1 /* 2 * Copyright © 2006 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drm_edid.h> 29 #include <drm/display/drm_dp_helper.h> 30 #include <drm/display/drm_dsc_helper.h> 31 32 #include "display/intel_display.h" 33 #include "display/intel_display_types.h" 34 #include "display/intel_gmbus.h" 35 36 #include "i915_drv.h" 37 #include "i915_reg.h" 38 39 #define _INTEL_BIOS_PRIVATE 40 #include "intel_vbt_defs.h" 41 42 /** 43 * DOC: Video BIOS Table (VBT) 44 * 45 * The Video BIOS Table, or VBT, provides platform and board specific 46 * configuration information to the driver that is not discoverable or available 47 * through other means. The configuration is mostly related to display 48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in 49 * the PCI ROM. 50 * 51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB 52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that 53 * contain the actual configuration information. The VBT Header, and thus the 54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the 55 * BDB Header. The data blocks are concatenated after the BDB Header. The data 56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of 57 * data. (Block 53, the MIPI Sequence Block is an exception.) 58 * 59 * The driver parses the VBT during load. The relevant information is stored in 60 * driver private data for ease of use, and the actual VBT is not read after 61 * that. 62 */ 63 64 /* Wrapper for VBT child device config */ 65 struct intel_bios_encoder_data { 66 struct drm_i915_private *i915; 67 68 struct child_device_config child; 69 struct dsc_compression_parameters_entry *dsc; 70 struct list_head node; 71 }; 72 73 #define SLAVE_ADDR1 0x70 74 #define SLAVE_ADDR2 0x72 75 76 /* Get BDB block size given a pointer to Block ID. */ 77 static u32 _get_blocksize(const u8 *block_base) 78 { 79 /* The MIPI Sequence Block v3+ has a separate size field. */ 80 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) 81 return *((const u32 *)(block_base + 4)); 82 else 83 return *((const u16 *)(block_base + 1)); 84 } 85 86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */ 87 static u32 get_blocksize(const void *block_data) 88 { 89 return _get_blocksize(block_data - 3); 90 } 91 92 static const void * 93 find_raw_section(const void *_bdb, enum bdb_block_id section_id) 94 { 95 const struct bdb_header *bdb = _bdb; 96 const u8 *base = _bdb; 97 int index = 0; 98 u32 total, current_size; 99 enum bdb_block_id current_id; 100 101 /* skip to first section */ 102 index += bdb->header_size; 103 total = bdb->bdb_size; 104 105 /* walk the sections looking for section_id */ 106 while (index + 3 < total) { 107 current_id = *(base + index); 108 current_size = _get_blocksize(base + index); 109 index += 3; 110 111 if (index + current_size > total) 112 return NULL; 113 114 if (current_id == section_id) 115 return base + index; 116 117 index += current_size; 118 } 119 120 return NULL; 121 } 122 123 /* 124 * Offset from the start of BDB to the start of the 125 * block data (just past the block header). 126 */ 127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id) 128 { 129 const void *block; 130 131 block = find_raw_section(bdb, section_id); 132 if (!block) 133 return 0; 134 135 return block - bdb; 136 } 137 138 /* size of the block excluding the header */ 139 static u32 raw_block_size(const void *bdb, enum bdb_block_id section_id) 140 { 141 const void *block; 142 143 block = find_raw_section(bdb, section_id); 144 if (!block) 145 return 0; 146 147 return get_blocksize(block); 148 } 149 150 struct bdb_block_entry { 151 struct list_head node; 152 enum bdb_block_id section_id; 153 u8 data[]; 154 }; 155 156 static const void * 157 find_section(struct drm_i915_private *i915, 158 enum bdb_block_id section_id) 159 { 160 struct bdb_block_entry *entry; 161 162 list_for_each_entry(entry, &i915->vbt.bdb_blocks, node) { 163 if (entry->section_id == section_id) 164 return entry->data + 3; 165 } 166 167 return NULL; 168 } 169 170 static const struct { 171 enum bdb_block_id section_id; 172 size_t min_size; 173 } bdb_blocks[] = { 174 { .section_id = BDB_GENERAL_FEATURES, 175 .min_size = sizeof(struct bdb_general_features), }, 176 { .section_id = BDB_GENERAL_DEFINITIONS, 177 .min_size = sizeof(struct bdb_general_definitions), }, 178 { .section_id = BDB_PSR, 179 .min_size = sizeof(struct bdb_psr), }, 180 { .section_id = BDB_DRIVER_FEATURES, 181 .min_size = sizeof(struct bdb_driver_features), }, 182 { .section_id = BDB_SDVO_LVDS_OPTIONS, 183 .min_size = sizeof(struct bdb_sdvo_lvds_options), }, 184 { .section_id = BDB_SDVO_PANEL_DTDS, 185 .min_size = sizeof(struct bdb_sdvo_panel_dtds), }, 186 { .section_id = BDB_EDP, 187 .min_size = sizeof(struct bdb_edp), }, 188 { .section_id = BDB_LVDS_OPTIONS, 189 .min_size = sizeof(struct bdb_lvds_options), }, 190 /* 191 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS, 192 * so keep the two ordered. 193 */ 194 { .section_id = BDB_LVDS_LFP_DATA_PTRS, 195 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), }, 196 { .section_id = BDB_LVDS_LFP_DATA, 197 .min_size = 0, /* special case */ }, 198 { .section_id = BDB_LVDS_BACKLIGHT, 199 .min_size = sizeof(struct bdb_lfp_backlight_data), }, 200 { .section_id = BDB_LFP_POWER, 201 .min_size = sizeof(struct bdb_lfp_power), }, 202 { .section_id = BDB_MIPI_CONFIG, 203 .min_size = sizeof(struct bdb_mipi_config), }, 204 { .section_id = BDB_MIPI_SEQUENCE, 205 .min_size = sizeof(struct bdb_mipi_sequence) }, 206 { .section_id = BDB_COMPRESSION_PARAMETERS, 207 .min_size = sizeof(struct bdb_compression_parameters), }, 208 { .section_id = BDB_GENERIC_DTD, 209 .min_size = sizeof(struct bdb_generic_dtd), }, 210 }; 211 212 static size_t lfp_data_min_size(struct drm_i915_private *i915) 213 { 214 const struct bdb_lvds_lfp_data_ptrs *ptrs; 215 size_t size; 216 217 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 218 if (!ptrs) 219 return 0; 220 221 size = sizeof(struct bdb_lvds_lfp_data); 222 if (ptrs->panel_name.table_size) 223 size = max(size, ptrs->panel_name.offset + 224 sizeof(struct bdb_lvds_lfp_data_tail)); 225 226 return size; 227 } 228 229 static bool validate_lfp_data_ptrs(const void *bdb, 230 const struct bdb_lvds_lfp_data_ptrs *ptrs) 231 { 232 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; 233 int data_block_size, lfp_data_size; 234 int i; 235 236 data_block_size = raw_block_size(bdb, BDB_LVDS_LFP_DATA); 237 if (data_block_size == 0) 238 return false; 239 240 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ 241 if (ptrs->lvds_entries != 3) 242 return false; 243 244 fp_timing_size = ptrs->ptr[0].fp_timing.table_size; 245 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; 246 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; 247 panel_name_size = ptrs->panel_name.table_size; 248 249 /* fp_timing has variable size */ 250 if (fp_timing_size < 32 || 251 dvo_timing_size != sizeof(struct lvds_dvo_timing) || 252 panel_pnp_id_size != sizeof(struct lvds_pnp_id)) 253 return false; 254 255 /* panel_name is not present in old VBTs */ 256 if (panel_name_size != 0 && 257 panel_name_size != sizeof(struct lvds_lfp_panel_name)) 258 return false; 259 260 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; 261 if (16 * lfp_data_size > data_block_size) 262 return false; 263 264 /* 265 * Except for vlv/chv machines all real VBTs seem to have 6 266 * unaccounted bytes in the fp_timing table. And it doesn't 267 * appear to be a really intentional hole as the fp_timing 268 * 0xffff terminator is always within those 6 missing bytes. 269 */ 270 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size && 271 fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size != lfp_data_size) 272 return false; 273 274 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size > ptrs->ptr[0].dvo_timing.offset || 275 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || 276 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) 277 return false; 278 279 /* make sure the table entries have uniform size */ 280 for (i = 1; i < 16; i++) { 281 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || 282 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || 283 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) 284 return false; 285 286 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || 287 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || 288 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) 289 return false; 290 } 291 292 /* make sure the tables fit inside the data block */ 293 for (i = 0; i < 16; i++) { 294 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || 295 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || 296 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) 297 return false; 298 } 299 300 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) 301 return false; 302 303 return true; 304 } 305 306 /* make the data table offsets relative to the data block */ 307 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block) 308 { 309 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; 310 u32 offset; 311 int i; 312 313 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA); 314 315 for (i = 0; i < 16; i++) { 316 if (ptrs->ptr[i].fp_timing.offset < offset || 317 ptrs->ptr[i].dvo_timing.offset < offset || 318 ptrs->ptr[i].panel_pnp_id.offset < offset) 319 return false; 320 321 ptrs->ptr[i].fp_timing.offset -= offset; 322 ptrs->ptr[i].dvo_timing.offset -= offset; 323 ptrs->ptr[i].panel_pnp_id.offset -= offset; 324 } 325 326 if (ptrs->panel_name.table_size) { 327 if (ptrs->panel_name.offset < offset) 328 return false; 329 330 ptrs->panel_name.offset -= offset; 331 } 332 333 return validate_lfp_data_ptrs(bdb, ptrs); 334 } 335 336 static const void *find_fp_timing_terminator(const u8 *data, int size) 337 { 338 int i; 339 340 for (i = 0; i < size - 1; i++) { 341 if (data[i] == 0xff && data[i+1] == 0xff) 342 return &data[i]; 343 } 344 345 return NULL; 346 } 347 348 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table, 349 int table_size, int total_size) 350 { 351 if (total_size < table_size) 352 return total_size; 353 354 table->table_size = table_size; 355 table->offset = total_size - table_size; 356 357 return total_size - table_size; 358 } 359 360 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next, 361 const struct lvds_lfp_data_ptr_table *prev, 362 int size) 363 { 364 next->table_size = prev->table_size; 365 next->offset = prev->offset + size; 366 } 367 368 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915, 369 const void *bdb) 370 { 371 int i, size, table_size, block_size, offset; 372 const void *t0, *t1, *block; 373 struct bdb_lvds_lfp_data_ptrs *ptrs; 374 void *ptrs_block; 375 376 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA); 377 if (!block) 378 return NULL; 379 380 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n"); 381 382 