1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/display/drm_dp_helper.h> 29 #include <drm/display/drm_dsc_helper.h> 30 #include <drm/drm_edid.h> 31 32 #include "i915_drv.h" 33 #include "i915_reg.h" 34 #include "intel_display.h" 35 #include "intel_display_types.h" 36 #include "intel_gmbus.h" 37 38 #define _INTEL_BIOS_PRIVATE 39 #include "intel_vbt_defs.h" 40 41 /** 42 * DOC: Video BIOS Table (VBT) 43 * 44 * The Video BIOS Table, or VBT, provides platform and board specific 45 * configuration information to the driver that is not discoverable or available 46 * through other means. The configuration is mostly related to display 47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 48 * the PCI ROM. 49 * 50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 52 * contain the actual configuration information. The VBT Header, and thus the 53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 54 * BDB Header. The data blocks are concatenated after the BDB Header. The data 55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 56 * data. (Block 53, the MIPI Sequence Block is an exception.) 57 * 58 * The driver parses the VBT during load. The relevant information is stored in 59 * driver private data for ease of use, and the actual VBT is not read after 60 * that. 61 */ 62 63 /* Wrapper for VBT child device config */ 64 struct intel_bios_encoder_data { 65 struct drm_i915_private *i915; 66 67 struct child_device_config child; 68 struct dsc_compression_parameters_entry *dsc; 69 struct list_head node; 70 }; 71 72 #define SLAVE_ADDR1 0x70 73 #define SLAVE_ADDR2 0x72 74 75 /* Get BDB block size given a pointer to Block ID. */ 76 static u32 _get_blocksize(const u8 *block_base) 77 { 78 /* The MIPI Sequence Block v3+ has a separate size field. */ 79 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 80 return *((const u32 *)(block_base + 4)); 81 else 82 return *((const u16 *)(block_base + 1)); 83 } 84 85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 86 static u32 get_blocksize(const void *block_data) 87 { 88 return _get_blocksize(block_data - 3); 89 } 90 91 static const void * 92 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 93 { 94 const struct bdb_header *bdb = _bdb; 95 const u8 *base = _bdb; 96 int index = 0; 97 u32 total, current_size; 98 enum bdb_block_id current_id; 99 100 /* skip to first section */ 101 index += bdb->header_size; 102 total = bdb->bdb_size; 103 104 /* walk the sections looking for section_id */ 105 while (index + 3 < total) { 106 current_id = *(base + index); 107 current_size = _get_blocksize(base + index); 108 index += 3; 109 110 if (index + current_size > total) 111 return NULL; 112 113 if (current_id == section_id) 114 return base + index; 115 116 index += current_size; 117 } 118 119 return NULL; 120 } 121 122 /* 123 * Offset from the start of BDB to the start of the 124 * block data (just past the block header). 125 */ 126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 127 { 128 const void *block; 129 130 block = find_raw_section(bdb, section_id); 131 if (!block) 132 return 0; 133 134 return block - bdb; 135 } 136 137 struct bdb_block_entry { 138 struct list_head node; 139 enum bdb_block_id section_id; 140 u8 data[]; 141 }; 142 143 static const void * 144 find_section(struct drm_i915_private *i915, 145 enum bdb_block_id section_id) 146 { 147 struct bdb_block_entry *entry; 148 149 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) { 150 if (entry->section_id == section_id) 151 return entry->data + 3; 152 } 153 154 return NULL; 155 } 156 157 static const struct { 158 enum bdb_block_id section_id; 159 size_t min_size; 160 } bdb_blocks[] = { 161 { .section_id = BDB_GENERAL_FEATURES, 162 .min_size = sizeof(struct bdb_general_features), }, 163 { .section_id = BDB_GENERAL_DEFINITIONS, 164 .min_size = sizeof(struct bdb_general_definitions), }, 165 { .section_id = BDB_PSR, 166 .min_size = sizeof(struct bdb_psr), }, 167 { .section_id = BDB_DRIVER_FEATURES, 168 .min_size = sizeof(struct bdb_driver_features), }, 169 { .section_id = BDB_SDVO_LVDS_OPTIONS, 170 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 171 { .section_id = BDB_SDVO_PANEL_DTDS, 172 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 173 { .section_id = BDB_EDP, 174 .min_size = sizeof(struct bdb_edp), }, 175 { .section_id = BDB_LVDS_OPTIONS, 176 .min_size = sizeof(struct bdb_lvds_options), }, 177 /* 178 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 179 * so keep the two ordered. 180 */ 181 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 182 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 183 { .section_id = BDB_LVDS_LFP_DATA, 184 .min_size = 0, /* special case */ }, 185 { .section_id = BDB_LVDS_BACKLIGHT, 186 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 187 { .section_id = BDB_LFP_POWER, 188 .min_size = sizeof(struct bdb_lfp_power), }, 189 { .section_id = BDB_MIPI_CONFIG, 190 .min_size = sizeof(struct bdb_mipi_config), }, 191 { .section_id = BDB_MIPI_SEQUENCE, 192 .min_size = sizeof(struct bdb_mipi_sequence) }, 193 { .section_id = BDB_COMPRESSION_PARAMETERS, 194 .min_size = sizeof(struct bdb_compression_parameters), }, 195 { .section_id = BDB_GENERIC_DTD, 196 .min_size = sizeof(struct bdb_generic_dtd), }, 197 }; 198 199 static size_t lfp_data_min_size(struct drm_i915_private *i915) 200 { 201 const struct bdb_lvds_lfp_data_ptrs *ptrs; 202 size_t size; 203 204 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 205 if (!ptrs) 206 return 0; 207 208 size = sizeof(struct bdb_lvds_lfp_data); 209 if (ptrs->panel_name.table_size) 210 size = max(size, ptrs->panel_name.offset + 211 sizeof(struct bdb_lvds_lfp_data_tail)); 212 213 return size; 214 } 215 216 static bool validate_lfp_data_ptrs(const void *bdb, 217 const struct bdb_lvds_lfp_data_ptrs *ptrs) 218 { 219 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 220 int data_block_size, lfp_data_size; 221 const void *data_block; 222 int i; 223 224 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 225 if (!data_block) 226 return false; 227 228 data_block_size = get_blocksize(data_block); 229 if (data_block_size == 0) 230 return false; 231 232 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 233 if (ptrs->lvds_entries != 3) 234 return false; 235 236 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 237 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 238 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 239 panel_name_size = ptrs->panel_name.table_size; 240 241 /* fp_timing has variable size */ 242 if (fp_timing_size < 32 || 243 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 244 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 245 return false; 246 247 /* panel_name is not present in old VBTs */ 248 if (panel_name_size != 0 && 249 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 250 return false; 251 252 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 253 if (16 * lfp_data_size > data_block_size) 254 return false; 255 256 /* make sure the table entries have uniform size */ 257 for (i = 1; i < 16; i++) { 258 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 259 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 260 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 261 return false; 262 263 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 264 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 265 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 266 return false; 267 } 268 269 /* 270 * Except for vlv/chv machines all real VBTs seem to have 6 271 * unaccounted bytes in the fp_timing table. And it doesn't 272 * appear to be a really intentional hole as the fp_timing 273 * 0xffff terminator is always within those 6 missing bytes. 274 */ 275 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) 276 fp_timing_size += 6; 277 278 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 279 return false; 280 281 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || 282 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 283 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 284 return false; 285 286 /* make sure the tables fit inside the data block */ 287 for (i = 0; i < 16; i++) { 288 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 289 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 290 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 291 return false; 292 } 293 294 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 295 return false; 296 297 /* make sure fp_timing terminators are present at expected locations */ 298 for (i = 0; i < 16; i++) { 299 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset + 300 fp_timing_size - 2; 301 302 if (*t != 0xffff) 303 return false; 304 } 305 306 return true; 307 } 308 309 /* make the data table offsets relative to the data block */ 310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 311 { 312 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 313 u32 offset; 314 int i; 315 316 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 317 318 for (i = 0; i < 16; i++) { 319 if (ptrs->ptr[i].fp_timing.offset < offset || 320 ptrs->ptr[i].dvo_timing.offset < offset || 321 ptrs->ptr[i].panel_pnp_id.offset < offset) 322 return false; 323 324 ptrs->ptr[i].fp_timing.offset -= offset; 325 ptrs->ptr[i].dvo_timing.offset -= offset; 326 ptrs->ptr[i].panel_pnp_id.offset -= offset; 327 } 328 329 if (ptrs->panel_name.table_size) { 330 if (ptrs->panel_name.offset < offset) 331 return false; 332 333 ptrs->panel_name.offset -= offset; 334 } 335 336 return validate_lfp_data_ptrs(bdb, ptrs); 337 } 338 339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 340 int table_size, int total_size) 341 { 342 if (total_size < table_size) 343 return total_size; 344 345 table->table_size = table_size; 346 table->offset = total_size - table_size; 347 348 return total_size - table_size; 349 } 350 351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 352 const struct lvds_lfp_data_ptr_table *prev, 353 int size) 354 { 355 next->table_size = prev->table_size; 356 next->offset = prev->offset + size; 357 } 358 359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 360 const void *bdb) 361 { 362 int i, size, table_size, block_size, offset, fp_timing_size; 363 struct bdb_lvds_lfp_data_ptrs *ptrs; 364 const void *block; 365 void *ptrs_block; 366 367 /* 368 * The hardcoded fp_timing_size is only valid for 369 * modernish VBTs. All older VBTs definitely should 370 * include block 41 and thus we don't need to 371 * generate one. 372 */ 373 if (i915->display.vbt.version < 155) 374 return NULL; 375 376 fp_timing_size = 38; 377 378 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 379 if (!block) 380 return NULL; 381 382 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 383 384 block_size = get_blocksize(block); 385 386 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 387 sizeof(struct lvds_pnp_id); 388 if (size * 16 > block_size) 389 return NULL; 390 391 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 392 if (!ptrs_block) 393 return NULL; 394 395 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 396 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 397 ptrs = ptrs_block + 3; 398 399 table_size = sizeof(struct lvds_pnp_id); 400 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 401 402 table_size = sizeof(struct lvds_dvo_timing); 403 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 404 405 table_size = fp_timing_size; 406 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 407 408 if (ptrs->ptr[0].fp_timing.table_size) 409 ptrs->lvds_entries++; 410 if (ptrs->ptr[0].dvo_timing.table_size) 411 ptrs->lvds_entries++; 412 if (ptrs->ptr[0].panel_pnp_id.table_size) 413 ptrs->lvds_entries++; 414 415 if (size != 0 || ptrs->lvds_entries != 3) { 416 kfree(ptrs_block); 417 return NULL; 418 } 419 420 size = fp_timing_size + sizeof(struct lvds_dvo_timing) + 421 sizeof(struct lvds_pnp_id); 422 for (i = 1; i < 16; i++) { 423 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 424 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 425 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 426 } 427 428 table_size = sizeof(struct lvds_lfp_panel_name); 429 430 if (16 * (size + table_size) <= block_size) { 431 ptrs->panel_name.table_size = table_size; 432 ptrs->panel_name.offset = size * 16; 433 } 434 435 offset = block - bdb; 436 437 for (i = 0; i < 16; i++) { 438 ptrs->ptr[i].fp_timing.offset += offset; 439 ptrs->ptr[i].dvo_timing.offset += offset; 440 ptrs->ptr[i].panel_pnp_id.offset += offset; 441 } 442 443 if (ptrs->panel_name.table_size) 444 ptrs->panel_name.offset += offset; 445 446 return ptrs_block; 447 } 448 449 static void 450 init_bdb_block(struct drm_i915_private *i915, 451 const void *bdb, enum bdb_block_id section_id, 452 size_t min_size) 453 { 454 struct bdb_block_entry *entry; 455 void *temp_block = NULL; 456 const void *block; 457 size_t block_size; 458 459 block = find_raw_section(bdb, section_id); 460 461 /* Modern VBTs lack the LFP data table pointers block, make one up */ 462 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 463 temp_block = generate_lfp_data_ptrs(i915, bdb); 464 if (temp_block) 465 block = temp_block + 3; 466 } 467 if (!block) 468 return; 469 470 drm_WARN(&i915->drm, min_size == 0, 471 "Block %d min_size is zero\n", section_id); 472 473 block_size = get_blocksize(block); 474 475 /* 476 * Version number and new block size are considered 477 * part of the header for MIPI sequenece block v3+. 