2803 /* get the number of child device */ 2804 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2805 2806 for (i = 0; i < child_device_num; i++) { 2807 child = child_device_ptr(defs, i); 2808 if (!child->device_type) 2809 continue; 2810 2811 drm_dbg_kms(&i915->drm, 2812 "Found VBT child device with type 0x%x\n", 2813 child->device_type); 2814 2815 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2816 if (!devdata) 2817 break; 2818 2819 devdata->i915 = i915; 2820 2821 /* 2822 * Copy as much as we know (sizeof) and is available 2823 * (child_dev_size) of the child device config. Accessing the 2824 * data must depend on VBT version. 2825 */ 2826 memcpy(&devdata->child, child, 2827 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2828 2829 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2830 } 2831 2832 if (list_empty(&i915->display.vbt.display_devices)) 2833 drm_dbg_kms(&i915->drm, 2834 "no child dev is parsed from VBT\n"); 2835 } 2836 2837 /* Common defaults which may be overridden by VBT. */ 2838 static void 2839 init_vbt_defaults(struct drm_i915_private *i915) 2840 { 2841 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2842 2843 /* general features */ 2844 i915->display.vbt.int_tv_support = 1; 2845 i915->display.vbt.int_crt_support = 1; 2846 2847 /* driver features */ 2848 i915->display.vbt.int_lvds_support = 1; 2849 2850 /* Default to using SSC */ 2851 i915->display.vbt.lvds_use_ssc = 1; 2852 /* 2853 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2854 * clock for LVDS. 2855 */ 2856 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2857 !HAS_PCH_SPLIT(i915)); 2858 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2859 i915->display.vbt.lvds_ssc_freq); 2860 } 2861 2862 /* Common defaults which may be overridden by VBT. */ 2863 static void 2864 init_vbt_panel_defaults(struct intel_panel *panel) 2865 { 2866 /* Default to having backlight */ 2867 panel->vbt.backlight.present = true; 2868 2869 /* LFP panel data */ 2870 panel->vbt.lvds_dither = true; 2871 } 2872 2873 /* Defaults to initialize only if there is no VBT. */ 2874 static void 2875 init_vbt_missing_defaults(struct drm_i915_private *i915) 2876 { 2877 enum port port; 2878 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2879 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2880 2881 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2882 return; 2883 2884 for_each_port_masked(port, ports) { 2885 struct intel_bios_encoder_data *devdata; 2886 struct child_device_config *child; 2887 enum phy phy = intel_port_to_phy(i915, port); 2888 2889 /* 2890 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2891 * to detect it. 2892 */ 2893 if (intel_phy_is_tc(i915, phy)) 2894 continue; 2895 2896 /* Create fake child device config */ 2897 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2898 if (!devdata) 2899 break; 2900 2901 devdata->i915 = i915; 2902 child = &devdata->child; 2903 2904 if (port == PORT_F) 2905 child->dvo_port = DVO_PORT_HDMIF; 2906 else if (port == PORT_E) 2907 child->dvo_port = DVO_PORT_HDMIE; 2908 else 2909 child->dvo_port = DVO_PORT_HDMIA + port; 2910 2911 if (port != PORT_A && port != PORT_E) 2912 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2913 2914 if (port != PORT_E) 2915 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2916 2917 if (port == PORT_A) 2918 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2919 2920 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2921 2922 drm_dbg_kms(&i915->drm, 2923 "Generating default VBT child device with type 0x04%x on port %c\n", 2924 child->device_type, port_name(port)); 2925 } 2926 2927 /* Bypass some minimum baseline VBT version checks */ 2928 i915->display.vbt.version = 155; 2929 } 2930 2931 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2932 { 2933 const void *_vbt = vbt; 2934 2935 return _vbt + vbt->bdb_offset; 2936 } 2937 2938 /** 2939 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2940 * @buf: pointer to a buffer to validate 2941 * @size: size of the buffer 2942 * 2943 * Returns true on valid VBT. 2944 */ 2945 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2946 { 2947 const struct vbt_header *vbt = buf; 2948 const struct bdb_header *bdb; 2949 2950 if (!vbt) 2951 return false; 2952 2953 if (sizeof(struct vbt_header) > size) { 2954 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2955 return false; 2956 } 2957 2958 if (memcmp(vbt->signature, "$VBT", 4)) { 2959 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2960 return false; 2961 } 2962 2963 if (vbt->vbt_size > size) { 2964 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2965 return false; 2966 } 2967 2968 size = vbt->vbt_size; 2969 2970 if (range_overflows_t(size_t, 2971 vbt->bdb_offset, 2972 sizeof(struct bdb_header), 2973 size)) { 2974 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 2975 return false; 2976 } 2977 2978 bdb = get_bdb_header(vbt); 2979 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2980 DRM_DEBUG_DRIVER("BDB incomplete\n"); 2981 return false; 2982 } 2983 2984 return vbt; 2985 } 2986 2987 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 2988 { 2989 u32 count, data, found, store = 0; 2990 u32 static_region, oprom_offset; 2991 u32 oprom_size = 0x200000; 2992 u16 vbt_size; 2993 u32 *vbt; 2994 2995 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 2996 static_region &= OPTIONROM_SPI_REGIONID_MASK; 2997 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 2998 2999 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 3000 oprom_offset &= OROM_OFFSET_MASK; 3001 3002 for (count = 0; count < oprom_size; count += 4) { 3003 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count); 3004 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3005 3006 if (data == *((const u32 *)"$VBT")) { 3007 found = oprom_offset + count; 3008 break; 3009 } 3010 } 3011 3012 if (count >= oprom_size) 3013 goto err_not_found; 3014 3015 /* Get VBT size and allocate space for the VBT */ 3016 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + 3017 offsetof(struct vbt_header, vbt_size)); 3018 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3019 vbt_size &= 0xffff; 3020 3021 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3022 if (!vbt) 3023 goto err_not_found; 3024 3025 for (count = 0; count < vbt_size; count += 4) { 3026 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count); 3027 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3028 *(vbt + store++) = data; 3029 } 3030 3031 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3032 goto err_free_vbt; 3033 3034 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3035 3036 return (struct vbt_header *)vbt; 3037 3038 err_free_vbt: 3039 kfree(vbt); 3040 err_not_found: 3041 return NULL; 3042 } 3043 3044 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3045 { 3046 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3047 void __iomem *p = NULL, *oprom; 3048 struct vbt_header *vbt; 3049 u16 vbt_size; 3050 size_t i, size; 3051 3052 oprom = pci_map_rom(pdev, &size); 3053 if (!oprom) 3054 return NULL; 3055 3056 /* Scour memory looking for the VBT signature. */ 3057 for (i = 0; i + 4 < size; i += 4) { 3058 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3059 continue; 3060 3061 p = oprom + i; 3062 size -= i; 3063 break; 3064 } 3065 3066 if (!p) 3067 goto err_unmap_oprom; 3068 3069 if (sizeof(struct vbt_header) > size) { 3070 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3071 goto err_unmap_oprom; 3072 } 3073 3074 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3075 if (vbt_size > size) { 3076 drm_dbg(&i915->drm, 3077 "VBT incomplete (vbt_size overflows)\n"); 3078 goto err_unmap_oprom; 3079 } 3080 3081 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3082 vbt = kmalloc(vbt_size, GFP_KERNEL); 3083 if (!vbt) 3084 goto err_unmap_oprom; 3085 3086 memcpy_fromio(vbt, p, vbt_size); 3087 3088 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3089 goto err_free_vbt; 3090 3091 pci_unmap_rom(pdev, oprom); 3092 3093 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3094 3095 return vbt; 3096 3097 err_free_vbt: 3098 kfree(vbt); 3099 err_unmap_oprom: 3100 pci_unmap_rom(pdev, oprom); 3101 3102 return NULL; 3103 } 3104 3105 /** 3106 * intel_bios_init - find VBT and initialize settings from the BIOS 3107 * @i915: i915 device instance 3108 * 3109 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3110 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3111 * initialize some defaults if the VBT is not present at all. 3112 */ 3113 void intel_bios_init(struct drm_i915_private *i915) 3114 { 3115 const struct vbt_header *vbt = i915->display.opregion.vbt; 3116 struct vbt_header *oprom_vbt = NULL; 3117 const struct bdb_header *bdb; 3118 3119 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3120 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3121 3122 if (!HAS_DISPLAY(i915)) { 3123 drm_dbg_kms(&i915->drm, 3124 "Skipping VBT init due to disabled display.