block_size = get_blocksize(block); 383 384 size = block_size; 385 t0 = find_fp_timing_terminator(block, size); 386 if (!t0) 387 return NULL; 388 389 size -= t0 - block - 2; 390 t1 = find_fp_timing_terminator(t0 + 2, size); 391 if (!t1) 392 return NULL; 393 394 size = t1 - t0; 395 if (size * 16 > block_size) 396 return NULL; 397 398 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL); 399 if (!ptrs_block) 400 return NULL; 401 402 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; 403 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs); 404 ptrs = ptrs_block + 3; 405 406 table_size = sizeof(struct lvds_pnp_id); 407 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); 408 409 table_size = sizeof(struct lvds_dvo_timing); 410 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); 411 412 table_size = t0 - block + 2; 413 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); 414 415 if (ptrs->ptr[0].fp_timing.table_size) 416 ptrs->lvds_entries++; 417 if (ptrs->ptr[0].dvo_timing.table_size) 418 ptrs->lvds_entries++; 419 if (ptrs->ptr[0].panel_pnp_id.table_size) 420 ptrs->lvds_entries++; 421 422 if (size != 0 || ptrs->lvds_entries != 3) { 423 kfree(ptrs); 424 return NULL; 425 } 426 427 size = t1 - t0; 428 for (i = 1; i < 16; i++) { 429 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); 430 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); 431 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); 432 } 433 434 size = t1 - t0; 435 table_size = sizeof(struct lvds_lfp_panel_name); 436 437 if (16 * (size + table_size) <= block_size) { 438 ptrs->panel_name.table_size = table_size; 439 ptrs->panel_name.offset = size * 16; 440 } 441 442 offset = block - bdb; 443 444 for (i = 0; i < 16; i++) { 445 ptrs->ptr[i].fp_timing.offset += offset; 446 ptrs->ptr[i].dvo_timing.offset += offset; 447 ptrs->ptr[i].panel_pnp_id.offset += offset; 448 } 449 450 if (ptrs->panel_name.table_size) 451 ptrs->panel_name.offset += offset; 452 453 return ptrs_block; 454 } 455 456 static void 457 init_bdb_block(struct drm_i915_private *i915, 458 const void *bdb, enum bdb_block_id section_id, 459 size_t min_size) 460 { 461 struct bdb_block_entry *entry; 462 void *temp_block = NULL; 463 const void *block; 464 size_t block_size; 465 466 block = find_raw_section(bdb, section_id); 467 468 /* Modern VBTs lack the LFP data table pointers block, make one up */ 469 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) { 470 temp_block = generate_lfp_data_ptrs(i915, bdb); 471 if (temp_block) 472 block = temp_block + 3; 473 } 474 if (!block) 475 return; 476 477 drm_WARN(&i915->drm, min_size == 0, 478 "Block %d min_size is zero\n", section_id); 479 480 block_size = get_blocksize(block); 481 482 /* 483 * Version number and new block size are considered 484 * part of the header for MIPI sequenece block v3+. 485 */ 486 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3) 487 block_size += 5; 488 489 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3), 490 GFP_KERNEL); 491 if (!entry) { 492 kfree(temp_block); 493 return; 494 } 495 496 entry->section_id = section_id; 497 memcpy(entry->data, block - 3, block_size + 3); 498 499 kfree(temp_block); 500 501 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n", 502 section_id, block_size, min_size); 503 504 if (section_id == BDB_LVDS_LFP_DATA_PTRS && 505 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) { 506 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n"); 507 kfree(entry); 508 return; 509 } 510 511 list_add_tail(&entry->node, &i915->vbt.bdb_blocks); 512 } 513 514 static void init_bdb_blocks(struct drm_i915_private *i915, 515 const void *bdb) 516 { 517 int i; 518 519 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) { 520 enum bdb_block_id section_id = bdb_blocks[i].section_id; 521 size_t min_size = bdb_blocks[i].min_size; 522 523 if (section_id == BDB_LVDS_LFP_DATA) 524 min_size = lfp_data_min_size(i915); 525 526 init_bdb_block(i915, bdb, section_id, min_size); 527 } 528 } 529 530 static void 531 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, 532 const struct lvds_dvo_timing *dvo_timing) 533 { 534 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | 535 dvo_timing->hactive_lo; 536 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + 537 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); 538 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + 539 ((dvo_timing->hsync_pulse_width_hi << 8) | 540 dvo_timing->hsync_pulse_width_lo); 541 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + 542 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); 543 544 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | 545 dvo_timing->vactive_lo; 546 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + 547 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo); 548 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + 549 ((dvo_timing->vsync_pulse_width_hi << 4) | 550 dvo_timing->vsync_pulse_width_lo); 551 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + 552 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); 553 panel_fixed_mode->clock = dvo_timing->clock * 10; 554 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 555 556 if (dvo_timing->hsync_positive) 557 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 558 else 559 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 560 561 if (dvo_timing->vsync_positive) 562 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 563 else 564 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 565 566 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) | 567 dvo_timing->himage_lo; 568 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) | 569 dvo_timing->vimage_lo; 570 571 /* Some VBTs have bogus h/vtotal values */ 572 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) 573 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; 574 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) 575 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; 576 577 drm_mode_set_name(panel_fixed_mode); 578 } 579 580 static const struct lvds_dvo_timing * 581 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data, 582 const struct bdb_lvds_lfp_data_ptrs *ptrs, 583 int index) 584 { 585 return (const void *)data + ptrs->ptr[index].dvo_timing.offset; 586 } 587 588 static const struct lvds_fp_timing * 589 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data, 590 const struct bdb_lvds_lfp_data_ptrs *ptrs, 591 int index) 592 { 593 return (const void *)data + ptrs->ptr[index].fp_timing.offset; 594 } 595 596 static const struct lvds_pnp_id * 597 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data, 598 const struct bdb_lvds_lfp_data_ptrs *ptrs, 599 int index) 600 { 601 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset; 602 } 603 604 static const struct bdb_lvds_lfp_data_tail * 605 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data, 606 const struct bdb_lvds_lfp_data_ptrs *ptrs) 607 { 608 if (ptrs->panel_name.table_size) 609 return (const void *)data + ptrs->panel_name.offset; 610 else 611 return NULL; 612 } 613 614 static int opregion_get_panel_type(struct drm_i915_private *i915, 615 const struct intel_bios_encoder_data *devdata, 616 const struct edid *edid) 617 { 618 return intel_opregion_get_panel_type(i915); 619 } 620 621 static int vbt_get_panel_type(struct drm_i915_private *i915, 622 const struct intel_bios_encoder_data *devdata, 623 const struct edid *edid) 624 { 625 const struct bdb_lvds_options *lvds_options; 626 627 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 628 if (!lvds_options) 629 return -1; 630 631 if (lvds_options->panel_type > 0xf && 632 lvds_options->panel_type != 0xff) { 633 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n", 634 lvds_options->panel_type); 635 return -1; 636 } 637 638 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2) 639 return lvds_options->panel_type2; 640 641 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1); 642 643 return lvds_options->panel_type; 644 } 645 646 static int pnpid_get_panel_type(struct drm_i915_private *i915, 647 const struct intel_bios_encoder_data *devdata, 648 const struct edid *edid) 649 { 650 const struct bdb_lvds_lfp_data *data; 651 const struct bdb_lvds_lfp_data_ptrs *ptrs; 652 const struct lvds_pnp_id *edid_id; 653 struct lvds_pnp_id edid_id_nodate; 654 int i, best = -1; 655 656 if (!edid) 657 return -1; 658 659 edid_id = (const void *)&edid->mfg_id[0]; 660 661 edid_id_nodate = *edid_id; 662 edid_id_nodate.mfg_week = 0; 663 edid_id_nodate.mfg_year = 0; 664 665 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 666 if (!ptrs) 667 return -1; 668 669 data = find_section(i915, BDB_LVDS_LFP_DATA); 670 if (!data) 671 return -1; 672 673 for (i = 0; i < 16; i++) { 674 const struct lvds_pnp_id *vbt_id = 675 get_lvds_pnp_id(data, ptrs, i); 676 677 /* full match? */ 678 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id))) 679 return i; 680 681 /* 682 * Accept a match w/o date if no full match is found, 683 * and the VBT entry does not specify a date. 684 */ 685 if (best < 0 && 686 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) 687 best = i; 688 } 689 690 return best; 691 } 692 693 static int fallback_get_panel_type(struct drm_i915_private *i915, 694 const struct intel_bios_encoder_data *devdata, 695 const struct edid *edid) 696 { 697 return 0; 698 } 699 700 enum panel_type { 701 PANEL_TYPE_OPREGION, 702 PANEL_TYPE_VBT, 703 PANEL_TYPE_PNPID, 704 PANEL_TYPE_FALLBACK, 705 }; 706 707 static int get_panel_type(struct drm_i915_private *i915, 708 const struct intel_bios_encoder_data *devdata, 709 const struct edid *edid) 710 { 711 struct { 712 const char *name; 713 int (*get_panel_type)(struct drm_i915_private *i915, 714 const struct intel_bios_encoder_data *devdata, 715 const struct edid *edid); 716 int panel_type; 717 } panel_types[] = { 718 [PANEL_TYPE_OPREGION] = { 719 .name = "OpRegion", 720 .get_panel_type = opregion_get_panel_type, 721 }, 722 [PANEL_TYPE_VBT] = { 723 .name = "VBT", 724 .get_panel_type = vbt_get_panel_type, 725 }, 726 [PANEL_TYPE_PNPID] = { 727 .name = "PNPID", 728 .get_panel_type = pnpid_get_panel_type, 729 }, 730 [PANEL_TYPE_FALLBACK] = { 731 .name = "fallback", 732 .get_panel_type = fallback_get_panel_type, 733 }, 734 }; 735 int i; 736 737 for (i = 0; i < ARRAY_SIZE(panel_types); i++) { 738 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid); 739 740 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf && 741 panel_types[i].panel_type != 0xff); 742 743 if (panel_types[i].panel_type >= 0) 744 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n", 745 panel_types[i].name, panel_types[i].panel_type); 746 } 747 748 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0) 749 i = PANEL_TYPE_OPREGION; 750 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff && 751 panel_types[PANEL_TYPE_PNPID].panel_type >= 0) 752 i = PANEL_TYPE_PNPID; 753 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff && 754 panel_types[PANEL_TYPE_VBT].panel_type >= 0) 755 i = PANEL_TYPE_VBT; 756 else 757 i = PANEL_TYPE_FALLBACK; 758 759 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n", 760 panel_types[i].name, panel_types[i].panel_type); 761 762 return panel_types[i].panel_type; 763 } 764 765 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) 766 { 767 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); 768 } 769 770 static bool panel_bool(unsigned int value, int panel_type) 771 { 772 return panel_bits(value, panel_type, 1); 773 } 774 775 /* Parse general panel options */ 776 static void 777 parse_panel_options(struct drm_i915_private *i915, 778 struct intel_panel *panel) 779 { 780 const struct bdb_lvds_options *lvds_options; 781 int panel_type = panel->vbt.panel_type; 782 int drrs_mode; 783 784 lvds_options = find_section(i915, BDB_LVDS_OPTIONS); 785 if (!lvds_options) 786 return; 787 788 panel->vbt.lvds_dither = lvds_options->pixel_dither; 789 790 /* 791 * Empirical evidence indicates the block size can be 792 * either 4,14,16,24+ bytes. For older VBTs no clear 793 * relationship between the block size vs. BDB version. 