478 */ 479 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 480 block_size += 5; 481 482 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 483 GFP_KERNEL); 484 if (!entry) { 485 kfree(temp_block); 486 return; 487 } 488 489 entry->section_id = section_id; 490 memcpy(entry->data, block - 3, block_size + 3); 491 492 kfree(temp_block); 493 494 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 495 section_id, block_size, min_size); 496 497 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 498 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 499 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 500 kfree(entry); 501 return; 502 } 503 504 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks); 505 } 506 507 static void init_bdb_blocks(struct drm_i915_private *i915, 508 const void *bdb) 509 { 510 int i; 511 512 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 513 enum bdb_block_id section_id = bdb_blocks[i].section_id; 514 size_t min_size = bdb_blocks[i].min_size; 515 516 if (section_id == BDB_LVDS_LFP_DATA) 517 min_size = lfp_data_min_size(i915); 518 519 init_bdb_block(i915, bdb, section_id, min_size); 520 } 521 } 522 523 static void 524 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 525 const struct lvds_dvo_timing *dvo_timing) 526 { 527 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 528 dvo_timing->hactive_lo; 529 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 530 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 531 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 532 ((dvo_timing->hsync_pulse_width_hi << 8) | 533 dvo_timing->hsync_pulse_width_lo); 534 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 535 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 536 537 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 538 dvo_timing->vactive_lo; 539 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 540 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 541 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 542 ((dvo_timing->vsync_pulse_width_hi << 4) | 543 dvo_timing->vsync_pulse_width_lo); 544 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 545 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 546 panel_fixed_mode->clock = dvo_timing->clock * 10; 547 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 548 549 if (dvo_timing->hsync_positive) 550 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 551 else 552 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 553 554 if (dvo_timing->vsync_positive) 555 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 556 else 557 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 558 559 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 560 dvo_timing->himage_lo; 561 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 562 dvo_timing->vimage_lo; 563 564 /* Some VBTs have bogus h/vtotal values */ 565 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 566 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 567 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 568 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 569 570 drm_mode_set_name(panel_fixed_mode); 571 } 572 573 static const struct lvds_dvo_timing * 574 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 575 const struct bdb_lvds_lfp_data_ptrs *ptrs, 576 int index) 577 { 578 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 579 } 580 581 static const struct lvds_fp_timing * 582 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 583 const struct bdb_lvds_lfp_data_ptrs *ptrs, 584 int index) 585 { 586 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 587 } 588 589 static const struct lvds_pnp_id * 590 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 591 const struct bdb_lvds_lfp_data_ptrs *ptrs, 592 int index) 593 { 594 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 595 } 596 597 static const struct bdb_lvds_lfp_data_tail * 598 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 599 const struct bdb_lvds_lfp_data_ptrs *ptrs) 600 { 601 if (ptrs->panel_name.table_size) 602 return (const void *)data + ptrs->panel_name.offset; 603 else 604 return NULL; 605 } 606 607 static void dump_pnp_id(struct drm_i915_private *i915, 608 const struct lvds_pnp_id *pnp_id, 609 const char *name) 610 { 611 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name); 612 char vend[4]; 613 614 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n", 615 name, drm_edid_decode_mfg_id(mfg_name, vend), 616 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial, 617 pnp_id->mfg_week, pnp_id->mfg_year + 1990); 618 } 619 620 static int opregion_get_panel_type(struct drm_i915_private *i915, 621 const struct intel_bios_encoder_data *devdata, 622 const struct drm_edid *drm_edid, bool use_fallback) 623 { 624 return intel_opregion_get_panel_type(i915); 625 } 626 627 static int vbt_get_panel_type(struct drm_i915_private *i915, 628 const struct intel_bios_encoder_data *devdata, 629 const struct drm_edid *drm_edid, bool use_fallback) 630 { 631 const struct bdb_lvds_options *lvds_options; 632 633 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 634 if (!lvds_options) 635 return -1; 636 637 if (lvds_options->panel_type > 0xf && 638 lvds_options->panel_type != 0xff) { 639 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 640 lvds_options->panel_type); 641 return -1; 642 } 643 644 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 645 return lvds_options->panel_type2; 646 647 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 648 649 return lvds_options->panel_type; 650 } 651 652 static int pnpid_get_panel_type(struct drm_i915_private *i915, 653 const struct intel_bios_encoder_data *devdata, 654 const struct drm_edid *drm_edid, bool use_fallback) 655 { 656 const struct bdb_lvds_lfp_data *data; 657 const struct bdb_lvds_lfp_data_ptrs *ptrs; 658 const struct lvds_pnp_id *edid_id; 659 struct lvds_pnp_id edid_id_nodate; 660 const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */ 661 int i, best = -1; 662 663 if (!edid) 664 return -1; 665 666 edid_id = (const void *)&edid->mfg_id[0]; 667 668 edid_id_nodate = *edid_id; 669 edid_id_nodate.mfg_week = 0; 670 edid_id_nodate.mfg_year = 0; 671 672 dump_pnp_id(i915, edid_id, "EDID"); 673 674 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 675 if (!ptrs) 676 return -1; 677 678 data = find_section(i915, BDB_LVDS_LFP_DATA); 679 if (!data) 680 return -1; 681 682 for (i = 0; i < 16; i++) { 683 const struct lvds_pnp_id *vbt_id = 684 get_lvds_pnp_id(data, ptrs, i); 685 686 /* full match? */ 687 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 688 return i; 689 690 /* 691 * Accept a match w/o date if no full match is found, 692 * and the VBT entry does not specify a date. 693 */ 694 if (best < 0 && 695 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 696 best = i; 697 } 698 699 return best; 700 } 701 702 static int fallback_get_panel_type(struct drm_i915_private *i915, 703 const struct intel_bios_encoder_data *devdata, 704 const struct drm_edid *drm_edid, bool use_fallback) 705 { 706 return use_fallback ? 0 : -1; 707 } 708 709 enum panel_type { 710 PANEL_TYPE_OPREGION, 711 PANEL_TYPE_VBT, 712 PANEL_TYPE_PNPID, 713 PANEL_TYPE_FALLBACK, 714 }; 715 716 static int get_panel_type(struct drm_i915_private *i915, 717 const struct intel_bios_encoder_data *devdata, 718 const struct drm_edid *drm_edid, bool use_fallback) 719 { 720 struct { 721 const char *name; 722 int (*get_panel_type)(struct drm_i915_private *i915, 723 const struct intel_bios_encoder_data *devdata, 724 const struct drm_edid *drm_edid, bool use_fallback); 725 int panel_type; 726 } panel_types[] = { 727 [PANEL_TYPE_OPREGION] = { 728 .name = "OpRegion", 729 .get_panel_type = opregion_get_panel_type, 730 }, 731 [PANEL_TYPE_VBT] = { 732 .name = "VBT", 733 .get_panel_type = vbt_get_panel_type, 734 }, 735 [PANEL_TYPE_PNPID] = { 736 .name = "PNPID", 737 .get_panel_type = pnpid_get_panel_type, 738 }, 739 [PANEL_TYPE_FALLBACK] = { 740 .name = "fallback", 741 .get_panel_type = fallback_get_panel_type, 742 }, 743 }; 744 int i; 745 746 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 747 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, 748 drm_edid, use_fallback); 749 750 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 751 panel_types[i].panel_type != 0xff); 752 753 if (panel_types[i].panel_type >= 0) 754 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 755 panel_types[i].name, panel_types[i].panel_type); 756 } 757 758 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 759 i = PANEL_TYPE_OPREGION; 760 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 761 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 762 i = PANEL_TYPE_PNPID; 763 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 764 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 765 i = PANEL_TYPE_VBT; 766 else 767 i = PANEL_TYPE_FALLBACK; 768 769 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 770 panel_types[i].name, panel_types[i].panel_type); 771 772 return panel_types[i].panel_type; 773 } 774 775 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 776 { 777 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 778 } 779 780 static bool panel_bool(unsigned int value, int panel_type) 781 { 782 return panel_bits(value, panel_type, 1); 783 } 784 785 /* Parse general panel options */ 786 static void 787 parse_panel_options(struct drm_i915_private *i915, 788 struct intel_panel *panel) 789 { 790 const struct bdb_lvds_options *lvds_options; 791 int panel_type = panel->vbt.panel_type; 792 int drrs_mode; 793 794 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 795 if (!lvds_options) 796 return; 797 798 panel->vbt.lvds_dither = lvds_options->pixel_dither; 799 800 /* 801 * Empirical evidence indicates the block size can be 802 * either 4,14,16,24+ bytes. For older VBTs no clear 803 * relationship between the block size vs. BDB version. 804 */ 805 if (get_blocksize(lvds_options) < 16) 806 return; 807 808 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 809 panel_type, 2); 810 /* 811 * VBT has static DRRS = 0 and seamless DRRS = 2. 812 * The below piece of code is required to adjust vbt.drrs_type 813 * to match the enum drrs_support_type. 814 */ 815 switch (drrs_mode) { 816 case 0: 817 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 818 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 819 break; 820 case 2: 821 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 822 drm_dbg_kms(&i915->drm, 823 "DRRS supported mode is seamless\n"); 824 break; 825 default: 826 panel->vbt.drrs_type = DRRS_TYPE_NONE; 827 drm_dbg_kms(&i915->drm, 828 "DRRS not supported (VBT input)\n"); 829 break; 830 } 831 } 832 833 static void 834 parse_lfp_panel_dtd(struct drm_i915_private *i915, 835 struct intel_panel *panel, 836 const struct bdb_lvds_lfp_data *lvds_lfp_data, 837 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 838 { 839 const struct lvds_dvo_timing *panel_dvo_timing; 840 const struct lvds_fp_timing *fp_timing; 841 struct drm_display_mode *panel_fixed_mode; 842 int panel_type = panel->vbt.panel_type; 843 844 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 845 lvds_lfp_data_ptrs, 846 panel_type); 847 848 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 849 if (!panel_fixed_mode) 850 return; 851 852 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 853 854 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 855 856 drm_dbg_kms(&i915->drm, 857 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 858 DRM_MODE_ARG(panel_fixed_mode)); 859 860 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 861 lvds_lfp_data_ptrs, 862 panel_type); 863 864 /* check the resolution, just to be sure */ 865 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 866 fp_timing->y_res == panel_fixed_mode->vdisplay) { 867 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 868 drm_dbg_kms(&i915->drm, 869 "VBT initial LVDS value %x\n", 870 panel->vbt.bios_lvds_val); 871 } 872 } 873 874 static void 875 parse_lfp_data(struct drm_i915_private *i915, 876 struct intel_panel *panel) 877 { 878 const struct bdb_lvds_lfp_data *data; 879 const struct bdb_lvds_lfp_data_tail *tail; 880 const struct bdb_lvds_lfp_data_ptrs *ptrs; 881 const struct lvds_pnp_id *pnp_id; 882 int panel_type = panel->vbt.panel_type; 883 884 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 885 if (!ptrs) 886 return; 887 888 data = find_section(i915, BDB_LVDS_LFP_DATA); 889 if (!data) 890 return; 891 892 if (!panel->vbt.lfp_lvds_vbt_mode) 893 parse_lfp_panel_dtd(i915, panel, data, ptrs); 894 895 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type); 896 dump_pnp_id(i915, pnp_id, "Panel"); 897 898 tail = get_lfp_data_tail(data, ptrs); 899 if (!tail) 900 return; 901 902 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n", 903 (int)sizeof(tail->panel_name[0].name), 904 tail->panel_name[panel_type].name); 905 906 if (i915->display.vbt.version >= 188) { 907 panel->vbt.seamless_drrs_min_refresh_rate = 908 tail->seamless_drrs_min_refresh_rate[panel_type]; 909 drm_dbg_kms(&i915->drm, 910 "Seamless DRRS min refresh rate: %d Hz\n", 911 panel->vbt.seamless_drrs_min_refresh_rate); 912 } 913 } 914 915 static void 916 parse_generic_dtd(struct drm_i915_private *i915, 917 struct intel_panel *panel) 918 { 919 const struct bdb_generic_dtd *generic_dtd; 920 const struct generic_dtd_entry *dtd; 921 struct drm_display_mode *panel_fixed_mode; 922 int num_dtd; 923 924 /* 925 * Older VBTs provided DTD information for internal displays through 926 * the "LFP panel tables" block (42). As of VBT revision 229 the 927 * DTD information should be provided via a newer "generic DTD" 928 * block (58). Just to be safe, we'll try the new generic DTD block 929 * first on VBT >= 229, but still fall back to trying the old LFP 930 * block if that fails. 931 */ 932 if (i915->display.vbt.version < 229) 933 return; 934 935 generic_dtd = find_section(i915, BDB_GENERIC_DTD); 936 if (!generic_dtd) 937 return; 938 939 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 940 drm_err(&i915->drm, "GDTD size %u is too small.