\n"); 3125 return; 3126 } 3127 3128 init_vbt_defaults(i915); 3129 3130 /* 3131 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3132 * PCI mapping 3133 */ 3134 if (!vbt && IS_DGFX(i915)) { 3135 oprom_vbt = spi_oprom_get_vbt(i915); 3136 vbt = oprom_vbt; 3137 } 3138 3139 if (!vbt) { 3140 oprom_vbt = oprom_get_vbt(i915); 3141 vbt = oprom_vbt; 3142 } 3143 3144 if (!vbt) 3145 goto out; 3146 3147 bdb = get_bdb_header(vbt); 3148 i915->display.vbt.version = bdb->version; 3149 3150 drm_dbg_kms(&i915->drm, 3151 "VBT signature \"%.*s\", BDB version %d\n", 3152 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3153 3154 init_bdb_blocks(i915, bdb); 3155 3156 /* Grab useful general definitions */ 3157 parse_general_features(i915); 3158 parse_general_definitions(i915); 3159 parse_driver_features(i915); 3160 3161 /* Depends on child device list */ 3162 parse_compression_parameters(i915); 3163 3164 out: 3165 if (!vbt) { 3166 drm_info(&i915->drm, 3167 "Failed to find VBIOS tables (VBT)\n"); 3168 init_vbt_missing_defaults(i915); 3169 } 3170 3171 /* Further processing on pre-parsed or generated child device data */ 3172 parse_sdvo_device_mapping(i915); 3173 parse_ddi_ports(i915); 3174 3175 kfree(oprom_vbt); 3176 } 3177 3178 void intel_bios_init_panel(struct drm_i915_private *i915, 3179 struct intel_panel *panel, 3180 const struct intel_bios_encoder_data *devdata, 3181 const struct edid *edid) 3182 { 3183 init_vbt_panel_defaults(panel); 3184 3185 panel->vbt.panel_type = get_panel_type(i915, devdata, edid); 3186 3187 parse_panel_options(i915, panel); 3188 parse_generic_dtd(i915, panel); 3189 parse_lfp_data(i915, panel); 3190 parse_lfp_backlight(i915, panel); 3191 parse_sdvo_panel_data(i915, panel); 3192 parse_panel_driver_features(i915, panel); 3193 parse_power_conservation_features(i915, panel); 3194 parse_edp(i915, panel); 3195 parse_psr(i915, panel); 3196 parse_mipi_config(i915, panel); 3197 parse_mipi_sequence(i915, panel); 3198 } 3199 3200 /** 3201 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3202 * @i915: i915 device instance 3203 */ 3204 void intel_bios_driver_remove(struct drm_i915_private *i915) 3205 { 3206 struct intel_bios_encoder_data *devdata, *nd; 3207 struct bdb_block_entry *entry, *ne; 3208 3209 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3210 list_del(&devdata->node); 3211 kfree(devdata->dsc); 3212 kfree(devdata); 3213 } 3214 3215 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3216 list_del(&entry->node); 3217 kfree(entry); 3218 } 3219 } 3220 3221 void intel_bios_fini_panel(struct intel_panel *panel) 3222 { 3223 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3224 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3225 kfree(panel->vbt.lfp_lvds_vbt_mode); 3226 panel->vbt.lfp_lvds_vbt_mode = NULL; 3227 kfree(panel->vbt.dsi.data); 3228 panel->vbt.dsi.data = NULL; 3229 kfree(panel->vbt.dsi.pps); 3230 panel->vbt.dsi.pps = NULL; 3231 kfree(panel->vbt.dsi.config); 3232 panel->vbt.dsi.config = NULL; 3233 kfree(panel->vbt.dsi.deassert_seq); 3234 panel->vbt.dsi.deassert_seq = NULL; 3235 } 3236 3237 /** 3238 * intel_bios_is_tv_present - is integrated TV present in VBT 3239 * @i915: i915 device instance 3240 * 3241 * Return true if TV is present. If no child devices were parsed from VBT, 3242 * assume TV is present. 3243 */ 3244 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3245 { 3246 const struct intel_bios_encoder_data *devdata; 3247 const struct child_device_config *child; 3248 3249 if (!i915->display.vbt.int_tv_support) 3250 return false; 3251 3252 if (list_empty(&i915->display.vbt.display_devices)) 3253 return true; 3254 3255 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3256 child = &devdata->child; 3257 3258 /* 3259 * If the device type is not TV, continue. 3260 */ 3261 switch (child->device_type) { 3262 case DEVICE_TYPE_INT_TV: 3263 case DEVICE_TYPE_TV: 3264 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3265 break; 3266 default: 3267 continue; 3268 } 3269 /* Only when the addin_offset is non-zero, it is regarded 3270 * as present. 3271 */ 3272 if (child->addin_offset) 3273 return true; 3274 } 3275 3276 return false; 3277 } 3278 3279 /** 3280 * intel_bios_is_lvds_present - is LVDS present in VBT 3281 * @i915: i915 device instance 3282 * @i2c_pin: i2c pin for LVDS if present 3283 * 3284 * Return true if LVDS is present. If no child devices were parsed from VBT, 3285 * assume LVDS is present. 