794 */ 795 if (get_blocksize(lvds_options) < 16) 796 return; 797 798 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits, 799 panel_type, 2); 800 /* 801 * VBT has static DRRS = 0 and seamless DRRS = 2. 802 * The below piece of code is required to adjust vbt.drrs_type 803 * to match the enum drrs_support_type. 804 */ 805 switch (drrs_mode) { 806 case 0: 807 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 808 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n"); 809 break; 810 case 2: 811 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS; 812 drm_dbg_kms(&i915->drm, 813 "DRRS supported mode is seamless\n"); 814 break; 815 default: 816 panel->vbt.drrs_type = DRRS_TYPE_NONE; 817 drm_dbg_kms(&i915->drm, 818 "DRRS not supported (VBT input)\n"); 819 break; 820 } 821 } 822 823 static void 824 parse_lfp_panel_dtd(struct drm_i915_private *i915, 825 struct intel_panel *panel, 826 const struct bdb_lvds_lfp_data *lvds_lfp_data, 827 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs) 828 { 829 const struct lvds_dvo_timing *panel_dvo_timing; 830 const struct lvds_fp_timing *fp_timing; 831 struct drm_display_mode *panel_fixed_mode; 832 int panel_type = panel->vbt.panel_type; 833 834 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, 835 lvds_lfp_data_ptrs, 836 panel_type); 837 838 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 839 if (!panel_fixed_mode) 840 return; 841 842 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); 843 844 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 845 846 drm_dbg_kms(&i915->drm, 847 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n", 848 DRM_MODE_ARG(panel_fixed_mode)); 849 850 fp_timing = get_lvds_fp_timing(lvds_lfp_data, 851 lvds_lfp_data_ptrs, 852 panel_type); 853 854 /* check the resolution, just to be sure */ 855 if (fp_timing->x_res == panel_fixed_mode->hdisplay && 856 fp_timing->y_res == panel_fixed_mode->vdisplay) { 857 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val; 858 drm_dbg_kms(&i915->drm, 859 "VBT initial LVDS value %x\n", 860 panel->vbt.bios_lvds_val); 861 } 862 } 863 864 static void 865 parse_lfp_data(struct drm_i915_private *i915, 866 struct intel_panel *panel) 867 { 868 const struct bdb_lvds_lfp_data *data; 869 const struct bdb_lvds_lfp_data_tail *tail; 870 const struct bdb_lvds_lfp_data_ptrs *ptrs; 871 int panel_type = panel->vbt.panel_type; 872 873 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS); 874 if (!ptrs) 875 return; 876 877 data = find_section(i915, BDB_LVDS_LFP_DATA); 878 if (!data) 879 return; 880 881 if (!panel->vbt.lfp_lvds_vbt_mode) 882 parse_lfp_panel_dtd(i915, panel, data, ptrs); 883 884 tail = get_lfp_data_tail(data, ptrs); 885 if (!tail) 886 return; 887 888 if (i915->vbt.version >= 188) { 889 panel->vbt.seamless_drrs_min_refresh_rate = 890 tail->seamless_drrs_min_refresh_rate[panel_type]; 891 drm_dbg_kms(&i915->drm, 892 "Seamless DRRS min refresh rate: %d Hz\n", 893 panel->vbt.seamless_drrs_min_refresh_rate); 894 } 895 } 896 897 static void 898 parse_generic_dtd(struct drm_i915_private *i915, 899 struct intel_panel *panel) 900 { 901 const struct bdb_generic_dtd *generic_dtd; 902 const struct generic_dtd_entry *dtd; 903 struct drm_display_mode *panel_fixed_mode; 904 int num_dtd; 905 906 /* 907 * Older VBTs provided DTD information for internal displays through 908 * the "LFP panel tables" block (42). As of VBT revision 229 the 909 * DTD information should be provided via a newer "generic DTD" 910 * block (58). Just to be safe, we'll try the new generic DTD block 911 * first on VBT >= 229, but still fall back to trying the old LFP 912 * block if that fails. 913 */ 914 if (i915->vbt.version < 229) 915 return; 916 917 generic_dtd = find_section(i915, BDB_GENERIC_DTD); 918 if (!generic_dtd) 919 return; 920 921 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) { 922 drm_err(&i915->drm, "GDTD size %u is too small.\n", 923 generic_dtd->gdtd_size); 924 return; 925 } else if (generic_dtd->gdtd_size != 926 sizeof(struct generic_dtd_entry)) { 927 drm_err(&i915->drm, "Unexpected GDTD size %u\n", 928 generic_dtd->gdtd_size); 929 /* DTD has unknown fields, but keep going */ 930 } 931 932 num_dtd = (get_blocksize(generic_dtd) - 933 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size; 934 if (panel->vbt.panel_type >= num_dtd) { 935 drm_err(&i915->drm, 936 "Panel type %d not found in table of %d DTD's\n", 937 panel->vbt.panel_type, num_dtd); 938 return; 939 } 940 941 dtd = &generic_dtd->dtd[panel->vbt.panel_type]; 942 943 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 944 if (!panel_fixed_mode) 945 return; 946 947 panel_fixed_mode->hdisplay = dtd->hactive; 948 panel_fixed_mode->hsync_start = 949 panel_fixed_mode->hdisplay + dtd->hfront_porch; 950 panel_fixed_mode->hsync_end = 951 panel_fixed_mode->hsync_start + dtd->hsync; 952 panel_fixed_mode->htotal = 953 panel_fixed_mode->hdisplay + dtd->hblank; 954 955 panel_fixed_mode->vdisplay = dtd->vactive; 956 panel_fixed_mode->vsync_start = 957 panel_fixed_mode->vdisplay + dtd->vfront_porch; 958 panel_fixed_mode->vsync_end = 959 panel_fixed_mode->vsync_start + dtd->vsync; 960 panel_fixed_mode->vtotal = 961 panel_fixed_mode->vdisplay + dtd->vblank; 962 963 panel_fixed_mode->clock = dtd->pixel_clock; 964 panel_fixed_mode->width_mm = dtd->width_mm; 965 panel_fixed_mode->height_mm = dtd->height_mm; 966 967 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; 968 drm_mode_set_name(panel_fixed_mode); 969 970 if (dtd->hsync_positive_polarity) 971 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; 972 else 973 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; 974 975 if (dtd->vsync_positive_polarity) 976 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; 977 else 978 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; 979 980 drm_dbg_kms(&i915->drm, 981 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n", 982 DRM_MODE_ARG(panel_fixed_mode)); 983 984 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; 985 } 986 987 static void 988 parse_lfp_backlight(struct drm_i915_private *i915, 989 struct intel_panel *panel) 990 { 991 const struct bdb_lfp_backlight_data *backlight_data; 992 const struct lfp_backlight_data_entry *entry; 993 int panel_type = panel->vbt.panel_type; 994 u16 level; 995 996 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT); 997 if (!backlight_data) 998 return; 999 1000 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { 1001 drm_dbg_kms(&i915->drm, 1002 "Unsupported backlight data entry size %u\n", 1003 backlight_data->entry_size); 1004 return; 1005 } 1006 1007 entry = &backlight_data->data[panel_type]; 1008 1009 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; 1010 if (!panel->vbt.backlight.present) { 1011 drm_dbg_kms(&i915->drm, 1012 "PWM backlight not present in VBT (type %u)\n", 1013 entry->type); 1014 return; 1015 } 1016 1017 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI; 1018 if (i915->vbt.version >= 191) { 1019 size_t exp_size; 1020 1021 if (i915->vbt.version >= 236) 1022 exp_size = sizeof(struct bdb_lfp_backlight_data); 1023 else if (i915->vbt.version >= 234) 1024 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234; 1025 else 1026 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191; 1027 1028 if (get_blocksize(backlight_data) >= exp_size) { 1029 const struct lfp_backlight_control_method *method; 1030 1031 method = &backlight_data->backlight_control[panel_type]; 1032 panel->vbt.backlight.type = method->type; 1033 panel->vbt.backlight.controller = method->controller; 1034 } 1035 } 1036 1037 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; 1038 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm; 1039 1040 if (i915->vbt.version >= 234) { 1041 u16 min_level; 1042 bool scale; 1043 1044 level = backlight_data->brightness_level[panel_type].level; 1045 min_level = backlight_data->brightness_min_level[panel_type].level; 1046 1047 if (i915->vbt.version >= 236) 1048 scale = backlight_data->brightness_precision_bits[panel_type] == 16; 1049 else 1050 scale = level > 255; 1051 1052 if (scale) 1053 min_level = min_level / 255; 1054 1055 if (min_level > 255) { 1056 drm_warn(&i915->drm, "Brightness min level > 255\n"); 1057 level = 255; 1058 } 1059 panel->vbt.backlight.min_brightness = min_level; 1060 1061 panel->vbt.backlight.brightness_precision_bits = 1062 backlight_data->brightness_precision_bits[panel_type]; 1063 } else { 1064 level = backlight_data->level[panel_type]; 1065 panel->vbt.backlight.min_brightness = entry->min_brightness; 1066 } 1067 1068 drm_dbg_kms(&i915->drm, 1069 "VBT backlight PWM modulation frequency %u Hz, " 1070 "active %s, min brightness %u, level %u, controller %u\n", 1071 panel->vbt.backlight.pwm_freq_hz, 1072 panel->vbt.backlight.active_low_pwm ? "low" : "high", 1073 panel->vbt.backlight.min_brightness, 1074 level, 1075 panel->vbt.backlight.controller); 1076 } 1077 1078 /* Try to find sdvo panel data */ 1079 static void 1080 parse_sdvo_panel_data(struct drm_i915_private *i915, 1081 struct intel_panel *panel) 1082 { 1083 const struct bdb_sdvo_panel_dtds *dtds; 1084 struct drm_display_mode *panel_fixed_mode; 1085 int index; 1086 1087 index = i915->params.vbt_sdvo_panel_type; 1088 if (index == -2) { 1089 drm_dbg_kms(&i915->drm, 1090 "Ignore SDVO panel mode from BIOS VBT tables.