1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_dp_helper.h> 29 30 #include "display/intel_display.h" 31 #include "display/intel_display_types.h" 32 #include "display/intel_gmbus.h" 33 34 #include "i915_drv.h" 35 36 #define _INTEL_BIOS_PRIVATE 37 #include "intel_vbt_defs.h" 38 39 /** 40 * DOC: Video BIOS Table (VBT) 41 * 42 * The Video BIOS Table, or VBT, provides platform and board specific 43 * configuration information to the driver that is not discoverable or available 44 * through other means. The configuration is mostly related to display 45 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 46 * the PCI ROM. 47 * 48 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 49 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 50 * contain the actual configuration information. The VBT Header, and thus the 51 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 52 * BDB Header. The data blocks are concatenated after the BDB Header. The data 53 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 54 * data. (Block 53, the MIPI Sequence Block is an exception.) 55 * 56 * The driver parses the VBT during load. The relevant information is stored in 57 * driver private data for ease of use, and the actual VBT is not read after 58 * that. 59 */ 60 61 /* Wrapper for VBT child device config */ 62 struct display_device_data { 63 struct child_device_config child; 64 struct dsc_compression_parameters_entry *dsc; 65 struct list_head node; 66 }; 67 68 #define SLAVE_ADDR1 0x70 69 #define SLAVE_ADDR2 0x72 70 71 /* Get BDB block size given a pointer to Block ID. */ 72 static u32 _get_blocksize(const u8 *block_base) 73 { 74 /* The MIPI Sequence Block v3+ has a separate size field. */ 75 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 76 return *((const u32 *)(block_base + 4)); 77 else 78 return *((const u16 *)(block_base + 1)); 79 } 80 81 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 82 static u32 get_blocksize(const void *block_data) 83 { 84 return _get_blocksize(block_data - 3); 85 } 86 87 static const void * 88 find_section(const void *_bdb, enum bdb_block_id section_id) 89 { 90 const struct bdb_header *bdb = _bdb; 91 const u8 *base = _bdb; 92 int index = 0; 93 u32 total, current_size; 94 enum bdb_block_id current_id; 95 96 /* skip to first section */ 97 index += bdb->header_size; 98 total = bdb->bdb_size; 99 100 /* walk the sections looking for section_id */ 101 while (index + 3 < total) { 102 current_id = *(base + index); 103 current_size = _get_blocksize(base + index); 104 index += 3; 105 106 if (index + current_size > total) 107 return NULL; 108 109 if (current_id == section_id) 110 return base + index; 111 112 index += current_size; 113 } 114 115 return NULL; 116 } 117 118 static void 119 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 120 const struct lvds_dvo_timing *dvo_timing) 121 { 122 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 123 dvo_timing->hactive_lo; 124 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 125 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 126 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 127 ((dvo_timing->hsync_pulse_width_hi << 8) | 128 dvo_timing->hsync_pulse_width_lo); 129 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 130 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 131 132 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 133 dvo_timing->vactive_lo; 134 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 135 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 136 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 137 ((dvo_timing->vsync_pulse_width_hi << 4) | 138 dvo_timing->vsync_pulse_width_lo); 139 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 140 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 141 panel_fixed_mode->clock = dvo_timing->clock * 10; 142 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 143 144 if (dvo_timing->hsync_positive) 145 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 146 else 147 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 148 149 if (dvo_timing->vsync_positive) 150 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 151 else 152 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 153 154 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 155 dvo_timing->himage_lo; 156 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 157 dvo_timing->vimage_lo; 158 159 /* Some VBTs have bogus h/vtotal values */ 160 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 161 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 162 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 163 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 164 165 drm_mode_set_name(panel_fixed_mode); 166 } 167 168 static const struct lvds_dvo_timing * 169 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data, 170 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs, 171 int index) 172 { 173 /* 174 * the size of fp_timing varies on the different platform. 175 * So calculate the DVO timing relative offset in LVDS data 176 * entry to get the DVO timing entry 177 */ 178 179 int lfp_data_size = 180 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset - 181 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset; 182 int dvo_timing_offset = 183 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset - 184 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset; 185 char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index; 186 187 return (struct lvds_dvo_timing *)(entry + dvo_timing_offset); 188 } 189 190 /* get lvds_fp_timing entry 191 * this function may return NULL if the corresponding entry is invalid 192 */ 193 static const struct lvds_fp_timing * 194 get_lvds_fp_timing(const struct bdb_header *bdb, 195 const struct bdb_lvds_lfp_data *data, 196 const struct bdb_lvds_lfp_data_ptrs *ptrs, 197 int index) 198 { 199 size_t data_ofs = (const u8 *)data - (const u8 *)bdb; 200 u16 data_size = ((const u16 *)data)[-1]; /* stored in header */ 201 size_t ofs; 202 203 if (index >= ARRAY_SIZE(ptrs->ptr)) 204 return NULL; 205 ofs = ptrs->ptr[index].fp_timing_offset; 206 if (ofs < data_ofs || 207 ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size) 208 return NULL; 209 return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs); 210 } 211 212 /* Parse general panel options */ 213 static void 214 parse_panel_options(struct drm_i915_private *dev_priv, 215 const struct bdb_header *bdb) 216 { 217 const struct bdb_lvds_options *lvds_options; 218 int panel_type; 219 int drrs_mode; 220 int ret; 221 222 lvds_options = find_section(bdb, BDB_LVDS_OPTIONS); 223 if (!lvds_options) 224 return; 225 226 dev_priv->vbt.lvds_dither = lvds_options->pixel_dither; 227 228 ret = intel_opregion_get_panel_type(dev_priv); 229 if (ret >= 0) { 230 drm_WARN_ON(&dev_priv->drm, ret > 0xf); 231 panel_type = ret; 232 drm_dbg_kms(&dev_priv->drm, "Panel type: %d (OpRegion)\n", 233 panel_type); 234 } else { 235 if (lvds_options->panel_type > 0xf) { 236 drm_dbg_kms(&dev_priv->drm, 237 "Invalid VBT panel type 0x%x\n", 238 lvds_options->panel_type); 239 return; 240 } 241 panel_type = lvds_options->panel_type; 242 drm_dbg_kms(&dev_priv->drm, "Panel type: %d (VBT)\n", 243 panel_type); 244 } 245 246 dev_priv->vbt.panel_type = panel_type; 247 248 drrs_mode = (lvds_options->dps_panel_type_bits 249 >> (panel_type * 2)) & MODE_MASK; 250 /* 251 * VBT has static DRRS = 0 and seamless DRRS = 2. 252 * The below piece of code is required to adjust vbt.drrs_type 253 * to match the enum drrs_support_type. 254 */ 255 switch (drrs_mode) { 256 case 0: 257 dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT; 258 drm_dbg_kms(&dev_priv->drm, "DRRS supported mode is static\n"); 259 break; 260 case 2: 261 dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT; 262 drm_dbg_kms(&dev_priv->drm, 263 "DRRS supported mode is seamless\n"); 264 break; 265 default: 266 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; 267 drm_dbg_kms(&dev_priv->drm, 268 "DRRS not supported (VBT input)\n"); 269 break; 270 } 271 } 272 273 /* Try to find integrated panel timing data */ 274 static void 275 parse_lfp_panel_dtd(struct drm_i915_private *dev_priv, 276 const struct bdb_header *bdb) 277 { 278 const struct bdb_lvds_lfp_data *lvds_lfp_data; 279 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs; 280 const struct lvds_dvo_timing *panel_dvo_timing; 281 const struct lvds_fp_timing *fp_timing; 282 struct drm_display_mode *panel_fixed_mode; 283 int panel_type = dev_priv->vbt.panel_type; 284 285 lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA); 286 if (!lvds_lfp_data) 287 return; 288 289 lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS); 290 if (!lvds_lfp_data_ptrs) 291 return; 292 293 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 294 lvds_lfp_data_ptrs, 295 panel_type); 296 297 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 298 if (!panel_fixed_mode) 299 return; 300 301 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 302 303 dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 304 305 drm_dbg_kms(&dev_priv->drm, 306 "Found panel mode in BIOS VBT legacy lfp table:\n"); 307 drm_mode_debug_printmodeline(panel_fixed_mode); 308 309 fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data, 310 lvds_lfp_data_ptrs, 311 panel_type); 312 if (fp_timing) { 313 /* check the resolution, just to be sure */ 314 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 315 fp_timing->y_res == panel_fixed_mode->vdisplay) { 316 dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 317 drm_dbg_kms(&dev_priv->drm, 318 "VBT initial LVDS value %x\n", 319 dev_priv->vbt.bios_lvds_val); 320 } 321 } 322 } 323 324 static void 325 parse_generic_dtd(struct drm_i915_private *dev_priv, 326 const struct bdb_header *bdb) 327 { 328 const struct bdb_generic_dtd *generic_dtd; 329 const struct generic_dtd_entry *dtd; 330 struct drm_display_mode *panel_fixed_mode; 331 int num_dtd; 332 333 generic_dtd = find_section(bdb, BDB_GENERIC_DTD); 334 if (!generic_dtd) 335 return; 336 337 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 338 drm_err(&dev_priv->drm, "GDTD size %u is too small.