3286 */ 3287 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3288 { 3289 const struct intel_bios_encoder_data *devdata; 3290 const struct child_device_config *child; 3291 3292 if (list_empty(&i915->display.vbt.display_devices)) 3293 return true; 3294 3295 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3296 child = &devdata->child; 3297 3298 /* If the device type is not LFP, continue. 3299 * We have to check both the new identifiers as well as the 3300 * old for compatibility with some BIOSes. 3301 */ 3302 if (child->device_type != DEVICE_TYPE_INT_LFP && 3303 child->device_type != DEVICE_TYPE_LFP) 3304 continue; 3305 3306 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3307 *i2c_pin = child->i2c_pin; 3308 3309 /* However, we cannot trust the BIOS writers to populate 3310 * the VBT correctly. Since LVDS requires additional 3311 * information from AIM blocks, a non-zero addin offset is 3312 * a good indicator that the LVDS is actually present. 3313 */ 3314 if (child->addin_offset) 3315 return true; 3316 3317 /* But even then some BIOS writers perform some black magic 3318 * and instantiate the device without reference to any 3319 * additional data. Trust that if the VBT was written into 3320 * the OpRegion then they have validated the LVDS's existence. 3321 */ 3322 if (i915->display.opregion.vbt) 3323 return true; 3324 } 3325 3326 return false; 3327 } 3328 3329 /** 3330 * intel_bios_is_port_present - is the specified digital port present 3331 * @i915: i915 device instance 3332 * @port: port to check 3333 * 3334 * Return true if the device in %port is present. 3335 */ 3336 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3337 { 3338 if (WARN_ON(!has_ddi_port_info(i915))) 3339 return true; 3340 3341 return i915->display.vbt.ports[port]; 3342 } 3343 3344 /** 3345 * intel_bios_is_port_edp - is the device in given port eDP 3346 * @i915: i915 device instance 3347 * @port: port to check 3348 * 3349 * Return true if the device in %port is eDP. 3350 */ 3351 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port) 3352 { 3353 const struct intel_bios_encoder_data *devdata = 3354 intel_bios_encoder_data_lookup(i915, port); 3355 3356 return devdata && intel_bios_encoder_supports_edp(devdata); 3357 } 3358 3359 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3360 { 3361 const struct child_device_config *child = &devdata->child; 3362 3363 if (!intel_bios_encoder_supports_dp(devdata) || 3364 !intel_bios_encoder_supports_hdmi(devdata)) 3365 return false; 3366 3367 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3368 return true; 3369 3370 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3371 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3372 child->aux_channel != 0) 3373 return true; 3374 3375 return false; 3376 } 3377 3378 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915, 3379 enum port port) 3380 { 3381 const struct intel_bios_encoder_data *devdata = 3382 intel_bios_encoder_data_lookup(i915, port); 3383 3384 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata); 3385 } 3386 3387 /** 3388 * intel_bios_is_dsi_present - is DSI present in VBT 3389 * @i915: i915 device instance 3390 * @port: port for DSI if present 3391 * 3392 * Return true if DSI is present, and return the port in %port. 3393 */ 3394 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3395 enum port *port) 3396 { 3397 const struct intel_bios_encoder_data *devdata; 3398 const struct child_device_config *child; 3399 u8 dvo_port; 3400 3401 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3402 child = &devdata->child; 3403 3404 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3405 continue; 3406 3407 dvo_port = child->dvo_port; 3408 3409 if (dvo_port == DVO_PORT_MIPIA || 3410 (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) || 3411 (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) { 3412 if (port) 3413 *port = dvo_port - DVO_PORT_MIPIA; 3414 return true; 3415 } else if (dvo_port == DVO_PORT_MIPIB || 3416 dvo_port == DVO_PORT_MIPIC || 3417 dvo_port == DVO_PORT_MIPID) { 3418 drm_dbg_kms(&i915->drm, 3419 "VBT has unsupported DSI port %c\n", 3420 port_name(dvo_port - DVO_PORT_MIPIA)); 3421 } 3422 } 3423 3424 return false; 3425 } 3426 3427 static