\n"); 1091 return; 1092 } 1093 1094 if (index == -1) { 1095 const struct bdb_sdvo_lvds_options *sdvo_lvds_options; 1096 1097 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS); 1098 if (!sdvo_lvds_options) 1099 return; 1100 1101 index = sdvo_lvds_options->panel_type; 1102 } 1103 1104 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS); 1105 if (!dtds) 1106 return; 1107 1108 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); 1109 if (!panel_fixed_mode) 1110 return; 1111 1112 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]); 1113 1114 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; 1115 1116 drm_dbg_kms(&i915->drm, 1117 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n", 1118 DRM_MODE_ARG(panel_fixed_mode)); 1119 } 1120 1121 static int intel_bios_ssc_frequency(struct drm_i915_private *i915, 1122 bool alternate) 1123 { 1124 switch (DISPLAY_VER(i915)) { 1125 case 2: 1126 return alternate ? 66667 : 48000; 1127 case 3: 1128 case 4: 1129 return alternate ? 100000 : 96000; 1130 default: 1131 return alternate ? 100000 : 120000; 1132 } 1133 } 1134 1135 static void 1136 parse_general_features(struct drm_i915_private *i915) 1137 { 1138 const struct bdb_general_features *general; 1139 1140 general = find_section(i915, BDB_GENERAL_FEATURES); 1141 if (!general) 1142 return; 1143 1144 i915->vbt.int_tv_support = general->int_tv_support; 1145 /* int_crt_support can't be trusted on earlier platforms */ 1146 if (i915->vbt.version >= 155 && 1147 (HAS_DDI(i915) || IS_VALLEYVIEW(i915))) 1148 i915->vbt.int_crt_support = general->int_crt_support; 1149 i915->vbt.lvds_use_ssc = general->enable_ssc; 1150 i915->vbt.lvds_ssc_freq = 1151 intel_bios_ssc_frequency(i915, general->ssc_freq); 1152 i915->vbt.display_clock_mode = general->display_clock_mode; 1153 i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; 1154 if (i915->vbt.version >= 181) { 1155 i915->vbt.orientation = general->rotate_180 ? 1156 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP : 1157 DRM_MODE_PANEL_ORIENTATION_NORMAL; 1158 } else { 1159 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1160 } 1161 1162 if (i915->vbt.version >= 249 && general->afc_startup_config) { 1163 i915->vbt.override_afc_startup = true; 1164 i915->vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7; 1165 } 1166 1167 drm_dbg_kms(&i915->drm, 1168 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", 1169 i915->vbt.int_tv_support, 1170 i915->vbt.int_crt_support, 1171 i915->vbt.lvds_use_ssc, 1172 i915->vbt.lvds_ssc_freq, 1173 i915->vbt.display_clock_mode, 1174 i915->vbt.fdi_rx_polarity_inverted); 1175 } 1176 1177 static const struct child_device_config * 1178 child_device_ptr(const struct bdb_general_definitions *defs, int i) 1179 { 1180 return (const void *) &defs->devices[i * defs->child_dev_size]; 1181 } 1182 1183 static void 1184 parse_sdvo_device_mapping(struct drm_i915_private *i915) 1185 { 1186 struct sdvo_device_mapping *mapping; 1187 const struct intel_bios_encoder_data *devdata; 1188 const struct child_device_config *child; 1189 int count = 0; 1190 1191 /* 1192 * Only parse SDVO mappings on gens that could have SDVO. This isn't 1193 * accurate and doesn't have to be, as long as it's not too strict. 1194 */ 1195 if (!IS_DISPLAY_VER(i915, 3, 7)) { 1196 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n"); 1197 return; 1198 } 1199 1200 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 1201 child = &devdata->child; 1202 1203 if (child->slave_addr != SLAVE_ADDR1 && 1204 child->slave_addr != SLAVE_ADDR2) { 1205 /* 1206 * If the slave address is neither 0x70 nor 0x72, 1207 * it is not a SDVO device. Skip it. 1208 */ 1209 continue; 1210 } 1211 if (child->dvo_port != DEVICE_PORT_DVOB && 1212 child->dvo_port != DEVICE_PORT_DVOC) { 1213 /* skip the incorrect SDVO port */ 1214 drm_dbg_kms(&i915->drm, 1215 "Incorrect SDVO port. Skip it\n"); 1216 continue; 1217 } 1218 drm_dbg_kms(&i915->drm, 1219 "the SDVO device with slave addr %2x is found on" 1220 " %s port\n", 1221 child->slave_addr, 1222 (child->dvo_port == DEVICE_PORT_DVOB) ? 1223 "SDVOB" : "SDVOC"); 1224 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1]; 1225 if (!mapping->initialized) { 1226 mapping->dvo_port = child->dvo_port; 1227 mapping->slave_addr = child->slave_addr; 1228 mapping->dvo_wiring = child->dvo_wiring; 1229 mapping->ddc_pin = child->ddc_pin; 1230 mapping->i2c_pin = child->i2c_pin; 1231 mapping->initialized = 1; 1232 drm_dbg_kms(&i915->drm, 1233 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", 1234 mapping->dvo_port, mapping->slave_addr, 1235 mapping->dvo_wiring, mapping->ddc_pin, 1236 mapping->i2c_pin); 1237 } else { 1238 drm_dbg_kms(&i915->drm, 1239 "Maybe one SDVO port is shared by " 1240 "two SDVO device.\n"); 1241 } 1242 if (child->slave2_addr) { 1243 /* Maybe this is a SDVO device with multiple inputs */ 1244 /* And the mapping info is not added */ 1245 drm_dbg_kms(&i915->drm, 1246 "there exists the slave2_addr. Maybe this" 1247 " is a SDVO device with multiple inputs.\n"); 1248 } 1249 count++; 1250 } 1251 1252 if (!count) { 1253 /* No SDVO device info is found */ 1254 drm_dbg_kms(&i915->drm, 1255 "No SDVO device info is found in VBT\n"); 1256 } 1257 } 1258 1259 static void 1260 parse_driver_features(struct drm_i915_private *i915) 1261 { 1262 const struct bdb_driver_features *driver; 1263 1264 driver = find_section(i915, BDB_DRIVER_FEATURES); 1265 if (!driver) 1266 return; 1267 1268 if (DISPLAY_VER(i915) >= 5) { 1269 /* 1270 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS 1271 * to mean "eDP". The VBT spec doesn't agree with that 1272 * interpretation, but real world VBTs seem to. 1273 */ 1274 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS) 1275 i915->vbt.int_lvds_support = 0; 1276 } else { 1277 /* 1278 * FIXME it's not clear which BDB version has the LVDS config 1279 * bits defined. Revision history in the VBT spec says: 1280 * "0.92 | Add two definitions for VBT value of LVDS Active 1281 * Config (00b and 11b values defined) | 06/13/2005" 1282 * but does not the specify the BDB version. 1283 * 1284 * So far version 134 (on i945gm) is the oldest VBT observed 1285 * in the wild with the bits correctly populated. Version 1286 * 108 (on i85x) does not have the bits correctly populated. 1287 */ 1288 if (i915->vbt.version >= 134 && 1289 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS && 1290 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS) 1291 i915->vbt.int_lvds_support = 0; 1292 } 1293 } 1294 1295 static void 1296 parse_panel_driver_features(struct drm_i915_private *i915, 1297 struct intel_panel *panel) 1298 { 1299 const struct bdb_driver_features *driver; 1300 1301 driver = find_section(i915, BDB_DRIVER_FEATURES); 1302 if (!driver) 1303 return; 1304 1305 if (i915->vbt.version < 228) { 1306 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n", 1307 driver->drrs_enabled); 1308 /* 1309 * If DRRS is not supported, drrs_type has to be set to 0. 1310 * This is because, VBT is configured in such a way that 1311 * static DRRS is 0 and DRRS not supported is represented by 1312 * driver->drrs_enabled=false 1313 */ 1314 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1315 /* 1316 * FIXME Should DMRRS perhaps be treated as seamless 1317 * but without the automatic downclocking? 1318 */ 1319 if (driver->dmrrs_enabled) 1320 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1321 else 1322 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1323 } 1324 1325 panel->vbt.psr.enable = driver->psr_enabled; 1326 } 1327 } 1328 1329 static void 1330 parse_power_conservation_features(struct drm_i915_private *i915, 1331 struct intel_panel *panel) 1332 { 1333 const struct bdb_lfp_power *power; 1334 u8 panel_type = panel->vbt.panel_type; 1335 1336 panel->vbt.vrr = true; /* matches Windows behaviour */ 1337 1338 if (i915->vbt.version < 228) 1339 return; 1340 1341 power = find_section(i915, BDB_LFP_POWER); 1342 if (!power) 1343 return; 1344 1345 panel->vbt.psr.enable = panel_bool(power->psr, panel_type); 1346 1347 /* 1348 * If DRRS is not supported, drrs_type has to be set to 0. 1349 * This is because, VBT is configured in such a way that 1350 * static DRRS is 0 and DRRS not supported is represented by 1351 * power->drrs & BIT(panel_type)=false 1352 */ 1353 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) { 1354 /* 1355 * FIXME Should DMRRS perhaps be treated as seamless 1356 * but without the automatic downclocking? 1357 */ 1358 if (panel_bool(power->dmrrs, panel_type)) 1359 panel->vbt.drrs_type = DRRS_TYPE_STATIC; 1360 else 1361 panel->vbt.drrs_type = DRRS_TYPE_NONE; 1362 } 1363 1364 if (i915->vbt.version >= 232) 1365 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type); 1366 1367 if (i915->vbt.version >= 233) 1368 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled, 1369 panel_type); 1370 } 1371 1372 static void 1373 parse_edp(struct drm_i915_private *i915, 1374 struct intel_panel *panel) 1375 { 1376 const struct bdb_edp *edp; 1377 const struct edp_power_seq *edp_pps; 1378 const struct edp_fast_link_params *edp_link_params; 1379 int panel_type = panel->vbt.panel_type; 1380 1381 edp = find_section(i915, BDB_EDP); 1382 if (!edp) 1383 return; 1384 1385 switch (panel_bits(edp->color_depth, panel_type, 2)) { 1386 case EDP_18BPP: 1387 panel->vbt.edp.bpp = 18; 1388 break; 1389 case EDP_24BPP: 1390 panel->vbt.edp.bpp = 24; 1391 break; 1392 case EDP_30BPP: 1393 panel->vbt.edp.bpp = 30; 1394 break; 1395 } 1396 1397 /* Get the eDP sequencing and link info */ 1398 edp_pps = &edp->power_seqs[panel_type]; 1399 edp_link_params = &edp->fast_link_params[panel_type]; 1400 1401 panel->vbt.edp.pps = *edp_pps; 1402 1403 if (i915->vbt.version >= 224) { 1404 panel->vbt.edp.rate = 1405 edp->edp_fast_link_training_rate[panel_type] * 20; 1406 } else { 1407 switch (edp_link_params->rate) { 1408 case EDP_RATE_1_62: 1409 panel->vbt.edp.rate = 162000; 1410 break; 1411 case EDP_RATE_2_7: 1412 panel->vbt.edp.rate = 270000; 1413 break; 1414 case EDP_RATE_5_4: 1415 panel->vbt.edp.rate = 540000; 1416 break; 1417 default: 1418 drm_dbg_kms(&i915->drm, 1419 "VBT has unknown eDP link rate value %u\n", 1420 edp_link_params->rate); 1421 break; 1422 } 1423 } 1424 1425 switch (edp_link_params->lanes) { 1426 case EDP_LANE_1: 1427 panel->vbt.edp.lanes = 1; 1428 break; 1429 case EDP_LANE_2: 1430 panel->vbt.edp.lanes = 2; 1431 break; 1432 case EDP_LANE_4: 1433 panel->vbt.edp.lanes = 4; 1434 break; 1435 default: 1436 drm_dbg_kms(&i915->drm, 1437 "VBT has unknown eDP lane count value %u\n", 1438 edp_link_params->lanes); 1439 break; 1440 } 1441 1442 switch (edp_link_params->preemphasis) { 1443 case EDP_PREEMPHASIS_NONE: 1444 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; 1445 break; 1446 case EDP_PREEMPHASIS_3_5dB: 1447 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; 1448 break; 1449 case EDP_PREEMPHASIS_6dB: 1450 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; 1451 break; 1452 case EDP_PREEMPHASIS_9_5dB: 1453 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; 1454 break; 1455 default: 1456 drm_dbg_kms(&i915->drm, 1457 "VBT has unknown eDP pre-emphasis value %u\n", 1458 