\n", 941 generic_dtd->gdtd_size); 942 return; 943 } else if (generic_dtd->gdtd_size != 944 sizeof(struct generic_dtd_entry)) { 945 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 946 generic_dtd->gdtd_size); 947 /* DTD has unknown fields, but keep going */ 948 } 949 950 num_dtd = (get_blocksize(generic_dtd) - 951 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 952 if (panel->vbt.panel_type >= num_dtd) { 953 drm_err(&i915->drm, 954 "Panel type %d not found in table of %d DTD's\n", 955 panel->vbt.panel_type, num_dtd); 956 return; 957 } 958 959 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 960 961 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 962 if (!panel_fixed_mode) 963 return; 964 965 panel_fixed_mode->hdisplay = dtd->hactive; 966 panel_fixed_mode->hsync_start = 967 panel_fixed_mode->hdisplay + dtd->hfront_porch; 968 panel_fixed_mode->hsync_end = 969 panel_fixed_mode->hsync_start + dtd->hsync; 970 panel_fixed_mode->htotal = 971 panel_fixed_mode->hdisplay + dtd->hblank; 972 973 panel_fixed_mode->vdisplay = dtd->vactive; 974 panel_fixed_mode->vsync_start = 975 panel_fixed_mode->vdisplay + dtd->vfront_porch; 976 panel_fixed_mode->vsync_end = 977 panel_fixed_mode->vsync_start + dtd->vsync; 978 panel_fixed_mode->vtotal = 979 panel_fixed_mode->vdisplay + dtd->vblank; 980 981 panel_fixed_mode->clock = dtd->pixel_clock; 982 panel_fixed_mode->width_mm = dtd->width_mm; 983 panel_fixed_mode->height_mm = dtd->height_mm; 984 985 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 986 drm_mode_set_name(panel_fixed_mode); 987 988 if (dtd->hsync_positive_polarity) 989 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 990 else 991 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 992 993 if (dtd->vsync_positive_polarity) 994 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 995 else 996 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 997 998 drm_dbg_kms(&i915->drm, 999 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 1000 DRM_MODE_ARG(panel_fixed_mode)); 1001 1002 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 1003 } 1004 1005 static void 1006 parse_lfp_backlight(struct drm_i915_private *i915, 1007 struct intel_panel *panel) 1008 { 1009 const struct bdb_lfp_backlight_data *backlight_data; 1010 const struct lfp_backlight_data_entry *entry; 1011 int panel_type = panel->vbt.panel_type; 1012 u16 level; 1013 1014 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT); 1015 if (!backlight_data) 1016 return; 1017 1018 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1019 drm_dbg_kms(&i915->drm, 1020 "Unsupported backlight data entry size %u\n", 1021 backlight_data->entry_size); 1022 return; 1023 } 1024 1025 entry = &backlight_data->data[panel_type]; 1026 1027 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1028 if (!panel->vbt.backlight.present) { 1029 drm_dbg_kms(&i915->drm, 1030 "PWM backlight not present in VBT (type %u)\n", 1031 entry->type); 1032 return; 1033 } 1034 1035 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1036 panel->vbt.backlight.controller = 0; 1037 if (i915->display.vbt.version >= 191) { 1038 size_t exp_size; 1039 1040 if (i915->display.vbt.version >= 236) 1041 exp_size = sizeof(struct bdb_lfp_backlight_data); 1042 else if (i915->display.vbt.version >= 234) 1043 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1044 else 1045 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1046 1047 if (get_blocksize(backlight_data) >= exp_size) { 1048 const struct lfp_backlight_control_method *method; 1049 1050 method = &backlight_data->backlight_control[panel_type]; 1051 panel->vbt.backlight.type = method->type; 1052 panel->vbt.backlight.controller = method->controller; 1053 } 1054 } 1055 1056 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1057 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1058 1059 if (i915->display.vbt.version >= 234) { 1060 u16 min_level; 1061 bool scale; 1062 1063 level = backlight_data->brightness_level[panel_type].level; 1064 min_level = backlight_data->brightness_min_level[panel_type].level; 1065 1066 if (i915->display.vbt.version >= 236) 1067 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1068 else 1069 scale = level > 255; 1070 1071 if (scale) 1072 min_level = min_level / 255; 1073 1074 if (min_level > 255) { 1075 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1076 level = 255; 1077 } 1078 panel->vbt.backlight.min_brightness = min_level; 1079 1080 panel->vbt.backlight.brightness_precision_bits = 1081 backlight_data->brightness_precision_bits[panel_type]; 1082 } else { 1083 level = backlight_data->level[panel_type]; 1084 panel->vbt.backlight.min_brightness = entry->min_brightness; 1085 } 1086 1087 drm_dbg_kms(&i915->drm, 1088 "VBT backlight PWM modulation frequency %u Hz, " 1089 "active %s, min brightness %u, level %u, controller %u\n", 1090 panel->vbt.backlight.pwm_freq_hz, 1091 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1092 panel->vbt.backlight.min_brightness, 1093 level, 1094 panel->vbt.backlight.controller); 1095 } 1096 1097 /* Try to find sdvo panel data */ 1098 static void 1099 parse_sdvo_panel_data(struct drm_i915_private *i915, 1100 struct intel_panel *panel) 1101 { 1102 const struct bdb_sdvo_panel_dtds *dtds; 1103 struct drm_display_mode *panel_fixed_mode; 1104 int index; 1105 1106 index = i915->params.vbt_sdvo_panel_type; 1107 if (index == -2) { 1108 drm_dbg_kms(&i915->drm, 1109 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1110 return; 1111 } 1112 1113 if (index == -1) { 1114 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1115 1116 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1117 if (!sdvo_lvds_options) 1118 return; 1119 1120 index = sdvo_lvds_options->panel_type; 1121 } 1122 1123 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS); 1124 if (!dtds) 1125 return; 1126 1127 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1128 if (!panel_fixed_mode) 1129 return; 1130 1131 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 1132 1133 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1134 1135 drm_dbg_kms(&i915->drm, 1136 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1137 DRM_MODE_ARG(panel_fixed_mode)); 1138 } 1139 1140 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1141 bool alternate) 1142 { 1143 switch (DISPLAY_VER(i915)) { 1144 case 2: 1145 return alternate ? 66667 : 48000; 1146 case 3: 1147 case 4: 1148 return alternate ? 100000 : 96000; 1149 default: 1150 return alternate ? 100000 : 120000; 1151 } 1152 } 1153 1154 static void 1155 parse_general_features(struct drm_i915_private *i915) 1156 { 1157 const struct bdb_general_features *general; 1158 1159 general = find_section(i915, BDB_GENERAL_FEATURES); 1160 if (!general) 1161 return; 1162 1163 i915->display.vbt.int_tv_support = general->int_tv_support; 1164 /* int_crt_support can't be trusted on earlier platforms */ 1165 if (i915->display.vbt.version >= 155 && 1166 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1167 i915->display.vbt.int_crt_support = general->int_crt_support; 1168 i915->display.vbt.lvds_use_ssc = general->enable_ssc; 1169 i915->display.vbt.lvds_ssc_freq = 1170 intel_bios_ssc_frequency(i915, general->ssc_freq); 1171 i915->display.vbt.display_clock_mode = general->display_clock_mode; 1172 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1173 if (i915->display.vbt.version >= 181) { 1174 i915->display.vbt.orientation = general->rotate_180 ? 1175 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1176 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1177 } else { 1178 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1179 } 1180 1181 if (i915->display.vbt.version >= 249 && general->afc_startup_config) { 1182 i915->display.vbt.override_afc_startup = true; 1183 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1184 } 1185 1186 drm_dbg_kms(&i915->drm, 1187 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1188 i915->display.vbt.int_tv_support, 1189 i915->display.vbt.int_crt_support, 1190 i915->display.vbt.lvds_use_ssc, 1191 i915->display.vbt.lvds_ssc_freq, 1192 i915->display.vbt.display_clock_mode, 1193 i915->display.vbt.fdi_rx_polarity_inverted); 1194 } 1195 1196 static const struct child_device_config * 1197 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1198 { 1199 return (const void *) &defs->devices[i * defs->child_dev_size]; 1200 } 1201 1202 static void 1203 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1204 { 1205 struct sdvo_device_mapping *mapping; 1206 const struct intel_bios_encoder_data *devdata; 1207 const struct child_device_config *child; 1208 int count = 0; 1209 1210 /* 1211 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1212 * accurate and doesn't have to be, as long as it's not too strict. 1213 */ 1214 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1215 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1216 return; 1217 } 1218 1219 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 1220 child = &devdata->child; 1221 1222 if (child->slave_addr != SLAVE_ADDR1 && 1223 child->slave_addr != SLAVE_ADDR2) { 1224 /* 1225 * If the slave address is neither 0x70 nor 0x72, 1226 * it is not a SDVO device. Skip it. 1227 */ 1228 continue; 1229 } 1230 if (child->dvo_port != DEVICE_PORT_DVOB && 1231 child->dvo_port != DEVICE_PORT_DVOC) { 1232 /* skip the incorrect SDVO port */ 1233 drm_dbg_kms(&i915->drm, 1234 "Incorrect SDVO port. Skip it\n"); 1235 continue; 1236 } 1237 drm_dbg_kms(&i915->drm, 1238 "the SDVO device with slave addr %2x is found on" 1239 " %s port\n", 1240 child->slave_addr, 1241 (child->dvo_port == DEVICE_PORT_DVOB) ? 1242 "SDVOB" : "SDVOC"); 1243 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1]; 1244 if (!mapping->initialized) { 1245 mapping->dvo_port = child->dvo_port; 1246 mapping->slave_addr = child->slave_addr; 1247 mapping->dvo_wiring = child->dvo_wiring; 1248 mapping->ddc_pin = child->ddc_pin; 1249 mapping->i2c_pin = child->i2c_pin; 1250 mapping->initialized = 1; 1251 drm_dbg_kms(&i915->drm, 1252 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1253 mapping->dvo_port, mapping->slave_addr, 1254 mapping->dvo_wiring, mapping->ddc_pin, 1255 mapping->i2c_pin); 1256 } else { 1257 drm_dbg_kms(&i915->drm, 1258 "Maybe one SDVO port is shared by " 1259 "two SDVO device.\n"); 1260 } 1261 if (child->slave2_addr) { 1262 /* Maybe this is a SDVO device with multiple inputs */ 1263 /* And the mapping info is not added */ 1264 drm_dbg_kms(&i915->drm, 1265 "there exists the slave2_addr. Maybe this" 1266 " is a SDVO device with multiple inputs.\n"); 1267 } 1268 count++; 1269 } 1270 1271 if (!count) { 1272 /* No SDVO device info is found */ 1273 drm_dbg_kms(&i915->drm, 1274 "No SDVO device info is found in VBT\n"); 1275 } 1276 } 1277 1278 static void 1279 parse_driver_features(struct drm_i915_private *i915) 1280 { 1281 const struct bdb_driver_features *driver; 1282 1283 driver = find_section(i915, BDB_DRIVER_FEATURES); 1284 if (!driver) 1285 return; 1286 1287 if (DISPLAY_VER(i915) >= 5) { 1288 /* 1289 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1290 * to mean "eDP". The VBT spec doesn't agree with that 1291 * interpretation, but real world VBTs seem to. 1292 */ 1293 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1294 i915->display.vbt.int_lvds_support = 0; 1295 } else { 1296 /* 1297 * FIXME it's not clear which BDB version has the LVDS config 1298 * bits defined. Revision history in the VBT spec says: 1299 * "0.92 | Add two definitions for VBT value of LVDS Active 1300 * Config (00b and 11b values defined) | 06/13/2005" 1301 * but does not the specify the BDB version. 1302 * 1303 * So far version 134 (on i945gm) is the oldest VBT observed 1304 * in the wild with the bits correctly populated. Version 1305 * 108 (on i85x) does not have the bits correctly populated. 1306 */ 1307 if (i915->display.vbt.version >= 134 && 1308 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1309 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1310 i915->display.vbt.int_lvds_support = 0; 1311 } 1312 } 1313 1314 static void 1315 parse_panel_driver_features(struct drm_i915_private *i915, 1316 struct intel_panel *panel) 1317 { 1318 const struct bdb_driver_features *driver; 1319 1320 driver = find_section(i915, BDB_DRIVER_FEATURES); 1321 if (!driver) 1322 return; 1323 1324 if (i915->display.vbt.version < 228) { 1325 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1326 driver->drrs_enabled); 1327 /* 1328 * If DRRS is not supported, drrs_type has to be set to 0. 1329 * This is because, VBT is configured in such a way that 1330 * static DRRS is 0 and DRRS not supported is represented by 1331 * driver->drrs_enabled=false 1332 */ 1333 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1334 /* 1335 * FIXME Should DMRRS perhaps be treated as seamless 1336 * but without the automatic downclocking? 1337 */ 1338 if (driver->dmrrs_enabled) 1339 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1340 else 1341 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1342 } 1343 1344 panel->vbt.psr.enable = driver->psr_enabled; 1345 } 1346 } 1347 1348 static void 1349 parse_power_conservation_features(struct drm_i915_private *i915, 1350 struct intel_panel *panel) 1351 { 1352 const struct bdb_lfp_power *power; 1353 u8 panel_type = panel->vbt.panel_type; 1354 1355 panel->vbt.vrr = true; /* matches Windows behaviour */ 1356 1357 if (i915->display.vbt.version < 228) 1358 return; 1359 1360 power = find_section(i915, BDB_LFP_POWER); 1361 if (!power) 1362 return; 1363 1364 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1365 1366 /* 1367 * If DRRS is not supported, drrs_type has to be set to 0. 1368 * This is because, VBT is configured in such a way that 1369 * static DRRS is 0 and DRRS not supported is represented by 1370 * power->drrs & BIT(panel_type)=false 1371 */ 1372 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1373 /* 1374 * FIXME Should DMRRS perhaps be treated as seamless 1375 * but without the automatic downclocking? 