\n", 339 generic_dtd->gdtd_size); 340 return; 341 } else if (generic_dtd->gdtd_size != 342 sizeof(struct generic_dtd_entry)) { 343 drm_err(&dev_priv->drm, "Unexpected GDTD size %u\n", 344 generic_dtd->gdtd_size); 345 /* DTD has unknown fields, but keep going */ 346 } 347 348 num_dtd = (get_blocksize(generic_dtd) - 349 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 350 if (dev_priv->vbt.panel_type >= num_dtd) { 351 drm_err(&dev_priv->drm, 352 "Panel type %d not found in table of %d DTD's\n", 353 dev_priv->vbt.panel_type, num_dtd); 354 return; 355 } 356 357 dtd = &generic_dtd->dtd[dev_priv->vbt.panel_type]; 358 359 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 360 if (!panel_fixed_mode) 361 return; 362 363 panel_fixed_mode->hdisplay = dtd->hactive; 364 panel_fixed_mode->hsync_start = 365 panel_fixed_mode->hdisplay + dtd->hfront_porch; 366 panel_fixed_mode->hsync_end = 367 panel_fixed_mode->hsync_start + dtd->hsync; 368 panel_fixed_mode->htotal = 369 panel_fixed_mode->hdisplay + dtd->hblank; 370 371 panel_fixed_mode->vdisplay = dtd->vactive; 372 panel_fixed_mode->vsync_start = 373 panel_fixed_mode->vdisplay + dtd->vfront_porch; 374 panel_fixed_mode->vsync_end = 375 panel_fixed_mode->vsync_start + dtd->vsync; 376 panel_fixed_mode->vtotal = 377 panel_fixed_mode->vdisplay + dtd->vblank; 378 379 panel_fixed_mode->clock = dtd->pixel_clock; 380 panel_fixed_mode->width_mm = dtd->width_mm; 381 panel_fixed_mode->height_mm = dtd->height_mm; 382 383 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 384 drm_mode_set_name(panel_fixed_mode); 385 386 if (dtd->hsync_positive_polarity) 387 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 388 else 389 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 390 391 if (dtd->vsync_positive_polarity) 392 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 393 else 394 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 395 396 drm_dbg_kms(&dev_priv->drm, 397 "Found panel mode in BIOS VBT generic dtd table:\n"); 398 drm_mode_debug_printmodeline(panel_fixed_mode); 399 400 dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 401 } 402 403 static void 404 parse_panel_dtd(struct drm_i915_private *dev_priv, 405 const struct bdb_header *bdb) 406 { 407 /* 408 * Older VBTs provided provided DTD information for internal displays 409 * through the "LFP panel DTD" block (42). As of VBT revision 229, 410 * that block is now deprecated and DTD information should be provided 411 * via a newer "generic DTD" block (58). Just to be safe, we'll 412 * try the new generic DTD block first on VBT >= 229, but still fall 413 * back to trying the old LFP block if that fails. 414 */ 415 if (bdb->version >= 229) 416 parse_generic_dtd(dev_priv, bdb); 417 if (!dev_priv->vbt.lfp_lvds_vbt_mode) 418 parse_lfp_panel_dtd(dev_priv, bdb); 419 } 420 421 static void 422 parse_lfp_backlight(struct drm_i915_private *dev_priv, 423 const struct bdb_header *bdb) 424 { 425 const struct bdb_lfp_backlight_data *backlight_data; 426 const struct lfp_backlight_data_entry *entry; 427 int panel_type = dev_priv->vbt.panel_type; 428 u16 level; 429 430 backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT); 431 if (!backlight_data) 432 return; 433 434 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 435 drm_dbg_kms(&dev_priv->drm, 436 "Unsupported backlight data entry size %u\n", 437 backlight_data->entry_size); 438 return; 439 } 440 441 entry = &backlight_data->data[panel_type]; 442 443 dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 444 if (!dev_priv->vbt.backlight.present) { 445 drm_dbg_kms(&dev_priv->drm, 446 "PWM backlight not present in VBT (type %u)\n", 447 entry->type); 448 return; 449 } 450 451 dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 452 if (bdb->version >= 191 && 453 get_blocksize(backlight_data) >= sizeof(*backlight_data)) { 454 const struct lfp_backlight_control_method *method; 455 456 method = &backlight_data->backlight_control[panel_type]; 457 dev_priv->vbt.backlight.type = method->type; 458 dev_priv->vbt.backlight.controller = method->controller; 459 } 460 461 dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 462 dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm; 463 464 if (bdb->version >= 234) { 465 u16 min_level; 466 bool scale; 467 468 level = backlight_data->brightness_level[panel_type].level; 469 min_level = backlight_data->brightness_min_level[panel_type].level; 470 471 if (bdb->version >= 236) 472 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 473 else 474 scale = level > 255; 475 476 if (scale) 477 min_level = min_level / 255; 478 479 if (min_level > 255) { 480 drm_warn(&dev_priv->drm, "Brightness min level > 255\n"); 481 level = 255; 482 } 483 dev_priv->vbt.backlight.min_brightness = min_level; 484 } else { 485 level = backlight_data->level[panel_type]; 486 dev_priv->vbt.backlight.min_brightness = entry->min_brightness; 487 } 488 489 drm_dbg_kms(&dev_priv->drm, 490 "VBT backlight PWM modulation frequency %u Hz, " 491 "active %s, min brightness %u, level %u, controller %u\n", 492 dev_priv->vbt.backlight.pwm_freq_hz, 493 dev_priv->vbt.backlight.active_low_pwm ? "low" : "high", 494 dev_priv->vbt.backlight.min_brightness, 495 level, 496 dev_priv->vbt.backlight.controller); 497 } 498 499 /* Try to find sdvo panel data */ 500 static void 501 parse_sdvo_panel_data(struct drm_i915_private *dev_priv, 502 const struct bdb_header *bdb) 503 { 504 const struct bdb_sdvo_panel_dtds *dtds; 505 struct drm_display_mode *panel_fixed_mode; 506 int index; 507 508 index = dev_priv->params.vbt_sdvo_panel_type; 509 if (index == -2) { 510 drm_dbg_kms(&dev_priv->drm, 511 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 512 return; 513 } 514 515 if (index == -1) { 516 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 517 518 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS); 519 if (!sdvo_lvds_options) 520 return; 521 522 index = sdvo_lvds_options->panel_type; 523 } 524 525 dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS); 526 if (!dtds) 527 return; 528 529 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 530 if (!panel_fixed_mode) 531 return; 532 533 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 534 535 dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 536 537 drm_dbg_kms(&dev_priv->drm, 538 "Found SDVO panel mode in BIOS VBT tables:\n"); 539 drm_mode_debug_printmodeline(panel_fixed_mode); 540 } 541 542 static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv, 543 bool alternate) 544 { 545 switch (INTEL_GEN(dev_priv)) { 546 case 2: 547 return alternate ? 66667 : 48000; 548 case 3: 549 case 4: 550 return alternate ? 100000 : 96000; 551 default: 552 return alternate ? 100000 : 120000; 553 } 554 } 555 556 static void 557 parse_general_features(struct drm_i915_private *dev_priv, 558 const struct bdb_header *bdb) 559 { 560 const struct bdb_general_features *general; 561 562 general = find_section(bdb, BDB_GENERAL_FEATURES); 563 if (!general) 564 return; 565 566 dev_priv->vbt.int_tv_support = general->int_tv_support; 567 /* int_crt_support can't be trusted on earlier platforms */ 568 if (bdb->version >= 155 && 569 (HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv))) 570 dev_priv->vbt.int_crt_support = general->int_crt_support; 571 dev_priv->vbt.lvds_use_ssc = general->enable_ssc; 572 dev_priv->vbt.lvds_ssc_freq = 573 intel_bios_ssc_frequency(dev_priv, general->ssc_freq); 574 dev_priv->vbt.display_clock_mode = general->display_clock_mode; 575 dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 576 if (bdb->version >= 181) { 577 dev_priv->vbt.orientation = general->rotate_180 ? 578 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 579 DRM_MODE_PANEL_ORIENTATION_NORMAL; 580 } else { 581 dev_priv->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 582 } 583 drm_dbg_kms(&dev_priv->drm, 584 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 585 dev_priv->vbt.int_tv_support, 586 dev_priv->vbt.int_crt_support, 587 dev_priv->vbt.lvds_use_ssc, 588 dev_priv->vbt.lvds_ssc_freq, 589 dev_priv->vbt.display_clock_mode, 590 dev_priv->vbt.fdi_rx_polarity_inverted); 591 } 592 593 static const struct child_device_config * 594 child_device_ptr(const struct bdb_general_definitions *defs, int i) 595 { 596 return (const void *) &defs->devices[i * defs->child_dev_size]; 597 } 598 599 static void 600 parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version) 601 { 602 struct sdvo_device_mapping *mapping; 603 const struct display_device_data *devdata; 604 const struct child_device_config *child; 605 int count = 0; 606 607 /* 608 * Only parse SDVO mappings on gens that could have SDVO. This isn't 609 * accurate and doesn't have to be, as long as it's not too strict. 610 */ 611 if (!IS_GEN_RANGE(dev_priv, 3, 7)) { 612 drm_dbg_kms(&dev_priv->drm, "Skipping SDVO device mapping\n"); 613 return; 614 } 615 616 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 617 child = &devdata->child; 618 619 if (child->slave_addr != SLAVE_ADDR1 && 620 child->slave_addr != SLAVE_ADDR2) { 621 /* 622 * If the slave address is neither 0x70 nor 0x72, 623 * it is not a SDVO device. Skip it. 624 */ 625 continue; 626 } 627 if (child->dvo_port != DEVICE_PORT_DVOB && 628 child->dvo_port != DEVICE_PORT_DVOC) { 629 /* skip the incorrect SDVO port */ 630 drm_dbg_kms(&dev_priv->drm, 631 "Incorrect SDVO port. Skip it\n"); 632 continue; 633 } 634 drm_dbg_kms(&dev_priv->drm, 635 "the SDVO device with slave addr %2x is found on" 636 " %s port\n", 637 child->slave_addr, 638 (child->dvo_port == DEVICE_PORT_DVOB) ? 639 "SDVOB" : "SDVOC"); 640 mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1]; 641 if (!mapping->initialized) { 642 mapping->dvo_port = child->dvo_port; 643 mapping->slave_addr = child->slave_addr; 644 mapping->dvo_wiring = child->dvo_wiring; 645 mapping->ddc_pin = child->ddc_pin; 646 mapping->i2c_pin = child->i2c_pin; 647 mapping->initialized = 1; 648 drm_dbg_kms(&dev_priv->drm, 649 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 650 mapping->dvo_port, mapping->slave_addr, 651 mapping->dvo_wiring, mapping->ddc_pin, 652 mapping->i2c_pin); 653 } else { 654 drm_dbg_kms(&dev_priv->drm, 655 "Maybe one SDVO port is shared by " 656 "two SDVO device.\n"); 657 } 658 if (child->slave2_addr) { 659 /* Maybe this is a SDVO device with multiple inputs */ 660 /* And the mapping info is not added */ 661 drm_dbg_kms(&dev_priv->drm, 662 "there exists the slave2_addr. Maybe this" 663 " is a SDVO device with multiple inputs.\n"); 664 } 665 count++; 666 } 667 668 if (!count) { 669 /* No SDVO device info is found */ 670 drm_dbg_kms(&dev_priv->drm, 671 "No SDVO device info is found in VBT\n"); 672 } 673 } 674 675 static void 676 parse_driver_features(struct drm_i915_private *dev_priv, 677 const struct bdb_header *bdb) 678 { 679 const struct bdb_driver_features *driver; 680 681 driver = find_section(bdb, BDB_DRIVER_FEATURES); 682 if (!driver) 683 return; 684 685 if (INTEL_GEN(dev_priv) >= 5) { 686 /* 687 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 688 * to mean "eDP". The VBT spec doesn't agree with that 689 * interpretation, but real world VBTs seem to. 690 */ 691 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 692 dev_priv->vbt.int_lvds_support = 0; 693 } else { 694 /* 695 * FIXME it's not clear which BDB version has the LVDS config 696 * bits defined. Revision history in the VBT spec says: 697 * "0.92 | Add two definitions for VBT value of LVDS Active 698 * Config (00b and 11b values defined) | 06/13/2005" 699 * but does not the specify the BDB version. 