1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_edid.h> 29 #include <drm/display/drm_dp_helper.h> 30 #include <drm/display/drm_dsc_helper.h> 31 32 #include "display/intel_display.h" 33 #include "display/intel_display_types.h" 34 #include "display/intel_gmbus.h" 35 36 #include "i915_drv.h" 37 #include "i915_reg.h" 38 39 #define _INTEL_BIOS_PRIVATE 40 #include "intel_vbt_defs.h" 41 42 /** 43 * DOC: Video BIOS Table (VBT) 44 * 45 * The Video BIOS Table, or VBT, provides platform and board specific 46 * configuration information to the driver that is not discoverable or available 47 * through other means. The configuration is mostly related to display 48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 49 * the PCI ROM. 50 * 51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 53 * contain the actual configuration information. The VBT Header, and thus the 54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 55 * BDB Header. The data blocks are concatenated after the BDB Header. The data 56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 57 * data. (Block 53, the MIPI Sequence Block is an exception.) 58 * 59 * The driver parses the VBT during load. The relevant information is stored in 60 * driver private data for ease of use, and the actual VBT is not read after 61 * that. 62 */ 63 64 /* Wrapper for VBT child device config */ 65 struct intel_bios_encoder_data { 66 struct drm_i915_private *i915; 67 68 struct child_device_config child; 69 struct dsc_compression_parameters_entry *dsc; 70 struct list_head node; 71 }; 72 73 #define SLAVE_ADDR1 0x70 74 #define SLAVE_ADDR2 0x72 75 76 /* Get BDB block size given a pointer to Block ID. */ 77 static u32 _get_blocksize(const u8 *block_base) 78 { 79 /* The MIPI Sequence Block v3+ has a separate size field. */ 80 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 81 return *((const u32 *)(block_base + 4)); 82 else 83 return *((const u16 *)(block_base + 1)); 84 } 85 86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 87 static u32 get_blocksize(const void *block_data) 88 { 89 return _get_blocksize(block_data - 3); 90 } 91 92 static const void * 93 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 94 { 95 const struct bdb_header *bdb = _bdb; 96 const u8 *base = _bdb; 97 int index = 0; 98 u32 total, current_size; 99 enum bdb_block_id current_id; 100 101 /* skip to first section */ 102 index += bdb->header_size; 103 total = bdb->bdb_size; 104 105 /* walk the sections looking for section_id */ 106 while (index + 3 < total) { 107 current_id = *(base + index); 108 current_size = _get_blocksize(base + index); 109 index += 3; 110 111 if (index + current_size > total) 112 return NULL; 113 114 if (current_id == section_id) 115 return base + index; 116 117 index += current_size; 118 } 119 120 return NULL; 121 } 122 123 /* 124 * Offset from the start of BDB to the start of the 125 * block data (just past the block header). 126 */ 127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 128 { 129 const void *block; 130 131 block = find_raw_section(bdb, section_id); 132 if (!block) 133 return 0; 134 135 return block - bdb; 136 } 137 138 /* size of the block excluding the header */ 139 static u32 raw_block_size(const void *bdb, enum bdb_block_id section_id) 140 { 141 const void *block; 142 143 block = find_raw_section(bdb, section_id); 144 if (!block) 145 return 0; 146 147 return get_blocksize(block); 148 } 149 150 struct bdb_block_entry { 151 struct list_head node; 152 enum bdb_block_id section_id; 153 u8 data[]; 154 }; 155 156 static const void * 157 find_section(struct drm_i915_private *i915, 158 enum bdb_block_id section_id) 159 { 160 struct bdb_block_entry *entry; 161 162 list_for_each_entry(entry, &i915->vbt.bdb_blocks, node) { 163 if (entry->section_id == section_id) 164 return entry->data + 3; 165 } 166 167 return NULL; 168 } 169 170 static const struct { 171 enum bdb_block_id section_id; 172 size_t min_size; 173 } bdb_blocks[] = { 174 { .section_id = BDB_GENERAL_FEATURES, 175 .min_size = sizeof(struct bdb_general_features), }, 176 { .section_id = BDB_GENERAL_DEFINITIONS, 177 .min_size = sizeof(struct bdb_general_definitions), }, 178 { .section_id = BDB_PSR, 179 .min_size = sizeof(struct bdb_psr), }, 180 { .section_id = BDB_DRIVER_FEATURES, 181 .min_size = sizeof(struct bdb_driver_features), }, 182 { .section_id = BDB_SDVO_LVDS_OPTIONS, 183 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 184 { .section_id = BDB_SDVO_PANEL_DTDS, 185 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 186 { .section_id = BDB_EDP, 187 .min_size = sizeof(struct bdb_edp), }, 188 { .section_id = BDB_LVDS_OPTIONS, 189 .min_size = sizeof(struct bdb_lvds_options), }, 190 /* 191 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 192 * so keep the two ordered. 193 */ 194 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 195 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 196 { .section_id = BDB_LVDS_LFP_DATA, 197 .min_size = 0, /* special case */ }, 198 { .section_id = BDB_LVDS_BACKLIGHT, 199 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 200 { .section_id = BDB_LFP_POWER, 201 .min_size = sizeof(struct bdb_lfp_power), }, 202 { .section_id = BDB_MIPI_CONFIG, 203 .min_size = sizeof(struct bdb_mipi_config), }, 204 { .section_id = BDB_MIPI_SEQUENCE, 205 .min_size = sizeof(struct bdb_mipi_sequence) }, 206 { .section_id = BDB_COMPRESSION_PARAMETERS, 207 .min_size = sizeof(struct bdb_compression_parameters), }, 208 { .section_id = BDB_GENERIC_DTD, 209 .min_size = sizeof(struct bdb_generic_dtd), }, 210 }; 211 212 static size_t lfp_data_min_size(struct drm_i915_private *i915) 213 { 214 const struct bdb_lvds_lfp_data_ptrs *ptrs; 215 size_t size; 216 217 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 218 if (!ptrs) 219 return 0; 220 221 size = sizeof(struct bdb_lvds_lfp_data); 222 if (ptrs->panel_name.table_size) 223 size = max(size, ptrs->panel_name.offset + 224 sizeof(struct bdb_lvds_lfp_data_tail)); 225 226 return size; 227 } 228 229 static bool validate_lfp_data_ptrs(const void *bdb, 230 const struct bdb_lvds_lfp_data_ptrs *ptrs) 231 { 232 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 233 int data_block_size, lfp_data_size; 234 int i; 235 236 data_block_size = raw_block_size(bdb, BDB_LVDS_LFP_DATA); 237 if (data_block_size == 0) 238 return false; 239 240 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 241 if (ptrs->lvds_entries != 3) 242 return false; 243 244 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 245 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 246 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 247 panel_name_size = ptrs->panel_name.table_size; 248 249 /* fp_timing has variable size */ 250 if (fp_timing_size < 32 || 251 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 252 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 253 return false; 254 255 /* panel_name is not present in old VBTs */ 256 if (panel_name_size != 0 && 257 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 258 return false; 259 260 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 261 if (16 * lfp_data_size > data_block_size) 262 return false; 263 264 /* 265 * Except for vlv/chv machines all real VBTs seem to have 6 266 * unaccounted bytes in the fp_timing table. And it doesn't 267 * appear to be a really intentional hole as the fp_timing 268 * 0xffff terminator is always within those 6 missing bytes. 269 */ 270 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size && 271 fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 272 return false; 273 274 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size > ptrs->ptr[0].dvo_timing.offset || 275 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 276 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 277 return false; 278 279 /* make sure the table entries have uniform size */ 280 for (i = 1; i < 16; i++) { 281 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 282 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 283 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 284 return false; 285 286 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 287 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 288 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 289 return false; 290 } 291 292 /* make sure the tables fit inside the data block */ 293 for (i = 0; i < 16; i++) { 294 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 295 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 296 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 297 return false; 298 } 299 300 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 301 return false; 302 303 return true; 304 } 305 306 /* make the data table offsets relative to the data block */ 307 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 308 { 309 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 310 u32 offset; 311 int i; 312 313 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 314 315 for (i = 0; i < 16; i++) { 316 if (ptrs->ptr[i].fp_timing.offset < offset || 317 ptrs->ptr[i].dvo_timing.offset < offset || 318 ptrs->ptr[i].panel_pnp_id.offset < offset) 319 return false; 320 321 ptrs->ptr[i].fp_timing.offset -= offset; 322 ptrs->ptr[i].dvo_timing.offset -= offset; 323 ptrs->ptr[i].panel_pnp_id.offset -= offset; 324 } 325 326 if (ptrs->panel_name.table_size) { 327 if (ptrs->panel_name.offset < offset) 328 return false; 329 330 ptrs->panel_name.offset -= offset; 331 } 332 333 return validate_lfp_data_ptrs(bdb, ptrs); 334 } 335 336 static const void *find_fp_timing_terminator(const u8 *data, int size) 337 { 338 int i; 339 340 for (i = 0; i < size - 1; i++) { 341 if (data[i] == 0xff && data[i+1] == 0xff) 342 return &data[i]; 343 } 344 345 return NULL; 346 } 347 348 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 349 int table_size, int total_size) 350 { 351 if (total_size < table_size) 352 return total_size; 353 354 table->table_size = table_size; 355 table->offset = total_size - table_size; 356 357 return total_size - table_size; 358 } 359 360 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 361 const struct lvds_lfp_data_ptr_table *prev, 362 int size) 363 { 364 next->table_size = prev->table_size; 365 next->offset = prev->offset + size; 366 } 367 368 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 369 const void *bdb) 370 { 371 int i, size, table_size, block_size, offset; 372 const void *t0, *t1, *block; 373 struct bdb_lvds_lfp_data_ptrs *ptrs; 374 void *ptrs_block; 375 376 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 377 if (!block) 378 return NULL; 379 380 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 381 382 block_size = get_blocksize(block); 383 384 size = block_size; 385 t0 = find_fp_timing_terminator(block, size); 386 if (!t0) 387 return NULL; 388 389 size -= t0 - block - 2; 390 t1 = find_fp_timing_terminator(t0 + 2, size); 391 if (!t1) 392 return NULL; 393 394 size = t1 - t0; 395 if (size * 16 > block_size) 396 return NULL; 397 398 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 399 if (!ptrs_block) 400 return NULL; 401 402 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 403 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 404 ptrs = ptrs_block + 3; 405 406 table_size = sizeof(struct lvds_pnp_id); 407 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 408 409 table_size = sizeof(struct lvds_dvo_timing); 410 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 411 412 table_size = t0 - block + 2; 413 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 414 415 if (ptrs->ptr[0].fp_timing.table_size) 416 ptrs->lvds_entries++; 417 if (ptrs->ptr[0].dvo_timing.table_size) 418 ptrs->lvds_entries++; 419 if (ptrs->ptr[0].panel_pnp_id.table_size) 420 ptrs->lvds_entries++; 421 422 if (size != 0 || ptrs->lvds_entries != 3) { 423 kfree(ptrs); 424 return NULL; 425 } 426 427 size = t1 - t0; 428 for (i = 1; i < 16; i++) { 429 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 430 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 431 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 432 } 433 434 size = t1 - t0; 435 table_size = sizeof(struct lvds_lfp_panel_name); 436 437 if (16 * (size + table_size) <= block_size) { 438 ptrs->panel_name.table_size = table_size; 439 ptrs->panel_name.offset = size * 16; 440 } 441 442 offset = block - bdb; 443 444 for (i = 0; i < 16; i++) { 445 ptrs->ptr[i].fp_timing.offset += offset; 446 ptrs->ptr[i].dvo_timing.offset += offset; 447 ptrs->ptr[i].panel_pnp_id.offset += offset; 448 } 449 450 if (ptrs->panel_name.table_size) 451 ptrs->panel_name.offset += offset; 452 453 return ptrs_block; 454 } 455 456 static void 457 init_bdb_block(struct drm_i915_private *i915, 458 const void *bdb, enum bdb_block_id section_id, 459 size_t min_size) 460 { 461 struct bdb_block_entry *entry; 462 void *temp_block = NULL; 463 const void *block; 464 size_t block_size; 465 466 block = find_raw_section(bdb, section_id); 467 468 /* Modern VBTs lack the LFP data table pointers block, make one up */ 469 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 470 temp_block = generate_lfp_data_ptrs(i915, bdb); 471 if (temp_block) 472 block = temp_block + 3; 473 } 474 if (!block) 475 return; 476 477 drm_WARN(&i915->drm, min_size == 0, 478 "Block %d min_size is zero\n", section_id); 479 480 block_size = get_blocksize(block); 481 482 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 483 GFP_KERNEL); 484 if (!entry) { 485 kfree(temp_block); 486 return; 487 } 488 489 