1376 */ 1377 if (panel_bool(power->dmrrs, panel_type)) 1378 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1379 else 1380 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1381 } 1382 1383 if (i915->display.vbt.version >= 232) 1384 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1385 1386 if (i915->display.vbt.version >= 233) 1387 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1388 panel_type); 1389 } 1390 1391 static void 1392 parse_edp(struct drm_i915_private *i915, 1393 struct intel_panel *panel) 1394 { 1395 const struct bdb_edp *edp; 1396 const struct edp_power_seq *edp_pps; 1397 const struct edp_fast_link_params *edp_link_params; 1398 int panel_type = panel->vbt.panel_type; 1399 1400 edp = find_section(i915, BDB_EDP); 1401 if (!edp) 1402 return; 1403 1404 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1405 case EDP_18BPP: 1406 panel->vbt.edp.bpp = 18; 1407 break; 1408 case EDP_24BPP: 1409 panel->vbt.edp.bpp = 24; 1410 break; 1411 case EDP_30BPP: 1412 panel->vbt.edp.bpp = 30; 1413 break; 1414 } 1415 1416 /* Get the eDP sequencing and link info */ 1417 edp_pps = &edp->power_seqs[panel_type]; 1418 edp_link_params = &edp->fast_link_params[panel_type]; 1419 1420 panel->vbt.edp.pps = *edp_pps; 1421 1422 if (i915->display.vbt.version >= 224) { 1423 panel->vbt.edp.rate = 1424 edp->edp_fast_link_training_rate[panel_type] * 20; 1425 } else { 1426 switch (edp_link_params->rate) { 1427 case EDP_RATE_1_62: 1428 panel->vbt.edp.rate = 162000; 1429 break; 1430 case EDP_RATE_2_7: 1431 panel->vbt.edp.rate = 270000; 1432 break; 1433 case EDP_RATE_5_4: 1434 panel->vbt.edp.rate = 540000; 1435 break; 1436 default: 1437 drm_dbg_kms(&i915->drm, 1438 "VBT has unknown eDP link rate value %u\n", 1439 edp_link_params->rate); 1440 break; 1441 } 1442 } 1443 1444 switch (edp_link_params->lanes) { 1445 case EDP_LANE_1: 1446 panel->vbt.edp.lanes = 1; 1447 break; 1448 case EDP_LANE_2: 1449 panel->vbt.edp.lanes = 2; 1450 break; 1451 case EDP_LANE_4: 1452 panel->vbt.edp.lanes = 4; 1453 break; 1454 default: 1455 drm_dbg_kms(&i915->drm, 1456 "VBT has unknown eDP lane count value %u\n", 1457 edp_link_params->lanes); 1458 break; 1459 } 1460 1461 switch (edp_link_params->preemphasis) { 1462 case EDP_PREEMPHASIS_NONE: 1463 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1464 break; 1465 case EDP_PREEMPHASIS_3_5dB: 1466 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1467 break; 1468 case EDP_PREEMPHASIS_6dB: 1469 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1470 break; 1471 case EDP_PREEMPHASIS_9_5dB: 1472 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1473 break; 1474 default: 1475 drm_dbg_kms(&i915->drm, 1476 "VBT has unknown eDP pre-emphasis value %u\n", 1477 edp_link_params->preemphasis); 1478 break; 1479 } 1480 1481 switch (edp_link_params->vswing) { 1482 case EDP_VSWING_0_4V: 1483 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1484 break; 1485 case EDP_VSWING_0_6V: 1486 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1487 break; 1488 case EDP_VSWING_0_8V: 1489 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1490 break; 1491 case EDP_VSWING_1_2V: 1492 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1493 break; 1494 default: 1495 drm_dbg_kms(&i915->drm, 1496 "VBT has unknown eDP voltage swing value %u\n", 1497 edp_link_params->vswing); 1498 break; 1499 } 1500 1501 if (i915->display.vbt.version >= 173) { 1502 u8 vswing; 1503 1504 /* Don't read from VBT if module parameter has valid value*/ 1505 if (i915->params.edp_vswing) { 1506 panel->vbt.edp.low_vswing = 1507 i915->params.edp_vswing == 1; 1508 } else { 1509 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1510 panel->vbt.edp.low_vswing = vswing == 0; 1511 } 1512 } 1513 1514 panel->vbt.edp.drrs_msa_timing_delay = 1515 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1516 1517 if (i915->display.vbt.version >= 244) 1518 panel->vbt.edp.max_link_rate = 1519 edp->edp_max_port_link_rate[panel_type] * 20; 1520 } 1521 1522 static void 1523 parse_psr(struct drm_i915_private *i915, 1524 struct intel_panel *panel) 1525 { 1526 const struct bdb_psr *psr; 1527 const struct psr_table *psr_table; 1528 int panel_type = panel->vbt.panel_type; 1529 1530 psr = find_section(i915, BDB_PSR); 1531 if (!psr) { 1532 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1533 return; 1534 } 1535 1536 psr_table = &psr->psr_table[panel_type]; 1537 1538 panel->vbt.psr.full_link = psr_table->full_link; 1539 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1540 1541 /* Allowed VBT values goes from 0 to 15 */ 1542 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1543 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1544 1545 /* 1546 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1547 * Old decimal value is wake up time in multiples of 100 us. 1548 */ 1549 if (i915->display.vbt.version >= 205 && 1550 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1551 switch (psr_table->tp1_wakeup_time) { 1552 case 0: 1553 panel->vbt.psr.tp1_wakeup_time_us = 500; 1554 break; 1555 case 1: 1556 panel->vbt.psr.tp1_wakeup_time_us = 100; 1557 break; 1558 case 3: 1559 panel->vbt.psr.tp1_wakeup_time_us = 0; 1560 break; 1561 default: 1562 drm_dbg_kms(&i915->drm, 1563 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1564 psr_table->tp1_wakeup_time); 1565 fallthrough; 1566 case 2: 1567 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1568 break; 1569 } 1570 1571 switch (psr_table->tp2_tp3_wakeup_time) { 1572 case 0: 1573 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1574 break; 1575 case 1: 1576 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1577 break; 1578 case 3: 1579 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1580 break; 1581 default: 1582 drm_dbg_kms(&i915->drm, 1583 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1584 psr_table->tp2_tp3_wakeup_time); 1585 fallthrough; 1586 case 2: 1587 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1588 break; 1589 } 1590 } else { 1591 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1592 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1593 } 1594 1595 if (i915->display.vbt.version >= 226) { 1596 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1597 1598 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1599 switch (wakeup_time) { 1600 case 0: 1601 wakeup_time = 500; 1602 break; 1603 case 1: 1604 wakeup_time = 100; 1605 break; 1606 case 3: 1607 wakeup_time = 50; 1608 break; 1609 default: 1610 case 2: 1611 wakeup_time = 2500; 1612 break; 1613 } 1614 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1615 } else { 1616 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1617 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1618 } 1619 } 1620 1621 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1622 struct intel_panel *panel, 1623 enum port port) 1624 { 1625 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1626 1627 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) { 1628 panel->vbt.dsi.bl_ports = BIT(port); 1629 if (panel->vbt.dsi.config->cabc_supported) 1630 panel->vbt.dsi.cabc_ports = BIT(port); 1631 1632 return; 1633 } 1634 1635 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1636 case DL_DCS_PORT_A: 1637 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1638 break; 1639 case DL_DCS_PORT_C: 1640 panel->vbt.dsi.bl_ports = BIT(port_bc); 1641 break; 1642 default: 1643 case DL_DCS_PORT_A_AND_C: 1644 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1645 break; 1646 } 1647 1648 if (!panel->vbt.dsi.config->cabc_supported) 1649 return; 1650 1651 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1652 case DL_DCS_PORT_A: 1653 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1654 break; 1655 case DL_DCS_PORT_C: 1656 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1657 break; 1658 default: 1659 case DL_DCS_PORT_A_AND_C: 1660 panel->vbt.dsi.cabc_ports = 1661 BIT(PORT_A) | BIT(port_bc); 1662 break; 1663 } 1664 } 1665 1666 static void 1667 parse_mipi_config(struct drm_i915_private *i915, 1668 struct intel_panel *panel) 1669 { 1670 const struct bdb_mipi_config *start; 1671 const struct mipi_config *config; 1672 const struct mipi_pps_data *pps; 1673 int panel_type = panel->vbt.panel_type; 1674 enum port port; 1675 1676 /* parse MIPI blocks only if LFP type is MIPI */ 1677 if (!intel_bios_is_dsi_present(i915, &port)) 1678 return; 1679 1680 /* Initialize this to undefined indicating no generic MIPI support */ 1681 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1682 1683 /* Block #40 is already parsed and panel_fixed_mode is 1684 * stored in i915->lfp_lvds_vbt_mode 1685 * resuse this when needed 1686 */ 1687 1688 /* Parse #52 for panel index used from panel_type already 1689 * parsed 1690 */ 1691 start = find_section(i915, BDB_MIPI_CONFIG); 1692 if (!start) { 1693 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1694 return; 1695 } 1696 1697 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1698 panel_type); 1699 1700 /* 1701 * get hold of the correct configuration block and pps data as per 1702 * the panel_type as index 1703 */ 1704 config = &start->config[panel_type]; 1705 pps = &start->pps[panel_type]; 1706 1707 /* store as of now full data. Trim when we realise all is not needed */ 1708 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1709 if (!panel->vbt.dsi.config) 1710 return; 1711 1712 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1713 if (!panel->vbt.dsi.pps) { 1714 kfree(panel->vbt.dsi.config); 1715 return; 1716 } 1717 1718 parse_dsi_backlight_ports(i915, panel, port); 1719 1720 /* FIXME is the 90 vs. 270 correct? */ 1721 switch (config->rotation) { 1722 case ENABLE_ROTATION_0: 1723 /* 1724 * Most (all?) VBTs claim 0 degrees despite having 1725 * an upside down panel, thus we do not trust this. 1726 */ 1727 panel->vbt.dsi.orientation = 1728 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1729 break; 1730 case ENABLE_ROTATION_90: 1731 panel->vbt.dsi.orientation = 1732 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1733 break; 1734 case ENABLE_ROTATION_180: 1735 panel->vbt.dsi.orientation = 1736 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1737 break; 1738 case ENABLE_ROTATION_270: 1739 panel->vbt.dsi.orientation = 1740 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1741 break; 1742 } 1743 1744 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1745 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1746 } 1747 1748 /* Find the sequence block and size for the given panel. */ 1749 static const u8 * 1750 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1751 u16 panel_id, u32 *seq_size) 1752 { 1753 u32 total = get_blocksize(sequence); 1754 const u8 *data = &sequence->data[0]; 1755 u8 current_id; 1756 u32 current_size; 1757 int header_size = sequence->version >= 3 ? 5 : 3; 1758 int index = 0; 1759 int i; 1760 1761 /* skip new block size */ 1762 if (sequence->version >= 3) 1763 data += 4; 1764 1765 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1766 if (index + header_size > total) { 1767 DRM_ERROR("Invalid sequence block (header)\n"); 1768 return NULL; 1769 } 1770 1771 current_id = *(data + index); 1772 if (sequence->version >= 3) 1773 current_size = *((const u32 *)(data + index + 1)); 1774 else 1775 current_size = *((const u16 *)(data + index + 1)); 1776 1777 index += header_size; 1778 1779 if (index + current_size > total) { 1780 DRM_ERROR("Invalid sequence block\n"); 1781 return NULL; 1782 } 1783 1784 if (current_id == panel_id) { 1785 *seq_size = current_size; 1786 return data + index; 1787 } 1788 1789 index += current_size; 1790 } 1791 1792 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1793 1794 return NULL; 1795 } 1796 1797 static int goto_next_sequence(const u8 *data, int index, int total) 1798 { 1799 u16 len; 1800 1801 /* Skip Sequence Byte. */ 1802 for (index = index + 1; index < total; index += len) { 1803 u8 operation_byte = *(data + index); 1804 index++; 1805 1806 switch (operation_byte) { 1807 case MIPI_SEQ_ELEM_END: 1808 return index; 1809 case MIPI_SEQ_ELEM_SEND_PKT: 1810 if (index + 4 > total) 1811 return 0; 1812 1813 len = *((const u16 *)(data + index + 2)) + 4; 1814 break; 1815 case MIPI_SEQ_ELEM_DELAY: 1816 len = 4; 1817 break; 1818 case MIPI_SEQ_ELEM_GPIO: 1819 len = 2; 1820 break; 1821 case MIPI_SEQ_ELEM_I2C: 1822 if (index + 7 > total) 1823 return 0; 1824 len = *(data + index + 6) + 7; 1825 break; 1826 default: 1827 DRM_ERROR("Unknown operation byte\n"); 1828 return 0; 1829 } 1830 } 1831 1832 return 0; 1833 } 1834 1835 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1836 { 1837 int seq_end; 1838 u16 len; 1839 u32 size_of_sequence; 1840 1841 /* 1842 * Could skip sequence based on Size of Sequence alone, but also do some 1843 * checking on the structure. 1844 */ 1845 if (total < 5) { 1846 DRM_ERROR("Too small sequence size\n"); 1847 return 0; 1848 } 1849 1850 /* Skip Sequence Byte. */ 1851 index++; 1852 1853 /* 1854 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1855 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1856 * byte. 1857 */ 1858 size_of_sequence = *((const u32 *)(data + index)); 1859 index += 4; 1860 1861 seq_end = index + size_of_sequence; 1862 if (seq_end > total) { 1863 DRM_ERROR("Invalid sequence size\n"); 1864 return 0; 1865 } 1866 1867 for (; index < total; index += len) { 1868 u8 operation_byte = *(data + index); 1869 index++; 1870 1871 if (operation_byte == MIPI_SEQ_ELEM_END) { 1872 if (index != seq_end) { 1873 DRM_ERROR("Invalid element structure\n"); 1874 return 0; 1875 } 1876 return index; 1877 } 1878 1879 len = *(data + index); 1880 index++; 1881 1882 /* 1883 * FIXME: Would be nice to check elements like for v1/v2 in 1884 * goto_next_sequence() above. 1885 */ 1886 switch (operation_byte) { 1887 case MIPI_SEQ_ELEM_SEND_PKT: 1888 case MIPI_SEQ_ELEM_DELAY: 1889 case MIPI_SEQ_ELEM_GPIO: 1890 case MIPI_SEQ_ELEM_I2C: 1891 case MIPI_SEQ_ELEM_SPI: 1892 case MIPI_SEQ_ELEM_PMIC: 1893 break; 1894 default: 1895 DRM_ERROR("Unknown operation byte %u\n", 1896 operation_byte); 1897 break; 1898 } 1899 } 1900 1901 return 0; 1902 } 1903 1904 /* 1905 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1906 * skip all delay + gpio operands and stop at the first DSI packet op. 1907 */ 1908 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1909 struct intel_panel *panel) 1910 { 1911 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1912 int index, len; 1913 1914 if (drm_WARN_ON(&i915->drm, 1915 !data || panel->vbt.dsi.seq_version != 1)) 1916 return 0; 1917 1918 /* index = 1 to skip sequence byte */ 1919 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1920 switch (data[index]) { 1921 case MIPI_SEQ_ELEM_SEND_PKT: 1922 return index == 1 ? 