edp_link_params->preemphasis); 1459 break; 1460 } 1461 1462 switch (edp_link_params->vswing) { 1463 case EDP_VSWING_0_4V: 1464 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; 1465 break; 1466 case EDP_VSWING_0_6V: 1467 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; 1468 break; 1469 case EDP_VSWING_0_8V: 1470 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 1471 break; 1472 case EDP_VSWING_1_2V: 1473 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 1474 break; 1475 default: 1476 drm_dbg_kms(&i915->drm, 1477 "VBT has unknown eDP voltage swing value %u\n", 1478 edp_link_params->vswing); 1479 break; 1480 } 1481 1482 if (i915->vbt.version >= 173) { 1483 u8 vswing; 1484 1485 /* Don't read from VBT if module parameter has valid value*/ 1486 if (i915->params.edp_vswing) { 1487 panel->vbt.edp.low_vswing = 1488 i915->params.edp_vswing == 1; 1489 } else { 1490 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; 1491 panel->vbt.edp.low_vswing = vswing == 0; 1492 } 1493 } 1494 1495 panel->vbt.edp.drrs_msa_timing_delay = 1496 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2); 1497 1498 if (i915->vbt.version >= 244) 1499 panel->vbt.edp.max_link_rate = 1500 edp->edp_max_port_link_rate[panel_type] * 20; 1501 } 1502 1503 static void 1504 parse_psr(struct drm_i915_private *i915, 1505 struct intel_panel *panel) 1506 { 1507 const struct bdb_psr *psr; 1508 const struct psr_table *psr_table; 1509 int panel_type = panel->vbt.panel_type; 1510 1511 psr = find_section(i915, BDB_PSR); 1512 if (!psr) { 1513 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n"); 1514 return; 1515 } 1516 1517 psr_table = &psr->psr_table[panel_type]; 1518 1519 panel->vbt.psr.full_link = psr_table->full_link; 1520 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; 1521 1522 /* Allowed VBT values goes from 0 to 15 */ 1523 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : 1524 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; 1525 1526 /* 1527 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us 1528 * Old decimal value is wake up time in multiples of 100 us. 1529 */ 1530 if (i915->vbt.version >= 205 && 1531 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) { 1532 switch (psr_table->tp1_wakeup_time) { 1533 case 0: 1534 panel->vbt.psr.tp1_wakeup_time_us = 500; 1535 break; 1536 case 1: 1537 panel->vbt.psr.tp1_wakeup_time_us = 100; 1538 break; 1539 case 3: 1540 panel->vbt.psr.tp1_wakeup_time_us = 0; 1541 break; 1542 default: 1543 drm_dbg_kms(&i915->drm, 1544 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1545 psr_table->tp1_wakeup_time); 1546 fallthrough; 1547 case 2: 1548 panel->vbt.psr.tp1_wakeup_time_us = 2500; 1549 break; 1550 } 1551 1552 switch (psr_table->tp2_tp3_wakeup_time) { 1553 case 0: 1554 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500; 1555 break; 1556 case 1: 1557 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100; 1558 break; 1559 case 3: 1560 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0; 1561 break; 1562 default: 1563 drm_dbg_kms(&i915->drm, 1564 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n", 1565 psr_table->tp2_tp3_wakeup_time); 1566 fallthrough; 1567 case 2: 1568 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500; 1569 break; 1570 } 1571 } else { 1572 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100; 1573 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100; 1574 } 1575 1576 if (i915->vbt.version >= 226) { 1577 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time; 1578 1579 wakeup_time = panel_bits(wakeup_time, panel_type, 2); 1580 switch (wakeup_time) { 1581 case 0: 1582 wakeup_time = 500; 1583 break; 1584 case 1: 1585 wakeup_time = 100; 1586 break; 1587 case 3: 1588 wakeup_time = 50; 1589 break; 1590 default: 1591 case 2: 1592 wakeup_time = 2500; 1593 break; 1594 } 1595 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time; 1596 } else { 1597 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */ 1598 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us; 1599 } 1600 } 1601 1602 static void parse_dsi_backlight_ports(struct drm_i915_private *i915, 1603 struct intel_panel *panel, 1604 enum port port) 1605 { 1606 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C; 1607 1608 if (!panel->vbt.dsi.config->dual_link || i915->vbt.version < 197) { 1609 panel->vbt.dsi.bl_ports = BIT(port); 1610 if (panel->vbt.dsi.config->cabc_supported) 1611 panel->vbt.dsi.cabc_ports = BIT(port); 1612 1613 return; 1614 } 1615 1616 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) { 1617 case DL_DCS_PORT_A: 1618 panel->vbt.dsi.bl_ports = BIT(PORT_A); 1619 break; 1620 case DL_DCS_PORT_C: 1621 panel->vbt.dsi.bl_ports = BIT(port_bc); 1622 break; 1623 default: 1624 case DL_DCS_PORT_A_AND_C: 1625 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc); 1626 break; 1627 } 1628 1629 if (!panel->vbt.dsi.config->cabc_supported) 1630 return; 1631 1632 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) { 1633 case DL_DCS_PORT_A: 1634 panel->vbt.dsi.cabc_ports = BIT(PORT_A); 1635 break; 1636 case DL_DCS_PORT_C: 1637 panel->vbt.dsi.cabc_ports = BIT(port_bc); 1638 break; 1639 default: 1640 case DL_DCS_PORT_A_AND_C: 1641 panel->vbt.dsi.cabc_ports = 1642 BIT(PORT_A) | BIT(port_bc); 1643 break; 1644 } 1645 } 1646 1647 static void 1648 parse_mipi_config(struct drm_i915_private *i915, 1649 struct intel_panel *panel) 1650 { 1651 const struct bdb_mipi_config *start; 1652 const struct mipi_config *config; 1653 const struct mipi_pps_data *pps; 1654 int panel_type = panel->vbt.panel_type; 1655 enum port port; 1656 1657 /* parse MIPI blocks only if LFP type is MIPI */ 1658 if (!intel_bios_is_dsi_present(i915, &port)) 1659 return; 1660 1661 /* Initialize this to undefined indicating no generic MIPI support */ 1662 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; 1663 1664 /* Block #40 is already parsed and panel_fixed_mode is 1665 * stored in i915->lfp_lvds_vbt_mode 1666 * resuse this when needed 1667 */ 1668 1669 /* Parse #52 for panel index used from panel_type already 1670 * parsed 1671 */ 1672 start = find_section(i915, BDB_MIPI_CONFIG); 1673 if (!start) { 1674 drm_dbg_kms(&i915->drm, "No MIPI config BDB found"); 1675 return; 1676 } 1677 1678 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n", 1679 panel_type); 1680 1681 /* 1682 * get hold of the correct configuration block and pps data as per 1683 * the panel_type as index 1684 */ 1685 config = &start->config[panel_type]; 1686 pps = &start->pps[panel_type]; 1687 1688 /* store as of now full data. Trim when we realise all is not needed */ 1689 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); 1690 if (!panel->vbt.dsi.config) 1691 return; 1692 1693 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); 1694 if (!panel->vbt.dsi.pps) { 1695 kfree(panel->vbt.dsi.config); 1696 return; 1697 } 1698 1699 parse_dsi_backlight_ports(i915, panel, port); 1700 1701 /* FIXME is the 90 vs. 270 correct? */ 1702 switch (config->rotation) { 1703 case ENABLE_ROTATION_0: 1704 /* 1705 * Most (all?) VBTs claim 0 degrees despite having 1706 * an upside down panel, thus we do not trust this. 1707 */ 1708 panel->vbt.dsi.orientation = 1709 DRM_MODE_PANEL_ORIENTATION_UNKNOWN; 1710 break; 1711 case ENABLE_ROTATION_90: 1712 panel->vbt.dsi.orientation = 1713 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP; 1714 break; 1715 case ENABLE_ROTATION_180: 1716 panel->vbt.dsi.orientation = 1717 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP; 1718 break; 1719 case ENABLE_ROTATION_270: 1720 panel->vbt.dsi.orientation = 1721 DRM_MODE_PANEL_ORIENTATION_LEFT_UP; 1722 break; 1723 } 1724 1725 /* We have mandatory mipi config blocks. Initialize as generic panel */ 1726 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; 1727 } 1728 1729 /* Find the sequence block and size for the given panel. */ 1730 static const u8 * 1731 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, 1732 u16 panel_id, u32 *seq_size) 1733 { 1734 u32 total = get_blocksize(sequence); 1735 const u8 *data = &sequence->data[0]; 1736 u8 current_id; 1737 u32 current_size; 1738 int header_size = sequence->version >= 3 ? 5 : 3; 1739 int index = 0; 1740 int i; 1741 1742 /* skip new block size */ 1743 if (sequence->version >= 3) 1744 data += 4; 1745 1746 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { 1747 if (index + header_size > total) { 1748 DRM_ERROR("Invalid sequence block (header)\n"); 1749 return NULL; 1750 } 1751 1752 current_id = *(data + index); 1753 if (sequence->version >= 3) 1754 current_size = *((const u32 *)(data + index + 1)); 1755 else 1756 current_size = *((const u16 *)(data + index + 1)); 1757 1758 index += header_size; 1759 1760 if (index + current_size > total) { 1761 DRM_ERROR("Invalid sequence block\n"); 1762 return NULL; 1763 } 1764 1765 if (current_id == panel_id) { 1766 *seq_size = current_size; 1767 return data + index; 1768 } 1769 1770 index += current_size; 1771 } 1772 1773 DRM_ERROR("Sequence block detected but no valid configuration\n"); 1774 1775 return NULL; 1776 } 1777 1778 static int goto_next_sequence(const u8 *data, int index, int total) 1779 { 1780 u16 len; 1781 1782 /* Skip Sequence Byte. */ 1783 for (index = index + 1; index < total; index += len) { 1784 u8 operation_byte = *(data + index); 1785 index++; 1786 1787 switch (operation_byte) { 1788 case MIPI_SEQ_ELEM_END: 1789 return index; 1790 case MIPI_SEQ_ELEM_SEND_PKT: 1791 if (index + 4 > total) 1792 return 0; 1793 1794 len = *((const u16 *)(data + index + 2)) + 4; 1795 break; 1796 case MIPI_SEQ_ELEM_DELAY: 1797 len = 4; 1798 break; 1799 case MIPI_SEQ_ELEM_GPIO: 1800 len = 2; 1801 break; 1802 case MIPI_SEQ_ELEM_I2C: 1803 if (index + 7 > total) 1804 return 0; 1805 len = *(data + index + 6) + 7; 1806 break; 1807 default: 1808 DRM_ERROR("Unknown operation byte\n"); 1809 return 0; 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int goto_next_sequence_v3(const u8 *data, int index, int total) 1817 { 1818 int seq_end; 1819 u16 len; 1820 u32 size_of_sequence; 1821 1822 /* 1823 * Could skip sequence based on Size of Sequence alone, but also do some 1824 * checking on the structure. 1825 */ 1826 if (total < 5) { 1827 DRM_ERROR("Too small sequence size\n"); 1828 return 0; 1829 } 1830 1831 /* Skip Sequence Byte. */ 1832 index++; 1833 1834 /* 1835 * Size of Sequence. Excludes the Sequence Byte and the size itself, 1836 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END 1837 * byte. 1838 */ 1839 size_of_sequence = *((const u32 *)(data + index)); 1840 index += 4; 1841 1842 seq_end = index + size_of_sequence; 1843 if (seq_end > total) { 1844 DRM_ERROR("Invalid sequence size\n"); 1845 return 0; 1846 } 1847 1848 for (; index < total; index += len) { 1849 u8 operation_byte = *(data + index); 1850 index++; 1851 1852 if (operation_byte == MIPI_SEQ_ELEM_END) { 1853 if (index != seq_end) { 1854 DRM_ERROR("Invalid element structure\n"); 1855 return 0; 1856 } 1857 return index; 1858 } 1859 1860 len = *(data + index); 1861 index++; 1862 1863 /* 1864 * FIXME: Would be nice to check elements like for v1/v2 in 1865 * goto_next_sequence() above. 