entry->section_id = section_id; 490 memcpy(entry->data, block - 3, block_size + 3); 491 492 kfree(temp_block); 493 494 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 495 section_id, block_size, min_size); 496 497 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 498 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 499 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 500 kfree(entry); 501 return; 502 } 503 504 list_add_tail(&entry->node, &i915->vbt.bdb_blocks); 505 } 506 507 static void init_bdb_blocks(struct drm_i915_private *i915, 508 const void *bdb) 509 { 510 int i; 511 512 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 513 enum bdb_block_id section_id = bdb_blocks[i].section_id; 514 size_t min_size = bdb_blocks[i].min_size; 515 516 if (section_id == BDB_LVDS_LFP_DATA) 517 min_size = lfp_data_min_size(i915); 518 519 init_bdb_block(i915, bdb, section_id, min_size); 520 } 521 } 522 523 static void 524 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 525 const struct lvds_dvo_timing *dvo_timing) 526 { 527 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 528 dvo_timing->hactive_lo; 529 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 530 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 531 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 532 ((dvo_timing->hsync_pulse_width_hi << 8) | 533 dvo_timing->hsync_pulse_width_lo); 534 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 535 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 536 537 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 538 dvo_timing->vactive_lo; 539 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 540 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 541 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 542 ((dvo_timing->vsync_pulse_width_hi << 4) | 543 dvo_timing->vsync_pulse_width_lo); 544 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 545 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 546 panel_fixed_mode->clock = dvo_timing->clock * 10; 547 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 548 549 if (dvo_timing->hsync_positive) 550 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 551 else 552 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 553 554 if (dvo_timing->vsync_positive) 555 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 556 else 557 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 558 559 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 560 dvo_timing->himage_lo; 561 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 562 dvo_timing->vimage_lo; 563 564 /* Some VBTs have bogus h/vtotal values */ 565 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 566 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 567 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 568 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 569 570 drm_mode_set_name(panel_fixed_mode); 571 } 572 573 static const struct lvds_dvo_timing * 574 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 575 const struct bdb_lvds_lfp_data_ptrs *ptrs, 576 int index) 577 { 578 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 579 } 580 581 static const struct lvds_fp_timing * 582 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 583 const struct bdb_lvds_lfp_data_ptrs *ptrs, 584 int index) 585 { 586 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 587 } 588 589 static const struct lvds_pnp_id * 590 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 591 const struct bdb_lvds_lfp_data_ptrs *ptrs, 592 int index) 593 { 594 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 595 } 596 597 static const struct bdb_lvds_lfp_data_tail * 598 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 599 const struct bdb_lvds_lfp_data_ptrs *ptrs) 600 { 601 if (ptrs->panel_name.table_size) 602 return (const void *)data + ptrs->panel_name.offset; 603 else 604 return NULL; 605 } 606 607 static int opregion_get_panel_type(struct drm_i915_private *i915, 608 const struct intel_bios_encoder_data *devdata, 609 const struct edid *edid) 610 { 611 return intel_opregion_get_panel_type(i915); 612 } 613 614 static int vbt_get_panel_type(struct drm_i915_private *i915, 615 const struct intel_bios_encoder_data *devdata, 616 const struct edid *edid) 617 { 618 const struct bdb_lvds_options *lvds_options; 619 620 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 621 if (!lvds_options) 622 return -1; 623 624 if (lvds_options->panel_type > 0xf && 625 lvds_options->panel_type != 0xff) { 626 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 627 lvds_options->panel_type); 628 return -1; 629 } 630 631 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 632 return lvds_options->panel_type2; 633 634 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 635 636 return lvds_options->panel_type; 637 } 638 639 static int pnpid_get_panel_type(struct drm_i915_private *i915, 640 const struct intel_bios_encoder_data *devdata, 641 const struct edid *edid) 642 { 643 const struct bdb_lvds_lfp_data *data; 644 const struct bdb_lvds_lfp_data_ptrs *ptrs; 645 const struct lvds_pnp_id *edid_id; 646 struct lvds_pnp_id edid_id_nodate; 647 int i, best = -1; 648 649 if (!edid) 650 return -1; 651 652 edid_id = (const void *)&edid->mfg_id[0]; 653 654 edid_id_nodate = *edid_id; 655 edid_id_nodate.mfg_week = 0; 656 edid_id_nodate.mfg_year = 0; 657 658 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 659 if (!ptrs) 660 return -1; 661 662 data = find_section(i915, BDB_LVDS_LFP_DATA); 663 if (!data) 664 return -1; 665 666 for (i = 0; i < 16; i++) { 667 const struct lvds_pnp_id *vbt_id = 668 get_lvds_pnp_id(data, ptrs, i); 669 670 /* full match? */ 671 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 672 return i; 673 674 /* 675 * Accept a match w/o date if no full match is found, 676 * and the VBT entry does not specify a date. 677 */ 678 if (best < 0 && 679 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 680 best = i; 681 } 682 683 return best; 684 } 685 686 static int fallback_get_panel_type(struct drm_i915_private *i915, 687 const struct intel_bios_encoder_data *devdata, 688 const struct edid *edid) 689 { 690 return 0; 691 } 692 693 enum panel_type { 694 PANEL_TYPE_OPREGION, 695 PANEL_TYPE_VBT, 696 PANEL_TYPE_PNPID, 697 PANEL_TYPE_FALLBACK, 698 }; 699 700 static int get_panel_type(struct drm_i915_private *i915, 701 const struct intel_bios_encoder_data *devdata, 702 const struct edid *edid) 703 { 704 struct { 705 const char *name; 706 int (*get_panel_type)(struct drm_i915_private *i915, 707 const struct intel_bios_encoder_data *devdata, 708 const struct edid *edid); 709 int panel_type; 710 } panel_types[] = { 711 [PANEL_TYPE_OPREGION] = { 712 .name = "OpRegion", 713 .get_panel_type = opregion_get_panel_type, 714 }, 715 [PANEL_TYPE_VBT] = { 716 .name = "VBT", 717 .get_panel_type = vbt_get_panel_type, 718 }, 719 [PANEL_TYPE_PNPID] = { 720 .name = "PNPID", 721 .get_panel_type = pnpid_get_panel_type, 722 }, 723 [PANEL_TYPE_FALLBACK] = { 724 .name = "fallback", 725 .get_panel_type = fallback_get_panel_type, 726 }, 727 }; 728 int i; 729 730 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 731 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid); 732 733 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 734 panel_types[i].panel_type != 0xff); 735 736 if (panel_types[i].panel_type >= 0) 737 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 738 panel_types[i].name, panel_types[i].panel_type); 739 } 740 741 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 742 i = PANEL_TYPE_OPREGION; 743 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 744 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 745 i = PANEL_TYPE_PNPID; 746 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 747 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 748 i = PANEL_TYPE_VBT; 749 else 750 i = PANEL_TYPE_FALLBACK; 751 752 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 753 panel_types[i].name, panel_types[i].panel_type); 754 755 return panel_types[i].panel_type; 756 } 757 758 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 759 { 760 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 761 } 762 763 static bool panel_bool(unsigned int value, int panel_type) 764 { 765 return panel_bits(value, panel_type, 1); 766 } 767 768 /* Parse general panel options */ 769 static void 770 parse_panel_options(struct drm_i915_private *i915, 771 struct intel_panel *panel) 772 { 773 const struct bdb_lvds_options *lvds_options; 774 int panel_type = panel->vbt.panel_type; 775 int drrs_mode; 776 777 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 778 if (!lvds_options) 779 return; 780 781 panel->vbt.lvds_dither = lvds_options->pixel_dither; 782 783 /* 784 * Empirical evidence indicates the block size can be 785 * either 4,14,16,24+ bytes. For older VBTs no clear 786 * relationship between the block size vs. BDB version. 787 */ 788 if (get_blocksize(lvds_options) < 16) 789 return; 790 791 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 792 panel_type, 2); 793 /* 794 * VBT has static DRRS = 0 and seamless DRRS = 2. 795 * The below piece of code is required to adjust vbt.drrs_type 796 * to match the enum drrs_support_type. 797 */ 798 switch (drrs_mode) { 799 case 0: 800 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 801 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 802 break; 803 case 2: 804 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 805 drm_dbg_kms(&i915->drm, 806 "DRRS supported mode is seamless\n"); 807 break; 808 default: 809 panel->vbt.drrs_type = DRRS_TYPE_NONE; 810 drm_dbg_kms(&i915->drm, 811 "DRRS not supported (VBT input)\n"); 812 break; 813 } 814 } 815 816 static void 817 parse_lfp_panel_dtd(struct drm_i915_private *i915, 818 struct intel_panel *panel, 819 const struct bdb_lvds_lfp_data *lvds_lfp_data, 820 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 821 { 822 const struct lvds_dvo_timing *panel_dvo_timing; 823 const struct lvds_fp_timing *fp_timing; 824 struct drm_display_mode *panel_fixed_mode; 825 int panel_type = panel->vbt.panel_type; 826 827 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 828 lvds_lfp_data_ptrs, 829 panel_type); 830 831 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 832 if (!panel_fixed_mode) 833 return; 834 835 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 836 837 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 838 839 drm_dbg_kms(&i915->drm, 840 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 841 DRM_MODE_ARG(panel_fixed_mode)); 842 843 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 844 lvds_lfp_data_ptrs, 845 panel_type); 846 847 /* check the resolution, just to be sure */ 848 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 849 fp_timing->y_res == panel_fixed_mode->vdisplay) { 850 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 851 drm_dbg_kms(&i915->drm, 852 "VBT initial LVDS value %x\n", 853 panel->vbt.bios_lvds_val); 854 } 855 } 856 857 static void 858 parse_lfp_data(struct drm_i915_private *i915, 859 struct intel_panel *panel) 860 { 861 const struct bdb_lvds_lfp_data *data; 862 const struct bdb_lvds_lfp_data_tail *tail; 863 const struct bdb_lvds_lfp_data_ptrs *ptrs; 864 int panel_type = panel->vbt.panel_type; 865 866 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 867 if (!ptrs) 868 return; 869 870 data = find_section(i915, BDB_LVDS_LFP_DATA); 871 if (!data) 872 return; 873 874 if (!panel->vbt.lfp_lvds_vbt_mode) 875 parse_lfp_panel_dtd(i915, panel, data, ptrs); 876 877 tail = get_lfp_data_tail(data, ptrs); 878 if (!tail) 879 return; 880 881 if (i915->vbt.version >= 188) { 882 panel->vbt.seamless_drrs_min_refresh_rate = 883 tail->seamless_drrs_min_refresh_rate[panel_type]; 884 drm_dbg_kms(&i915->drm, 885 "Seamless DRRS min refresh rate: %d Hz\n", 886 panel->vbt.seamless_drrs_min_refresh_rate); 887 } 888 } 889 890 static void 891 parse_generic_dtd(struct drm_i915_private *i915, 892 struct intel_panel *panel) 893 { 894 const struct bdb_generic_dtd *generic_dtd; 895 const struct generic_dtd_entry *dtd; 896 struct drm_display_mode *panel_fixed_mode; 897 int num_dtd; 898 899 /* 900 * Older VBTs provided DTD information for internal displays through 901 * the "LFP panel tables" block (42). As of VBT revision 229 the 902 * DTD information should be provided via a newer "generic DTD" 903 * block (58). Just to be safe, we'll try the new generic DTD block 904 * first on VBT >= 229, but still fall back to trying the old LFP 905 * block if that fails. 906 */ 907 if (i915->vbt.version < 229) 908 return; 909 910 generic_dtd = find_section(i915, BDB_GENERIC_DTD); 911 if (!generic_dtd) 912 return; 913 914 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 915 drm_err(&i915->drm, "GDTD size %u is too small.