0 : index; 1923 case MIPI_SEQ_ELEM_DELAY: 1924 len = 5; /* 1 byte for operand + uint32 */ 1925 break; 1926 case MIPI_SEQ_ELEM_GPIO: 1927 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1928 break; 1929 default: 1930 return 0; 1931 } 1932 } 1933 1934 return 0; 1935 } 1936 1937 /* 1938 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1939 * The deassert must be done before calling intel_dsi_device_ready, so for 1940 * these devices we split the init OTP sequence into a deassert sequence and 1941 * the actual init OTP part. 1942 */ 1943 static void fixup_mipi_sequences(struct drm_i915_private *i915, 1944 struct intel_panel *panel) 1945 { 1946 u8 *init_otp; 1947 int len; 1948 1949 /* Limit this to VLV for now. */ 1950 if (!IS_VALLEYVIEW(i915)) 1951 return; 1952 1953 /* Limit this to v1 vid-mode sequences */ 1954 if (panel->vbt.dsi.config->is_cmd_mode || 1955 panel->vbt.dsi.seq_version != 1) 1956 return; 1957 1958 /* Only do this if there are otp and assert seqs and no deassert seq */ 1959 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1960 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1961 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1962 return; 1963 1964 /* The deassert-sequence ends at the first DSI packet */ 1965 len = get_init_otp_deassert_fragment_len(i915, panel); 1966 if (!len) 1967 return; 1968 1969 drm_dbg_kms(&i915->drm, 1970 "Using init OTP fragment to deassert reset\n"); 1971 1972 /* Copy the fragment, update seq byte and terminate it */ 1973 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1974 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1975 if (!panel->vbt.dsi.deassert_seq) 1976 return; 1977 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1978 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1979 /* Use the copy for deassert */ 1980 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1981 panel->vbt.dsi.deassert_seq; 1982 /* Replace the last byte of the fragment with init OTP seq byte */ 1983 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1984 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1985 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1986 } 1987 1988 static void 1989 parse_mipi_sequence(struct drm_i915_private *i915, 1990 struct intel_panel *panel) 1991 { 1992 int panel_type = panel->vbt.panel_type; 1993 const struct bdb_mipi_sequence *sequence; 1994 const u8 *seq_data; 1995 u32 seq_size; 1996 u8 *data; 1997 int index = 0; 1998 1999 /* Only our generic panel driver uses the sequence block. */ 2000 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 2001 return; 2002 2003 sequence = find_section(i915, BDB_MIPI_SEQUENCE); 2004 if (!sequence) { 2005 drm_dbg_kms(&i915->drm, 2006 "No MIPI Sequence found, parsing complete\n"); 2007 return; 2008 } 2009 2010 /* Fail gracefully for forward incompatible sequence block. */ 2011 if (sequence->version >= 4) { 2012 drm_err(&i915->drm, 2013 "Unable to parse MIPI Sequence Block v%u\n", 2014 sequence->version); 2015 return; 2016 } 2017 2018 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2019 sequence->version); 2020 2021 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 2022 if (!seq_data) 2023 return; 2024 2025 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2026 if (!data) 2027 return; 2028 2029 /* Parse the sequences, store pointers to each sequence. */ 2030 for (;;) { 2031 u8 seq_id = *(data + index); 2032 if (seq_id == MIPI_SEQ_END) 2033 break; 2034 2035 if (seq_id >= MIPI_SEQ_MAX) { 2036 drm_err(&i915->drm, "Unknown sequence %u\n", 2037 seq_id); 2038 goto err; 2039 } 2040 2041 /* Log about presence of sequences we won't run. */ 2042 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2043 drm_dbg_kms(&i915->drm, 2044 "Unsupported sequence %u\n", seq_id); 2045 2046 panel->vbt.dsi.sequence[seq_id] = data + index; 2047 2048 if (sequence->version >= 3) 2049 index = goto_next_sequence_v3(data, index, seq_size); 2050 else 2051 index = goto_next_sequence(data, index, seq_size); 2052 if (!index) { 2053 drm_err(&i915->drm, "Invalid sequence %u\n", 2054 seq_id); 2055 goto err; 2056 } 2057 } 2058 2059 panel->vbt.dsi.data = data; 2060 panel->vbt.dsi.size = seq_size; 2061 panel->vbt.dsi.seq_version = sequence->version; 2062 2063 fixup_mipi_sequences(i915, panel); 2064 2065 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2066 return; 2067 2068 err: 2069 kfree(data); 2070 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2071 } 2072 2073 static void 2074 parse_compression_parameters(struct drm_i915_private *i915) 2075 { 2076 const struct bdb_compression_parameters *params; 2077 struct intel_bios_encoder_data *devdata; 2078 const struct child_device_config *child; 2079 u16 block_size; 2080 int index; 2081 2082 if (i915->display.vbt.version < 198) 2083 return; 2084 2085 params = find_section(i915, BDB_COMPRESSION_PARAMETERS); 2086 if (params) { 2087 /* Sanity checks */ 2088 if (params->entry_size != sizeof(params->data[0])) { 2089 drm_dbg_kms(&i915->drm, 2090 "VBT: unsupported compression param entry size\n"); 2091 return; 2092 } 2093 2094 block_size = get_blocksize(params); 2095 if (block_size < sizeof(*params)) { 2096 drm_dbg_kms(&i915->drm, 2097 "VBT: expected 16 compression param entries\n"); 2098 return; 2099 } 2100 } 2101 2102 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 2103 child = &devdata->child; 2104 2105 if (!child->compression_enable) 2106 continue; 2107 2108 if (!params) { 2109 drm_dbg_kms(&i915->drm, 2110 "VBT: compression params not available\n"); 2111 continue; 2112 } 2113 2114 if (child->compression_method_cps) { 2115 drm_dbg_kms(&i915->drm, 2116 "VBT: CPS compression not supported\n"); 2117 continue; 2118 } 2119 2120 index = child->compression_structure_index; 2121 2122 devdata->dsc = kmemdup(¶ms->data[index], 2123 sizeof(*devdata->dsc), GFP_KERNEL); 2124 } 2125 } 2126 2127 static u8 translate_iboost(u8 val) 2128 { 2129 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2130 2131 if (val >= ARRAY_SIZE(mapping)) { 2132 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2133 return 0; 2134 } 2135 return mapping[val]; 2136 } 2137 2138 static const u8 cnp_ddc_pin_map[] = { 2139 [0] = 0, /* N/A */ 2140 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 2141 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 2142 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 2143 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 2144 }; 2145 2146 static const u8 icp_ddc_pin_map[] = { 2147 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2148 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2149 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 2150 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 2151 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 2152 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 2153 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 2154 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 2155 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 2156 }; 2157 2158 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2159 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2160 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2161 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 2162 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 2163 }; 2164 2165 static const u8 adls_ddc_pin_map[] = { 2166 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2167 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2168 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2169 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2170 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2171 }; 2172 2173 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2174 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2175 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 2176 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 2177 }; 2178 2179 static const u8 adlp_ddc_pin_map[] = { 2180 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2181 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2182 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2183 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2184 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2185 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2186 }; 2187 2188 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2189 { 2190 const u8 *ddc_pin_map; 2191 int n_entries; 2192 2193 if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) { 2194 ddc_pin_map = adlp_ddc_pin_map; 2195 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2196 } else if (IS_ALDERLAKE_S(i915)) { 2197 ddc_pin_map = adls_ddc_pin_map; 2198 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2199 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2200 return vbt_pin; 2201 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2202 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2203 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2204 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2205 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2206 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2207 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2208 ddc_pin_map = icp_ddc_pin_map; 2209 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2210 } else if (HAS_PCH_CNP(i915)) { 2211 ddc_pin_map = cnp_ddc_pin_map; 2212 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2213 } else { 2214 /* Assuming direct map */ 2215 return vbt_pin; 2216 } 2217 2218 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 2219 return ddc_pin_map[vbt_pin]; 2220 2221 drm_dbg_kms(&i915->drm, 2222 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2223 vbt_pin); 2224 return 0; 2225 } 2226 2227 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 2228 { 2229 const struct intel_bios_encoder_data *devdata; 2230 enum port port; 2231 2232 if (!ddc_pin) 2233 return PORT_NONE; 2234 2235 for_each_port(port) { 2236 devdata = i915->display.vbt.ports[port]; 2237 2238 if (devdata && ddc_pin == devdata->child.ddc_pin) 2239 return port; 2240 } 2241 2242 return PORT_NONE; 2243 } 2244 2245 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata, 2246 enum port port) 2247 { 2248 struct drm_i915_private *i915 = devdata->i915; 2249 struct child_device_config *child; 2250 u8 mapped_ddc_pin; 2251 enum port p; 2252 2253 if (!devdata->child.ddc_pin) 2254 return; 2255 2256 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin); 2257 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) { 2258 drm_dbg_kms(&i915->drm, 2259 "Port %c has invalid DDC pin %d, " 2260 "sticking to defaults\n", 2261 port_name(port), mapped_ddc_pin); 2262 devdata->child.ddc_pin = 0; 2263 return; 2264 } 2265 2266 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin); 2267 if (p == PORT_NONE) 2268 return; 2269 2270 drm_dbg_kms(&i915->drm, 2271 "port %c trying to use the same DDC pin (0x%x) as port %c, " 2272 "disabling port %c DVI/HDMI support\n", 2273 port_name(port), mapped_ddc_pin, 2274 port_name(p), port_name(p)); 2275 2276 /* 2277 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi 2278 * couldn't exist on the shared port. Otherwise they share the same ddc 2279 * pin and system couldn't communicate with them separately. 2280 * 2281 * Give inverse child device order the priority, last one wins. Yes, 2282 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2283 * port A and port E with the same AUX ch and we must pick port E :( 2284 */ 2285 child = &i915->display.vbt.ports[p]->child; 2286 2287 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2288 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2289 2290 child->ddc_pin = 0; 2291 } 2292 2293 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 2294 { 2295 const struct intel_bios_encoder_data *devdata; 2296 enum port port; 2297 2298 if (!aux_ch) 2299 return PORT_NONE; 2300 2301 for_each_port(port) { 2302 devdata = i915->display.vbt.ports[port]; 2303 2304 if (devdata && aux_ch == devdata->child.aux_channel) 2305 return port; 2306 } 2307 2308 return PORT_NONE; 2309 } 2310 2311 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata, 2312 enum port port) 2313 { 2314 struct drm_i915_private *i915 = devdata->i915; 2315 struct child_device_config *child; 2316 enum port p; 2317 2318 p = get_port_by_aux_ch(i915, devdata->child.aux_channel); 2319 if (p == PORT_NONE) 2320 return; 2321 2322 drm_dbg_kms(&i915->drm, 2323 "port %c trying to use the same AUX CH (0x%x) as port %c, " 2324 "disabling port %c DP support\n", 2325 port_name(port), devdata->child.aux_channel, 2326 port_name(p), port_name(p)); 2327 2328 /* 2329 * If we have multiple ports supposedly sharing the aux channel, then DP 2330 * couldn't exist on the shared port. Otherwise they share the same aux 2331 * channel and system couldn't communicate with them separately. 