700 * 701 * So far version 134 (on i945gm) is the oldest VBT observed 702 * in the wild with the bits correctly populated. Version 703 * 108 (on i85x) does not have the bits correctly populated. 704 */ 705 if (bdb->version >= 134 && 706 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 707 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 708 dev_priv->vbt.int_lvds_support = 0; 709 } 710 711 if (bdb->version < 228) { 712 drm_dbg_kms(&dev_priv->drm, "DRRS State Enabled:%d\n", 713 driver->drrs_enabled); 714 /* 715 * If DRRS is not supported, drrs_type has to be set to 0. 716 * This is because, VBT is configured in such a way that 717 * static DRRS is 0 and DRRS not supported is represented by 718 * driver->drrs_enabled=false 719 */ 720 if (!driver->drrs_enabled) 721 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; 722 723 dev_priv->vbt.psr.enable = driver->psr_enabled; 724 } 725 } 726 727 static void 728 parse_power_conservation_features(struct drm_i915_private *dev_priv, 729 const struct bdb_header *bdb) 730 { 731 const struct bdb_lfp_power *power; 732 u8 panel_type = dev_priv->vbt.panel_type; 733 734 if (bdb->version < 228) 735 return; 736 737 power = find_section(bdb, BDB_LFP_POWER); 738 if (!power) 739 return; 740 741 dev_priv->vbt.psr.enable = power->psr & BIT(panel_type); 742 743 /* 744 * If DRRS is not supported, drrs_type has to be set to 0. 745 * This is because, VBT is configured in such a way that 746 * static DRRS is 0 and DRRS not supported is represented by 747 * power->drrs & BIT(panel_type)=false 748 */ 749 if (!(power->drrs & BIT(panel_type))) 750 dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; 751 752 if (bdb->version >= 232) 753 dev_priv->vbt.edp.hobl = power->hobl & BIT(panel_type); 754 } 755 756 static void 757 parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) 758 { 759 const struct bdb_edp *edp; 760 const struct edp_power_seq *edp_pps; 761 const struct edp_fast_link_params *edp_link_params; 762 int panel_type = dev_priv->vbt.panel_type; 763 764 edp = find_section(bdb, BDB_EDP); 765 if (!edp) 766 return; 767 768 switch ((edp->color_depth >> (panel_type * 2)) & 3) { 769 case EDP_18BPP: 770 dev_priv->vbt.edp.bpp = 18; 771 break; 772 case EDP_24BPP: 773 dev_priv->vbt.edp.bpp = 24; 774 break; 775 case EDP_30BPP: 776 dev_priv->vbt.edp.bpp = 30; 777 break; 778 } 779 780 /* Get the eDP sequencing and link info */ 781 edp_pps = &edp->power_seqs[panel_type]; 782 edp_link_params = &edp->fast_link_params[panel_type]; 783 784 dev_priv->vbt.edp.pps = *edp_pps; 785 786 switch (edp_link_params->rate) { 787 case EDP_RATE_1_62: 788 dev_priv->vbt.edp.rate = DP_LINK_BW_1_62; 789 break; 790 case EDP_RATE_2_7: 791 dev_priv->vbt.edp.rate = DP_LINK_BW_2_7; 792 break; 793 default: 794 drm_dbg_kms(&dev_priv->drm, 795 "VBT has unknown eDP link rate value %u\n", 796 edp_link_params->rate); 797 break; 798 } 799 800 switch (edp_link_params->lanes) { 801 case EDP_LANE_1: 802 dev_priv->vbt.edp.lanes = 1; 803 break; 804 case EDP_LANE_2: 805 dev_priv->vbt.edp.lanes = 2; 806 break; 807 case EDP_LANE_4: 808 dev_priv->vbt.edp.lanes = 4; 809 break; 810 default: 811 drm_dbg_kms(&dev_priv->drm, 812 "VBT has unknown eDP lane count value %u\n", 813 edp_link_params->lanes); 814 break; 815 } 816 817 switch (edp_link_params->preemphasis) { 818 case EDP_PREEMPHASIS_NONE: 819 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 820 break; 821 case EDP_PREEMPHASIS_3_5dB: 822 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 823 break; 824 case EDP_PREEMPHASIS_6dB: 825 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 826 break; 827 case EDP_PREEMPHASIS_9_5dB: 828 dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 829 break; 830 default: 831 drm_dbg_kms(&dev_priv->drm, 832 "VBT has unknown eDP pre-emphasis value %u\n", 833 edp_link_params->preemphasis); 834 break; 835 } 836 837 switch (edp_link_params->vswing) { 838 case EDP_VSWING_0_4V: 839 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 840 break; 841 case EDP_VSWING_0_6V: 842 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 843 break; 844 case EDP_VSWING_0_8V: 845 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 846 break; 847 case EDP_VSWING_1_2V: 848 dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 849 break; 850 default: 851 drm_dbg_kms(&dev_priv->drm, 852 "VBT has unknown eDP voltage swing value %u\n", 853 edp_link_params->vswing); 854 break; 855 } 856 857 if (bdb->version >= 173) { 858 u8 vswing; 859 860 /* Don't read from VBT if module parameter has valid value*/ 861 if (dev_priv->params.edp_vswing) { 862 dev_priv->vbt.edp.low_vswing = 863 dev_priv->params.edp_vswing == 1; 864 } else { 865 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 866 dev_priv->vbt.edp.low_vswing = vswing == 0; 867 } 868 } 869 } 870 871 static void 872 parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb) 873 { 874 const struct bdb_psr *psr; 875 const struct psr_table *psr_table; 876 int panel_type = dev_priv->vbt.panel_type; 877 878 psr = find_section(bdb, BDB_PSR); 879 if (!psr) { 880 drm_dbg_kms(&dev_priv->drm, "No PSR BDB found.\n"); 881 return; 882 } 883 884 psr_table = &psr->psr_table[panel_type]; 885 886 dev_priv->vbt.psr.full_link = psr_table->full_link; 887 dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 888 889 /* Allowed VBT values goes from 0 to 15 */ 890 dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 891 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 892 893 switch (psr_table->lines_to_wait) { 894 case 0: 895 dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT; 896 break; 897 case 1: 898 dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT; 899 break; 900 case 2: 901 dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT; 902 break; 903 case 3: 904 dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT; 905 break; 906 default: 907 drm_dbg_kms(&dev_priv->drm, 908 "VBT has unknown PSR lines to wait %u\n", 909 psr_table->lines_to_wait); 910 break; 911 } 912 913 /* 914 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 915 * Old decimal value is wake up time in multiples of 100 us. 916 */ 917 if (bdb->version >= 205 && 918 (IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) || 919 INTEL_GEN(dev_priv) >= 10)) { 920 switch (psr_table->tp1_wakeup_time) { 921 case 0: 922 dev_priv->vbt.psr.tp1_wakeup_time_us = 500; 923 break; 924 case 1: 925 dev_priv->vbt.psr.tp1_wakeup_time_us = 100; 926 break; 927 case 3: 928 dev_priv->vbt.psr.tp1_wakeup_time_us = 0; 929 break; 930 default: 931 drm_dbg_kms(&dev_priv->drm, 932 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 933 psr_table->tp1_wakeup_time); 934 fallthrough; 935 case 2: 936 dev_priv->vbt.psr.tp1_wakeup_time_us = 2500; 937 break; 938 } 939 940 switch (psr_table->tp2_tp3_wakeup_time) { 941 case 0: 942 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500; 943 break; 944 case 1: 945 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100; 946 break; 947 case 3: 948 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0; 949 break; 950 default: 951 drm_dbg_kms(&dev_priv->drm, 952 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 953 psr_table->tp2_tp3_wakeup_time); 954 fallthrough; 955 case 2: 956 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 957 break; 958 } 959 } else { 960 dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 961 dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 962 } 963 964 if (bdb->version >= 226) { 965 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 966 967 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3; 968 switch (wakeup_time) { 969 case 0: 970 wakeup_time = 500; 971 break; 972 case 1: 973 wakeup_time = 100; 974 break; 975 case 3: 976 wakeup_time = 50; 977 break; 978 default: 979 case 2: 980 wakeup_time = 2500; 981 break; 982 } 983 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 984 } else { 985 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 986 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us = dev_priv->vbt.psr.tp2_tp3_wakeup_time_us; 987 } 988 } 989 990 static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv, 991 u16 version, enum port port) 992 { 993 if (!dev_priv->vbt.dsi.config->dual_link || version < 197) { 994 dev_priv->vbt.dsi.bl_ports = BIT(port); 995 if (dev_priv->vbt.dsi.config->cabc_supported) 996 dev_priv->vbt.dsi.cabc_ports = BIT(port); 997 998 return; 999 } 1000 1001 switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) { 1002 case DL_DCS_PORT_A: 1003 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A); 1004 break; 1005 case DL_DCS_PORT_C: 1006 dev_priv->vbt.dsi.bl_ports = BIT(PORT_C); 1007 break; 1008 default: 1009 case DL_DCS_PORT_A_AND_C: 1010 dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C); 1011 break; 1012 } 1013 1014 if (!dev_priv->vbt.dsi.config->cabc_supported) 1015 return; 1016 1017 switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) { 1018 case DL_DCS_PORT_A: 1019 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A); 1020 break; 1021 case DL_DCS_PORT_C: 1022 dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C); 1023 break; 1024 default: 1025 case DL_DCS_PORT_A_AND_C: 1026 dev_priv->vbt.dsi.cabc_ports = 1027 BIT(PORT_A) | BIT(PORT_C); 1028 break; 1029 } 1030 } 1031 1032 static void 1033 parse_mipi_config(struct drm_i915_private *dev_priv, 1034 const struct bdb_header *bdb) 1035 { 1036 const struct bdb_mipi_config *start; 1037 const struct mipi_config *config; 1038 const struct mipi_pps_data *pps; 1039 int panel_type = dev_priv->vbt.panel_type; 1040 enum port port; 1041 1042 /* parse MIPI blocks only if LFP type is MIPI */ 1043 if (!intel_bios_is_dsi_present(dev_priv, &port)) 1044 return; 1045 1046 /* Initialize this to undefined indicating no generic MIPI support */ 1047 dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1048 1049 /* Block #40 is already parsed and panel_fixed_mode is 1050 * stored in dev_priv->lfp_lvds_vbt_mode 1051 * resuse this when needed 1052 */ 1053 1054 /* Parse #52 for panel index used from panel_type already 1055 * parsed 1056 */ 1057 start = find_section(bdb, BDB_MIPI_CONFIG); 1058 if (!start) { 1059 drm_dbg_kms(&dev_priv->drm, "No MIPI config BDB found"); 1060 return; 1061 } 1062 1063 drm_dbg(&dev_priv->drm, "Found MIPI Config block, panel index = %d\n", 1064 panel_type); 1065 1066 /* 1067 * get hold of the correct configuration block and pps data as per 1068 * the panel_type as index 1069 */ 1070 config = &start->config[panel_type]; 