\n", 916 generic_dtd->gdtd_size); 917 return; 918 } else if (generic_dtd->gdtd_size != 919 sizeof(struct generic_dtd_entry)) { 920 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 921 generic_dtd->gdtd_size); 922 /* DTD has unknown fields, but keep going */ 923 } 924 925 num_dtd = (get_blocksize(generic_dtd) - 926 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 927 if (panel->vbt.panel_type >= num_dtd) { 928 drm_err(&i915->drm, 929 "Panel type %d not found in table of %d DTD's\n", 930 panel->vbt.panel_type, num_dtd); 931 return; 932 } 933 934 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 935 936 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 937 if (!panel_fixed_mode) 938 return; 939 940 panel_fixed_mode->hdisplay = dtd->hactive; 941 panel_fixed_mode->hsync_start = 942 panel_fixed_mode->hdisplay + dtd->hfront_porch; 943 panel_fixed_mode->hsync_end = 944 panel_fixed_mode->hsync_start + dtd->hsync; 945 panel_fixed_mode->htotal = 946 panel_fixed_mode->hdisplay + dtd->hblank; 947 948 panel_fixed_mode->vdisplay = dtd->vactive; 949 panel_fixed_mode->vsync_start = 950 panel_fixed_mode->vdisplay + dtd->vfront_porch; 951 panel_fixed_mode->vsync_end = 952 panel_fixed_mode->vsync_start + dtd->vsync; 953 panel_fixed_mode->vtotal = 954 panel_fixed_mode->vdisplay + dtd->vblank; 955 956 panel_fixed_mode->clock = dtd->pixel_clock; 957 panel_fixed_mode->width_mm = dtd->width_mm; 958 panel_fixed_mode->height_mm = dtd->height_mm; 959 960 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 961 drm_mode_set_name(panel_fixed_mode); 962 963 if (dtd->hsync_positive_polarity) 964 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 965 else 966 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 967 968 if (dtd->vsync_positive_polarity) 969 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 970 else 971 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 972 973 drm_dbg_kms(&i915->drm, 974 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 975 DRM_MODE_ARG(panel_fixed_mode)); 976 977 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 978 } 979 980 static void 981 parse_lfp_backlight(struct drm_i915_private *i915, 982 struct intel_panel *panel) 983 { 984 const struct bdb_lfp_backlight_data *backlight_data; 985 const struct lfp_backlight_data_entry *entry; 986 int panel_type = panel->vbt.panel_type; 987 u16 level; 988 989 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT); 990 if (!backlight_data) 991 return; 992 993 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 994 drm_dbg_kms(&i915->drm, 995 "Unsupported backlight data entry size %u\n", 996 backlight_data->entry_size); 997 return; 998 } 999 1000 entry = &backlight_data->data[panel_type]; 1001 1002 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1003 if (!panel->vbt.backlight.present) { 1004 drm_dbg_kms(&i915->drm, 1005 "PWM backlight not present in VBT (type %u)\n", 1006 entry->type); 1007 return; 1008 } 1009 1010 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1011 if (i915->vbt.version >= 191) { 1012 size_t exp_size; 1013 1014 if (i915->vbt.version >= 236) 1015 exp_size = sizeof(struct bdb_lfp_backlight_data); 1016 else if (i915->vbt.version >= 234) 1017 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1018 else 1019 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1020 1021 if (get_blocksize(backlight_data) >= exp_size) { 1022 const struct lfp_backlight_control_method *method; 1023 1024 method = &backlight_data->backlight_control[panel_type]; 1025 panel->vbt.backlight.type = method->type; 1026 panel->vbt.backlight.controller = method->controller; 1027 } 1028 } 1029 1030 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1031 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1032 1033 if (i915->vbt.version >= 234) { 1034 u16 min_level; 1035 bool scale; 1036 1037 level = backlight_data->brightness_level[panel_type].level; 1038 min_level = backlight_data->brightness_min_level[panel_type].level; 1039 1040 if (i915->vbt.version >= 236) 1041 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1042 else 1043 scale = level > 255; 1044 1045 if (scale) 1046 min_level = min_level / 255; 1047 1048 if (min_level > 255) { 1049 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1050 level = 255; 1051 } 1052 panel->vbt.backlight.min_brightness = min_level; 1053 1054 panel->vbt.backlight.brightness_precision_bits = 1055 backlight_data->brightness_precision_bits[panel_type]; 1056 } else { 1057 level = backlight_data->level[panel_type]; 1058 panel->vbt.backlight.min_brightness = entry->min_brightness; 1059 } 1060 1061 drm_dbg_kms(&i915->drm, 1062 "VBT backlight PWM modulation frequency %u Hz, " 1063 "active %s, min brightness %u, level %u, controller %u\n", 1064 panel->vbt.backlight.pwm_freq_hz, 1065 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1066 panel->vbt.backlight.min_brightness, 1067 level, 1068 panel->vbt.backlight.controller); 1069 } 1070 1071 /* Try to find sdvo panel data */ 1072 static void 1073 parse_sdvo_panel_data(struct drm_i915_private *i915, 1074 struct intel_panel *panel) 1075 { 1076 const struct bdb_sdvo_panel_dtds *dtds; 1077 struct drm_display_mode *panel_fixed_mode; 1078 int index; 1079 1080 index = i915->params.vbt_sdvo_panel_type; 1081 if (index == -2) { 1082 drm_dbg_kms(&i915->drm, 1083 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1084 return; 1085 } 1086 1087 if (index == -1) { 1088 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1089 1090 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1091 if (!sdvo_lvds_options) 1092 return; 1093 1094 index = sdvo_lvds_options->panel_type; 1095 } 1096 1097 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS); 1098 if (!dtds) 1099 return; 1100 1101 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1102 if (!panel_fixed_mode) 1103 return; 1104 1105 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 1106 1107 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1108 1109 drm_dbg_kms(&i915->drm, 1110 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1111 DRM_MODE_ARG(panel_fixed_mode)); 1112 } 1113 1114 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1115 bool alternate) 1116 { 1117 switch (DISPLAY_VER(i915)) { 1118 case 2: 1119 return alternate ? 66667 : 48000; 1120 case 3: 1121 case 4: 1122 return alternate ? 100000 : 96000; 1123 default: 1124 return alternate ? 100000 : 120000; 1125 } 1126 } 1127 1128 static void 1129 parse_general_features(struct drm_i915_private *i915) 1130 { 1131 const struct bdb_general_features *general; 1132 1133 general = find_section(i915, BDB_GENERAL_FEATURES); 1134 if (!general) 1135 return; 1136 1137 i915->vbt.int_tv_support = general->int_tv_support; 1138 /* int_crt_support can't be trusted on earlier platforms */ 1139 if (i915->vbt.version >= 155 && 1140 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1141 i915->vbt.int_crt_support = general->int_crt_support; 1142 i915->vbt.lvds_use_ssc = general->enable_ssc; 1143 i915->vbt.lvds_ssc_freq = 1144 intel_bios_ssc_frequency(i915, general->ssc_freq); 1145 i915->vbt.display_clock_mode = general->display_clock_mode; 1146 i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1147 if (i915->vbt.version >= 181) { 1148 i915->vbt.orientation = general->rotate_180 ? 1149 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1150 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1151 } else { 1152 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1153 } 1154 1155 if (i915->vbt.version >= 249 && general->afc_startup_config) { 1156 i915->vbt.override_afc_startup = true; 1157 i915->vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1158 } 1159 1160 drm_dbg_kms(&i915->drm, 1161 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1162 i915->vbt.int_tv_support, 1163 i915->vbt.int_crt_support, 1164 i915->vbt.lvds_use_ssc, 1165 i915->vbt.lvds_ssc_freq, 1166 i915->vbt.display_clock_mode, 1167 i915->vbt.fdi_rx_polarity_inverted); 1168 } 1169 1170 static const struct child_device_config * 1171 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1172 { 1173 return (const void *) &defs->devices[i * defs->child_dev_size]; 1174 } 1175 1176 static void 1177 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1178 { 1179 struct sdvo_device_mapping *mapping; 1180 const struct intel_bios_encoder_data *devdata; 1181 const struct child_device_config *child; 1182 int count = 0; 1183 1184 /* 1185 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1186 * accurate and doesn't have to be, as long as it's not too strict. 1187 */ 1188 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1189 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1190 return; 1191 } 1192 1193 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 1194 child = &devdata->child; 1195 1196 if (child->slave_addr != SLAVE_ADDR1 && 1197 child->slave_addr != SLAVE_ADDR2) { 1198 /* 1199 * If the slave address is neither 0x70 nor 0x72, 1200 * it is not a SDVO device. Skip it. 1201 */ 1202 continue; 1203 } 1204 if (child->dvo_port != DEVICE_PORT_DVOB && 1205 child->dvo_port != DEVICE_PORT_DVOC) { 1206 /* skip the incorrect SDVO port */ 1207 drm_dbg_kms(&i915->drm, 1208 "Incorrect SDVO port. Skip it\n"); 1209 continue; 1210 } 1211 drm_dbg_kms(&i915->drm, 1212 "the SDVO device with slave addr %2x is found on" 1213 " %s port\n", 1214 child->slave_addr, 1215 (child->dvo_port == DEVICE_PORT_DVOB) ? 1216 "SDVOB" : "SDVOC"); 1217 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1]; 1218 if (!mapping->initialized) { 1219 mapping->dvo_port = child->dvo_port; 1220 mapping->slave_addr = child->slave_addr; 1221 mapping->dvo_wiring = child->dvo_wiring; 1222 mapping->ddc_pin = child->ddc_pin; 1223 mapping->i2c_pin = child->i2c_pin; 1224 mapping->initialized = 1; 1225 drm_dbg_kms(&i915->drm, 1226 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1227 mapping->dvo_port, mapping->slave_addr, 1228 mapping->dvo_wiring, mapping->ddc_pin, 1229 mapping->i2c_pin); 1230 } else { 1231 drm_dbg_kms(&i915->drm, 1232 "Maybe one SDVO port is shared by " 1233 "two SDVO device.\n"); 1234 } 1235 if (child->slave2_addr) { 1236 /* Maybe this is a SDVO device with multiple inputs */ 1237 /* And the mapping info is not added */ 1238 drm_dbg_kms(&i915->drm, 1239 "there exists the slave2_addr. Maybe this" 1240 " is a SDVO device with multiple inputs.\n"); 1241 } 1242 count++; 1243 } 1244 1245 if (!count) { 1246 /* No SDVO device info is found */ 1247 drm_dbg_kms(&i915->drm, 1248 "No SDVO device info is found in VBT\n"); 1249 } 1250 } 1251 1252 static void 1253 parse_driver_features(struct drm_i915_private *i915) 1254 { 1255 const struct bdb_driver_features *driver; 1256 1257 driver = find_section(i915, BDB_DRIVER_FEATURES); 1258 if (!driver) 1259 return; 1260 1261 if (DISPLAY_VER(i915) >= 5) { 1262 /* 1263 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1264 * to mean "eDP". The VBT spec doesn't agree with that 1265 * interpretation, but real world VBTs seem to. 1266 */ 1267 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1268 i915->vbt.int_lvds_support = 0; 1269 } else { 1270 /* 1271 * FIXME it's not clear which BDB version has the LVDS config 1272 * bits defined. Revision history in the VBT spec says: 1273 * "0.92 | Add two definitions for VBT value of LVDS Active 1274 * Config (00b and 11b values defined) | 06/13/2005" 1275 * but does not the specify the BDB version. 1276 * 1277 * So far version 134 (on i945gm) is the oldest VBT observed 1278 * in the wild with the bits correctly populated. Version 1279 * 108 (on i85x) does not have the bits correctly populated. 1280 */ 1281 if (i915->vbt.version >= 134 && 1282 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1283 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1284 i915->vbt.int_lvds_support = 0; 1285 } 1286 } 1287 1288 static void 1289 parse_panel_driver_features(struct drm_i915_private *i915, 1290 struct intel_panel *panel) 1291 { 1292 const struct bdb_driver_features *driver; 1293 1294 driver = find_section(i915, BDB_DRIVER_FEATURES); 1295 if (!driver) 1296 return; 1297 1298 if (i915->vbt.version < 228) { 1299 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1300 driver->drrs_enabled); 1301 /* 1302 * If DRRS is not supported, drrs_type has to be set to 0. 1303 * This is because, VBT is configured in such a way that 1304 * static DRRS is 0 and DRRS not supported is represented by 1305 * driver->drrs_enabled=false 1306 */ 1307 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1308 /* 1309 * FIXME Should DMRRS perhaps be treated as seamless 1310 * but without the automatic downclocking? 1311 */ 1312 if (driver->dmrrs_enabled) 1313 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1314 else 1315 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1316 } 1317 1318 panel->vbt.psr.enable = driver->psr_enabled; 1319 } 1320 } 1321 1322 static void 1323 parse_power_conservation_features(struct drm_i915_private *i915, 1324 struct intel_panel *panel) 1325 { 1326 const struct bdb_lfp_power *power; 1327 u8 panel_type = panel->vbt.panel_type; 1328 1329 panel->vbt.vrr = true; /* matches Windows behaviour */ 1330 1331 if (i915->vbt.version < 228) 1332 return; 1333 1334 power = find_section(i915, BDB_LFP_POWER); 1335 if (!power) 1336 return; 1337 1338 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1339 1340 /* 1341 * If DRRS is not supported, drrs_type has to be set to 0. 1342 * This is because, VBT is configured in such a way that 1343 * static DRRS is 0 and DRRS not supported is represented by 1344 * power->drrs & BIT(panel_type)=false 1345 */ 1346 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1347 /* 1348 * FIXME Should DMRRS perhaps be treated as seamless 1349 * but without the automatic downclocking? 