2332 * 2333 * Give inverse child device order the priority, last one wins. Yes, 2334 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2335 * port A and port E with the same AUX ch and we must pick port E :( 2336 */ 2337 child = &i915->display.vbt.ports[p]->child; 2338 2339 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2340 child->aux_channel = 0; 2341 } 2342 2343 static u8 dvo_port_type(u8 dvo_port) 2344 { 2345 switch (dvo_port) { 2346 case DVO_PORT_HDMIA: 2347 case DVO_PORT_HDMIB: 2348 case DVO_PORT_HDMIC: 2349 case DVO_PORT_HDMID: 2350 case DVO_PORT_HDMIE: 2351 case DVO_PORT_HDMIF: 2352 case DVO_PORT_HDMIG: 2353 case DVO_PORT_HDMIH: 2354 case DVO_PORT_HDMII: 2355 return DVO_PORT_HDMIA; 2356 case DVO_PORT_DPA: 2357 case DVO_PORT_DPB: 2358 case DVO_PORT_DPC: 2359 case DVO_PORT_DPD: 2360 case DVO_PORT_DPE: 2361 case DVO_PORT_DPF: 2362 case DVO_PORT_DPG: 2363 case DVO_PORT_DPH: 2364 case DVO_PORT_DPI: 2365 return DVO_PORT_DPA; 2366 case DVO_PORT_MIPIA: 2367 case DVO_PORT_MIPIB: 2368 case DVO_PORT_MIPIC: 2369 case DVO_PORT_MIPID: 2370 return DVO_PORT_MIPIA; 2371 default: 2372 return dvo_port; 2373 } 2374 } 2375 2376 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2377 const int port_mapping[][3], u8 dvo_port) 2378 { 2379 enum port port; 2380 int i; 2381 2382 for (port = PORT_A; port < n_ports; port++) { 2383 for (i = 0; i < n_dvo; i++) { 2384 if (port_mapping[port][i] == -1) 2385 break; 2386 2387 if (dvo_port == port_mapping[port][i]) 2388 return port; 2389 } 2390 } 2391 2392 return PORT_NONE; 2393 } 2394 2395 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2396 u8 dvo_port) 2397 { 2398 /* 2399 * Each DDI port can have more than one value on the "DVO Port" field, 2400 * so look for all the possible values for each port. 2401 */ 2402 static const int port_mapping[][3] = { 2403 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2404 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2405 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2406 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2407 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2408 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2409 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2410 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2411 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2412 }; 2413 /* 2414 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2415 * map to DDI A,B,TC1,TC2 respectively. 2416 */ 2417 static const int rkl_port_mapping[][3] = { 2418 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2419 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2420 [PORT_C] = { -1 }, 2421 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2422 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2423 }; 2424 /* 2425 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2426 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2427 */ 2428 static const int adls_port_mapping[][3] = { 2429 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2430 [PORT_B] = { -1 }, 2431 [PORT_C] = { -1 }, 2432 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2433 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2434 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2435 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2436 }; 2437 static const int xelpd_port_mapping[][3] = { 2438 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2439 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2440 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2441 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2442 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2443 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2444 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2445 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2446 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2447 }; 2448 2449 if (DISPLAY_VER(i915) >= 13) 2450 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2451 ARRAY_SIZE(xelpd_port_mapping[0]), 2452 xelpd_port_mapping, 2453 dvo_port); 2454 else if (IS_ALDERLAKE_S(i915)) 2455 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2456 ARRAY_SIZE(adls_port_mapping[0]), 2457 adls_port_mapping, 2458 dvo_port); 2459 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2460 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2461 ARRAY_SIZE(rkl_port_mapping[0]), 2462 rkl_port_mapping, 2463 dvo_port); 2464 else 2465 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2466 ARRAY_SIZE(port_mapping[0]), 2467 port_mapping, 2468 dvo_port); 2469 } 2470 2471 static enum port 2472 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port) 2473 { 2474 switch (dvo_port) { 2475 case DVO_PORT_MIPIA: 2476 return PORT_A; 2477 case DVO_PORT_MIPIC: 2478 if (DISPLAY_VER(i915) >= 11) 2479 return PORT_B; 2480 else 2481 return PORT_C; 2482 default: 2483 return PORT_NONE; 2484 } 2485 } 2486 2487 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2488 { 2489 switch (vbt_max_link_rate) { 2490 default: 2491 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2492 return 0; 2493 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2494 return 2000000; 2495 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2496 return 1350000; 2497 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2498 return 1000000; 2499 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2500 return 810000; 2501 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2502 return 540000; 2503 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2504 return 270000; 2505 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2506 return 162000; 2507 } 2508 } 2509 2510 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2511 { 2512 switch (vbt_max_link_rate) { 2513 default: 2514 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2515 return 810000; 2516 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2517 return 540000; 2518 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2519 return 270000; 2520 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2521 return 162000; 2522 } 2523 } 2524 2525 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2526 { 2527 if (!devdata || devdata->i915->display.vbt.version < 216) 2528 return 0; 2529 2530 if (devdata->i915->display.vbt.version >= 230) 2531 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2532 else 2533 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2534 } 2535 2536 static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata) 2537 { 2538 if (!devdata || devdata->i915->display.vbt.version < 244) 2539 return 0; 2540 2541 return devdata->child.dp_max_lane_count + 1; 2542 } 2543 2544 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2545 enum port port) 2546 { 2547 struct drm_i915_private *i915 = devdata->i915; 2548 bool is_hdmi; 2549 2550 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2551 return; 2552 2553 if (!intel_bios_encoder_supports_dvi(devdata)) 2554 return; 2555 2556 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2557 2558 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2559 is_hdmi ? "/HDMI" : ""); 2560 2561 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2562 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2563 } 2564 2565 static bool 2566 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2567 { 2568 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2569 } 2570 2571 bool 2572 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2573 { 2574 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2575 } 2576 2577 bool 2578 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2579 { 2580 return intel_bios_encoder_supports_dvi(devdata) && 2581 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2582 } 2583 2584 bool 2585 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2586 { 2587 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2588 } 2589 2590 static bool 2591 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2592 { 2593 return intel_bios_encoder_supports_dp(devdata) && 2594 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2595 } 2596 2597 static bool 2598 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata) 2599 { 2600 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT; 2601 } 2602 2603 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2604 { 2605 if (!devdata || devdata->i915->display.vbt.version < 158) 2606 return -1; 2607 2608 return devdata->child.hdmi_level_shifter_value; 2609 } 2610 2611 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2612 { 2613 if (!devdata || devdata->i915->display.vbt.version < 204) 2614 return 0; 2615 2616 switch (devdata->child.hdmi_max_data_rate) { 2617 default: 2618 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2619 fallthrough; 2620 case HDMI_MAX_DATA_RATE_PLATFORM: 2621 return 0; 2622 case HDMI_MAX_DATA_RATE_594: 2623 return 594000; 2624 case HDMI_MAX_DATA_RATE_340: 2625 return 340000; 2626 case HDMI_MAX_DATA_RATE_300: 2627 return 300000; 2628 case HDMI_MAX_DATA_RATE_297: 2629 return 297000; 2630 case HDMI_MAX_DATA_RATE_165: 2631 return 165000; 2632 } 2633 } 2634 2635 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2636 { 2637 /* 2638 * On some ICL SKUs port F is not present, but broken VBTs mark 2639 * the port as present. Only try to initialize port F for the 2640 * SKUs that may actually have it. 2641 */ 2642 if (port == PORT_F && IS_ICELAKE(i915)) 2643 return IS_ICL_WITH_PORT_F(i915); 2644 2645 return true; 2646 } 2647 2648 static void print_ddi_port(const struct intel_bios_encoder_data *devdata, 2649 enum port port) 2650 { 2651 struct drm_i915_private *i915 = devdata->i915; 2652 const struct child_device_config *child = &devdata->child; 2653 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt; 2654 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2655 2656 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2657 is_dp = intel_bios_encoder_supports_dp(devdata); 2658 is_crt = intel_bios_encoder_supports_crt(devdata); 2659 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2660 is_edp = intel_bios_encoder_supports_edp(devdata); 2661 is_dsi = intel_bios_encoder_supports_dsi(devdata); 2662 2663 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2664 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2665 2666 drm_dbg_kms(&i915->drm, 2667 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2668 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi, 2669 HAS_LSPCON(i915) && child->lspcon, 2670 supports_typec_usb, supports_tbt, 2671 devdata->dsc != NULL); 2672 2673 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata); 2674 if (hdmi_level_shift >= 0) { 2675 drm_dbg_kms(&i915->drm, 2676 "Port %c VBT HDMI level shift: %d\n", 2677 port_name(port), hdmi_level_shift); 2678 } 2679 2680 max_tmds_clock = _intel_bios_max_tmds_clock(devdata); 2681 if (max_tmds_clock) 2682 drm_dbg_kms(&i915->drm, 2683 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2684 port_name(port), max_tmds_clock); 2685 2686 /* I_boost config for SKL and above */ 2687 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata); 2688 if (dp_boost_level) 2689 drm_dbg_kms(&i915->drm, 2690 "Port %c VBT (e)DP boost level: %d\n", 2691 port_name(port), dp_boost_level); 2692 2693 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata); 2694 if (hdmi_boost_level) 2695 drm_dbg_kms(&i915->drm, 2696 "Port %c VBT HDMI boost level: %d\n", 2697 port_name(port), hdmi_boost_level); 2698 2699 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata); 2700 if (dp_max_link_rate) 2701 drm_dbg_kms(&i915->drm, 2702 "Port %c VBT DP max link rate: %d\n", 2703 port_name(port), dp_max_link_rate); 2704 2705 /* 2706 * FIXME need to implement support for VBT 2707 * vswing/preemph tables should this ever trigger. 2708 */ 2709 drm_WARN(&i915->drm, child->use_vbt_vswing, 2710 "Port %c asks to use VBT vswing/preemph tables\n", 2711 port_name(port)); 2712 } 2713 2714 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2715 { 2716 struct drm_i915_private *i915 = devdata->i915; 2717 const struct child_device_config *child = &devdata->child; 2718 enum port port; 2719 2720 port = dvo_port_to_port(i915, child->dvo_port); 2721 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11) 2722 port = dsi_dvo_port_to_port(i915, child->dvo_port); 2723 if (port == PORT_NONE) 2724 return; 2725 2726 if (!is_port_valid(i915, port)) { 2727 drm_dbg_kms(&i915->drm, 2728 "VBT reports port %c as supported, but that can't be true: skipping\n", 2729 port_name(port)); 2730 return; 2731 } 2732 2733 if (i915->display.vbt.ports[port]) { 2734 drm_dbg_kms(&i915->drm, 2735 "More than one child device for port %c in VBT, using the first.\n", 2736 port_name(port)); 2737 return; 2738 } 2739 2740 sanitize_device_type(devdata, port); 2741 2742 if (intel_bios_encoder_supports_dvi(devdata)) 2743 sanitize_ddc_pin(devdata, port); 2744 2745 if (intel_bios_encoder_supports_dp(devdata)) 2746 sanitize_aux_ch(devdata, port); 2747 2748 i915->display.vbt.ports[port] = devdata; 2749 } 2750 2751 static bool has_ddi_port_info(struct drm_i915_private *i915) 2752 { 2753 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2754 } 2755 2756 static void parse_ddi_ports(struct drm_i915_private *i915) 2757 { 2758 struct intel_bios_encoder_data *devdata; 2759 enum port port; 2760 2761 if (!has_ddi_port_info(i915)) 2762 return; 2763 2764 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) 2765 parse_ddi_port(devdata); 2766 2767 for_each_port(port) { 2768 if (i915->display.vbt.ports[port]) 2769 print_ddi_port(i915->display.vbt.ports[port], port); 2770 } 2771 } 2772 2773 static void 2774 parse_general_definitions(struct drm_i915_private *i915) 2775 { 2776 const struct bdb_general_definitions *defs; 2777 struct intel_bios_encoder_data *devdata; 2778 const struct child_device_config *child; 2779 int i, child_device_num; 2780 u8 expected_size; 2781 u16 block_size; 2782 int bus_pin; 2783 2784 defs = find_section(i915, BDB_GENERAL_DEFINITIONS); 2785 if (!defs) { 2786 drm_dbg_kms(&i915->drm, 2787 "No general definition block is found, no devices defined.