1071 pps = &start->pps[panel_type]; 1072 1073 /* store as of now full data. Trim when we realise all is not needed */ 1074 dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1075 if (!dev_priv->vbt.dsi.config) 1076 return; 1077 1078 dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1079 if (!dev_priv->vbt.dsi.pps) { 1080 kfree(dev_priv->vbt.dsi.config); 1081 return; 1082 } 1083 1084 parse_dsi_backlight_ports(dev_priv, bdb->version, port); 1085 1086 /* FIXME is the 90 vs. 270 correct? */ 1087 switch (config->rotation) { 1088 case ENABLE_ROTATION_0: 1089 /* 1090 * Most (all?) VBTs claim 0 degrees despite having 1091 * an upside down panel, thus we do not trust this. 1092 */ 1093 dev_priv->vbt.dsi.orientation = 1094 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1095 break; 1096 case ENABLE_ROTATION_90: 1097 dev_priv->vbt.dsi.orientation = 1098 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1099 break; 1100 case ENABLE_ROTATION_180: 1101 dev_priv->vbt.dsi.orientation = 1102 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1103 break; 1104 case ENABLE_ROTATION_270: 1105 dev_priv->vbt.dsi.orientation = 1106 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1107 break; 1108 } 1109 1110 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1111 dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1112 } 1113 1114 /* Find the sequence block and size for the given panel. */ 1115 static const u8 * 1116 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1117 u16 panel_id, u32 *seq_size) 1118 { 1119 u32 total = get_blocksize(sequence); 1120 const u8 *data = &sequence->data[0]; 1121 u8 current_id; 1122 u32 current_size; 1123 int header_size = sequence->version >= 3 ? 5 : 3; 1124 int index = 0; 1125 int i; 1126 1127 /* skip new block size */ 1128 if (sequence->version >= 3) 1129 data += 4; 1130 1131 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1132 if (index + header_size > total) { 1133 DRM_ERROR("Invalid sequence block (header)\n"); 1134 return NULL; 1135 } 1136 1137 current_id = *(data + index); 1138 if (sequence->version >= 3) 1139 current_size = *((const u32 *)(data + index + 1)); 1140 else 1141 current_size = *((const u16 *)(data + index + 1)); 1142 1143 index += header_size; 1144 1145 if (index + current_size > total) { 1146 DRM_ERROR("Invalid sequence block\n"); 1147 return NULL; 1148 } 1149 1150 if (current_id == panel_id) { 1151 *seq_size = current_size; 1152 return data + index; 1153 } 1154 1155 index += current_size; 1156 } 1157 1158 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1159 1160 return NULL; 1161 } 1162 1163 static int goto_next_sequence(const u8 *data, int index, int total) 1164 { 1165 u16 len; 1166 1167 /* Skip Sequence Byte. */ 1168 for (index = index + 1; index < total; index += len) { 1169 u8 operation_byte = *(data + index); 1170 index++; 1171 1172 switch (operation_byte) { 1173 case MIPI_SEQ_ELEM_END: 1174 return index; 1175 case MIPI_SEQ_ELEM_SEND_PKT: 1176 if (index + 4 > total) 1177 return 0; 1178 1179 len = *((const u16 *)(data + index + 2)) + 4; 1180 break; 1181 case MIPI_SEQ_ELEM_DELAY: 1182 len = 4; 1183 break; 1184 case MIPI_SEQ_ELEM_GPIO: 1185 len = 2; 1186 break; 1187 case MIPI_SEQ_ELEM_I2C: 1188 if (index + 7 > total) 1189 return 0; 1190 len = *(data + index + 6) + 7; 1191 break; 1192 default: 1193 DRM_ERROR("Unknown operation byte\n"); 1194 return 0; 1195 } 1196 } 1197 1198 return 0; 1199 } 1200 1201 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1202 { 1203 int seq_end; 1204 u16 len; 1205 u32 size_of_sequence; 1206 1207 /* 1208 * Could skip sequence based on Size of Sequence alone, but also do some 1209 * checking on the structure. 1210 */ 1211 if (total < 5) { 1212 DRM_ERROR("Too small sequence size\n"); 1213 return 0; 1214 } 1215 1216 /* Skip Sequence Byte. */ 1217 index++; 1218 1219 /* 1220 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1221 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1222 * byte. 1223 */ 1224 size_of_sequence = *((const u32 *)(data + index)); 1225 index += 4; 1226 1227 seq_end = index + size_of_sequence; 1228 if (seq_end > total) { 1229 DRM_ERROR("Invalid sequence size\n"); 1230 return 0; 1231 } 1232 1233 for (; index < total; index += len) { 1234 u8 operation_byte = *(data + index); 1235 index++; 1236 1237 if (operation_byte == MIPI_SEQ_ELEM_END) { 1238 if (index != seq_end) { 1239 DRM_ERROR("Invalid element structure\n"); 1240 return 0; 1241 } 1242 return index; 1243 } 1244 1245 len = *(data + index); 1246 index++; 1247 1248 /* 1249 * FIXME: Would be nice to check elements like for v1/v2 in 1250 * goto_next_sequence() above. 1251 */ 1252 switch (operation_byte) { 1253 case MIPI_SEQ_ELEM_SEND_PKT: 1254 case MIPI_SEQ_ELEM_DELAY: 1255 case MIPI_SEQ_ELEM_GPIO: 1256 case MIPI_SEQ_ELEM_I2C: 1257 case MIPI_SEQ_ELEM_SPI: 1258 case MIPI_SEQ_ELEM_PMIC: 1259 break; 1260 default: 1261 DRM_ERROR("Unknown operation byte %u\n", 1262 operation_byte); 1263 break; 1264 } 1265 } 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1272 * skip all delay + gpio operands and stop at the first DSI packet op. 1273 */ 1274 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv) 1275 { 1276 const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1277 int index, len; 1278 1279 if (drm_WARN_ON(&dev_priv->drm, 1280 !data || dev_priv->vbt.dsi.seq_version != 1)) 1281 return 0; 1282 1283 /* index = 1 to skip sequence byte */ 1284 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1285 switch (data[index]) { 1286 case MIPI_SEQ_ELEM_SEND_PKT: 1287 return index == 1 ? 0 : index; 1288 case MIPI_SEQ_ELEM_DELAY: 1289 len = 5; /* 1 byte for operand + uint32 */ 1290 break; 1291 case MIPI_SEQ_ELEM_GPIO: 1292 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1293 break; 1294 default: 1295 return 0; 1296 } 1297 } 1298 1299 return 0; 1300 } 1301 1302 /* 1303 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1304 * The deassert must be done before calling intel_dsi_device_ready, so for 1305 * these devices we split the init OTP sequence into a deassert sequence and 1306 * the actual init OTP part. 1307 */ 1308 static void fixup_mipi_sequences(struct drm_i915_private *dev_priv) 1309 { 1310 u8 *init_otp; 1311 int len; 1312 1313 /* Limit this to VLV for now. */ 1314 if (!IS_VALLEYVIEW(dev_priv)) 1315 return; 1316 1317 /* Limit this to v1 vid-mode sequences */ 1318 if (dev_priv->vbt.dsi.config->is_cmd_mode || 1319 dev_priv->vbt.dsi.seq_version != 1) 1320 return; 1321 1322 /* Only do this if there are otp and assert seqs and no deassert seq */ 1323 if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1324 !dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1325 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1326 return; 1327 1328 /* The deassert-sequence ends at the first DSI packet */ 1329 len = get_init_otp_deassert_fragment_len(dev_priv); 1330 if (!len) 1331 return; 1332 1333 drm_dbg_kms(&dev_priv->drm, 1334 "Using init OTP fragment to deassert reset\n"); 1335 1336 /* Copy the fragment, update seq byte and terminate it */ 1337 init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1338 dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1339 if (!dev_priv->vbt.dsi.deassert_seq) 1340 return; 1341 dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1342 dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1343 /* Use the copy for deassert */ 1344 dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1345 dev_priv->vbt.dsi.deassert_seq; 1346 /* Replace the last byte of the fragment with init OTP seq byte */ 1347 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1348 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1349 dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1350 } 1351 1352 static void 1353 parse_mipi_sequence(struct drm_i915_private *dev_priv, 1354 const struct bdb_header *bdb) 1355 { 1356 int panel_type = dev_priv->vbt.panel_type; 1357 const struct bdb_mipi_sequence *sequence; 1358 const u8 *seq_data; 1359 u32 seq_size; 1360 u8 *data; 1361 int index = 0; 1362 1363 /* Only our generic panel driver uses the sequence block. */ 1364 if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 1365 return; 1366 1367 sequence = find_section(bdb, BDB_MIPI_SEQUENCE); 1368 if (!sequence) { 1369 drm_dbg_kms(&dev_priv->drm, 1370 "No MIPI Sequence found, parsing complete\n"); 1371 return; 1372 } 1373 1374 /* Fail gracefully for forward incompatible sequence block. */ 1375 if (sequence->version >= 4) { 1376 drm_err(&dev_priv->drm, 1377 "Unable to parse MIPI Sequence Block v%u\n", 1378 sequence->version); 1379 return; 1380 } 1381 1382 drm_dbg(&dev_priv->drm, "Found MIPI sequence block v%u\n", 1383 sequence->version); 1384 1385 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 1386 if (!seq_data) 1387 return; 1388 1389 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 1390 if (!data) 1391 return; 1392 1393 /* Parse the sequences, store pointers to each sequence. */ 1394 for (;;) { 1395 u8 seq_id = *(data + index); 1396 if (seq_id == MIPI_SEQ_END) 1397 break; 1398 1399 if (seq_id >= MIPI_SEQ_MAX) { 1400 drm_err(&dev_priv->drm, "Unknown sequence %u\n", 1401 seq_id); 1402 goto err; 1403 } 1404 1405 /* Log about presence of sequences we won't run. */ 1406 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 1407 drm_dbg_kms(&dev_priv->drm, 1408 "Unsupported sequence %u\n", seq_id); 1409 1410 dev_priv->vbt.dsi.sequence[seq_id] = data + index; 1411 1412 if (sequence->version >= 3) 1413 index = goto_next_sequence_v3(data, index, seq_size); 1414 else 1415 index = goto_next_sequence(data, index, seq_size); 1416 if (!index) { 1417 drm_err(&dev_priv->drm, "Invalid sequence %u\n", 1418 seq_id); 1419 goto err; 1420 } 1421 } 1422 1423 dev_priv->vbt.dsi.data = data; 1424 dev_priv->vbt.dsi.size = seq_size; 1425 dev_priv->vbt.dsi.seq_version = sequence->version; 1426 1427 fixup_mipi_sequences(dev_priv); 1428 1429 drm_dbg(&dev_priv->drm, "MIPI related VBT parsing complete\n"); 1430 return; 1431 1432 err: 1433 kfree(data); 1434 memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence)); 1435 } 1436 1437 static void 1438 parse_compression_parameters(struct drm_i915_private *i915, 1439 const struct bdb_header *bdb) 1440 { 1441 const struct bdb_compression_parameters *params; 1442 struct display_device_data *devdata; 1443 const struct child_device_config *child; 1444 u16 block_size; 1445 int index; 1446 1447 if (bdb->version < 198) 1448 return; 1449 1450 params = find_section(bdb, BDB_COMPRESSION_PARAMETERS); 1451 if (params) { 1452 /* Sanity checks */ 1453 if (params->entry_size != sizeof(params->data[0])) { 1454 drm_dbg_kms(&i915->drm, 1455 "VBT: unsupported compression param entry size\n"); 1456 return; 1457 } 1458 1459 block_size = get_blocksize(params); 1460 if (block_size < sizeof(*params)) { 1461 drm_dbg_kms(&i915->drm, 1462 "VBT: expected 16 compression param entries\n"); 1463 return; 1464 } 1465 } 1466 1467 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 1468 child = &devdata->child; 1469 1470 if (!child->compression_enable) 1471 continue; 1472 1473 if (!params) { 1474 drm_dbg_kms(&i915->drm, 1475 "VBT: compression params not available\n"); 1476 continue; 1477 } 1478 1479 if (child->compression_method_cps) { 1480 drm_dbg_kms(&i915->drm, 1481 "VBT: CPS compression not supported\n"); 1482 continue; 1483 } 1484 1485 index = child->compression_structure_index; 1486 1487 devdata->dsc = kmemdup(¶ms->data[index], 1488 sizeof(*devdata->dsc), GFP_KERNEL); 1489 } 1490 } 1491 1492 static u8 translate_iboost(u8 val) 1493 { 1494 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 1495 1496 if (val >= ARRAY_SIZE(mapping)) { 1497 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 1498 return 0; 1499 } 1500 return mapping[val]; 1501 } 1502 1503 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 1504 { 1505 const struct ddi_vbt_port_info *info; 1506 enum port port; 1507 1508 for_each_port(port) { 1509 info = &i915->vbt.ddi_port_info[port]; 1510 1511 if (info->child && ddc_pin == info->alternate_ddc_pin) 1512 return port; 1513 } 1514 1515 return PORT_NONE; 1516 } 1517 1518 static void sanitize_ddc_pin(struct drm_i915_private *dev_priv, 1519 enum port port) 1520 { 1521 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; 1522 enum port p; 1523 1524 if (!info->alternate_ddc_pin) 1525 return; 1526 1527 p = get_port_by_ddc_pin(dev_priv, info->alternate_ddc_pin); 1528 if (p != PORT_NONE) { 1529 drm_dbg_kms(&dev_priv->drm, 1530 "port %c trying to use the same DDC pin (0x%x) as port %c, " 1531 "disabling port %c DVI/HDMI support\n", 1532 port_name(port), info->alternate_ddc_pin, 1533 port_name(p), port_name(p)); 1534 1535 /* 1536 * If we have multiple ports supposedly sharing the 1537 * pin, then dvi/hdmi couldn't exist on the shared 1538 * port. Otherwise they share the same ddc bin and 1539 * system couldn't communicate with them separately. 1540 * 1541 * Give inverse child device order the priority, 1542 * last one wins. Yes, there are real machines 1543 * (eg. Asrock B250M-HDV) where VBT has both 1544 * port A and port E with the same AUX ch and 1545 * we must pick port E :( 1546 */ 1547 info = &dev_priv->vbt.ddi_port_info[p]; 1548 1549 info->supports_dvi = false; 1550 info->supports_hdmi = false; 1551 info->alternate_ddc_pin = 0; 1552 } 1553 } 1554 1555 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 1556 { 1557 const struct ddi_vbt_port_info *info; 1558 enum port port; 1559 1560 for_each_port(port) { 1561 info = &i915->vbt.ddi_port_info[port]; 1562 1563 if (info->child && aux_ch == info->alternate_aux_channel) 1564 return port; 1565 } 1566 1567 return PORT_NONE; 1568 } 1569 1570 static void sanitize_aux_ch(struct drm_i915_private *dev_priv, 1571 enum port port) 1572 { 1573 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; 1574 enum port p; 1575 1576 if (!info->alternate_aux_channel) 1577 return; 1578 1579 p = get_port_by_aux_ch(dev_priv, info->alternate_aux_channel); 1580 if (p != PORT_NONE) { 1581 drm_dbg_kms(&dev_priv->drm, 1582 "port %c trying to use the same AUX CH (0x%x) as port %c, " 1583 "disabling port %c DP support\n", 1584 port_name(port), info->alternate_aux_channel, 1585 port_name(p), port_name(p)); 1586 1587 /* 1588 * If we have multiple ports supposedlt sharing the 1589 * aux channel, then DP couldn't exist on the shared 1590 * port. Otherwise they share the same aux channel 1591 * and system couldn't communicate with them separately. 1592 * 1593 * Give inverse child device order the priority, 1594 * last one wins. Yes, there are real machines 1595 * (eg. Asrock B250M-HDV) where VBT has both 1596 * port A and port E with the same AUX ch and 1597 * we must pick port E :( 1598 */ 1599 info = &dev_priv->vbt.ddi_port_info[p]; 1600 1601 info->supports_dp = false; 1602 info->alternate_aux_channel = 0; 1603 } 1604 } 1605 1606 static const u8 cnp_ddc_pin_map[] = { 1607 [0] = 0, /* N/A */ 1608 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 1609 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 1610 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 1611 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 1612 }; 1613 1614 static const u8 icp_ddc_pin_map[] = { 1615 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 1616 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 1617 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 1618 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 1619 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 1620 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 1621 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 1622 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 1623 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 1624 }; 1625 1626 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 1627 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 1628 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 1629 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 1630 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 1631 }; 1632 1633 static const u8 adls_ddc_pin_map[] = { 1634 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 1635 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 1636 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 1637 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 1638 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 1639 }; 1640 1641 static const u8 gen9bc_tgp_ddc_pin_map[] = { 1642 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 1643 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 1644 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 1645 }; 1646 1647 static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin) 1648 { 1649 const u8 *ddc_pin_map; 1650 int n_entries; 1651 1652 if (HAS_PCH_ADP(dev_priv)) { 1653 ddc_pin_map = adls_ddc_pin_map; 1654 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 1655 } else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) { 1656 return vbt_pin; 1657 } else if (IS_ROCKETLAKE(dev_priv) && INTEL_PCH_TYPE(dev_priv) == PCH_TGP) { 1658 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 1659 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 1660 } else if (HAS_PCH_TGP(dev_priv) && IS_GEN9_BC(dev_priv)) { 1661 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 1662 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 1663 } else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) { 1664 ddc_pin_map = icp_ddc_pin_map; 1665 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 1666 } else if (HAS_PCH_CNP(dev_priv)) { 1667 ddc_pin_map = cnp_ddc_pin_map; 1668 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 1669 } else { 1670 /* Assuming direct map */ 1671 return vbt_pin; 1672 } 1673 1674 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 1675 return ddc_pin_map[vbt_pin]; 1676 1677 drm_dbg_kms(&dev_priv->drm, 1678 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 1679 vbt_pin); 1680 return 0; 1681 } 1682 1683 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 1684 const int port_mapping[][3], u8 dvo_port) 1685 { 1686 enum port port; 1687 int i; 1688 1689 for (port = PORT_A; port < n_ports; port++) { 1690 for (i = 0; i < n_dvo; i++) { 1691 if (port_mapping[port][i] == -1) 1692 break; 1693 1694 if (dvo_port == port_mapping[port][i]) 1695 return port; 1696 } 1697 } 1698 1699 return PORT_NONE; 1700 } 1701 1702 static enum port dvo_port_to_port(struct drm_i915_private *dev_priv, 1703 u8 dvo_port) 1704 { 1705 /* 1706 * Each DDI port can have more than one value on the "DVO Port" field, 1707 * so look for all the possible values for each port. 1708 */ 1709 static const int port_mapping[][3] = { 1710 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1711 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1712 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1713 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1714 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 1715 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 1716 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 1717 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 1718 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 1719 }; 1720 /* 1721 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 1722 * map to DDI A,B,TC1,TC2 respectively. 1723 */ 1724 static const int rkl_port_mapping[][3] = { 1725 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1726 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1727 [PORT_C] = { -1 }, 1728 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1729 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1730 }; 1731 /* 1732 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 1733 * PORT_F and PORT_G, we need to map that to correct VBT sections. 1734 */ 1735 static const int adls_port_mapping[][3] = { 1736 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 1737 [PORT_B] = { -1 }, 1738 [PORT_C] = { -1 }, 1739 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 1740 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 1741 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 1742 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 1743 }; 1744 1745 if (IS_ALDERLAKE_S(dev_priv)) 1746 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 1747 ARRAY_SIZE(adls_port_mapping[0]), 1748 adls_port_mapping, 1749 dvo_port); 1750 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 1751 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 1752 ARRAY_SIZE(rkl_port_mapping[0]), 1753 rkl_port_mapping, 1754 dvo_port); 1755 else 1756 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 1757 ARRAY_SIZE(port_mapping[0]), 1758 port_mapping, 1759 dvo_port); 1760 } 1761 1762 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 1763 { 1764 switch (vbt_max_link_rate) { 1765 default: 1766 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 1767 return 0; 1768 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 1769 return 2000000; 1770 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 1771 return 1350000; 1772 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 1773 return 1000000; 1774 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 1775 return 810000; 1776 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 1777 return 540000; 1778 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 1779 return 270000; 1780 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 1781 return 162000; 1782 } 1783 } 1784 1785 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 1786 { 1787 switch (vbt_max_link_rate) { 1788 default: 1789 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 1790 return 810000; 1791 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 1792 return 540000; 1793 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 1794 return 270000; 1795 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 1796 return 162000; 1797 } 1798 } 1799 1800 static void parse_ddi_port(struct drm_i915_private *dev_priv, 1801 struct display_device_data *devdata, 1802 u8 bdb_version) 1803 { 1804 const struct child_device_config *child = &devdata->child; 1805 struct ddi_vbt_port_info *info; 1806 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt; 1807 enum port port; 1808 1809 port = dvo_port_to_port(dev_priv, child->dvo_port); 1810 if (port == PORT_NONE) 1811 return; 1812 1813 info = &dev_priv->vbt.ddi_port_info[port]; 1814 1815 if (info->child) { 1816 drm_dbg_kms(&dev_priv->drm, 1817 "More than one child device for port %c in VBT, using the first.