1350 */ 1351 if (panel_bool(power->dmrrs, panel_type)) 1352 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1353 else 1354 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1355 } 1356 1357 if (i915->vbt.version >= 232) 1358 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1359 1360 if (i915->vbt.version >= 233) 1361 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1362 panel_type); 1363 } 1364 1365 static void 1366 parse_edp(struct drm_i915_private *i915, 1367 struct intel_panel *panel) 1368 { 1369 const struct bdb_edp *edp; 1370 const struct edp_power_seq *edp_pps; 1371 const struct edp_fast_link_params *edp_link_params; 1372 int panel_type = panel->vbt.panel_type; 1373 1374 edp = find_section(i915, BDB_EDP); 1375 if (!edp) 1376 return; 1377 1378 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1379 case EDP_18BPP: 1380 panel->vbt.edp.bpp = 18; 1381 break; 1382 case EDP_24BPP: 1383 panel->vbt.edp.bpp = 24; 1384 break; 1385 case EDP_30BPP: 1386 panel->vbt.edp.bpp = 30; 1387 break; 1388 } 1389 1390 /* Get the eDP sequencing and link info */ 1391 edp_pps = &edp->power_seqs[panel_type]; 1392 edp_link_params = &edp->fast_link_params[panel_type]; 1393 1394 panel->vbt.edp.pps = *edp_pps; 1395 1396 if (i915->vbt.version >= 224) { 1397 panel->vbt.edp.rate = 1398 edp->edp_fast_link_training_rate[panel_type] * 20; 1399 } else { 1400 switch (edp_link_params->rate) { 1401 case EDP_RATE_1_62: 1402 panel->vbt.edp.rate = 162000; 1403 break; 1404 case EDP_RATE_2_7: 1405 panel->vbt.edp.rate = 270000; 1406 break; 1407 case EDP_RATE_5_4: 1408 panel->vbt.edp.rate = 540000; 1409 break; 1410 default: 1411 drm_dbg_kms(&i915->drm, 1412 "VBT has unknown eDP link rate value %u\n", 1413 edp_link_params->rate); 1414 break; 1415 } 1416 } 1417 1418 switch (edp_link_params->lanes) { 1419 case EDP_LANE_1: 1420 panel->vbt.edp.lanes = 1; 1421 break; 1422 case EDP_LANE_2: 1423 panel->vbt.edp.lanes = 2; 1424 break; 1425 case EDP_LANE_4: 1426 panel->vbt.edp.lanes = 4; 1427 break; 1428 default: 1429 drm_dbg_kms(&i915->drm, 1430 "VBT has unknown eDP lane count value %u\n", 1431 edp_link_params->lanes); 1432 break; 1433 } 1434 1435 switch (edp_link_params->preemphasis) { 1436 case EDP_PREEMPHASIS_NONE: 1437 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1438 break; 1439 case EDP_PREEMPHASIS_3_5dB: 1440 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1441 break; 1442 case EDP_PREEMPHASIS_6dB: 1443 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1444 break; 1445 case EDP_PREEMPHASIS_9_5dB: 1446 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1447 break; 1448 default: 1449 drm_dbg_kms(&i915->drm, 1450 "VBT has unknown eDP pre-emphasis value %u\n", 1451 edp_link_params->preemphasis); 1452 break; 1453 } 1454 1455 switch (edp_link_params->vswing) { 1456 case EDP_VSWING_0_4V: 1457 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1458 break; 1459 case EDP_VSWING_0_6V: 1460 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1461 break; 1462 case EDP_VSWING_0_8V: 1463 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1464 break; 1465 case EDP_VSWING_1_2V: 1466 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1467 break; 1468 default: 1469 drm_dbg_kms(&i915->drm, 1470 "VBT has unknown eDP voltage swing value %u\n", 1471 edp_link_params->vswing); 1472 break; 1473 } 1474 1475 if (i915->vbt.version >= 173) { 1476 u8 vswing; 1477 1478 /* Don't read from VBT if module parameter has valid value*/ 1479 if (i915->params.edp_vswing) { 1480 panel->vbt.edp.low_vswing = 1481 i915->params.edp_vswing == 1; 1482 } else { 1483 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1484 panel->vbt.edp.low_vswing = vswing == 0; 1485 } 1486 } 1487 1488 panel->vbt.edp.drrs_msa_timing_delay = 1489 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1490 1491 if (i915->vbt.version >= 244) 1492 panel->vbt.edp.max_link_rate = 1493 edp->edp_max_port_link_rate[panel_type] * 20; 1494 } 1495 1496 static void 1497 parse_psr(struct drm_i915_private *i915, 1498 struct intel_panel *panel) 1499 { 1500 const struct bdb_psr *psr; 1501 const struct psr_table *psr_table; 1502 int panel_type = panel->vbt.panel_type; 1503 1504 psr = find_section(i915, BDB_PSR); 1505 if (!psr) { 1506 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1507 return; 1508 } 1509 1510 psr_table = &psr->psr_table[panel_type]; 1511 1512 panel->vbt.psr.full_link = psr_table->full_link; 1513 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1514 1515 /* Allowed VBT values goes from 0 to 15 */ 1516 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1517 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1518 1519 /* 1520 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1521 * Old decimal value is wake up time in multiples of 100 us. 1522 */ 1523 if (i915->vbt.version >= 205 && 1524 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1525 switch (psr_table->tp1_wakeup_time) { 1526 case 0: 1527 panel->vbt.psr.tp1_wakeup_time_us = 500; 1528 break; 1529 case 1: 1530 panel->vbt.psr.tp1_wakeup_time_us = 100; 1531 break; 1532 case 3: 1533 panel->vbt.psr.tp1_wakeup_time_us = 0; 1534 break; 1535 default: 1536 drm_dbg_kms(&i915->drm, 1537 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1538 psr_table->tp1_wakeup_time); 1539 fallthrough; 1540 case 2: 1541 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1542 break; 1543 } 1544 1545 switch (psr_table->tp2_tp3_wakeup_time) { 1546 case 0: 1547 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1548 break; 1549 case 1: 1550 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1551 break; 1552 case 3: 1553 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1554 break; 1555 default: 1556 drm_dbg_kms(&i915->drm, 1557 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1558 psr_table->tp2_tp3_wakeup_time); 1559 fallthrough; 1560 case 2: 1561 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1562 break; 1563 } 1564 } else { 1565 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1566 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1567 } 1568 1569 if (i915->vbt.version >= 226) { 1570 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1571 1572 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1573 switch (wakeup_time) { 1574 case 0: 1575 wakeup_time = 500; 1576 break; 1577 case 1: 1578 wakeup_time = 100; 1579 break; 1580 case 3: 1581 wakeup_time = 50; 1582 break; 1583 default: 1584 case 2: 1585 wakeup_time = 2500; 1586 break; 1587 } 1588 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1589 } else { 1590 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1591 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1592 } 1593 } 1594 1595 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1596 struct intel_panel *panel, 1597 enum port port) 1598 { 1599 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1600 1601 if (!panel->vbt.dsi.config->dual_link || i915->vbt.version < 197) { 1602 panel->vbt.dsi.bl_ports = BIT(port); 1603 if (panel->vbt.dsi.config->cabc_supported) 1604 panel->vbt.dsi.cabc_ports = BIT(port); 1605 1606 return; 1607 } 1608 1609 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1610 case DL_DCS_PORT_A: 1611 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1612 break; 1613 case DL_DCS_PORT_C: 1614 panel->vbt.dsi.bl_ports = BIT(port_bc); 1615 break; 1616 default: 1617 case DL_DCS_PORT_A_AND_C: 1618 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1619 break; 1620 } 1621 1622 if (!panel->vbt.dsi.config->cabc_supported) 1623 return; 1624 1625 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1626 case DL_DCS_PORT_A: 1627 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1628 break; 1629 case DL_DCS_PORT_C: 1630 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1631 break; 1632 default: 1633 case DL_DCS_PORT_A_AND_C: 1634 panel->vbt.dsi.cabc_ports = 1635 BIT(PORT_A) | BIT(port_bc); 1636 break; 1637 } 1638 } 1639 1640 static void 1641 parse_mipi_config(struct drm_i915_private *i915, 1642 struct intel_panel *panel) 1643 { 1644 const struct bdb_mipi_config *start; 1645 const struct mipi_config *config; 1646 const struct mipi_pps_data *pps; 1647 int panel_type = panel->vbt.panel_type; 1648 enum port port; 1649 1650 /* parse MIPI blocks only if LFP type is MIPI */ 1651 if (!intel_bios_is_dsi_present(i915, &port)) 1652 return; 1653 1654 /* Initialize this to undefined indicating no generic MIPI support */ 1655 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1656 1657 /* Block #40 is already parsed and panel_fixed_mode is 1658 * stored in i915->lfp_lvds_vbt_mode 1659 * resuse this when needed 1660 */ 1661 1662 /* Parse #52 for panel index used from panel_type already 1663 * parsed 1664 */ 1665 start = find_section(i915, BDB_MIPI_CONFIG); 1666 if (!start) { 1667 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1668 return; 1669 } 1670 1671 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1672 panel_type); 1673 1674 /* 1675 * get hold of the correct configuration block and pps data as per 1676 * the panel_type as index 1677 */ 1678 config = &start->config[panel_type]; 1679 pps = &start->pps[panel_type]; 1680 1681 /* store as of now full data. Trim when we realise all is not needed */ 1682 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1683 if (!panel->vbt.dsi.config) 1684 return; 1685 1686 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1687 if (!panel->vbt.dsi.pps) { 1688 kfree(panel->vbt.dsi.config); 1689 return; 1690 } 1691 1692 parse_dsi_backlight_ports(i915, panel, port); 1693 1694 /* FIXME is the 90 vs. 270 correct? */ 1695 switch (config->rotation) { 1696 case ENABLE_ROTATION_0: 1697 /* 1698 * Most (all?) VBTs claim 0 degrees despite having 1699 * an upside down panel, thus we do not trust this. 1700 */ 1701 panel->vbt.dsi.orientation = 1702 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1703 break; 1704 case ENABLE_ROTATION_90: 1705 panel->vbt.dsi.orientation = 1706 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1707 break; 1708 case ENABLE_ROTATION_180: 1709 panel->vbt.dsi.orientation = 1710 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1711 break; 1712 case ENABLE_ROTATION_270: 1713 panel->vbt.dsi.orientation = 1714 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1715 break; 1716 } 1717 1718 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1719 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1720 } 1721 1722 /* Find the sequence block and size for the given panel. */ 1723 static const u8 * 1724 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1725 u16 panel_id, u32 *seq_size) 1726 { 1727 u32 total = get_blocksize(sequence); 1728 const u8 *data = &sequence->data[0]; 1729 u8 current_id; 1730 u32 current_size; 1731 int header_size = sequence->version >= 3 ? 5 : 3; 1732 int index = 0; 1733 int i; 1734 1735 /* skip new block size */ 1736 if (sequence->version >= 3) 1737 data += 4; 1738 1739 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1740 if (index + header_size > total) { 1741 DRM_ERROR("Invalid sequence block (header)\n"); 1742 return NULL; 1743 } 1744 1745 current_id = *(data + index); 1746 if (sequence->version >= 3) 1747 current_size = *((const u32 *)(data + index + 1)); 1748 else 1749 current_size = *((const u16 *)(data + index + 1)); 1750 1751 index += header_size; 1752 1753 if (index + current_size > total) { 1754 DRM_ERROR("Invalid sequence block\n"); 1755 return NULL; 1756 } 1757 1758 if (current_id == panel_id) { 1759 *seq_size = current_size; 1760 return data + index; 1761 } 1762 1763 index += current_size; 1764 } 1765 1766 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1767 1768 return NULL; 1769 } 1770 1771 static int goto_next_sequence(const u8 *data, int index, int total) 1772 { 1773 u16 len; 1774 1775 /* Skip Sequence Byte. */ 1776 for (index = index + 1; index < total; index += len) { 1777 u8 operation_byte = *(data + index); 1778 index++; 1779 1780 switch (operation_byte) { 1781 case MIPI_SEQ_ELEM_END: 1782 return index; 1783 case MIPI_SEQ_ELEM_SEND_PKT: 1784 if (index + 4 > total) 1785 return 0; 1786 1787 len = *((const u16 *)(data + index + 2)) + 4; 1788 break; 1789 case MIPI_SEQ_ELEM_DELAY: 1790 len = 4; 1791 break; 1792 case MIPI_SEQ_ELEM_GPIO: 1793 len = 2; 1794 break; 1795 case MIPI_SEQ_ELEM_I2C: 1796 if (index + 7 > total) 1797 return 0; 1798 len = *(data + index + 6) + 7; 1799 break; 1800 default: 1801 DRM_ERROR("Unknown operation byte\n"); 1802 return 0; 1803 } 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1810 { 1811 int seq_end; 1812 u16 len; 1813 u32 size_of_sequence; 1814 1815 /* 1816 * Could skip sequence based on Size of Sequence alone, but also do some 1817 * checking on the structure. 1818 */ 1819 if (total < 5) { 1820 DRM_ERROR("Too small sequence size\n"); 1821 return 0; 1822 } 1823 1824 /* Skip Sequence Byte. */ 1825 index++; 1826 1827 /* 1828 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1829 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1830 * byte. 1831 */ 1832 size_of_sequence = *((const u32 *)(data + index)); 1833 index += 4; 1834 1835 seq_end = index + size_of_sequence; 1836 if (seq_end > total) { 1837 DRM_ERROR("Invalid sequence size\n"); 1838 return 0; 1839 } 1840 1841 for (; index < total; index += len) { 1842 u8 operation_byte = *(data + index); 1843 index++; 1844 1845 if (operation_byte == MIPI_SEQ_ELEM_END) { 1846 if (index != seq_end) { 1847 DRM_ERROR("Invalid element structure\n"); 1848 return 0; 1849 } 1850 return index; 1851 } 1852 1853 len = *(data + index); 1854 index++; 1855 1856 /* 1857 * FIXME: Would be nice to check elements like for v1/v2 in 1858 * goto_next_sequence() above. 