\n"); 2788 return; 2789 } 2790 2791 block_size = get_blocksize(defs); 2792 if (block_size < sizeof(*defs)) { 2793 drm_dbg_kms(&i915->drm, 2794 "General definitions block too small (%u)\n", 2795 block_size); 2796 return; 2797 } 2798 2799 bus_pin = defs->crt_ddc_gmbus_pin; 2800 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2801 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2802 i915->display.vbt.crt_ddc_pin = bus_pin; 2803 2804 if (i915->display.vbt.version < 106) { 2805 expected_size = 22; 2806 } else if (i915->display.vbt.version < 111) { 2807 expected_size = 27; 2808 } else if (i915->display.vbt.version < 195) { 2809 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2810 } else if (i915->display.vbt.version == 195) { 2811 expected_size = 37; 2812 } else if (i915->display.vbt.version <= 215) { 2813 expected_size = 38; 2814 } else if (i915->display.vbt.version <= 237) { 2815 expected_size = 39; 2816 } else { 2817 expected_size = sizeof(*child); 2818 BUILD_BUG_ON(sizeof(*child) < 39); 2819 drm_dbg(&i915->drm, 2820 "Expected child device config size for VBT version %u not known; assuming %u\n", 2821 i915->display.vbt.version, expected_size); 2822 } 2823 2824 /* Flag an error for unexpected size, but continue anyway. */ 2825 if (defs->child_dev_size != expected_size) 2826 drm_err(&i915->drm, 2827 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2828 defs->child_dev_size, expected_size, i915->display.vbt.version); 2829 2830 /* The legacy sized child device config is the minimum we need. */ 2831 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2832 drm_dbg_kms(&i915->drm, 2833 "Child device config size %u is too small.\n", 2834 defs->child_dev_size); 2835 return; 2836 } 2837 2838 /* get the number of child device */ 2839 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2840 2841 for (i = 0; i < child_device_num; i++) { 2842 child = child_device_ptr(defs, i); 2843 if (!child->device_type) 2844 continue; 2845 2846 drm_dbg_kms(&i915->drm, 2847 "Found VBT child device with type 0x%x\n", 2848 child->device_type); 2849 2850 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2851 if (!devdata) 2852 break; 2853 2854 devdata->i915 = i915; 2855 2856 /* 2857 * Copy as much as we know (sizeof) and is available 2858 * (child_dev_size) of the child device config. Accessing the 2859 * data must depend on VBT version. 2860 */ 2861 memcpy(&devdata->child, child, 2862 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2863 2864 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2865 } 2866 2867 if (list_empty(&i915->display.vbt.display_devices)) 2868 drm_dbg_kms(&i915->drm, 2869 "no child dev is parsed from VBT\n"); 2870 } 2871 2872 /* Common defaults which may be overridden by VBT. */ 2873 static void 2874 init_vbt_defaults(struct drm_i915_private *i915) 2875 { 2876 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2877 2878 /* general features */ 2879 i915->display.vbt.int_tv_support = 1; 2880 i915->display.vbt.int_crt_support = 1; 2881 2882 /* driver features */ 2883 i915->display.vbt.int_lvds_support = 1; 2884 2885 /* Default to using SSC */ 2886 i915->display.vbt.lvds_use_ssc = 1; 2887 /* 2888 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2889 * clock for LVDS. 2890 */ 2891 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2892 !HAS_PCH_SPLIT(i915)); 2893 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2894 i915->display.vbt.lvds_ssc_freq); 2895 } 2896 2897 /* Common defaults which may be overridden by VBT. */ 2898 static void 2899 init_vbt_panel_defaults(struct intel_panel *panel) 2900 { 2901 /* Default to having backlight */ 2902 panel->vbt.backlight.present = true; 2903 2904 /* LFP panel data */ 2905 panel->vbt.lvds_dither = true; 2906 } 2907 2908 /* Defaults to initialize only if there is no VBT. */ 2909 static void 2910 init_vbt_missing_defaults(struct drm_i915_private *i915) 2911 { 2912 enum port port; 2913 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2914 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2915 2916 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2917 return; 2918 2919 for_each_port_masked(port, ports) { 2920 struct intel_bios_encoder_data *devdata; 2921 struct child_device_config *child; 2922 enum phy phy = intel_port_to_phy(i915, port); 2923 2924 /* 2925 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2926 * to detect it. 2927 */ 2928 if (intel_phy_is_tc(i915, phy)) 2929 continue; 2930 2931 /* Create fake child device config */ 2932 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2933 if (!devdata) 2934 break; 2935 2936 devdata->i915 = i915; 2937 child = &devdata->child; 2938 2939 if (port == PORT_F) 2940 child->dvo_port = DVO_PORT_HDMIF; 2941 else if (port == PORT_E) 2942 child->dvo_port = DVO_PORT_HDMIE; 2943 else 2944 child->dvo_port = DVO_PORT_HDMIA + port; 2945 2946 if (port != PORT_A && port != PORT_E) 2947 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2948 2949 if (port != PORT_E) 2950 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2951 2952 if (port == PORT_A) 2953 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2954 2955 list_add_tail(&devdata->node, &i915->display.vbt.display_devices); 2956 2957 drm_dbg_kms(&i915->drm, 2958 "Generating default VBT child device with type 0x04%x on port %c\n", 2959 child->device_type, port_name(port)); 2960 } 2961 2962 /* Bypass some minimum baseline VBT version checks */ 2963 i915->display.vbt.version = 155; 2964 } 2965 2966 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2967 { 2968 const void *_vbt = vbt; 2969 2970 return _vbt + vbt->bdb_offset; 2971 } 2972 2973 /** 2974 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2975 * @buf: pointer to a buffer to validate 2976 * @size: size of the buffer 2977 * 2978 * Returns true on valid VBT. 2979 */ 2980 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2981 { 2982 const struct vbt_header *vbt = buf; 2983 const struct bdb_header *bdb; 2984 2985 if (!vbt) 2986 return false; 2987 2988 if (sizeof(struct vbt_header) > size) { 2989 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2990 return false; 2991 } 2992 2993 if (memcmp(vbt->signature, "$VBT", 4)) { 2994 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2995 return false; 2996 } 2997 2998 if (vbt->vbt_size > size) { 2999 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 3000 return false; 3001 } 3002 3003 size = vbt->vbt_size; 3004 3005 if (range_overflows_t(size_t, 3006 vbt->bdb_offset, 3007 sizeof(struct bdb_header), 3008 size)) { 3009 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 3010 return false; 3011 } 3012 3013 bdb = get_bdb_header(vbt); 3014 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 3015 DRM_DEBUG_DRIVER("BDB incomplete\n"); 3016 return false; 3017 } 3018 3019 return vbt; 3020 } 3021 3022 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 3023 { 3024 u32 count, data, found, store = 0; 3025 u32 static_region, oprom_offset; 3026 u32 oprom_size = 0x200000; 3027 u16 vbt_size; 3028 u32 *vbt; 3029 3030 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 3031 static_region &= OPTIONROM_SPI_REGIONID_MASK; 3032 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 3033 3034 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 3035 oprom_offset &= OROM_OFFSET_MASK; 3036 3037 for (count = 0; count < oprom_size; count += 4) { 3038 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count); 3039 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3040 3041 if (data == *((const u32 *)"$VBT")) { 3042 found = oprom_offset + count; 3043 break; 3044 } 3045 } 3046 3047 if (count >= oprom_size) 3048 goto err_not_found; 3049 3050 /* Get VBT size and allocate space for the VBT */ 3051 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + 3052 offsetof(struct vbt_header, vbt_size)); 3053 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3054 vbt_size &= 0xffff; 3055 3056 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 3057 if (!vbt) 3058 goto err_not_found; 3059 3060 for (count = 0; count < vbt_size; count += 4) { 3061 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count); 3062 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3063 *(vbt + store++) = data; 3064 } 3065 3066 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3067 goto err_free_vbt; 3068 3069 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3070 3071 return (struct vbt_header *)vbt; 3072 3073 err_free_vbt: 3074 kfree(vbt); 3075 err_not_found: 3076 return NULL; 3077 } 3078 3079 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3080 { 3081 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3082 void __iomem *p = NULL, *oprom; 3083 struct vbt_header *vbt; 3084 u16 vbt_size; 3085 size_t i, size; 3086 3087 oprom = pci_map_rom(pdev, &size); 3088 if (!oprom) 3089 return NULL; 3090 3091 /* Scour memory looking for the VBT signature. */ 3092 for (i = 0; i + 4 < size; i += 4) { 3093 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3094 continue; 3095 3096 p = oprom + i; 3097 size -= i; 3098 break; 3099 } 3100 3101 if (!p) 3102 goto err_unmap_oprom; 3103 3104 if (sizeof(struct vbt_header) > size) { 3105 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3106 goto err_unmap_oprom; 3107 } 3108 3109 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3110 if (vbt_size > size) { 3111 drm_dbg(&i915->drm, 3112 "VBT incomplete (vbt_size overflows)\n"); 3113 goto err_unmap_oprom; 3114 } 3115 3116 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3117 vbt = kmalloc(vbt_size, GFP_KERNEL); 3118 if (!vbt) 3119 goto err_unmap_oprom; 3120 3121 memcpy_fromio(vbt, p, vbt_size); 3122 3123 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3124 goto err_free_vbt; 3125 3126 pci_unmap_rom(pdev, oprom); 3127 3128 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3129 3130 return vbt; 3131 3132 err_free_vbt: 3133 kfree(vbt); 3134 err_unmap_oprom: 3135 pci_unmap_rom(pdev, oprom); 3136 3137 return NULL; 3138 } 3139 3140 /** 3141 * intel_bios_init - find VBT and initialize settings from the BIOS 3142 * @i915: i915 device instance 3143 * 3144 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3145 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3146 * initialize some defaults if the VBT is not present at all. 3147 */ 3148 void intel_bios_init(struct drm_i915_private *i915) 3149 { 3150 const struct vbt_header *vbt = i915->display.opregion.vbt; 3151 struct vbt_header *oprom_vbt = NULL; 3152 const struct bdb_header *bdb; 3153 3154 INIT_LIST_HEAD(&i915->display.vbt.display_devices); 3155 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks); 3156 3157 if (!HAS_DISPLAY(i915)) { 3158 drm_dbg_kms(&i915->drm, 3159 "Skipping VBT init due to disabled display.\n"); 3160 return; 3161 } 3162 3163 init_vbt_defaults(i915); 3164 3165 /* 3166 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3167 * PCI mapping 3168 */ 3169 if (!vbt && IS_DGFX(i915)) { 3170 oprom_vbt = spi_oprom_get_vbt(i915); 3171 vbt = oprom_vbt; 3172 } 3173 3174 if (!vbt) { 3175 oprom_vbt = oprom_get_vbt(i915); 3176 vbt = oprom_vbt; 3177 } 3178 3179 if (!vbt) 3180 goto out; 3181 3182 bdb = get_bdb_header(vbt); 3183 i915->display.vbt.version = bdb->version; 3184 3185 drm_dbg_kms(&i915->drm, 3186 "VBT signature \"%.*s\", BDB version %d\n", 3187 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version); 3188 3189 init_bdb_blocks(i915, bdb); 3190 3191 /* Grab useful general definitions */ 3192 parse_general_features(i915); 3193 parse_general_definitions(i915); 3194 parse_driver_features(i915); 3195 3196 /* Depends on child device list */ 3197 parse_compression_parameters(i915); 3198 3199 out: 3200 if (!vbt) { 3201 drm_info(&i915->drm, 3202 "Failed to find VBIOS tables (VBT)\n"); 3203 init_vbt_missing_defaults(i915); 3204 } 3205 3206 /* Further processing on pre-parsed or generated child device data */ 3207 parse_sdvo_device_mapping(i915); 3208 parse_ddi_ports(i915); 3209 3210 kfree(oprom_vbt); 3211 } 3212 3213 static void intel_bios_init_panel(struct drm_i915_private *i915, 3214 struct intel_panel *panel, 3215 const struct intel_bios_encoder_data *devdata, 3216 const struct drm_edid *drm_edid, 3217 bool use_fallback) 3218 { 3219 /* already have it? */ 3220 if (panel->vbt.panel_type >= 0) { 3221 drm_WARN_ON(&i915->drm, !use_fallback); 3222 return; 3223 } 3224 3225 panel->vbt.panel_type = get_panel_type(i915, devdata, 3226 drm_edid, use_fallback); 3227 if (panel->vbt.panel_type < 0) { 3228 drm_WARN_ON(&i915->drm, use_fallback); 3229 return; 3230 } 3231 3232 init_vbt_panel_defaults(panel); 3233 3234 parse_panel_options(i915, panel); 3235 parse_generic_dtd(i915, panel); 3236 parse_lfp_data(i915, panel); 3237 parse_lfp_backlight(i915, panel); 3238 parse_sdvo_panel_data(i915, panel); 3239 parse_panel_driver_features(i915, panel); 3240 parse_power_conservation_features(i915, panel); 3241 parse_edp(i915, panel); 3242 parse_psr(i915, panel); 3243 parse_mipi_config(i915, panel); 3244 parse_mipi_sequence(i915, panel); 3245 } 3246 3247 void intel_bios_init_panel_early(struct drm_i915_private *i915, 3248 struct intel_panel *panel, 3249 const struct intel_bios_encoder_data *devdata) 3250 { 3251 intel_bios_init_panel(i915, panel, devdata, NULL, false); 3252 } 3253 3254 void intel_bios_init_panel_late(struct drm_i915_private *i915, 3255 struct intel_panel *panel, 3256 const struct intel_bios_encoder_data *devdata, 3257 const struct drm_edid *drm_edid) 3258 { 3259 intel_bios_init_panel(i915, panel, devdata, drm_edid, true); 3260 } 3261 3262 /** 3263 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3264 * @i915: i915 device instance 3265 */ 3266 void intel_bios_driver_remove(struct drm_i915_private *i915) 3267 { 3268 struct intel_bios_encoder_data *devdata, *nd; 3269 struct bdb_block_entry *entry, *ne; 3270 3271 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) { 3272 list_del(&devdata->node); 3273 kfree(devdata->dsc); 3274 kfree(devdata); 3275 } 3276 3277 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) { 3278 list_del(&entry->node); 3279 kfree(entry); 3280 } 3281 } 3282 3283 void intel_bios_fini_panel(struct intel_panel *panel) 3284 { 3285 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3286 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3287 kfree(panel->vbt.lfp_lvds_vbt_mode); 3288 panel->vbt.lfp_lvds_vbt_mode = NULL; 3289 kfree(panel->vbt.dsi.data); 3290 panel->vbt.dsi.data = NULL; 3291 kfree(panel->vbt.dsi.pps); 3292 panel->vbt.dsi.pps = NULL; 3293 kfree(panel->vbt.dsi.config); 3294 panel->vbt.dsi.config = NULL; 3295 kfree(panel->vbt.dsi.deassert_seq); 3296 panel->vbt.dsi.deassert_seq = NULL; 3297 } 3298 3299 /** 3300 * intel_bios_is_tv_present - is integrated TV present in VBT 3301 * @i915: i915 device instance 3302 * 3303 * Return true if TV is present. If no child devices were parsed from VBT, 3304 * assume TV is present. 