void fill_dsc(struct intel_crtc_state *crtc_state, 3428 struct dsc_compression_parameters_entry *dsc, 3429 int dsc_max_bpc) 3430 { 3431 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3432 int bpc = 8; 3433 3434 vdsc_cfg->dsc_version_major = dsc->version_major; 3435 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3436 3437 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3438 bpc = 12; 3439 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3440 bpc = 10; 3441 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3442 bpc = 8; 3443 else 3444 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 3445 dsc_max_bpc); 3446 3447 crtc_state->pipe_bpp = bpc * 3; 3448 3449 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 3450 VBT_DSC_MAX_BPP(dsc->max_bpp)); 3451 3452 /* 3453 * FIXME: This is ugly, and slice count should take DSC engine 3454 * throughput etc. into account. 3455 * 3456 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3457 */ 3458 if (dsc->slices_per_line & BIT(2)) { 3459 crtc_state->dsc.slice_count = 4; 3460 } else if (dsc->slices_per_line & BIT(1)) { 3461 crtc_state->dsc.slice_count = 2; 3462 } else { 3463 /* FIXME */ 3464 if (!(dsc->slices_per_line & BIT(0))) 3465 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 3466 3467 crtc_state->dsc.slice_count = 1; 3468 } 3469 3470 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3471 crtc_state->dsc.slice_count != 0) 3472 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 3473 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3474 crtc_state->dsc.slice_count); 3475 3476 /* 3477 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3478 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3479 */ 3480 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3481 dsc->rc_buffer_size); 3482 3483 /* FIXME: DSI spec says bpc + 1 for this one */ 3484 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3485 3486 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3487 3488 vdsc_cfg->slice_height = dsc->slice_height; 3489 } 3490 3491 /* FIXME: initially DSI specific */ 3492 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3493 struct intel_crtc_state *crtc_state, 3494 int dsc_max_bpc) 3495 { 3496 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3497 const struct intel_bios_encoder_data *devdata; 3498 const struct child_device_config *child; 3499 3500 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3501 child = &devdata->child; 3502 3503 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3504 continue; 3505 3506 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) { 3507 if (!devdata->dsc) 3508 return false; 3509 3510 if (crtc_state) 3511 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3512 3513 return true; 3514 } 3515 } 3516 3517 return false; 3518 } 3519 3520 /** 3521 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 3522 * @i915: i915 device instance 3523 * @port: port to check 3524 * 3525 * Return true if HPD should be inverted for %port. 3526 */ 3527 bool 3528 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 3529 enum port port) 3530 { 3531 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3532 3533 if (drm_WARN_ON_ONCE(&i915->drm, 3534 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915))) 3535 return false; 3536 3537 return devdata && devdata->child.hpd_invert; 3538 } 3539 3540 /** 3541 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 3542 * @i915: i915 device instance 3543 * @port: port to check 3544 * 3545 * Return true if LSPCON is present on this port 3546 */ 3547 bool 3548 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 3549 enum port port) 3550 { 3551 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3552 3553 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon; 3554 } 3555 3556 /** 3557 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 3558 * @i915: i915 device instance 3559 * @port: port to check 3560 * 3561 * Return true if port requires lane reversal 3562 */ 3563 bool 3564 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 3565 enum port port) 3566 { 3567 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3568 3569 return devdata && devdata->child.lane_reversal; 3570 } 3571 3572 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915, 3573 enum port port) 3574 { 3575 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3576 enum aux_ch aux_ch; 3577 3578 if (!devdata || !devdata->child.aux_channel) { 3579 aux_ch = (enum aux_ch)port; 3580 3581 drm_dbg_kms(&i915->drm, 3582 "using AUX %c for port %c (platform default)\n", 3583 aux_ch_name(aux_ch), port_name(port)); 3584 return aux_ch; 3585 } 3586 3587 /* 3588 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3589 * map to DDI A,B,TC1,TC2 respectively. 