1859 */ 1860 switch (operation_byte) { 1861 case MIPI_SEQ_ELEM_SEND_PKT: 1862 case MIPI_SEQ_ELEM_DELAY: 1863 case MIPI_SEQ_ELEM_GPIO: 1864 case MIPI_SEQ_ELEM_I2C: 1865 case MIPI_SEQ_ELEM_SPI: 1866 case MIPI_SEQ_ELEM_PMIC: 1867 break; 1868 default: 1869 DRM_ERROR("Unknown operation byte %u\n", 1870 operation_byte); 1871 break; 1872 } 1873 } 1874 1875 return 0; 1876 } 1877 1878 /* 1879 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1880 * skip all delay + gpio operands and stop at the first DSI packet op. 1881 */ 1882 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1883 struct intel_panel *panel) 1884 { 1885 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1886 int index, len; 1887 1888 if (drm_WARN_ON(&i915->drm, 1889 !data || panel->vbt.dsi.seq_version != 1)) 1890 return 0; 1891 1892 /* index = 1 to skip sequence byte */ 1893 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1894 switch (data[index]) { 1895 case MIPI_SEQ_ELEM_SEND_PKT: 1896 return index == 1 ? 0 : index; 1897 case MIPI_SEQ_ELEM_DELAY: 1898 len = 5; /* 1 byte for operand + uint32 */ 1899 break; 1900 case MIPI_SEQ_ELEM_GPIO: 1901 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1902 break; 1903 default: 1904 return 0; 1905 } 1906 } 1907 1908 return 0; 1909 } 1910 1911 /* 1912 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1913 * The deassert must be done before calling intel_dsi_device_ready, so for 1914 * these devices we split the init OTP sequence into a deassert sequence and 1915 * the actual init OTP part. 1916 */ 1917 static void fixup_mipi_sequences(struct drm_i915_private *i915, 1918 struct intel_panel *panel) 1919 { 1920 u8 *init_otp; 1921 int len; 1922 1923 /* Limit this to VLV for now. */ 1924 if (!IS_VALLEYVIEW(i915)) 1925 return; 1926 1927 /* Limit this to v1 vid-mode sequences */ 1928 if (panel->vbt.dsi.config->is_cmd_mode || 1929 panel->vbt.dsi.seq_version != 1) 1930 return; 1931 1932 /* Only do this if there are otp and assert seqs and no deassert seq */ 1933 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1934 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1935 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1936 return; 1937 1938 /* The deassert-sequence ends at the first DSI packet */ 1939 len = get_init_otp_deassert_fragment_len(i915, panel); 1940 if (!len) 1941 return; 1942 1943 drm_dbg_kms(&i915->drm, 1944 "Using init OTP fragment to deassert reset\n"); 1945 1946 /* Copy the fragment, update seq byte and terminate it */ 1947 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1948 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1949 if (!panel->vbt.dsi.deassert_seq) 1950 return; 1951 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1952 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1953 /* Use the copy for deassert */ 1954 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1955 panel->vbt.dsi.deassert_seq; 1956 /* Replace the last byte of the fragment with init OTP seq byte */ 1957 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1958 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1959 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1960 } 1961 1962 static void 1963 parse_mipi_sequence(struct drm_i915_private *i915, 1964 struct intel_panel *panel) 1965 { 1966 int panel_type = panel->vbt.panel_type; 1967 const struct bdb_mipi_sequence *sequence; 1968 const u8 *seq_data; 1969 u32 seq_size; 1970 u8 *data; 1971 int index = 0; 1972 1973 /* Only our generic panel driver uses the sequence block. */ 1974 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 1975 return; 1976 1977 sequence = find_section(i915, BDB_MIPI_SEQUENCE); 1978 if (!sequence) { 1979 drm_dbg_kms(&i915->drm, 1980 "No MIPI Sequence found, parsing complete\n"); 1981 return; 1982 } 1983 1984 /* Fail gracefully for forward incompatible sequence block. */ 1985 if (sequence->version >= 4) { 1986 drm_err(&i915->drm, 1987 "Unable to parse MIPI Sequence Block v%u\n", 1988 sequence->version); 1989 return; 1990 } 1991 1992 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 1993 sequence->version); 1994 1995 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 1996 if (!seq_data) 1997 return; 1998 1999 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2000 if (!data) 2001 return; 2002 2003 /* Parse the sequences, store pointers to each sequence. */ 2004 for (;;) { 2005 u8 seq_id = *(data + index); 2006 if (seq_id == MIPI_SEQ_END) 2007 break; 2008 2009 if (seq_id >= MIPI_SEQ_MAX) { 2010 drm_err(&i915->drm, "Unknown sequence %u\n", 2011 seq_id); 2012 goto err; 2013 } 2014 2015 /* Log about presence of sequences we won't run. */ 2016 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2017 drm_dbg_kms(&i915->drm, 2018 "Unsupported sequence %u\n", seq_id); 2019 2020 panel->vbt.dsi.sequence[seq_id] = data + index; 2021 2022 if (sequence->version >= 3) 2023 index = goto_next_sequence_v3(data, index, seq_size); 2024 else 2025 index = goto_next_sequence(data, index, seq_size); 2026 if (!index) { 2027 drm_err(&i915->drm, "Invalid sequence %u\n", 2028 seq_id); 2029 goto err; 2030 } 2031 } 2032 2033 panel->vbt.dsi.data = data; 2034 panel->vbt.dsi.size = seq_size; 2035 panel->vbt.dsi.seq_version = sequence->version; 2036 2037 fixup_mipi_sequences(i915, panel); 2038 2039 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2040 return; 2041 2042 err: 2043 kfree(data); 2044 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2045 } 2046 2047 static void 2048 parse_compression_parameters(struct drm_i915_private *i915) 2049 { 2050 const struct bdb_compression_parameters *params; 2051 struct intel_bios_encoder_data *devdata; 2052 const struct child_device_config *child; 2053 u16 block_size; 2054 int index; 2055 2056 if (i915->vbt.version < 198) 2057 return; 2058 2059 params = find_section(i915, BDB_COMPRESSION_PARAMETERS); 2060 if (params) { 2061 /* Sanity checks */ 2062 if (params->entry_size != sizeof(params->data[0])) { 2063 drm_dbg_kms(&i915->drm, 2064 "VBT: unsupported compression param entry size\n"); 2065 return; 2066 } 2067 2068 block_size = get_blocksize(params); 2069 if (block_size < sizeof(*params)) { 2070 drm_dbg_kms(&i915->drm, 2071 "VBT: expected 16 compression param entries\n"); 2072 return; 2073 } 2074 } 2075 2076 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2077 child = &devdata->child; 2078 2079 if (!child->compression_enable) 2080 continue; 2081 2082 if (!params) { 2083 drm_dbg_kms(&i915->drm, 2084 "VBT: compression params not available\n"); 2085 continue; 2086 } 2087 2088 if (child->compression_method_cps) { 2089 drm_dbg_kms(&i915->drm, 2090 "VBT: CPS compression not supported\n"); 2091 continue; 2092 } 2093 2094 index = child->compression_structure_index; 2095 2096 devdata->dsc = kmemdup(¶ms->data[index], 2097 sizeof(*devdata->dsc), GFP_KERNEL); 2098 } 2099 } 2100 2101 static u8 translate_iboost(u8 val) 2102 { 2103 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2104 2105 if (val >= ARRAY_SIZE(mapping)) { 2106 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2107 return 0; 2108 } 2109 return mapping[val]; 2110 } 2111 2112 static const u8 cnp_ddc_pin_map[] = { 2113 [0] = 0, /* N/A */ 2114 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 2115 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 2116 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 2117 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 2118 }; 2119 2120 static const u8 icp_ddc_pin_map[] = { 2121 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2122 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2123 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 2124 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 2125 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 2126 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 2127 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 2128 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 2129 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 2130 }; 2131 2132 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2133 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2134 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2135 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 2136 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 2137 }; 2138 2139 static const u8 adls_ddc_pin_map[] = { 2140 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2141 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2142 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2143 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2144 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2145 }; 2146 2147 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2148 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2149 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 2150 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 2151 }; 2152 2153 static const u8 adlp_ddc_pin_map[] = { 2154 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2155 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2156 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2157 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2158 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2159 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2160 }; 2161 2162 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2163 { 2164 const u8 *ddc_pin_map; 2165 int n_entries; 2166 2167 if (IS_ALDERLAKE_P(i915)) { 2168 ddc_pin_map = adlp_ddc_pin_map; 2169 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2170 } else if (IS_ALDERLAKE_S(i915)) { 2171 ddc_pin_map = adls_ddc_pin_map; 2172 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2173 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2174 return vbt_pin; 2175 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2176 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2177 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2178 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2179 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2180 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2181 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2182 ddc_pin_map = icp_ddc_pin_map; 2183 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2184 } else if (HAS_PCH_CNP(i915)) { 2185 ddc_pin_map = cnp_ddc_pin_map; 2186 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2187 } else { 2188 /* Assuming direct map */ 2189 return vbt_pin; 2190 } 2191 2192 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 2193 return ddc_pin_map[vbt_pin]; 2194 2195 drm_dbg_kms(&i915->drm, 2196 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2197 vbt_pin); 2198 return 0; 2199 } 2200 2201 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 2202 { 2203 const struct intel_bios_encoder_data *devdata; 2204 enum port port; 2205 2206 if (!ddc_pin) 2207 return PORT_NONE; 2208 2209 for_each_port(port) { 2210 devdata = i915->vbt.ports[port]; 2211 2212 if (devdata && ddc_pin == devdata->child.ddc_pin) 2213 return port; 2214 } 2215 2216 return PORT_NONE; 2217 } 2218 2219 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata, 2220 enum port port) 2221 { 2222 struct drm_i915_private *i915 = devdata->i915; 2223 struct child_device_config *child; 2224 u8 mapped_ddc_pin; 2225 enum port p; 2226 2227 if (!devdata->child.ddc_pin) 2228 return; 2229 2230 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin); 2231 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) { 2232 drm_dbg_kms(&i915->drm, 2233 "Port %c has invalid DDC pin %d, " 2234 "sticking to defaults\n", 2235 port_name(port), mapped_ddc_pin); 2236 devdata->child.ddc_pin = 0; 2237 return; 2238 } 2239 2240 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin); 2241 if (p == PORT_NONE) 2242 return; 2243 2244 drm_dbg_kms(&i915->drm, 2245 "port %c trying to use the same DDC pin (0x%x) as port %c, " 2246 "disabling port %c DVI/HDMI support\n", 2247 port_name(port), mapped_ddc_pin, 2248 port_name(p), port_name(p)); 2249 2250 /* 2251 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi 2252 * couldn't exist on the shared port. Otherwise they share the same ddc 2253 * pin and system couldn't communicate with them separately. 2254 * 2255 * Give inverse child device order the priority, last one wins. Yes, 2256 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2257 * port A and port E with the same AUX ch and we must pick port E :( 2258 */ 2259 child = &i915->vbt.ports[p]->child; 2260 2261 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2262 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2263 2264 child->ddc_pin = 0; 2265 } 2266 2267 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 2268 { 2269 const struct intel_bios_encoder_data *devdata; 2270 enum port port; 2271 2272 if (!aux_ch) 2273 return PORT_NONE; 2274 2275 for_each_port(port) { 2276 devdata = i915->vbt.ports[port]; 2277 2278 if (devdata && aux_ch == devdata->child.aux_channel) 2279 return port; 2280 } 2281 2282 return PORT_NONE; 2283 } 2284 2285 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata, 2286 enum port port) 2287 { 2288 struct drm_i915_private *i915 = devdata->i915; 2289 struct child_device_config *child; 2290 enum port p; 2291 2292 p = get_port_by_aux_ch(i915, devdata->child.aux_channel); 2293 if (p == PORT_NONE) 2294 return; 2295 2296 drm_dbg_kms(&i915->drm, 2297 "port %c trying to use the same AUX CH (0x%x) as port %c, " 2298 "disabling port %c DP support\n", 2299 port_name(port), devdata->child.aux_channel, 2300 port_name(p), port_name(p)); 2301 2302 /* 2303 * If we have multiple ports supposedly sharing the aux channel, then DP 2304 * couldn't exist on the shared port. Otherwise they share the same aux 2305 * channel and system couldn't communicate with them separately. 