3305 */ 3306 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3307 { 3308 const struct intel_bios_encoder_data *devdata; 3309 const struct child_device_config *child; 3310 3311 if (!i915->display.vbt.int_tv_support) 3312 return false; 3313 3314 if (list_empty(&i915->display.vbt.display_devices)) 3315 return true; 3316 3317 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3318 child = &devdata->child; 3319 3320 /* 3321 * If the device type is not TV, continue. 3322 */ 3323 switch (child->device_type) { 3324 case DEVICE_TYPE_INT_TV: 3325 case DEVICE_TYPE_TV: 3326 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3327 break; 3328 default: 3329 continue; 3330 } 3331 /* Only when the addin_offset is non-zero, it is regarded 3332 * as present. 3333 */ 3334 if (child->addin_offset) 3335 return true; 3336 } 3337 3338 return false; 3339 } 3340 3341 /** 3342 * intel_bios_is_lvds_present - is LVDS present in VBT 3343 * @i915: i915 device instance 3344 * @i2c_pin: i2c pin for LVDS if present 3345 * 3346 * Return true if LVDS is present. If no child devices were parsed from VBT, 3347 * assume LVDS is present. 3348 */ 3349 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3350 { 3351 const struct intel_bios_encoder_data *devdata; 3352 const struct child_device_config *child; 3353 3354 if (list_empty(&i915->display.vbt.display_devices)) 3355 return true; 3356 3357 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3358 child = &devdata->child; 3359 3360 /* If the device type is not LFP, continue. 3361 * We have to check both the new identifiers as well as the 3362 * old for compatibility with some BIOSes. 3363 */ 3364 if (child->device_type != DEVICE_TYPE_INT_LFP && 3365 child->device_type != DEVICE_TYPE_LFP) 3366 continue; 3367 3368 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3369 *i2c_pin = child->i2c_pin; 3370 3371 /* However, we cannot trust the BIOS writers to populate 3372 * the VBT correctly. Since LVDS requires additional 3373 * information from AIM blocks, a non-zero addin offset is 3374 * a good indicator that the LVDS is actually present. 3375 */ 3376 if (child->addin_offset) 3377 return true; 3378 3379 /* But even then some BIOS writers perform some black magic 3380 * and instantiate the device without reference to any 3381 * additional data. Trust that if the VBT was written into 3382 * the OpRegion then they have validated the LVDS's existence. 3383 */ 3384 if (i915->display.opregion.vbt) 3385 return true; 3386 } 3387 3388 return false; 3389 } 3390 3391 /** 3392 * intel_bios_is_port_present - is the specified digital port present 3393 * @i915: i915 device instance 3394 * @port: port to check 3395 * 3396 * Return true if the device in %port is present. 3397 */ 3398 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3399 { 3400 if (WARN_ON(!has_ddi_port_info(i915))) 3401 return true; 3402 3403 return i915->display.vbt.ports[port]; 3404 } 3405 3406 /** 3407 * intel_bios_is_port_edp - is the device in given port eDP 3408 * @i915: i915 device instance 3409 * @port: port to check 3410 * 3411 * Return true if the device in %port is eDP. 3412 */ 3413 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port) 3414 { 3415 const struct intel_bios_encoder_data *devdata = 3416 intel_bios_encoder_data_lookup(i915, port); 3417 3418 return devdata && intel_bios_encoder_supports_edp(devdata); 3419 } 3420 3421 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3422 { 3423 const struct child_device_config *child = &devdata->child; 3424 3425 if (!intel_bios_encoder_supports_dp(devdata) || 3426 !intel_bios_encoder_supports_hdmi(devdata)) 3427 return false; 3428 3429 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3430 return true; 3431 3432 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3433 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3434 child->aux_channel != 0) 3435 return true; 3436 3437 return false; 3438 } 3439 3440 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915, 3441 enum port port) 3442 { 3443 const struct intel_bios_encoder_data *devdata = 3444 intel_bios_encoder_data_lookup(i915, port); 3445 3446 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata); 3447 } 3448 3449 /** 3450 * intel_bios_is_dsi_present - is DSI present in VBT 3451 * @i915: i915 device instance 3452 * @port: port for DSI if present 3453 * 3454 * Return true if DSI is present, and return the port in %port. 3455 */ 3456 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3457 enum port *port) 3458 { 3459 const struct intel_bios_encoder_data *devdata; 3460 const struct child_device_config *child; 3461 u8 dvo_port; 3462 3463 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3464 child = &devdata->child; 3465 3466 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3467 continue; 3468 3469 dvo_port = child->dvo_port; 3470 3471 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) { 3472 drm_dbg_kms(&i915->drm, 3473 "VBT has unsupported DSI port %c\n", 3474 port_name(dvo_port - DVO_PORT_MIPIA)); 3475 continue; 3476 } 3477 3478 if (port) 3479 *port = dsi_dvo_port_to_port(i915, dvo_port); 3480 return true; 3481 } 3482 3483 return false; 3484 } 3485 3486 static void fill_dsc(struct intel_crtc_state *crtc_state, 3487 struct dsc_compression_parameters_entry *dsc, 3488 int dsc_max_bpc) 3489 { 3490 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3491 int bpc = 8; 3492 3493 vdsc_cfg->dsc_version_major = dsc->version_major; 3494 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3495 3496 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3497 bpc = 12; 3498 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3499 bpc = 10; 3500 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3501 bpc = 8; 3502 else 3503 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 3504 dsc_max_bpc); 3505 3506 crtc_state->pipe_bpp = bpc * 3; 3507 3508 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 3509 VBT_DSC_MAX_BPP(dsc->max_bpp)); 3510 3511 /* 3512 * FIXME: This is ugly, and slice count should take DSC engine 3513 * throughput etc. into account. 3514 * 3515 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3516 */ 3517 if (dsc->slices_per_line & BIT(2)) { 3518 crtc_state->dsc.slice_count = 4; 3519 } else if (dsc->slices_per_line & BIT(1)) { 3520 crtc_state->dsc.slice_count = 2; 3521 } else { 3522 /* FIXME */ 3523 if (!(dsc->slices_per_line & BIT(0))) 3524 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 3525 3526 crtc_state->dsc.slice_count = 1; 3527 } 3528 3529 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3530 crtc_state->dsc.slice_count != 0) 3531 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 3532 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3533 crtc_state->dsc.slice_count); 3534 3535 /* 3536 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3537 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3538 */ 3539 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3540 dsc->rc_buffer_size); 3541 3542 /* FIXME: DSI spec says bpc + 1 for this one */ 3543 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3544 3545 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3546 3547 vdsc_cfg->slice_height = dsc->slice_height; 3548 } 3549 3550 /* FIXME: initially DSI specific */ 3551 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3552 struct intel_crtc_state *crtc_state, 3553 int dsc_max_bpc) 3554 { 3555 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3556 const struct intel_bios_encoder_data *devdata; 3557 const struct child_device_config *child; 3558 3559 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) { 3560 child = &devdata->child; 3561 3562 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3563 continue; 3564 3565 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) { 3566 if (!devdata->dsc) 3567 return false; 3568 3569 if (crtc_state) 3570 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3571 3572 return true; 3573 } 3574 } 3575 3576 return false; 3577 } 3578 3579 /** 3580 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 3581 * @i915: i915 device instance 3582 * @port: port to check 3583 * 3584 * Return true if HPD should be inverted for %port. 3585 */ 3586 bool 3587 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 3588 enum port port) 3589 { 3590 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3591 3592 if (drm_WARN_ON_ONCE(&i915->drm, 3593 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915))) 3594 return false; 3595 3596 return devdata && devdata->child.hpd_invert; 3597 } 3598 3599 /** 3600 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 3601 * @i915: i915 device instance 3602 * @port: port to check 3603 * 3604 * Return true if LSPCON is present on this port 3605 */ 3606 bool 3607 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 3608 enum port port) 3609 { 3610 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3611 3612 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon; 3613 } 3614 3615 /** 3616 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 3617 * @i915: i915 device instance 3618 * @port: port to check 3619 * 3620 * Return true if port requires lane reversal 3621 */ 3622 bool 3623 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 3624 enum port port) 3625 { 3626 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3627 3628 return devdata && devdata->child.lane_reversal; 3629 } 3630 3631 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915, 3632 enum port port) 3633 { 3634 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port]; 3635 enum aux_ch aux_ch; 3636 3637 if (!devdata || !devdata->child.aux_channel) { 3638 aux_ch = (enum aux_ch)port; 3639 3640 drm_dbg_kms(&i915->drm, 3641 "using AUX %c for port %c (platform default)\n", 3642 aux_ch_name(aux_ch), port_name(port)); 3643 return aux_ch; 3644 } 3645 3646 /* 3647 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3648 * map to DDI A,B,TC1,TC2 respectively. 3649 * 3650 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3651 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3652 */ 3653 switch (devdata->child.aux_channel) { 3654 case DP_AUX_A: 3655 aux_ch = AUX_CH_A; 3656 break; 3657 case DP_AUX_B: 3658 if (IS_ALDERLAKE_S(i915)) 3659 aux_ch = AUX_CH_USBC1; 3660 else 3661 aux_ch = AUX_CH_B; 3662 break; 3663 case DP_AUX_C: 3664 if (IS_ALDERLAKE_S(i915)) 3665 aux_ch = AUX_CH_USBC2; 3666 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3667 aux_ch = AUX_CH_USBC1; 3668 else 3669 aux_ch = AUX_CH_C; 3670 break; 3671 case DP_AUX_D: 3672 if (DISPLAY_VER(i915) >= 13) 3673 aux_ch = AUX_CH_D_XELPD; 3674 else if (IS_ALDERLAKE_S(i915)) 3675 aux_ch = AUX_CH_USBC3; 3676 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3677 aux_ch = AUX_CH_USBC2; 3678 else 3679 aux_ch = AUX_CH_D; 3680 break; 3681 case DP_AUX_E: 3682 if (DISPLAY_VER(i915) >= 13) 3683 aux_ch = AUX_CH_E_XELPD; 3684 else if (IS_ALDERLAKE_S(i915)) 3685 aux_ch = AUX_CH_USBC4; 3686 else 3687 aux_ch = AUX_CH_E; 3688 break; 3689 case DP_AUX_F: 3690 if (DISPLAY_VER(i915) >= 13) 3691 aux_ch = AUX_CH_USBC1; 3692 else 3693 aux_ch = AUX_CH_F; 3694 break; 3695 case DP_AUX_G: 3696 if (DISPLAY_VER(i915) >= 13) 3697 aux_ch = AUX_CH_USBC2; 3698 else 3699 aux_ch = AUX_CH_G; 3700 break; 3701 case DP_AUX_H: 3702 if (DISPLAY_VER(i915) >= 13) 3703 aux_ch = AUX_CH_USBC3; 3704 else 3705 aux_ch = AUX_CH_H; 3706 break; 3707 case DP_AUX_I: 3708 if (DISPLAY_VER(i915) >= 13) 3709 aux_ch = AUX_CH_USBC4; 3710 else 3711 aux_ch = AUX_CH_I; 3712 break; 3713 default: 3714 MISSING_CASE(devdata->child.aux_channel); 3715 aux_ch = AUX_CH_A; 3716 break; 3717 } 3718 3719 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n", 3720 aux_ch_name(aux_ch), port_name(port)); 3721 3722 return aux_ch; 3723 } 3724 3725 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 3726 { 3727 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3728 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3729 3730 return _intel_bios_max_tmds_clock(devdata); 3731 } 3732 3733 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 3734 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 3735 { 3736 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3737 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3738 3739 return _intel_bios_hdmi_level_shift(devdata); 3740 } 3741 3742 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3743 { 3744 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3745 return 0; 3746 3747 return translate_iboost(devdata->child.dp_iboost_level); 3748 } 3749 3750 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3751 { 3752 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost) 3753 return 0; 3754 3755 return translate_iboost(devdata->child.hdmi_iboost_level); 3756 } 3757 3758 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 3759 { 3760 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3761 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3762 3763 return _intel_bios_dp_max_link_rate(devdata); 3764 } 3765 3766 int intel_bios_dp_max_lane_count(struct intel_encoder *encoder) 3767 { 3768 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3769 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3770 3771 return _intel_bios_dp_max_lane_count(devdata); 3772 } 3773 3774 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 3775 { 3776 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3777 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port]; 3778 3779 if (!devdata || !devdata->child.ddc_pin) 3780 return 0; 3781 3782 return map_ddc_pin(i915, devdata->child.ddc_pin); 3783 } 3784 3785 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3786 { 3787 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c; 3788 } 3789 3790 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3791 { 3792 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt; 3793 } 3794 3795 const struct intel_bios_encoder_data * 3796 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3797 { 3798 return i915->display.vbt.ports[port]; 3799 } 3800