\n", 1818 port_name(port)); 1819 return; 1820 } 1821 1822 is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 1823 is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 1824 is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT; 1825 is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 1826 is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR); 1827 1828 if (port == PORT_A && is_dvi && INTEL_GEN(dev_priv) < 12) { 1829 drm_dbg_kms(&dev_priv->drm, 1830 "VBT claims port A supports DVI%s, ignoring\n", 1831 is_hdmi ? "/HDMI" : ""); 1832 is_dvi = false; 1833 is_hdmi = false; 1834 } 1835 1836 info->supports_dvi = is_dvi; 1837 info->supports_hdmi = is_hdmi; 1838 info->supports_dp = is_dp; 1839 info->supports_edp = is_edp; 1840 1841 if (bdb_version >= 195) 1842 info->supports_typec_usb = child->dp_usb_type_c; 1843 1844 if (bdb_version >= 209) 1845 info->supports_tbt = child->tbt; 1846 1847 drm_dbg_kms(&dev_priv->drm, 1848 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 1849 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, 1850 HAS_LSPCON(dev_priv) && child->lspcon, 1851 info->supports_typec_usb, info->supports_tbt, 1852 devdata->dsc != NULL); 1853 1854 if (is_dvi) { 1855 u8 ddc_pin; 1856 1857 ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin); 1858 if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) { 1859 info->alternate_ddc_pin = ddc_pin; 1860 sanitize_ddc_pin(dev_priv, port); 1861 } else { 1862 drm_dbg_kms(&dev_priv->drm, 1863 "Port %c has invalid DDC pin %d, " 1864 "sticking to defaults\n", 1865 port_name(port), ddc_pin); 1866 } 1867 } 1868 1869 if (is_dp) { 1870 info->alternate_aux_channel = child->aux_channel; 1871 1872 sanitize_aux_ch(dev_priv, port); 1873 } 1874 1875 if (bdb_version >= 158) { 1876 /* The VBT HDMI level shift values match the table we have. */ 1877 u8 hdmi_level_shift = child->hdmi_level_shifter_value; 1878 drm_dbg_kms(&dev_priv->drm, 1879 "Port %c VBT HDMI level shift: %d\n", 1880 port_name(port), 1881 hdmi_level_shift); 1882 info->hdmi_level_shift = hdmi_level_shift; 1883 info->hdmi_level_shift_set = true; 1884 } 1885 1886 if (bdb_version >= 204) { 1887 int max_tmds_clock; 1888 1889 switch (child->hdmi_max_data_rate) { 1890 default: 1891 MISSING_CASE(child->hdmi_max_data_rate); 1892 fallthrough; 1893 case HDMI_MAX_DATA_RATE_PLATFORM: 1894 max_tmds_clock = 0; 1895 break; 1896 case HDMI_MAX_DATA_RATE_297: 1897 max_tmds_clock = 297000; 1898 break; 1899 case HDMI_MAX_DATA_RATE_165: 1900 max_tmds_clock = 165000; 1901 break; 1902 } 1903 1904 if (max_tmds_clock) 1905 drm_dbg_kms(&dev_priv->drm, 1906 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 1907 port_name(port), max_tmds_clock); 1908 info->max_tmds_clock = max_tmds_clock; 1909 } 1910 1911 /* Parse the I_boost config for SKL and above */ 1912 if (bdb_version >= 196 && child->iboost) { 1913 info->dp_boost_level = translate_iboost(child->dp_iboost_level); 1914 drm_dbg_kms(&dev_priv->drm, 1915 "Port %c VBT (e)DP boost level: %d\n", 1916 port_name(port), info->dp_boost_level); 1917 info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level); 1918 drm_dbg_kms(&dev_priv->drm, 1919 "Port %c VBT HDMI boost level: %d\n", 1920 port_name(port), info->hdmi_boost_level); 1921 } 1922 1923 /* DP max link rate for CNL+ */ 1924 if (bdb_version >= 216) { 1925 if (bdb_version >= 230) 1926 info->dp_max_link_rate = parse_bdb_230_dp_max_link_rate(child->dp_max_link_rate); 1927 else 1928 info->dp_max_link_rate = parse_bdb_216_dp_max_link_rate(child->dp_max_link_rate); 1929 1930 drm_dbg_kms(&dev_priv->drm, 1931 "Port %c VBT DP max link rate: %d\n", 1932 port_name(port), info->dp_max_link_rate); 1933 } 1934 1935 info->child = child; 1936 } 1937 1938 static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version) 1939 { 1940 struct display_device_data *devdata; 1941 1942 if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv)) 1943 return; 1944 1945 if (bdb_version < 155) 1946 return; 1947 1948 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) 1949 parse_ddi_port(dev_priv, devdata, bdb_version); 1950 } 1951 1952 static void 1953 parse_general_definitions(struct drm_i915_private *dev_priv, 1954 const struct bdb_header *bdb) 1955 { 1956 const struct bdb_general_definitions *defs; 1957 struct display_device_data *devdata; 1958 const struct child_device_config *child; 1959 int i, child_device_num; 1960 u8 expected_size; 1961 u16 block_size; 1962 int bus_pin; 1963 1964 defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); 1965 if (!defs) { 1966 drm_dbg_kms(&dev_priv->drm, 1967 "No general definition block is found, no devices defined.\n"); 1968 return; 1969 } 1970 1971 block_size = get_blocksize(defs); 1972 if (block_size < sizeof(*defs)) { 1973 drm_dbg_kms(&dev_priv->drm, 1974 "General definitions block too small (%u)\n", 1975 block_size); 1976 return; 1977 } 1978 1979 bus_pin = defs->crt_ddc_gmbus_pin; 1980 drm_dbg_kms(&dev_priv->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 1981 if (intel_gmbus_is_valid_pin(dev_priv, bus_pin)) 1982 dev_priv->vbt.crt_ddc_pin = bus_pin; 1983 1984 if (bdb->version < 106) { 1985 expected_size = 22; 1986 } else if (bdb->version < 111) { 1987 expected_size = 27; 1988 } else if (bdb->version < 195) { 1989 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 1990 } else if (bdb->version == 195) { 1991 expected_size = 37; 1992 } else if (bdb->version <= 215) { 1993 expected_size = 38; 1994 } else if (bdb->version <= 237) { 1995 expected_size = 39; 1996 } else { 1997 expected_size = sizeof(*child); 1998 BUILD_BUG_ON(sizeof(*child) < 39); 1999 drm_dbg(&dev_priv->drm, 2000 "Expected child device config size for VBT version %u not known; assuming %u\n", 2001 bdb->version, expected_size); 2002 } 2003 2004 /* Flag an error for unexpected size, but continue anyway. */ 2005 if (defs->child_dev_size != expected_size) 2006 drm_err(&dev_priv->drm, 2007 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2008 defs->child_dev_size, expected_size, bdb->version); 2009 2010 /* The legacy sized child device config is the minimum we need. */ 2011 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2012 drm_dbg_kms(&dev_priv->drm, 2013 "Child device config size %u is too small.\n", 2014 defs->child_dev_size); 2015 return; 2016 } 2017 2018 /* get the number of child device */ 2019 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2020 2021 for (i = 0; i < child_device_num; i++) { 2022 child = child_device_ptr(defs, i); 2023 if (!child->device_type) 2024 continue; 2025 2026 drm_dbg_kms(&dev_priv->drm, 2027 "Found VBT child device with type 0x%x\n", 2028 child->device_type); 2029 2030 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2031 if (!devdata) 2032 break; 2033 2034 /* 2035 * Copy as much as we know (sizeof) and is available 2036 * (child_dev_size) of the child device config. Accessing the 2037 * data must depend on VBT version. 2038 */ 2039 memcpy(&devdata->child, child, 2040 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2041 2042 list_add_tail(&devdata->node, &dev_priv->vbt.display_devices); 2043 } 2044 2045 if (list_empty(&dev_priv->vbt.display_devices)) 2046 drm_dbg_kms(&dev_priv->drm, 2047 "no child dev is parsed from VBT\n"); 2048 } 2049 2050 /* Common defaults which may be overridden by VBT. */ 2051 static void 2052 init_vbt_defaults(struct drm_i915_private *dev_priv) 2053 { 2054 dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2055 2056 /* Default to having backlight */ 2057 dev_priv->vbt.backlight.present = true; 2058 2059 /* LFP panel data */ 2060 dev_priv->vbt.lvds_dither = 1; 2061 2062 /* SDVO panel data */ 2063 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL; 2064 2065 /* general features */ 2066 dev_priv->vbt.int_tv_support = 1; 2067 dev_priv->vbt.int_crt_support = 1; 2068 2069 /* driver features */ 2070 dev_priv->vbt.int_lvds_support = 1; 2071 2072 /* Default to using SSC */ 2073 dev_priv->vbt.lvds_use_ssc = 1; 2074 /* 2075 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2076 * clock for LVDS. 2077 */ 2078 dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv, 2079 !HAS_PCH_SPLIT(dev_priv)); 2080 drm_dbg_kms(&dev_priv->drm, "Set default to SSC at %d kHz\n", 2081 dev_priv->vbt.lvds_ssc_freq); 2082 } 2083 2084 /* Defaults to initialize only if there is no VBT. */ 2085 static void 2086 init_vbt_missing_defaults(struct drm_i915_private *dev_priv) 2087 { 2088 enum port port; 2089 2090 for_each_port(port) { 2091 struct ddi_vbt_port_info *info = 2092 &dev_priv->vbt.ddi_port_info[port]; 2093 enum phy phy = intel_port_to_phy(dev_priv, port); 2094 2095 /* 2096 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2097 * to detect it. 2098 */ 2099 if (intel_phy_is_tc(dev_priv, phy)) 2100 continue; 2101 2102 info->supports_dvi = (port != PORT_A && port != PORT_E); 2103 info->supports_hdmi = info->supports_dvi; 2104 info->supports_dp = (port != PORT_E); 2105 info->supports_edp = (port == PORT_A); 2106 } 2107 } 2108 2109 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2110 { 2111 const void *_vbt = vbt; 2112 2113 return _vbt + vbt->bdb_offset; 2114 } 2115 2116 /** 2117 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2118 * @buf: pointer to a buffer to validate 2119 * @size: size of the buffer 2120 * 2121 * Returns true on valid VBT. 2122 */ 2123 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2124 { 2125 const struct vbt_header *vbt = buf; 2126 const struct bdb_header *bdb; 2127 2128 if (!vbt) 2129 return false; 2130 2131 if (sizeof(struct vbt_header) > size) { 2132 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2133 return false; 2134 } 2135 2136 if (memcmp(vbt->signature, "$VBT", 4)) { 2137 