2306 * 2307 * Give inverse child device order the priority, last one wins. Yes, 2308 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2309 * port A and port E with the same AUX ch and we must pick port E :( 2310 */ 2311 child = &i915->vbt.ports[p]->child; 2312 2313 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2314 child->aux_channel = 0; 2315 } 2316 2317 static u8 dvo_port_type(u8 dvo_port) 2318 { 2319 switch (dvo_port) { 2320 case DVO_PORT_HDMIA: 2321 case DVO_PORT_HDMIB: 2322 case DVO_PORT_HDMIC: 2323 case DVO_PORT_HDMID: 2324 case DVO_PORT_HDMIE: 2325 case DVO_PORT_HDMIF: 2326 case DVO_PORT_HDMIG: 2327 case DVO_PORT_HDMIH: 2328 case DVO_PORT_HDMII: 2329 return DVO_PORT_HDMIA; 2330 case DVO_PORT_DPA: 2331 case DVO_PORT_DPB: 2332 case DVO_PORT_DPC: 2333 case DVO_PORT_DPD: 2334 case DVO_PORT_DPE: 2335 case DVO_PORT_DPF: 2336 case DVO_PORT_DPG: 2337 case DVO_PORT_DPH: 2338 case DVO_PORT_DPI: 2339 return DVO_PORT_DPA; 2340 case DVO_PORT_MIPIA: 2341 case DVO_PORT_MIPIB: 2342 case DVO_PORT_MIPIC: 2343 case DVO_PORT_MIPID: 2344 return DVO_PORT_MIPIA; 2345 default: 2346 return dvo_port; 2347 } 2348 } 2349 2350 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2351 const int port_mapping[][3], u8 dvo_port) 2352 { 2353 enum port port; 2354 int i; 2355 2356 for (port = PORT_A; port < n_ports; port++) { 2357 for (i = 0; i < n_dvo; i++) { 2358 if (port_mapping[port][i] == -1) 2359 break; 2360 2361 if (dvo_port == port_mapping[port][i]) 2362 return port; 2363 } 2364 } 2365 2366 return PORT_NONE; 2367 } 2368 2369 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2370 u8 dvo_port) 2371 { 2372 /* 2373 * Each DDI port can have more than one value on the "DVO Port" field, 2374 * so look for all the possible values for each port. 2375 */ 2376 static const int port_mapping[][3] = { 2377 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2378 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2379 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2380 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2381 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2382 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2383 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2384 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2385 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2386 }; 2387 /* 2388 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2389 * map to DDI A,B,TC1,TC2 respectively. 2390 */ 2391 static const int rkl_port_mapping[][3] = { 2392 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2393 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2394 [PORT_C] = { -1 }, 2395 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2396 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2397 }; 2398 /* 2399 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2400 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2401 */ 2402 static const int adls_port_mapping[][3] = { 2403 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2404 [PORT_B] = { -1 }, 2405 [PORT_C] = { -1 }, 2406 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2407 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2408 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2409 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2410 }; 2411 static const int xelpd_port_mapping[][3] = { 2412 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2413 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2414 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2415 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2416 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2417 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2418 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2419 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2420 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2421 }; 2422 2423 if (DISPLAY_VER(i915) == 13) 2424 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2425 ARRAY_SIZE(xelpd_port_mapping[0]), 2426 xelpd_port_mapping, 2427 dvo_port); 2428 else if (IS_ALDERLAKE_S(i915)) 2429 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2430 ARRAY_SIZE(adls_port_mapping[0]), 2431 adls_port_mapping, 2432 dvo_port); 2433 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2434 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2435 ARRAY_SIZE(rkl_port_mapping[0]), 2436 rkl_port_mapping, 2437 dvo_port); 2438 else 2439 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2440 ARRAY_SIZE(port_mapping[0]), 2441 port_mapping, 2442 dvo_port); 2443 } 2444 2445 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2446 { 2447 switch (vbt_max_link_rate) { 2448 default: 2449 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2450 return 0; 2451 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2452 return 2000000; 2453 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2454 return 1350000; 2455 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2456 return 1000000; 2457 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2458 return 810000; 2459 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2460 return 540000; 2461 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2462 return 270000; 2463 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2464 return 162000; 2465 } 2466 } 2467 2468 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2469 { 2470 switch (vbt_max_link_rate) { 2471 default: 2472 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2473 return 810000; 2474 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2475 return 540000; 2476 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2477 return 270000; 2478 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2479 return 162000; 2480 } 2481 } 2482 2483 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2484 { 2485 if (!devdata || devdata->i915->vbt.version < 216) 2486 return 0; 2487 2488 if (devdata->i915->vbt.version >= 230) 2489 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2490 else 2491 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2492 } 2493 2494 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2495 enum port port) 2496 { 2497 struct drm_i915_private *i915 = devdata->i915; 2498 bool is_hdmi; 2499 2500 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2501 return; 2502 2503 if (!intel_bios_encoder_supports_dvi(devdata)) 2504 return; 2505 2506 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2507 2508 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2509 is_hdmi ? "/HDMI" : ""); 2510 2511 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2512 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2513 } 2514 2515 static bool 2516 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2517 { 2518 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2519 } 2520 2521 bool 2522 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2523 { 2524 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2525 } 2526 2527 bool 2528 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2529 { 2530 return intel_bios_encoder_supports_dvi(devdata) && 2531 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2532 } 2533 2534 bool 2535 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2536 { 2537 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2538 } 2539 2540 static bool 2541 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2542 { 2543 return intel_bios_encoder_supports_dp(devdata) && 2544 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2545 } 2546 2547 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2548 { 2549 if (!devdata || devdata->i915->vbt.version < 158) 2550 return -1; 2551 2552 return devdata->child.hdmi_level_shifter_value; 2553 } 2554 2555 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2556 { 2557 if (!devdata || devdata->i915->vbt.version < 204) 2558 return 0; 2559 2560 switch (devdata->child.hdmi_max_data_rate) { 2561 default: 2562 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2563 fallthrough; 2564 case HDMI_MAX_DATA_RATE_PLATFORM: 2565 return 0; 2566 case HDMI_MAX_DATA_RATE_594: 2567 return 594000; 2568 case HDMI_MAX_DATA_RATE_340: 2569 return 340000; 2570 case HDMI_MAX_DATA_RATE_300: 2571 return 300000; 2572 case HDMI_MAX_DATA_RATE_297: 2573 return 297000; 2574 case HDMI_MAX_DATA_RATE_165: 2575 return 165000; 2576 } 2577 } 2578 2579 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2580 { 2581 /* 2582 * On some ICL SKUs port F is not present, but broken VBTs mark 2583 * the port as present. Only try to initialize port F for the 2584 * SKUs that may actually have it. 2585 */ 2586 if (port == PORT_F && IS_ICELAKE(i915)) 2587 return IS_ICL_WITH_PORT_F(i915); 2588 2589 return true; 2590 } 2591 2592 static void print_ddi_port(const struct intel_bios_encoder_data *devdata, 2593 enum port port) 2594 { 2595 struct drm_i915_private *i915 = devdata->i915; 2596 const struct child_device_config *child = &devdata->child; 2597 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt; 2598 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2599 2600 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2601 is_dp = intel_bios_encoder_supports_dp(devdata); 2602 is_crt = intel_bios_encoder_supports_crt(devdata); 2603 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2604 is_edp = intel_bios_encoder_supports_edp(devdata); 2605 2606 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2607 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2608 2609 drm_dbg_kms(&i915->drm, 2610 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2611 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, 2612 HAS_LSPCON(i915) && child->lspcon, 2613 supports_typec_usb, supports_tbt, 2614 devdata->dsc != NULL); 2615 2616 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata); 2617 if (hdmi_level_shift >= 0) { 2618 drm_dbg_kms(&i915->drm, 2619 "Port %c VBT HDMI level shift: %d\n", 2620 port_name(port), hdmi_level_shift); 2621 } 2622 2623 max_tmds_clock = _intel_bios_max_tmds_clock(devdata); 2624 if (max_tmds_clock) 2625 drm_dbg_kms(&i915->drm, 2626 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2627 port_name(port), max_tmds_clock); 2628 2629 /* I_boost config for SKL and above */ 2630 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata); 2631 if (dp_boost_level) 2632 drm_dbg_kms(&i915->drm, 2633 "Port %c VBT (e)DP boost level: %d\n", 2634 port_name(port), dp_boost_level); 2635 2636 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata); 2637 if (hdmi_boost_level) 2638 drm_dbg_kms(&i915->drm, 2639 "Port %c VBT HDMI boost level: %d\n", 2640 port_name(port), hdmi_boost_level); 2641 2642 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata); 2643 if (dp_max_link_rate) 2644 drm_dbg_kms(&i915->drm, 2645 "Port %c VBT DP max link rate: %d\n", 2646 port_name(port), dp_max_link_rate); 2647 } 2648 2649 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2650 { 2651 struct drm_i915_private *i915 = devdata->i915; 2652 const struct child_device_config *child = &devdata->child; 2653 enum port port; 2654 2655 port = dvo_port_to_port(i915, child->dvo_port); 2656 if (port == PORT_NONE) 2657 return; 2658 2659 if (!is_port_valid(i915, port)) { 2660 drm_dbg_kms(&i915->drm, 2661 "VBT reports port %c as supported, but that can't be true: skipping\n", 2662 port_name(port)); 2663 return; 2664 } 2665 2666 if (i915->vbt.ports[port]) { 2667 drm_dbg_kms(&i915->drm, 2668 "More than one child device for port %c in VBT, using the first.\n", 2669 port_name(port)); 2670 return; 2671 } 2672 2673 sanitize_device_type(devdata, port); 2674 2675 if (intel_bios_encoder_supports_dvi(devdata)) 2676 sanitize_ddc_pin(devdata, port); 2677 2678 if (intel_bios_encoder_supports_dp(devdata)) 2679 sanitize_aux_ch(devdata, port); 2680 2681 i915->vbt.ports[port] = devdata; 2682 } 2683 2684 static bool has_ddi_port_info(struct drm_i915_private *i915) 2685 { 2686 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2687 } 2688 2689 static void parse_ddi_ports(struct drm_i915_private *i915) 2690 { 2691 struct intel_bios_encoder_data *devdata; 2692 enum port port; 2693 2694 if (!has_ddi_port_info(i915)) 2695 return; 2696 2697 list_for_each_entry(devdata, &i915->vbt.display_devices, node) 2698 parse_ddi_port(devdata); 2699 2700 for_each_port(port) { 2701 if (i915->vbt.ports[port]) 2702 print_ddi_port(i915->vbt.ports[port], port); 2703 } 2704 } 2705 2706 static void 2707 parse_general_definitions(struct drm_i915_private *i915) 2708 { 2709 const struct bdb_general_definitions *defs; 2710 struct intel_bios_encoder_data *devdata; 2711 const struct child_device_config *child; 2712 int i, child_device_num; 2713 u8 expected_size; 2714 u16 block_size; 2715 int bus_pin; 2716 2717 defs = find_section(i915, BDB_GENERAL_DEFINITIONS); 2718 if (!defs) { 2719 drm_dbg_kms(&i915->drm, 2720 "No general definition block is found, no devices defined.