3590 * 3591 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3592 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3593 */ 3594 switch (devdata->child.aux_channel) { 3595 case DP_AUX_A: 3596 aux_ch = AUX_CH_A; 3597 break; 3598 case DP_AUX_B: 3599 if (IS_ALDERLAKE_S(i915)) 3600 aux_ch = AUX_CH_USBC1; 3601 else 3602 aux_ch = AUX_CH_B; 3603 break; 3604 case DP_AUX_C: 3605 if (IS_ALDERLAKE_S(i915)) 3606 aux_ch = AUX_CH_USBC2; 3607 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3608 aux_ch = AUX_CH_USBC1; 3609 else 3610 aux_ch = AUX_CH_C; 3611 break; 3612 case DP_AUX_D: 3613 if (DISPLAY_VER(i915) >= 13) 3614 aux_ch = AUX_CH_D_XELPD; 3615 else if (IS_ALDERLAKE_S(i915)) 3616 aux_ch = AUX_CH_USBC3; 3617 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3618 aux_ch = AUX_CH_USBC2; 3619 else 3620 aux_ch = AUX_CH_D; 3621 break; 3622 case DP_AUX_E: 3623 if (DISPLAY_VER(i915) >= 13) 3624 aux_ch = AUX_CH_E_XELPD; 3625 else if (IS_ALDERLAKE_S(i915)) 3626 aux_ch = AUX_CH_USBC4; 3627 else 3628 aux_ch = AUX_CH_E; 3629 break; 3630 case DP_AUX_F: 3631 if (DISPLAY_VER(i915) >= 13) 3632 aux_ch = AUX_CH_USBC1; 3633 else 3634 aux_ch = AUX_CH_F; 3635 break; 3636 case DP_AUX_G: 3637 if (DISPLAY_VER(i915) >= 13) 3638 aux_ch = AUX_CH_USBC2; 3639 else 3640 aux_ch = AUX_CH_G; 3641 break; 3642 case DP_AUX_H: 3643 if (DISPLAY_VER(i915) >= 13) 3644 aux_ch = AUX_CH_USBC3; 3645 else 3646 aux_ch = AUX_CH_H; 3647 break; 3648 case DP_AUX_I: 3649 if (DISPLAY_VER(i915) >= 13) 3650 aux_ch = AUX_CH_USBC4; 3651 else 3652 aux_ch = AUX_CH_I; 3653 break; 3654 default: 3655 MISSING_CASE(devdata->child.aux_channel); 3656 aux_ch = AUX_CH_A; 3657 break; 3658 } 3659 3660 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n", 3661 aux_ch_name(aux_ch), port_name(port)); 3662 3663 return aux_ch; 3664 } 3665 3666 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 3667 { 3668 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3669 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3670 3671 return _intel_bios_max_tmds_clock(devdata); 3672 } 3673 3674 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 3675 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 3676 { 3677 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3678 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3679 3680 return _intel_bios_hdmi_level_shift(devdata); 3681 } 3682 3683 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3684 { 3685 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3686 return 0; 3687 3688 return translate_iboost(devdata->child.dp_iboost_level); 3689 } 3690 3691 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3692 { 3693 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3694 return 0; 3695 3696 return translate_iboost(devdata->child.hdmi_iboost_level); 3697 } 3698 3699 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 3700 { 3701 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3702 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3703 3704 return _intel_bios_dp_max_link_rate(devdata); 3705 } 3706 3707 int intel_bios_dp_max_lane_count(struct intel_encoder *encoder) 3708 { 3709 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3710 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3711 3712 return _intel_bios_dp_max_lane_count(devdata); 3713 } 3714 3715 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 3716 { 3717 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3718 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3719 3720 if (!devdata || !devdata->child.ddc_pin) 3721 return 0; 3722 3723 return map_ddc_pin(i915, devdata->child.ddc_pin); 3724 } 3725 3726 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3727 { 3728 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3729 } 3730 3731 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3732 { 3733 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3734 } 3735 3736 const struct intel_bios_encoder_data * 3737 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3738 { 3739 return i915->display.vbt.ports[port]; 3740 } 3741