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2138 return false; 2139 } 2140 2141 if (vbt->vbt_size > size) { 2142 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2143 return false; 2144 } 2145 2146 size = vbt->vbt_size; 2147 2148 if (range_overflows_t(size_t, 2149 vbt->bdb_offset, 2150 sizeof(struct bdb_header), 2151 size)) { 2152 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 2153 return false; 2154 } 2155 2156 bdb = get_bdb_header(vbt); 2157 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2158 DRM_DEBUG_DRIVER("BDB incomplete\n"); 2159 return false; 2160 } 2161 2162 return vbt; 2163 } 2164 2165 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *dev_priv) 2166 { 2167 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev); 2168 void __iomem *p = NULL, *oprom; 2169 struct vbt_header *vbt; 2170 u16 vbt_size; 2171 size_t i, size; 2172 2173 oprom = pci_map_rom(pdev, &size); 2174 if (!oprom) 2175 return NULL; 2176 2177 /* Scour memory looking for the VBT signature. */ 2178 for (i = 0; i + 4 < size; i += 4) { 2179 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 2180 continue; 2181 2182 p = oprom + i; 2183 size -= i; 2184 break; 2185 } 2186 2187 if (!p) 2188 goto err_unmap_oprom; 2189 2190 if (sizeof(struct vbt_header) > size) { 2191 drm_dbg(&dev_priv->drm, "VBT header incomplete\n"); 2192 goto err_unmap_oprom; 2193 } 2194 2195 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 2196 if (vbt_size > size) { 2197 drm_dbg(&dev_priv->drm, 2198 "VBT incomplete (vbt_size overflows)\n"); 2199 goto err_unmap_oprom; 2200 } 2201 2202 /* The rest will be validated by intel_bios_is_valid_vbt() */ 2203 vbt = kmalloc(vbt_size, GFP_KERNEL); 2204 if (!vbt) 2205 goto err_unmap_oprom; 2206 2207 memcpy_fromio(vbt, p, vbt_size); 2208 2209 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 2210 goto err_free_vbt; 2211 2212 pci_unmap_rom(pdev, oprom); 2213 2214 return vbt; 2215 2216 err_free_vbt: 2217 kfree(vbt); 2218 err_unmap_oprom: 2219 pci_unmap_rom(pdev, oprom); 2220 2221 return NULL; 2222 } 2223 2224 /** 2225 * intel_bios_init - find VBT and initialize settings from the BIOS 2226 * @dev_priv: i915 device instance 2227 * 2228 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 2229 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 2230 * initialize some defaults if the VBT is not present at all. 2231 */ 2232 void intel_bios_init(struct drm_i915_private *dev_priv) 2233 { 2234 const struct vbt_header *vbt = dev_priv->opregion.vbt; 2235 struct vbt_header *oprom_vbt = NULL; 2236 const struct bdb_header *bdb; 2237 2238 INIT_LIST_HEAD(&dev_priv->vbt.display_devices); 2239 2240 if (!HAS_DISPLAY(dev_priv)) { 2241 drm_dbg_kms(&dev_priv->drm, 2242 "Skipping VBT init due to disabled display.\n"); 2243 return; 2244 } 2245 2246 init_vbt_defaults(dev_priv); 2247 2248 /* If the OpRegion does not have VBT, look in PCI ROM. */ 2249 if (!vbt) { 2250 oprom_vbt = oprom_get_vbt(dev_priv); 2251 if (!oprom_vbt) 2252 goto out; 2253 2254 vbt = oprom_vbt; 2255 2256 drm_dbg_kms(&dev_priv->drm, "Found valid VBT in PCI ROM\n"); 2257 } 2258 2259 bdb = get_bdb_header(vbt); 2260 2261 drm_dbg_kms(&dev_priv->drm, 2262 "VBT signature \"%.*s\", BDB version %d\n", 2263 (int)sizeof(vbt->signature), vbt->signature, bdb->version); 2264 2265 /* Grab useful general definitions */ 2266 parse_general_features(dev_priv, bdb); 2267 parse_general_definitions(dev_priv, bdb); 2268 parse_panel_options(dev_priv, bdb); 2269 parse_panel_dtd(dev_priv, bdb); 2270 parse_lfp_backlight(dev_priv, bdb); 2271 parse_sdvo_panel_data(dev_priv, bdb); 2272 parse_driver_features(dev_priv, bdb); 2273 parse_power_conservation_features(dev_priv, bdb); 2274 parse_edp(dev_priv, bdb); 2275 parse_psr(dev_priv, bdb); 2276 parse_mipi_config(dev_priv, bdb); 2277 parse_mipi_sequence(dev_priv, bdb); 2278 2279 /* Depends on child device list */ 2280 parse_compression_parameters(dev_priv, bdb); 2281 2282 /* Further processing on pre-parsed data */ 2283 parse_sdvo_device_mapping(dev_priv, bdb->version); 2284 parse_ddi_ports(dev_priv, bdb->version); 2285 2286 out: 2287 if (!vbt) { 2288 drm_info(&dev_priv->drm, 2289 "Failed to find VBIOS tables (VBT)\n"); 2290 init_vbt_missing_defaults(dev_priv); 2291 } 2292 2293 kfree(oprom_vbt); 2294 } 2295 2296 /** 2297 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 2298 * @dev_priv: i915 device instance 2299 */ 2300 void intel_bios_driver_remove(struct drm_i915_private *dev_priv) 2301 { 2302 struct display_device_data *devdata, *n; 2303 2304 list_for_each_entry_safe(devdata, n, &dev_priv->vbt.display_devices, node) { 2305 list_del(&devdata->node); 2306 kfree(devdata->dsc); 2307 kfree(devdata); 2308 } 2309 2310 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode); 2311 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL; 2312 kfree(dev_priv->vbt.lfp_lvds_vbt_mode); 2313 dev_priv->vbt.lfp_lvds_vbt_mode = NULL; 2314 kfree(dev_priv->vbt.dsi.data); 2315 dev_priv->vbt.dsi.data = NULL; 2316 kfree(dev_priv->vbt.dsi.pps); 2317 dev_priv->vbt.dsi.pps = NULL; 2318 kfree(dev_priv->vbt.dsi.config); 2319 dev_priv->vbt.dsi.config = NULL; 2320 kfree(dev_priv->vbt.dsi.deassert_seq); 2321 dev_priv->vbt.dsi.deassert_seq = NULL; 2322 } 2323 2324 /** 2325 * intel_bios_is_tv_present - is integrated TV present in VBT 2326 * @dev_priv: i915 device instance 2327 * 2328 * Return true if TV is present. If no child devices were parsed from VBT, 2329 * assume TV is present. 2330 */ 2331 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv) 2332 { 2333 const struct display_device_data *devdata; 2334 const struct child_device_config *child; 2335 2336 if (!dev_priv->vbt.int_tv_support) 2337 return false; 2338 2339 if (list_empty(&dev_priv->vbt.display_devices)) 2340 return true; 2341 2342 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 2343 child = &devdata->child; 2344 2345 /* 2346 * If the device type is not TV, continue. 2347 */ 2348 switch (child->device_type) { 2349 case DEVICE_TYPE_INT_TV: 2350 case DEVICE_TYPE_TV: 2351 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 2352 break; 2353 default: 2354 continue; 2355 } 2356 /* Only when the addin_offset is non-zero, it is regarded 2357 * as present. 2358 */ 2359 if (child->addin_offset) 2360 return true; 2361 } 2362 2363 return false; 2364 } 2365 2366 /** 2367 * intel_bios_is_lvds_present - is LVDS present in VBT 2368 * @dev_priv: i915 device instance 2369 * @i2c_pin: i2c pin for LVDS if present 2370 * 2371 * Return true if LVDS is present. If no child devices were parsed from VBT, 2372 * assume LVDS is present. 2373 */ 2374 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin) 2375 { 2376 const struct display_device_data *devdata; 2377 const struct child_device_config *child; 2378 2379 if (list_empty(&dev_priv->vbt.display_devices)) 2380 return true; 2381 2382 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 2383 child = &devdata->child; 2384 2385 /* If the device type is not LFP, continue. 2386 * We have to check both the new identifiers as well as the 2387 * old for compatibility with some BIOSes. 2388 */ 2389 if (child->device_type != DEVICE_TYPE_INT_LFP && 2390 child->device_type != DEVICE_TYPE_LFP) 2391 continue; 2392 2393 if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin)) 2394 *i2c_pin = child->i2c_pin; 2395 2396 /* However, we cannot trust the BIOS writers to populate 2397 * the VBT correctly. Since LVDS requires additional 2398 * information from AIM blocks, a non-zero addin offset is 2399 * a good indicator that the LVDS is actually present. 2400 */ 2401 if (child->addin_offset) 2402 return true; 2403 2404 /* But even then some BIOS writers perform some black magic 2405 * and instantiate the device without reference to any 2406 * additional data. Trust that if the VBT was written into 2407 * the OpRegion then they have validated the LVDS's existence. 2408 */ 2409 if (dev_priv->opregion.vbt) 2410 return true; 2411 } 2412 2413 return false; 2414 } 2415 2416 /** 2417 * intel_bios_is_port_present - is the specified digital port present 2418 * @dev_priv: i915 device instance 2419 * @port: port to check 2420 * 2421 * Return true if the device in %port is present. 2422 */ 2423 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port) 2424 { 2425 const struct display_device_data *devdata; 2426 const struct child_device_config *child; 2427 static const struct { 2428 u16 dp, hdmi; 2429 } port_mapping[] = { 2430 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, }, 2431 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, }, 2432 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, }, 2433 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, }, 2434 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, }, 2435 }; 2436 2437 if (HAS_DDI(dev_priv)) { 2438 const struct ddi_vbt_port_info *port_info = 2439 &dev_priv->vbt.ddi_port_info[port]; 2440 2441 return port_info->child; 2442 } 2443 2444 /* FIXME maybe deal with port A as well? */ 2445 if (drm_WARN_ON(&dev_priv->drm, 2446 port == PORT_A) || port >= ARRAY_SIZE(port_mapping)) 2447 return false; 2448 2449 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 2450 child = &devdata->child; 2451 2452 if ((child->dvo_port == port_mapping[port].dp || 2453 child->dvo_port == port_mapping[port].hdmi) && 2454 (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING | 2455 DEVICE_TYPE_DISPLAYPORT_OUTPUT))) 2456 return true; 2457 } 2458 2459 return false; 2460 } 2461 2462 /** 2463 * intel_bios_is_port_edp - is the device in given port eDP 2464 * @dev_priv: i915 device instance 2465 * @port: port to check 2466 * 2467 * Return true if the device in %port is eDP. 2468 */ 2469 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 2470 { 2471 const struct display_device_data *devdata; 2472 const struct child_device_config *child; 2473 static const short port_mapping[] = { 2474 [PORT_B] = DVO_PORT_DPB, 2475 [PORT_C] = DVO_PORT_DPC, 2476 [PORT_D] = DVO_PORT_DPD, 2477 [PORT_E] = DVO_PORT_DPE, 2478 [PORT_F] = DVO_PORT_DPF, 2479 }; 2480 2481 if (HAS_DDI(dev_priv)) 2482 return dev_priv->vbt.ddi_port_info[port].supports_edp; 2483 2484 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 2485 child = &devdata->child; 2486 2487 if (child->dvo_port == port_mapping[port] && 2488 (child->device_type & DEVICE_TYPE_eDP_BITS) == 2489 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) 2490 return true; 2491 } 2492 2493 return false; 2494 } 2495 2496 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child, 2497 enum port port) 2498 { 2499 static const struct { 2500 u16 dp, hdmi; 2501 } port_mapping[] = { 2502 /* 2503 * Buggy VBTs may declare DP ports as having 2504 * HDMI type dvo_port :( So let's check both. 2505 */ 2506 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, }, 