\n"); 2721 return; 2722 } 2723 2724 block_size = get_blocksize(defs); 2725 if (block_size < sizeof(*defs)) { 2726 drm_dbg_kms(&i915->drm, 2727 "General definitions block too small (%u)\n", 2728 block_size); 2729 return; 2730 } 2731 2732 bus_pin = defs->crt_ddc_gmbus_pin; 2733 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2734 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2735 i915->vbt.crt_ddc_pin = bus_pin; 2736 2737 if (i915->vbt.version < 106) { 2738 expected_size = 22; 2739 } else if (i915->vbt.version < 111) { 2740 expected_size = 27; 2741 } else if (i915->vbt.version < 195) { 2742 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2743 } else if (i915->vbt.version == 195) { 2744 expected_size = 37; 2745 } else if (i915->vbt.version <= 215) { 2746 expected_size = 38; 2747 } else if (i915->vbt.version <= 237) { 2748 expected_size = 39; 2749 } else { 2750 expected_size = sizeof(*child); 2751 BUILD_BUG_ON(sizeof(*child) < 39); 2752 drm_dbg(&i915->drm, 2753 "Expected child device config size for VBT version %u not known; assuming %u\n", 2754 i915->vbt.version, expected_size); 2755 } 2756 2757 /* Flag an error for unexpected size, but continue anyway. */ 2758 if (defs->child_dev_size != expected_size) 2759 drm_err(&i915->drm, 2760 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2761 defs->child_dev_size, expected_size, i915->vbt.version); 2762 2763 /* The legacy sized child device config is the minimum we need. */ 2764 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2765 drm_dbg_kms(&i915->drm, 2766 "Child device config size %u is too small.\n", 2767 defs->child_dev_size); 2768 return; 2769 } 2770 2771 /* get the number of child device */ 2772 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2773 2774 for (i = 0; i < child_device_num; i++) { 2775 child = child_device_ptr(defs, i); 2776 if (!child->device_type) 2777 continue; 2778 2779 drm_dbg_kms(&i915->drm, 2780 "Found VBT child device with type 0x%x\n", 2781 child->device_type); 2782 2783 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2784 if (!devdata) 2785 break; 2786 2787 devdata->i915 = i915; 2788 2789 /* 2790 * Copy as much as we know (sizeof) and is available 2791 * (child_dev_size) of the child device config. Accessing the 2792 * data must depend on VBT version. 2793 */ 2794 memcpy(&devdata->child, child, 2795 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2796 2797 list_add_tail(&devdata->node, &i915->vbt.display_devices); 2798 } 2799 2800 if (list_empty(&i915->vbt.display_devices)) 2801 drm_dbg_kms(&i915->drm, 2802 "no child dev is parsed from VBT\n"); 2803 } 2804 2805 /* Common defaults which may be overridden by VBT. */ 2806 static void 2807 init_vbt_defaults(struct drm_i915_private *i915) 2808 { 2809 i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2810 2811 /* general features */ 2812 i915->vbt.int_tv_support = 1; 2813 i915->vbt.int_crt_support = 1; 2814 2815 /* driver features */ 2816 i915->vbt.int_lvds_support = 1; 2817 2818 /* Default to using SSC */ 2819 i915->vbt.lvds_use_ssc = 1; 2820 /* 2821 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2822 * clock for LVDS. 2823 */ 2824 i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2825 !HAS_PCH_SPLIT(i915)); 2826 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2827 i915->vbt.lvds_ssc_freq); 2828 } 2829 2830 /* Common defaults which may be overridden by VBT. */ 2831 static void 2832 init_vbt_panel_defaults(struct intel_panel *panel) 2833 { 2834 /* Default to having backlight */ 2835 panel->vbt.backlight.present = true; 2836 2837 /* LFP panel data */ 2838 panel->vbt.lvds_dither = true; 2839 } 2840 2841 /* Defaults to initialize only if there is no VBT. */ 2842 static void 2843 init_vbt_missing_defaults(struct drm_i915_private *i915) 2844 { 2845 enum port port; 2846 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2847 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2848 2849 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2850 return; 2851 2852 for_each_port_masked(port, ports) { 2853 struct intel_bios_encoder_data *devdata; 2854 struct child_device_config *child; 2855 enum phy phy = intel_port_to_phy(i915, port); 2856 2857 /* 2858 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2859 * to detect it. 2860 */ 2861 if (intel_phy_is_tc(i915, phy)) 2862 continue; 2863 2864 /* Create fake child device config */ 2865 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2866 if (!devdata) 2867 break; 2868 2869 devdata->i915 = i915; 2870 child = &devdata->child; 2871 2872 if (port == PORT_F) 2873 child->dvo_port = DVO_PORT_HDMIF; 2874 else if (port == PORT_E) 2875 child->dvo_port = DVO_PORT_HDMIE; 2876 else 2877 child->dvo_port = DVO_PORT_HDMIA + port; 2878 2879 if (port != PORT_A && port != PORT_E) 2880 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2881 2882 if (port != PORT_E) 2883 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2884 2885 if (port == PORT_A) 2886 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2887 2888 list_add_tail(&devdata->node, &i915->vbt.display_devices); 2889 2890 drm_dbg_kms(&i915->drm, 2891 "Generating default VBT child device with type 0x04%x on port %c\n", 2892 child->device_type, port_name(port)); 2893 } 2894 2895 /* Bypass some minimum baseline VBT version checks */ 2896 i915->vbt.version = 155; 2897 } 2898 2899 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2900 { 2901 const void *_vbt = vbt; 2902 2903 return _vbt + vbt->bdb_offset; 2904 } 2905 2906 /** 2907 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2908 * @buf: pointer to a buffer to validate 2909 * @size: size of the buffer 2910 * 2911 * Returns true on valid VBT. 2912 */ 2913 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2914 { 2915 const struct vbt_header *vbt = buf; 2916 const struct bdb_header *bdb; 2917 2918 if (!vbt) 2919 return false; 2920 2921 if (sizeof(struct vbt_header) > size) { 2922 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2923 return false; 2924 } 2925 2926 if (memcmp(vbt->signature, "$VBT", 4)) { 2927 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2928 return false; 2929 } 2930 2931 if (vbt->vbt_size > size) { 2932 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2933 return false; 2934 } 2935 2936 size = vbt->vbt_size; 2937 2938 if (range_overflows_t(size_t, 2939 vbt->bdb_offset, 2940 sizeof(struct bdb_header), 2941 size)) { 2942 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 2943 return false; 2944 } 2945 2946 bdb = get_bdb_header(vbt); 2947 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2948 DRM_DEBUG_DRIVER("BDB incomplete\n"); 2949 return false; 2950 } 2951 2952 return vbt; 2953 } 2954 2955 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 2956 { 2957 u32 count, data, found, store = 0; 2958 u32 static_region, oprom_offset; 2959 u32 oprom_size = 0x200000; 2960 u16 vbt_size; 2961 u32 *vbt; 2962 2963 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 2964 static_region &= OPTIONROM_SPI_REGIONID_MASK; 2965 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 2966 2967 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 2968 oprom_offset &= OROM_OFFSET_MASK; 2969 2970 for (count = 0; count < oprom_size; count += 4) { 2971 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count); 2972 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 2973 2974 if (data == *((const u32 *)"$VBT")) { 2975 found = oprom_offset + count; 2976 break; 2977 } 2978 } 2979 2980 if (count >= oprom_size) 2981 goto err_not_found; 2982 2983 /* Get VBT size and allocate space for the VBT */ 2984 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + 2985 offsetof(struct vbt_header, vbt_size)); 2986 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 2987 vbt_size &= 0xffff; 2988 2989 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 2990 if (!vbt) 2991 goto err_not_found; 2992 2993 for (count = 0; count < vbt_size; count += 4) { 2994 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count); 2995 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 2996 *(vbt + store++) = data; 2997 } 2998 2999 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3000 goto err_free_vbt; 3001 3002 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3003 3004 return (struct vbt_header *)vbt; 3005 3006 err_free_vbt: 3007 kfree(vbt); 3008 err_not_found: 3009 return NULL; 3010 } 3011 3012 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3013 { 3014 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3015 void __iomem *p = NULL, *oprom; 3016 struct vbt_header *vbt; 3017 u16 vbt_size; 3018 size_t i, size; 3019 3020 oprom = pci_map_rom(pdev, &size); 3021 if (!oprom) 3022 return NULL; 3023 3024 /* Scour memory looking for the VBT signature. */ 3025 for (i = 0; i + 4 < size; i += 4) { 3026 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3027 continue; 3028 3029 p = oprom + i; 3030 size -= i; 3031 break; 3032 } 3033 3034 if (!p) 3035 goto err_unmap_oprom; 3036 3037 if (sizeof(struct vbt_header) > size) { 3038 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3039 goto err_unmap_oprom; 3040 } 3041 3042 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3043 if (vbt_size > size) { 3044 drm_dbg(&i915->drm, 3045 "VBT incomplete (vbt_size overflows)\n"); 3046 goto err_unmap_oprom; 3047 } 3048 3049 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3050 vbt = kmalloc(vbt_size, GFP_KERNEL); 3051 if (!vbt) 3052 goto err_unmap_oprom; 3053 3054 memcpy_fromio(vbt, p, vbt_size); 3055 3056 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3057 goto err_free_vbt; 3058 3059 pci_unmap_rom(pdev, oprom); 3060 3061 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3062 3063 return vbt; 3064 3065 err_free_vbt: 3066 kfree(vbt); 3067 err_unmap_oprom: 3068 pci_unmap_rom(pdev, oprom); 3069 3070 return NULL; 3071 } 3072 3073 /** 3074 * intel_bios_init - find VBT and initialize settings from the BIOS 3075 * @i915: i915 device instance 3076 * 3077 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3078 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3079 * initialize some defaults if the VBT is not present at all. 3080 */ 3081 void intel_bios_init(struct drm_i915_private *i915) 3082 { 3083 const struct vbt_header *vbt = i915->opregion.vbt; 3084 struct vbt_header *oprom_vbt = NULL; 3085 const struct bdb_header *bdb; 3086 3087 INIT_LIST_HEAD(&i915->vbt.display_devices); 3088 INIT_LIST_HEAD(&i915->vbt.bdb_blocks); 3089 3090 if (!HAS_DISPLAY(i915)) { 3091 drm_dbg_kms(&i915->drm, 3092 "Skipping VBT init due to disabled display.\n"); 3093 return; 3094 } 3095 3096 init_vbt_defaults(i915); 3097 3098 /* 3099 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3100 * PCI mapping 3101 */ 3102 if (!vbt && IS_DGFX(i915)) { 3103 oprom_vbt = spi_oprom_get_vbt(i915); 3104 vbt = oprom_vbt; 3105 } 3106 3107 if (!vbt) { 3108 oprom_vbt = oprom_get_vbt(i915); 3109 vbt = oprom_vbt; 3110 } 3111 3112 if (!vbt) 3113 goto out; 3114 3115 bdb = get_bdb_header(vbt); 3116 i915->vbt.version = bdb->version; 3117 3118 drm_dbg_kms(&i915->drm, 3119 "VBT signature \"%.*s\", BDB version %d\n", 3120 (int)sizeof(vbt->signature), vbt->signature, i915->vbt.version); 3121 3122 init_bdb_blocks(i915, bdb); 3123 3124 /* Grab useful general definitions */ 3125 parse_general_features(i915); 3126 parse_general_definitions(i915); 3127 parse_driver_features(i915); 3128 3129 /* Depends on child device list */ 3130 parse_compression_parameters(i915); 3131 3132 out: 3133 if (!vbt) { 3134 drm_info(&i915->drm, 3135 "Failed to find VBIOS tables (VBT)\n"); 3136 init_vbt_missing_defaults(i915); 3137 } 3138 3139 /* Further processing on pre-parsed or generated child device data */ 3140 parse_sdvo_device_mapping(i915); 3141 parse_ddi_ports(i915); 3142 3143 kfree(oprom_vbt); 3144 } 3145 3146 void intel_bios_init_panel(struct drm_i915_private *i915, 3147 struct intel_panel *panel, 3148 const struct intel_bios_encoder_data *devdata, 3149 const struct edid *edid) 3150 { 3151 init_vbt_panel_defaults(panel); 3152 3153 panel->vbt.panel_type = get_panel_type(i915, devdata, edid); 3154 3155 parse_panel_options(i915, panel); 3156 parse_generic_dtd(i915, panel); 3157 parse_lfp_data(i915, panel); 3158 parse_lfp_backlight(i915, panel); 3159 parse_sdvo_panel_data(i915, panel); 3160 parse_panel_driver_features(i915, panel); 3161 parse_power_conservation_features(i915, panel); 3162 parse_edp(i915, panel); 3163 parse_psr(i915, panel); 3164 parse_mipi_config(i915, panel); 3165 parse_mipi_sequence(i915, panel); 3166 } 3167 3168 /** 3169 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3170 * @i915: i915 device instance 3171 */ 3172 void intel_bios_driver_remove(struct drm_i915_private *i915) 3173 { 3174 struct intel_bios_encoder_data *devdata, *nd; 3175 struct bdb_block_entry *entry, *ne; 3176 3177 list_for_each_entry_safe(devdata, nd, &i915->vbt.display_devices, node) { 3178 list_del(&devdata->node); 3179 kfree(devdata->dsc); 3180 kfree(devdata); 3181 } 3182 3183 list_for_each_entry_safe(entry, ne, &i915->vbt.bdb_blocks, node) { 3184 list_del(&entry->node); 3185 kfree(entry); 3186 } 3187 } 3188 3189 void intel_bios_fini_panel(struct intel_panel *panel) 3190 { 3191 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3192 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3193 kfree(panel->vbt.lfp_lvds_vbt_mode); 3194 panel->vbt.lfp_lvds_vbt_mode = NULL; 3195 kfree(panel->vbt.dsi.data); 3196 panel->vbt.dsi.data = NULL; 3197 kfree(panel->vbt.dsi.pps); 3198 panel->vbt.dsi.pps = NULL; 3199 kfree(panel->vbt.dsi.config); 3200 panel->vbt.dsi.config = NULL; 3201 kfree(panel->vbt.dsi.deassert_seq); 3202 panel->vbt.dsi.deassert_seq = NULL; 3203 } 3204 3205 /** 3206 * intel_bios_is_tv_present - is integrated TV present in VBT 3207 * @i915: i915 device instance 3208 * 3209 * Return true if TV is present. If no child devices were parsed from VBT, 3210 * assume TV is present. 3211 */ 3212 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3213 { 3214 const struct intel_bios_encoder_data *devdata; 3215 const struct child_device_config *child; 3216 3217 if (!i915->vbt.int_tv_support) 3218 return false; 3219 3220 if (list_empty(&i915->vbt.display_devices)) 3221 return true; 3222 3223 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3224 child = &devdata->child; 3225 3226 /* 3227 * If the device type is not TV, continue. 