1866 */ 1867 switch (operation_byte) { 1868 case MIPI_SEQ_ELEM_SEND_PKT: 1869 case MIPI_SEQ_ELEM_DELAY: 1870 case MIPI_SEQ_ELEM_GPIO: 1871 case MIPI_SEQ_ELEM_I2C: 1872 case MIPI_SEQ_ELEM_SPI: 1873 case MIPI_SEQ_ELEM_PMIC: 1874 break; 1875 default: 1876 DRM_ERROR("Unknown operation byte %u\n", 1877 operation_byte); 1878 break; 1879 } 1880 } 1881 1882 return 0; 1883 } 1884 1885 /* 1886 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence, 1887 * skip all delay + gpio operands and stop at the first DSI packet op. 1888 */ 1889 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915, 1890 struct intel_panel *panel) 1891 { 1892 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1893 int index, len; 1894 1895 if (drm_WARN_ON(&i915->drm, 1896 !data || panel->vbt.dsi.seq_version != 1)) 1897 return 0; 1898 1899 /* index = 1 to skip sequence byte */ 1900 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) { 1901 switch (data[index]) { 1902 case MIPI_SEQ_ELEM_SEND_PKT: 1903 return index == 1 ? 0 : index; 1904 case MIPI_SEQ_ELEM_DELAY: 1905 len = 5; /* 1 byte for operand + uint32 */ 1906 break; 1907 case MIPI_SEQ_ELEM_GPIO: 1908 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */ 1909 break; 1910 default: 1911 return 0; 1912 } 1913 } 1914 1915 return 0; 1916 } 1917 1918 /* 1919 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence. 1920 * The deassert must be done before calling intel_dsi_device_ready, so for 1921 * these devices we split the init OTP sequence into a deassert sequence and 1922 * the actual init OTP part. 1923 */ 1924 static void fixup_mipi_sequences(struct drm_i915_private *i915, 1925 struct intel_panel *panel) 1926 { 1927 u8 *init_otp; 1928 int len; 1929 1930 /* Limit this to VLV for now. */ 1931 if (!IS_VALLEYVIEW(i915)) 1932 return; 1933 1934 /* Limit this to v1 vid-mode sequences */ 1935 if (panel->vbt.dsi.config->is_cmd_mode || 1936 panel->vbt.dsi.seq_version != 1) 1937 return; 1938 1939 /* Only do this if there are otp and assert seqs and no deassert seq */ 1940 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] || 1941 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] || 1942 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]) 1943 return; 1944 1945 /* The deassert-sequence ends at the first DSI packet */ 1946 len = get_init_otp_deassert_fragment_len(i915, panel); 1947 if (!len) 1948 return; 1949 1950 drm_dbg_kms(&i915->drm, 1951 "Using init OTP fragment to deassert reset\n"); 1952 1953 /* Copy the fragment, update seq byte and terminate it */ 1954 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; 1955 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL); 1956 if (!panel->vbt.dsi.deassert_seq) 1957 return; 1958 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET; 1959 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END; 1960 /* Use the copy for deassert */ 1961 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] = 1962 panel->vbt.dsi.deassert_seq; 1963 /* Replace the last byte of the fragment with init OTP seq byte */ 1964 init_otp[len - 1] = MIPI_SEQ_INIT_OTP; 1965 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */ 1966 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1; 1967 } 1968 1969 static void 1970 parse_mipi_sequence(struct drm_i915_private *i915, 1971 struct intel_panel *panel) 1972 { 1973 int panel_type = panel->vbt.panel_type; 1974 const struct bdb_mipi_sequence *sequence; 1975 const u8 *seq_data; 1976 u32 seq_size; 1977 u8 *data; 1978 int index = 0; 1979 1980 /* Only our generic panel driver uses the sequence block. */ 1981 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID) 1982 return; 1983 1984 sequence = find_section(i915, BDB_MIPI_SEQUENCE); 1985 if (!sequence) { 1986 drm_dbg_kms(&i915->drm, 1987 "No MIPI Sequence found, parsing complete\n"); 1988 return; 1989 } 1990 1991 /* Fail gracefully for forward incompatible sequence block. */ 1992 if (sequence->version >= 4) { 1993 drm_err(&i915->drm, 1994 "Unable to parse MIPI Sequence Block v%u\n", 1995 sequence->version); 1996 return; 1997 } 1998 1999 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n", 2000 sequence->version); 2001 2002 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size); 2003 if (!seq_data) 2004 return; 2005 2006 data = kmemdup(seq_data, seq_size, GFP_KERNEL); 2007 if (!data) 2008 return; 2009 2010 /* Parse the sequences, store pointers to each sequence. */ 2011 for (;;) { 2012 u8 seq_id = *(data + index); 2013 if (seq_id == MIPI_SEQ_END) 2014 break; 2015 2016 if (seq_id >= MIPI_SEQ_MAX) { 2017 drm_err(&i915->drm, "Unknown sequence %u\n", 2018 seq_id); 2019 goto err; 2020 } 2021 2022 /* Log about presence of sequences we won't run. */ 2023 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF) 2024 drm_dbg_kms(&i915->drm, 2025 "Unsupported sequence %u\n", seq_id); 2026 2027 panel->vbt.dsi.sequence[seq_id] = data + index; 2028 2029 if (sequence->version >= 3) 2030 index = goto_next_sequence_v3(data, index, seq_size); 2031 else 2032 index = goto_next_sequence(data, index, seq_size); 2033 if (!index) { 2034 drm_err(&i915->drm, "Invalid sequence %u\n", 2035 seq_id); 2036 goto err; 2037 } 2038 } 2039 2040 panel->vbt.dsi.data = data; 2041 panel->vbt.dsi.size = seq_size; 2042 panel->vbt.dsi.seq_version = sequence->version; 2043 2044 fixup_mipi_sequences(i915, panel); 2045 2046 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n"); 2047 return; 2048 2049 err: 2050 kfree(data); 2051 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence)); 2052 } 2053 2054 static void 2055 parse_compression_parameters(struct drm_i915_private *i915) 2056 { 2057 const struct bdb_compression_parameters *params; 2058 struct intel_bios_encoder_data *devdata; 2059 const struct child_device_config *child; 2060 u16 block_size; 2061 int index; 2062 2063 if (i915->vbt.version < 198) 2064 return; 2065 2066 params = find_section(i915, BDB_COMPRESSION_PARAMETERS); 2067 if (params) { 2068 /* Sanity checks */ 2069 if (params->entry_size != sizeof(params->data[0])) { 2070 drm_dbg_kms(&i915->drm, 2071 "VBT: unsupported compression param entry size\n"); 2072 return; 2073 } 2074 2075 block_size = get_blocksize(params); 2076 if (block_size < sizeof(*params)) { 2077 drm_dbg_kms(&i915->drm, 2078 "VBT: expected 16 compression param entries\n"); 2079 return; 2080 } 2081 } 2082 2083 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 2084 child = &devdata->child; 2085 2086 if (!child->compression_enable) 2087 continue; 2088 2089 if (!params) { 2090 drm_dbg_kms(&i915->drm, 2091 "VBT: compression params not available\n"); 2092 continue; 2093 } 2094 2095 if (child->compression_method_cps) { 2096 drm_dbg_kms(&i915->drm, 2097 "VBT: CPS compression not supported\n"); 2098 continue; 2099 } 2100 2101 index = child->compression_structure_index; 2102 2103 devdata->dsc = kmemdup(¶ms->data[index], 2104 sizeof(*devdata->dsc), GFP_KERNEL); 2105 } 2106 } 2107 2108 static u8 translate_iboost(u8 val) 2109 { 2110 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */ 2111 2112 if (val >= ARRAY_SIZE(mapping)) { 2113 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val); 2114 return 0; 2115 } 2116 return mapping[val]; 2117 } 2118 2119 static const u8 cnp_ddc_pin_map[] = { 2120 [0] = 0, /* N/A */ 2121 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT, 2122 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT, 2123 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */ 2124 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */ 2125 }; 2126 2127 static const u8 icp_ddc_pin_map[] = { 2128 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2129 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2130 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT, 2131 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP, 2132 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP, 2133 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP, 2134 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP, 2135 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP, 2136 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP, 2137 }; 2138 2139 static const u8 rkl_pch_tgp_ddc_pin_map[] = { 2140 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2141 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2142 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP, 2143 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP, 2144 }; 2145 2146 static const u8 adls_ddc_pin_map[] = { 2147 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2148 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2149 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2150 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2151 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2152 }; 2153 2154 static const u8 gen9bc_tgp_ddc_pin_map[] = { 2155 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2156 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP, 2157 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP, 2158 }; 2159 2160 static const u8 adlp_ddc_pin_map[] = { 2161 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT, 2162 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT, 2163 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP, 2164 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP, 2165 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP, 2166 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP, 2167 }; 2168 2169 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin) 2170 { 2171 const u8 *ddc_pin_map; 2172 int n_entries; 2173 2174 if (IS_ALDERLAKE_P(i915)) { 2175 ddc_pin_map = adlp_ddc_pin_map; 2176 n_entries = ARRAY_SIZE(adlp_ddc_pin_map); 2177 } else if (IS_ALDERLAKE_S(i915)) { 2178 ddc_pin_map = adls_ddc_pin_map; 2179 n_entries = ARRAY_SIZE(adls_ddc_pin_map); 2180 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) { 2181 return vbt_pin; 2182 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) { 2183 ddc_pin_map = rkl_pch_tgp_ddc_pin_map; 2184 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map); 2185 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) { 2186 ddc_pin_map = gen9bc_tgp_ddc_pin_map; 2187 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map); 2188 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) { 2189 ddc_pin_map = icp_ddc_pin_map; 2190 n_entries = ARRAY_SIZE(icp_ddc_pin_map); 2191 } else if (HAS_PCH_CNP(i915)) { 2192 ddc_pin_map = cnp_ddc_pin_map; 2193 n_entries = ARRAY_SIZE(cnp_ddc_pin_map); 2194 } else { 2195 /* Assuming direct map */ 2196 return vbt_pin; 2197 } 2198 2199 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0) 2200 return