2507 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, }, 2508 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, }, 2509 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, }, 2510 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, }, 2511 }; 2512 2513 if (port == PORT_A || port >= ARRAY_SIZE(port_mapping)) 2514 return false; 2515 2516 if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) != 2517 (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS)) 2518 return false; 2519 2520 if (child->dvo_port == port_mapping[port].dp) 2521 return true; 2522 2523 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 2524 if (child->dvo_port == port_mapping[port].hdmi && 2525 child->aux_channel != 0) 2526 return true; 2527 2528 return false; 2529 } 2530 2531 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, 2532 enum port port) 2533 { 2534 const struct display_device_data *devdata; 2535 2536 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 2537 if (child_dev_is_dp_dual_mode(&devdata->child, port)) 2538 return true; 2539 } 2540 2541 return false; 2542 } 2543 2544 /** 2545 * intel_bios_is_dsi_present - is DSI present in VBT 2546 * @dev_priv: i915 device instance 2547 * @port: port for DSI if present 2548 * 2549 * Return true if DSI is present, and return the port in %port. 2550 */ 2551 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, 2552 enum port *port) 2553 { 2554 const struct display_device_data *devdata; 2555 const struct child_device_config *child; 2556 u8 dvo_port; 2557 2558 list_for_each_entry(devdata, &dev_priv->vbt.display_devices, node) { 2559 child = &devdata->child; 2560 2561 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 2562 continue; 2563 2564 dvo_port = child->dvo_port; 2565 2566 if (dvo_port == DVO_PORT_MIPIA || 2567 (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(dev_priv) >= 11) || 2568 (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(dev_priv) < 11)) { 2569 if (port) 2570 *port = dvo_port - DVO_PORT_MIPIA; 2571 return true; 2572 } else if (dvo_port == DVO_PORT_MIPIB || 2573 dvo_port == DVO_PORT_MIPIC || 2574 dvo_port == DVO_PORT_MIPID) { 2575 drm_dbg_kms(&dev_priv->drm, 2576 "VBT has unsupported DSI port %c\n", 2577 port_name(dvo_port - DVO_PORT_MIPIA)); 2578 } 2579 } 2580 2581 return false; 2582 } 2583 2584 static void fill_dsc(struct intel_crtc_state *crtc_state, 2585 struct dsc_compression_parameters_entry *dsc, 2586 int dsc_max_bpc) 2587 { 2588 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2589 int bpc = 8; 2590 2591 vdsc_cfg->dsc_version_major = dsc->version_major; 2592 vdsc_cfg->dsc_version_minor = dsc->version_minor; 2593 2594 if (dsc->support_12bpc && dsc_max_bpc >= 12) 2595 bpc = 12; 2596 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 2597 bpc = 10; 2598 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 2599 bpc = 8; 2600 else 2601 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 2602 dsc_max_bpc); 2603 2604 crtc_state->pipe_bpp = bpc * 3; 2605 2606 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 2607 VBT_DSC_MAX_BPP(dsc->max_bpp)); 2608 2609 /* 2610 * FIXME: This is ugly, and slice count should take DSC engine 2611 * throughput etc. into account. 2612 * 2613 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 2614 */ 2615 if (dsc->slices_per_line & BIT(2)) { 2616 crtc_state->dsc.slice_count = 4; 2617 } else if (dsc->slices_per_line & BIT(1)) { 2618 crtc_state->dsc.slice_count = 2; 2619 } else { 2620 /* FIXME */ 2621 if (!(dsc->slices_per_line & BIT(0))) 2622 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 2623 2624 crtc_state->dsc.slice_count = 1; 2625 } 2626 2627 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 2628 crtc_state->dsc.slice_count != 0) 2629 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 2630 crtc_state->hw.adjusted_mode.crtc_hdisplay, 2631 crtc_state->dsc.slice_count); 2632 2633 /* 2634 * The VBT rc_buffer_block_size and rc_buffer_size definitions 2635 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 2636 */ 2637 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 2638 dsc->rc_buffer_size); 2639 2640 /* FIXME: DSI spec says bpc + 1 for this one */ 2641 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 2642 2643 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 2644 2645 vdsc_cfg->slice_height = dsc->slice_height; 2646 } 2647 2648 /* FIXME: initially DSI specific */ 2649 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 2650 struct intel_crtc_state *crtc_state, 2651 int dsc_max_bpc) 2652 { 2653 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2654 const struct display_device_data *devdata; 2655 const struct child_device_config *child; 2656 2657 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2658 child = &devdata->child; 2659 2660 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 2661 continue; 2662 2663 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) { 2664 if (!devdata->dsc) 2665 return false; 2666 2667 if (crtc_state) 2668 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 2669 2670 return true; 2671 } 2672 } 2673 2674 return false; 2675 } 2676 2677 /** 2678 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 2679 * @i915: i915 device instance 2680 * @port: port to check 2681 * 2682 * Return true if HPD should be inverted for %port. 2683 */ 2684 bool 2685 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 2686 enum port port) 2687 { 2688 const struct child_device_config *child = 2689 i915->vbt.ddi_port_info[port].child; 2690 2691 if (drm_WARN_ON_ONCE(&i915->drm, !IS_GEN9_LP(i915))) 2692 return false; 2693 2694 return child && child->hpd_invert; 2695 } 2696 2697 /** 2698 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 2699 * @i915: i915 device instance 2700 * @port: port to check 2701 * 2702 * Return true if LSPCON is present on this port 2703 */ 2704 bool 2705 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 2706 enum port port) 2707 { 2708 const struct child_device_config *child = 2709 i915->vbt.ddi_port_info[port].child; 2710 2711 return HAS_LSPCON(i915) && child && child->lspcon; 2712 } 2713 2714 /** 2715 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 2716 * @i915: i915 device instance 2717 * @port: port to check 2718 * 2719 * Return true if port requires lane reversal 2720 */ 2721 bool 2722 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 2723 enum port port) 2724 { 2725 const struct child_device_config *child = 2726 i915->vbt.ddi_port_info[port].child; 2727 2728 return child && child->lane_reversal; 2729 } 2730 2731 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *dev_priv, 2732 enum port port) 2733 { 2734 const struct ddi_vbt_port_info *info = 2735 &dev_priv->vbt.ddi_port_info[port]; 2736 enum aux_ch aux_ch; 2737 2738 if (!info->alternate_aux_channel) { 2739 aux_ch = (enum aux_ch)port; 2740 2741 drm_dbg_kms(&dev_priv->drm, 2742 "using AUX %c for port %c (platform default)\n", 2743 aux_ch_name(aux_ch), port_name(port)); 2744 return aux_ch; 2745 } 2746 2747 /* 2748 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 2749 * map to DDI A,B,TC1,TC2 respectively. 2750 * 2751 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 2752 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 2753 */ 2754 switch (info->alternate_aux_channel) { 2755 case DP_AUX_A: 2756 aux_ch = AUX_CH_A; 2757 break; 2758 case DP_AUX_B: 2759 if (IS_ALDERLAKE_S(dev_priv)) 2760 aux_ch = AUX_CH_USBC1; 2761 else 2762 aux_ch = AUX_CH_B; 2763 break; 2764 case DP_AUX_C: 2765 if (IS_ALDERLAKE_S(dev_priv)) 2766 aux_ch = AUX_CH_USBC2; 2767 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 2768 aux_ch = AUX_CH_USBC1; 2769 else 2770 aux_ch = AUX_CH_C; 2771 break; 2772 case DP_AUX_D: 2773 if (IS_ALDERLAKE_S(dev_priv)) 2774 aux_ch = AUX_CH_USBC3; 2775 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 2776 aux_ch = AUX_CH_USBC2; 2777 else 2778 aux_ch = AUX_CH_D; 2779 break; 2780 case DP_AUX_E: 2781 if (IS_ALDERLAKE_S(dev_priv)) 2782 aux_ch = AUX_CH_USBC4; 2783 else 2784 aux_ch = AUX_CH_E; 2785 break; 2786 case DP_AUX_F: 2787 aux_ch = AUX_CH_F; 2788 break; 2789 case DP_AUX_G: 2790 aux_ch = AUX_CH_G; 2791 break; 2792 case DP_AUX_H: 2793 aux_ch = AUX_CH_H; 2794 break; 2795 case DP_AUX_I: 2796 aux_ch = AUX_CH_I; 2797 break; 2798 default: 2799 MISSING_CASE(info->alternate_aux_channel); 2800 aux_ch = AUX_CH_A; 2801 break; 2802 } 2803 2804 drm_dbg_kms(&dev_priv->drm, "using AUX %c for port %c (VBT)\n", 2805 aux_ch_name(aux_ch), port_name(port)); 2806 2807 return aux_ch; 2808 } 2809 2810 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 2811 { 2812 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2813 2814 return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock; 2815 } 2816 2817 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 2818 { 2819 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2820 const struct ddi_vbt_port_info *info = 2821 &i915->vbt.ddi_port_info[encoder->port]; 2822 2823 return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1; 2824 } 2825 2826 int intel_bios_dp_boost_level(struct intel_encoder *encoder) 2827 { 2828 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2829 2830 return i915->vbt.ddi_port_info[encoder->port].dp_boost_level; 2831 } 2832 2833 int intel_bios_hdmi_boost_level(struct intel_encoder *encoder) 2834 { 2835 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2836 2837 return i915->vbt.ddi_port_info[encoder->port].hdmi_boost_level; 2838 } 2839 2840 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 2841 { 2842 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2843 2844 return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate; 2845 } 2846 2847 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 2848 { 2849 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2850 2851 return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin; 2852 } 2853 2854 bool intel_bios_port_supports_dvi(struct drm_i915_private *i915, enum port port) 2855 { 2856 return i915->vbt.ddi_port_info[port].supports_dvi; 2857 } 2858 2859 bool intel_bios_port_supports_hdmi(struct drm_i915_private *i915, enum port port) 2860 { 2861 return i915->vbt.ddi_port_info[port].supports_hdmi; 2862 } 2863 2864 bool intel_bios_port_supports_dp(struct drm_i915_private *i915, enum port port) 2865 { 2866 return i915->vbt.ddi_port_info[port].supports_dp; 2867 } 2868 2869 bool intel_bios_port_supports_typec_usb(struct drm_i915_private *i915, 2870 enum port port) 2871 { 2872 return i915->vbt.ddi_port_info[port].supports_typec_usb; 2873 } 2874 2875 bool intel_bios_port_supports_tbt(struct drm_i915_private *i915, enum port port) 2876 { 2877 return i915->vbt.ddi_port_info[port].supports_tbt; 2878 } 2879