3228 */ 3229 switch (child->device_type) { 3230 case DEVICE_TYPE_INT_TV: 3231 case DEVICE_TYPE_TV: 3232 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3233 break; 3234 default: 3235 continue; 3236 } 3237 /* Only when the addin_offset is non-zero, it is regarded 3238 * as present. 3239 */ 3240 if (child->addin_offset) 3241 return true; 3242 } 3243 3244 return false; 3245 } 3246 3247 /** 3248 * intel_bios_is_lvds_present - is LVDS present in VBT 3249 * @i915: i915 device instance 3250 * @i2c_pin: i2c pin for LVDS if present 3251 * 3252 * Return true if LVDS is present. If no child devices were parsed from VBT, 3253 * assume LVDS is present. 3254 */ 3255 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3256 { 3257 const struct intel_bios_encoder_data *devdata; 3258 const struct child_device_config *child; 3259 3260 if (list_empty(&i915->vbt.display_devices)) 3261 return true; 3262 3263 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3264 child = &devdata->child; 3265 3266 /* If the device type is not LFP, continue. 3267 * We have to check both the new identifiers as well as the 3268 * old for compatibility with some BIOSes. 3269 */ 3270 if (child->device_type != DEVICE_TYPE_INT_LFP && 3271 child->device_type != DEVICE_TYPE_LFP) 3272 continue; 3273 3274 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3275 *i2c_pin = child->i2c_pin; 3276 3277 /* However, we cannot trust the BIOS writers to populate 3278 * the VBT correctly. Since LVDS requires additional 3279 * information from AIM blocks, a non-zero addin offset is 3280 * a good indicator that the LVDS is actually present. 3281 */ 3282 if (child->addin_offset) 3283 return true; 3284 3285 /* But even then some BIOS writers perform some black magic 3286 * and instantiate the device without reference to any 3287 * additional data. Trust that if the VBT was written into 3288 * the OpRegion then they have validated the LVDS's existence. 3289 */ 3290 if (i915->opregion.vbt) 3291 return true; 3292 } 3293 3294 return false; 3295 } 3296 3297 /** 3298 * intel_bios_is_port_present - is the specified digital port present 3299 * @i915: i915 device instance 3300 * @port: port to check 3301 * 3302 * Return true if the device in %port is present. 3303 */ 3304 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3305 { 3306 if (WARN_ON(!has_ddi_port_info(i915))) 3307 return true; 3308 3309 return i915->vbt.ports[port]; 3310 } 3311 3312 /** 3313 * intel_bios_is_port_edp - is the device in given port eDP 3314 * @i915: i915 device instance 3315 * @port: port to check 3316 * 3317 * Return true if the device in %port is eDP. 3318 */ 3319 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port) 3320 { 3321 const struct intel_bios_encoder_data *devdata = 3322 intel_bios_encoder_data_lookup(i915, port); 3323 3324 return devdata && intel_bios_encoder_supports_edp(devdata); 3325 } 3326 3327 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3328 { 3329 const struct child_device_config *child = &devdata->child; 3330 3331 if (!intel_bios_encoder_supports_dp(devdata) || 3332 !intel_bios_encoder_supports_hdmi(devdata)) 3333 return false; 3334 3335 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3336 return true; 3337 3338 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3339 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3340 child->aux_channel != 0) 3341 return true; 3342 3343 return false; 3344 } 3345 3346 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915, 3347 enum port port) 3348 { 3349 const struct intel_bios_encoder_data *devdata = 3350 intel_bios_encoder_data_lookup(i915, port); 3351 3352 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata); 3353 } 3354 3355 /** 3356 * intel_bios_is_dsi_present - is DSI present in VBT 3357 * @i915: i915 device instance 3358 * @port: port for DSI if present 3359 * 3360 * Return true if DSI is present, and return the port in %port. 3361 */ 3362 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3363 enum port *port) 3364 { 3365 const struct intel_bios_encoder_data *devdata; 3366 const struct child_device_config *child; 3367 u8 dvo_port; 3368 3369 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3370 child = &devdata->child; 3371 3372 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3373 continue; 3374 3375 dvo_port = child->dvo_port; 3376 3377 if (dvo_port == DVO_PORT_MIPIA || 3378 (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) || 3379 (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) { 3380 if (port) 3381 *port = dvo_port - DVO_PORT_MIPIA; 3382 return true; 3383 } else if (dvo_port == DVO_PORT_MIPIB || 3384 dvo_port == DVO_PORT_MIPIC || 3385 dvo_port == DVO_PORT_MIPID) { 3386 drm_dbg_kms(&i915->drm, 3387 "VBT has unsupported DSI port %c\n", 3388 port_name(dvo_port - DVO_PORT_MIPIA)); 3389 } 3390 } 3391 3392 return false; 3393 } 3394 3395 static void fill_dsc(struct intel_crtc_state *crtc_state, 3396 struct dsc_compression_parameters_entry *dsc, 3397 int dsc_max_bpc) 3398 { 3399 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3400 int bpc = 8; 3401 3402 vdsc_cfg->dsc_version_major = dsc->version_major; 3403 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3404 3405 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3406 bpc = 12; 3407 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3408 bpc = 10; 3409 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3410 bpc = 8; 3411 else 3412 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 3413 dsc_max_bpc); 3414 3415 crtc_state->pipe_bpp = bpc * 3; 3416 3417 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 3418 VBT_DSC_MAX_BPP(dsc->max_bpp)); 3419 3420 /* 3421 * FIXME: This is ugly, and slice count should take DSC engine 3422 * throughput etc. into account. 3423 * 3424 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3425 */ 3426 if (dsc->slices_per_line & BIT(2)) { 3427 crtc_state->dsc.slice_count = 4; 3428 } else if (dsc->slices_per_line & BIT(1)) { 3429 crtc_state->dsc.slice_count = 2; 3430 } else { 3431 /* FIXME */ 3432 if (!(dsc->slices_per_line & BIT(0))) 3433 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 3434 3435 crtc_state->dsc.slice_count = 1; 3436 } 3437 3438 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3439 crtc_state->dsc.slice_count != 0) 3440 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 3441 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3442 crtc_state->dsc.slice_count); 3443 3444 /* 3445 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3446 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3447 */ 3448 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3449 dsc->rc_buffer_size); 3450 3451 /* FIXME: DSI spec says bpc + 1 for this one */ 3452 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3453 3454 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3455 3456 vdsc_cfg->slice_height = dsc->slice_height; 3457 } 3458 3459 /* FIXME: initially DSI specific */ 3460 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3461 struct intel_crtc_state *crtc_state, 3462 int dsc_max_bpc) 3463 { 3464 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3465 const struct intel_bios_encoder_data *devdata; 3466 const struct child_device_config *child; 3467 3468 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3469 child = &devdata->child; 3470 3471 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3472 continue; 3473 3474 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) { 3475 if (!devdata->dsc) 3476 return false; 3477 3478 if (crtc_state) 3479 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3480 3481 return true; 3482 } 3483 } 3484 3485 return false; 3486 } 3487 3488 /** 3489 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 3490 * @i915: i915 device instance 3491 * @port: port to check 3492 * 3493 * Return true if HPD should be inverted for %port. 3494 */ 3495 bool 3496 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 3497 enum port port) 3498 { 3499 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3500 3501 if (drm_WARN_ON_ONCE(&i915->drm, 3502 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915))) 3503 return false; 3504 3505 return devdata && devdata->child.hpd_invert; 3506 } 3507 3508 /** 3509 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 3510 * @i915: i915 device instance 3511 * @port: port to check 3512 * 3513 * Return true if LSPCON is present on this port 3514 */ 3515 bool 3516 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 3517 enum port port) 3518 { 3519 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3520 3521 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon; 3522 } 3523 3524 /** 3525 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 3526 * @i915: i915 device instance 3527 * @port: port to check 3528 * 3529 * Return true if port requires lane reversal 3530 */ 3531 bool 3532 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 3533 enum port port) 3534 { 3535 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3536 3537 return devdata && devdata->child.lane_reversal; 3538 } 3539 3540 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915, 3541 enum port port) 3542 { 3543 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3544 enum aux_ch aux_ch; 3545 3546 if (!devdata || !devdata->child.aux_channel) { 3547 aux_ch = (enum aux_ch)port; 3548 3549 drm_dbg_kms(&i915->drm, 3550 "using AUX %c for port %c (platform default)\n", 3551 aux_ch_name(aux_ch), port_name(port)); 3552 return aux_ch; 3553 } 3554 3555 /* 3556 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3557 * map to DDI A,B,TC1,TC2 respectively. 3558 * 3559 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3560 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3561 */ 3562 switch (devdata->child.aux_channel) { 3563 case DP_AUX_A: 3564 aux_ch = AUX_CH_A; 3565 break; 3566 case DP_AUX_B: 3567 if (IS_ALDERLAKE_S(i915)) 3568 aux_ch = AUX_CH_USBC1; 3569 else 3570 aux_ch = AUX_CH_B; 3571 break; 3572 case DP_AUX_C: 3573 if (IS_ALDERLAKE_S(i915)) 3574 aux_ch = AUX_CH_USBC2; 3575 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3576 aux_ch = AUX_CH_USBC1; 3577 else 3578 aux_ch = AUX_CH_C; 3579 break; 3580 case DP_AUX_D: 3581 if (DISPLAY_VER(i915) == 13) 3582 aux_ch = AUX_CH_D_XELPD; 3583 else if (IS_ALDERLAKE_S(i915)) 3584 aux_ch = AUX_CH_USBC3; 3585 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3586 aux_ch = AUX_CH_USBC2; 3587 else 3588 aux_ch = AUX_CH_D; 3589 break; 3590 case DP_AUX_E: 3591 if (DISPLAY_VER(i915) == 13) 3592 aux_ch = AUX_CH_E_XELPD; 3593 else if (IS_ALDERLAKE_S(i915)) 3594 aux_ch = AUX_CH_USBC4; 3595 else 3596 aux_ch = AUX_CH_E; 3597 break; 3598 case DP_AUX_F: 3599 if (DISPLAY_VER(i915) == 13) 3600 aux_ch = AUX_CH_USBC1; 3601 else 3602 aux_ch = AUX_CH_F; 3603 break; 3604 case DP_AUX_G: 3605 if (DISPLAY_VER(i915) == 13) 3606 aux_ch = AUX_CH_USBC2; 3607 else 3608 aux_ch = AUX_CH_G; 3609 break; 3610 case DP_AUX_H: 3611 if (DISPLAY_VER(i915) == 13) 3612 aux_ch = AUX_CH_USBC3; 3613 else 3614 aux_ch = AUX_CH_H; 3615 break; 3616 case DP_AUX_I: 3617 if (DISPLAY_VER(i915) == 13) 3618 aux_ch = AUX_CH_USBC4; 3619 else 3620 aux_ch = AUX_CH_I; 3621 break; 3622 default: 3623 MISSING_CASE(devdata->child.aux_channel); 3624 aux_ch = AUX_CH_A; 3625 break; 3626 } 3627 3628 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n", 3629 aux_ch_name(aux_ch), port_name(port)); 3630 3631 return aux_ch; 3632 } 3633 3634 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 3635 { 3636 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3637 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3638 3639 return _intel_bios_max_tmds_clock(devdata); 3640 } 3641 3642 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 3643 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 3644 { 3645 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3646 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3647 3648 return _intel_bios_hdmi_level_shift(devdata); 3649 } 3650 3651 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3652 { 3653 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost) 3654 return 0; 3655 3656 return translate_iboost(devdata->child.dp_iboost_level); 3657 } 3658 3659 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3660 { 3661 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost) 3662 return 0; 3663 3664 return translate_iboost(devdata->child.hdmi_iboost_level); 3665 } 3666 3667 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 3668 { 3669 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3670 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3671 3672 return _intel_bios_dp_max_link_rate(devdata); 3673 } 3674 3675 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 3676 { 3677 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3678 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3679 3680 if (!devdata || !devdata->child.ddc_pin) 3681 return 0; 3682 3683 return map_ddc_pin(i915, devdata->child.ddc_pin); 3684 } 3685 3686 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3687 { 3688 return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3689 } 3690 3691 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3692 { 3693 return devdata->i915->vbt.version >= 209 && devdata->child.tbt; 3694 } 3695 3696 const struct intel_bios_encoder_data * 3697 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3698 { 3699 return i915->vbt.ports[port]; 3700 } 3701