ddc_pin_map[vbt_pin]; 2201 2202 drm_dbg_kms(&i915->drm, 2203 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n", 2204 vbt_pin); 2205 return 0; 2206 } 2207 2208 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin) 2209 { 2210 const struct intel_bios_encoder_data *devdata; 2211 enum port port; 2212 2213 if (!ddc_pin) 2214 return PORT_NONE; 2215 2216 for_each_port(port) { 2217 devdata = i915->vbt.ports[port]; 2218 2219 if (devdata && ddc_pin == devdata->child.ddc_pin) 2220 return port; 2221 } 2222 2223 return PORT_NONE; 2224 } 2225 2226 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata, 2227 enum port port) 2228 { 2229 struct drm_i915_private *i915 = devdata->i915; 2230 struct child_device_config *child; 2231 u8 mapped_ddc_pin; 2232 enum port p; 2233 2234 if (!devdata->child.ddc_pin) 2235 return; 2236 2237 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin); 2238 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) { 2239 drm_dbg_kms(&i915->drm, 2240 "Port %c has invalid DDC pin %d, " 2241 "sticking to defaults\n", 2242 port_name(port), mapped_ddc_pin); 2243 devdata->child.ddc_pin = 0; 2244 return; 2245 } 2246 2247 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin); 2248 if (p == PORT_NONE) 2249 return; 2250 2251 drm_dbg_kms(&i915->drm, 2252 "port %c trying to use the same DDC pin (0x%x) as port %c, " 2253 "disabling port %c DVI/HDMI support\n", 2254 port_name(port), mapped_ddc_pin, 2255 port_name(p), port_name(p)); 2256 2257 /* 2258 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi 2259 * couldn't exist on the shared port. Otherwise they share the same ddc 2260 * pin and system couldn't communicate with them separately. 2261 * 2262 * Give inverse child device order the priority, last one wins. Yes, 2263 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2264 * port A and port E with the same AUX ch and we must pick port E :( 2265 */ 2266 child = &i915->vbt.ports[p]->child; 2267 2268 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2269 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2270 2271 child->ddc_pin = 0; 2272 } 2273 2274 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch) 2275 { 2276 const struct intel_bios_encoder_data *devdata; 2277 enum port port; 2278 2279 if (!aux_ch) 2280 return PORT_NONE; 2281 2282 for_each_port(port) { 2283 devdata = i915->vbt.ports[port]; 2284 2285 if (devdata && aux_ch == devdata->child.aux_channel) 2286 return port; 2287 } 2288 2289 return PORT_NONE; 2290 } 2291 2292 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata, 2293 enum port port) 2294 { 2295 struct drm_i915_private *i915 = devdata->i915; 2296 struct child_device_config *child; 2297 enum port p; 2298 2299 p = get_port_by_aux_ch(i915, devdata->child.aux_channel); 2300 if (p == PORT_NONE) 2301 return; 2302 2303 drm_dbg_kms(&i915->drm, 2304 "port %c trying to use the same AUX CH (0x%x) as port %c, " 2305 "disabling port %c DP support\n", 2306 port_name(port), devdata->child.aux_channel, 2307 port_name(p), port_name(p)); 2308 2309 /* 2310 * If we have multiple ports supposedly sharing the aux channel, then DP 2311 * couldn't exist on the shared port. Otherwise they share the same aux 2312 * channel and system couldn't communicate with them separately. 2313 * 2314 * Give inverse child device order the priority, last one wins. Yes, 2315 * there are real machines (eg. Asrock B250M-HDV) where VBT has both 2316 * port A and port E with the same AUX ch and we must pick port E :( 2317 */ 2318 child = &i915->vbt.ports[p]->child; 2319 2320 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2321 child->aux_channel = 0; 2322 } 2323 2324 static u8 dvo_port_type(u8 dvo_port) 2325 { 2326 switch (dvo_port) { 2327 case DVO_PORT_HDMIA: 2328 case DVO_PORT_HDMIB: 2329 case DVO_PORT_HDMIC: 2330 case DVO_PORT_HDMID: 2331 case DVO_PORT_HDMIE: 2332 case DVO_PORT_HDMIF: 2333 case DVO_PORT_HDMIG: 2334 case DVO_PORT_HDMIH: 2335 case DVO_PORT_HDMII: 2336 return DVO_PORT_HDMIA; 2337 case DVO_PORT_DPA: 2338 case DVO_PORT_DPB: 2339 case DVO_PORT_DPC: 2340 case DVO_PORT_DPD: 2341 case DVO_PORT_DPE: 2342 case DVO_PORT_DPF: 2343 case DVO_PORT_DPG: 2344 case DVO_PORT_DPH: 2345 case DVO_PORT_DPI: 2346 return DVO_PORT_DPA; 2347 case DVO_PORT_MIPIA: 2348 case DVO_PORT_MIPIB: 2349 case DVO_PORT_MIPIC: 2350 case DVO_PORT_MIPID: 2351 return DVO_PORT_MIPIA; 2352 default: 2353 return dvo_port; 2354 } 2355 } 2356 2357 static enum port __dvo_port_to_port(int n_ports, int n_dvo, 2358 const int port_mapping[][3], u8 dvo_port) 2359 { 2360 enum port port; 2361 int i; 2362 2363 for (port = PORT_A; port < n_ports; port++) { 2364 for (i = 0; i < n_dvo; i++) { 2365 if (port_mapping[port][i] == -1) 2366 break; 2367 2368 if (dvo_port == port_mapping[port][i]) 2369 return port; 2370 } 2371 } 2372 2373 return PORT_NONE; 2374 } 2375 2376 static enum port dvo_port_to_port(struct drm_i915_private *i915, 2377 u8 dvo_port) 2378 { 2379 /* 2380 * Each DDI port can have more than one value on the "DVO Port" field, 2381 * so look for all the possible values for each port. 2382 */ 2383 static const int port_mapping[][3] = { 2384 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2385 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2386 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2387 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2388 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT }, 2389 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2390 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2391 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2392 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2393 }; 2394 /* 2395 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D 2396 * map to DDI A,B,TC1,TC2 respectively. 2397 */ 2398 static const int rkl_port_mapping[][3] = { 2399 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2400 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2401 [PORT_C] = { -1 }, 2402 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2403 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2404 }; 2405 /* 2406 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E, 2407 * PORT_F and PORT_G, we need to map that to correct VBT sections. 2408 */ 2409 static const int adls_port_mapping[][3] = { 2410 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2411 [PORT_B] = { -1 }, 2412 [PORT_C] = { -1 }, 2413 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2414 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2415 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2416 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2417 }; 2418 static const int xelpd_port_mapping[][3] = { 2419 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 }, 2420 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 }, 2421 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 }, 2422 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 }, 2423 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 }, 2424 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 }, 2425 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 }, 2426 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 }, 2427 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 }, 2428 }; 2429 2430 if (DISPLAY_VER(i915) == 13) 2431 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping), 2432 ARRAY_SIZE(xelpd_port_mapping[0]), 2433 xelpd_port_mapping, 2434 dvo_port); 2435 else if (IS_ALDERLAKE_S(i915)) 2436 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping), 2437 ARRAY_SIZE(adls_port_mapping[0]), 2438 adls_port_mapping, 2439 dvo_port); 2440 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 2441 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping), 2442 ARRAY_SIZE(rkl_port_mapping[0]), 2443 rkl_port_mapping, 2444 dvo_port); 2445 else 2446 return __dvo_port_to_port(ARRAY_SIZE(port_mapping), 2447 ARRAY_SIZE(port_mapping[0]), 2448 port_mapping, 2449 dvo_port); 2450 } 2451 2452 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate) 2453 { 2454 switch (vbt_max_link_rate) { 2455 default: 2456 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF: 2457 return 0; 2458 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20: 2459 return 2000000; 2460 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5: 2461 return 1350000; 2462 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10: 2463 return 1000000; 2464 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3: 2465 return 810000; 2466 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2: 2467 return 540000; 2468 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR: 2469 return 270000; 2470 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR: 2471 return 162000; 2472 } 2473 } 2474 2475 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate) 2476 { 2477 switch (vbt_max_link_rate) { 2478 default: 2479 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3: 2480 return 810000; 2481 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2: 2482 return 540000; 2483 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR: 2484 return 270000; 2485 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR: 2486 return 162000; 2487 } 2488 } 2489 2490 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata) 2491 { 2492 if (!devdata || devdata->i915->vbt.version < 216) 2493 return 0; 2494 2495 if (devdata->i915->vbt.version >= 230) 2496 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate); 2497 else 2498 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate); 2499 } 2500 2501 static void sanitize_device_type(struct intel_bios_encoder_data *devdata, 2502 enum port port) 2503 { 2504 struct drm_i915_private *i915 = devdata->i915; 2505 bool is_hdmi; 2506 2507 if (port != PORT_A || DISPLAY_VER(i915) >= 12) 2508 return; 2509 2510 if (!intel_bios_encoder_supports_dvi(devdata)) 2511 return; 2512 2513 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2514 2515 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n", 2516 is_hdmi ? "/HDMI" : ""); 2517 2518 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING; 2519 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT; 2520 } 2521 2522 static bool 2523 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata) 2524 { 2525 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT; 2526 } 2527 2528 bool 2529 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata) 2530 { 2531 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; 2532 } 2533 2534 bool 2535 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata) 2536 { 2537 return intel_bios_encoder_supports_dvi(devdata) && 2538 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; 2539 } 2540 2541 bool 2542 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata) 2543 { 2544 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2545 } 2546 2547 static bool 2548 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata) 2549 { 2550 return intel_bios_encoder_supports_dp(devdata) && 2551 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR; 2552 } 2553 2554 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata) 2555 { 2556 if (!devdata || devdata->i915->vbt.version < 158) 2557 return -1; 2558 2559 return devdata->child.hdmi_level_shifter_value; 2560 } 2561 2562 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata) 2563 { 2564 if (!devdata || devdata->i915->vbt.version < 204) 2565 return 0; 2566 2567 switch (devdata->child.hdmi_max_data_rate) { 2568 default: 2569 MISSING_CASE(devdata->child.hdmi_max_data_rate); 2570 fallthrough; 2571 case HDMI_MAX_DATA_RATE_PLATFORM: 2572 return 0; 2573 case HDMI_MAX_DATA_RATE_594: 2574 return 594000; 2575 case HDMI_MAX_DATA_RATE_340: 2576 return 340000; 2577 case HDMI_MAX_DATA_RATE_300: 2578 return 300000; 2579 case HDMI_MAX_DATA_RATE_297: 2580 return 297000; 2581 case HDMI_MAX_DATA_RATE_165: 2582 return 165000; 2583 } 2584 } 2585 2586 static bool is_port_valid(struct drm_i915_private *i915, enum port port) 2587 { 2588 /* 2589 * On some ICL SKUs port F is not present, but broken VBTs mark 2590 * the port as present. Only try to initialize port F for the 2591 * SKUs that may actually have it. 2592 */ 2593 if (port == PORT_F && IS_ICELAKE(i915)) 2594 return IS_ICL_WITH_PORT_F(i915); 2595 2596 return true; 2597 } 2598 2599 static void print_ddi_port(const struct intel_bios_encoder_data *devdata, 2600 enum port port) 2601 { 2602 struct drm_i915_private *i915 = devdata->i915; 2603 const struct child_device_config *child = &devdata->child; 2604 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt; 2605 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock; 2606 2607 is_dvi = intel_bios_encoder_supports_dvi(devdata); 2608 is_dp = intel_bios_encoder_supports_dp(devdata); 2609 is_crt = intel_bios_encoder_supports_crt(devdata); 2610 is_hdmi = intel_bios_encoder_supports_hdmi(devdata); 2611 is_edp = intel_bios_encoder_supports_edp(devdata); 2612 2613 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata); 2614 supports_tbt = intel_bios_encoder_supports_tbt(devdata); 2615 2616 drm_dbg_kms(&i915->drm, 2617 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n", 2618 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, 2619 HAS_LSPCON(i915) && child->lspcon, 2620 supports_typec_usb, supports_tbt, 2621 devdata->dsc != NULL); 2622 2623 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata); 2624 if (hdmi_level_shift >= 0) { 2625 drm_dbg_kms(&i915->drm, 2626 "Port %c VBT HDMI level shift: %d\n", 2627 port_name(port), hdmi_level_shift); 2628 } 2629 2630 max_tmds_clock = _intel_bios_max_tmds_clock(devdata); 2631 if (max_tmds_clock) 2632 drm_dbg_kms(&i915->drm, 2633 "Port %c VBT HDMI max TMDS clock: %d kHz\n", 2634 port_name(port), max_tmds_clock); 2635 2636 /* I_boost config for SKL and above */ 2637 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata); 2638 if (dp_boost_level) 2639 drm_dbg_kms(&i915->drm, 2640 "Port %c VBT (e)DP boost level: %d\n", 2641 port_name(port), dp_boost_level); 2642 2643 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata); 2644 if (hdmi_boost_level) 2645 drm_dbg_kms(&i915->drm, 2646 "Port %c VBT HDMI boost level: %d\n", 2647 port_name(port), hdmi_boost_level); 2648 2649 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata); 2650 if (dp_max_link_rate) 2651 drm_dbg_kms(&i915->drm, 2652 "Port %c VBT DP max link rate: %d\n", 2653 port_name(port), dp_max_link_rate); 2654 } 2655 2656 static void parse_ddi_port(struct intel_bios_encoder_data *devdata) 2657 { 2658 struct drm_i915_private *i915 = devdata->i915; 2659 const struct child_device_config *child = &devdata->child; 2660 enum port port; 2661 2662 port = dvo_port_to_port(i915, child->dvo_port); 2663 if (port == PORT_NONE) 2664 return; 2665 2666 if (!is_port_valid(i915, port)) { 2667 drm_dbg_kms(&i915->drm, 2668 "VBT reports port %c as supported, but that can't be true: skipping\n", 2669 port_name(port)); 2670 return; 2671 } 2672 2673 if (i915->vbt.ports[port]) { 2674 drm_dbg_kms(&i915->drm, 2675 "More than one child device for port %c in VBT, using the first.\n", 2676 port_name(port)); 2677 return; 2678 } 2679 2680 sanitize_device_type(devdata, port); 2681 2682 if (intel_bios_encoder_supports_dvi(devdata)) 2683 sanitize_ddc_pin(devdata, port); 2684 2685 if (intel_bios_encoder_supports_dp(devdata)) 2686 sanitize_aux_ch(devdata, port); 2687 2688 i915->vbt.ports[port] = devdata; 2689 } 2690 2691 static bool has_ddi_port_info(struct drm_i915_private *i915) 2692 { 2693 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915); 2694 } 2695 2696 static void parse_ddi_ports(struct drm_i915_private *i915) 2697 { 2698 struct intel_bios_encoder_data *devdata; 2699 enum port port; 2700 2701 if (!has_ddi_port_info(i915)) 2702 return; 2703 2704 list_for_each_entry(devdata, &i915->vbt.display_devices, node) 2705 parse_ddi_port(devdata); 2706 2707 for_each_port(port) { 2708 if (i915->vbt.ports[port]) 2709 print_ddi_port(i915->vbt.ports[port], port); 2710 } 2711 } 2712 2713 static void 2714 parse_general_definitions(struct drm_i915_private *i915) 2715 { 2716 const struct bdb_general_definitions *defs; 2717 struct intel_bios_encoder_data *devdata; 2718 const struct child_device_config *child; 2719 int i, child_device_num; 2720 u8 expected_size; 2721 u16 block_size; 2722 int bus_pin; 2723 2724 defs = find_section(i915, BDB_GENERAL_DEFINITIONS); 2725 if (!defs) { 2726 drm_dbg_kms(&i915->drm, 2727 "No general definition block is found, no devices defined.\n"); 2728 return; 2729 } 2730 2731 block_size = get_blocksize(defs); 2732 if (block_size < sizeof(*defs)) { 2733 drm_dbg_kms(&i915->drm, 2734 "General definitions block too small (%u)\n", 2735 block_size); 2736 return; 2737 } 2738 2739 bus_pin = defs->crt_ddc_gmbus_pin; 2740 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin); 2741 if (intel_gmbus_is_valid_pin(i915, bus_pin)) 2742 i915->vbt.crt_ddc_pin = bus_pin; 2743 2744 if (i915->vbt.version < 106) { 2745 expected_size = 22; 2746 } else if (i915->vbt.version < 111) { 2747 expected_size = 27; 2748 } else if (i915->vbt.version < 195) { 2749 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE; 2750 } else if (i915->vbt.version == 195) { 2751 expected_size = 37; 2752 } else if (i915->vbt.version <= 215) { 2753 expected_size = 38; 2754 } else if (i915->vbt.version <= 237) { 2755 expected_size = 39; 2756 } else { 2757 expected_size = sizeof(*child); 2758 BUILD_BUG_ON(sizeof(*child) < 39); 2759 drm_dbg(&i915->drm, 2760 "Expected child device config size for VBT version %u not known; assuming %u\n", 2761 i915->vbt.version, expected_size); 2762 } 2763 2764 /* Flag an error for unexpected size, but continue anyway. */ 2765 if (defs->child_dev_size != expected_size) 2766 drm_err(&i915->drm, 2767 "Unexpected child device config size %u (expected %u for VBT version %u)\n", 2768 defs->child_dev_size, expected_size, i915->vbt.version); 2769 2770 /* The legacy sized child device config is the minimum we need. */ 2771 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) { 2772 drm_dbg_kms(&i915->drm, 2773 "Child device config size %u is too small.\n", 2774 defs->child_dev_size); 2775 return; 2776 } 2777 2778 /* get the number of child device */ 2779 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size; 2780 2781 for (i = 0; i < child_device_num; i++) { 2782 child = child_device_ptr(defs, i); 2783 if (!child->device_type) 2784 continue; 2785 2786 drm_dbg_kms(&i915->drm, 2787 "Found VBT child device with type 0x%x\n", 2788 child->device_type); 2789 2790 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2791 if (!devdata) 2792 break; 2793 2794 devdata->i915 = i915; 2795 2796 /* 2797 * Copy as much as we know (sizeof) and is available 2798 * (child_dev_size) of the child device config. Accessing the 2799 * data must depend on VBT version. 2800 */ 2801 memcpy(&devdata->child, child, 2802 min_t(size_t, defs->child_dev_size, sizeof(*child))); 2803 2804 list_add_tail(&devdata->node, &i915->vbt.display_devices); 2805 } 2806 2807 if (list_empty(&i915->vbt.display_devices)) 2808 drm_dbg_kms(&i915->drm, 2809 "no child dev is parsed from VBT\n"); 2810 } 2811 2812 /* Common defaults which may be overridden by VBT. */ 2813 static void 2814 init_vbt_defaults(struct drm_i915_private *i915) 2815 { 2816 i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; 2817 2818 /* general features */ 2819 i915->vbt.int_tv_support = 1; 2820 i915->vbt.int_crt_support = 1; 2821 2822 /* driver features */ 2823 i915->vbt.int_lvds_support = 1; 2824 2825 /* Default to using SSC */ 2826 i915->vbt.lvds_use_ssc = 1; 2827 /* 2828 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference 2829 * clock for LVDS. 2830 */ 2831 i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915, 2832 !HAS_PCH_SPLIT(i915)); 2833 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n", 2834 i915->vbt.lvds_ssc_freq); 2835 } 2836 2837 /* Common defaults which may be overridden by VBT. */ 2838 static void 2839 init_vbt_panel_defaults(struct intel_panel *panel) 2840 { 2841 /* Default to having backlight */ 2842 panel->vbt.backlight.present = true; 2843 2844 /* LFP panel data */ 2845 panel->vbt.lvds_dither = true; 2846 } 2847 2848 /* Defaults to initialize only if there is no VBT. */ 2849 static void 2850 init_vbt_missing_defaults(struct drm_i915_private *i915) 2851 { 2852 enum port port; 2853 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) | 2854 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F); 2855 2856 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915)) 2857 return; 2858 2859 for_each_port_masked(port, ports) { 2860 struct intel_bios_encoder_data *devdata; 2861 struct child_device_config *child; 2862 enum phy phy = intel_port_to_phy(i915, port); 2863 2864 /* 2865 * VBT has the TypeC mode (native,TBT/USB) and we don't want 2866 * to detect it. 2867 */ 2868 if (intel_phy_is_tc(i915, phy)) 2869 continue; 2870 2871 /* Create fake child device config */ 2872 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL); 2873 if (!devdata) 2874 break; 2875 2876 devdata->i915 = i915; 2877 child = &devdata->child; 2878 2879 if (port == PORT_F) 2880 child->dvo_port = DVO_PORT_HDMIF; 2881 else if (port == PORT_E) 2882 child->dvo_port = DVO_PORT_HDMIE; 2883 else 2884 child->dvo_port = DVO_PORT_HDMIA + port; 2885 2886 if (port != PORT_A && port != PORT_E) 2887 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING; 2888 2889 if (port != PORT_E) 2890 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT; 2891 2892 if (port == PORT_A) 2893 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR; 2894 2895 list_add_tail(&devdata->node, &i915->vbt.display_devices); 2896 2897 drm_dbg_kms(&i915->drm, 2898 "Generating default VBT child device with type 0x04%x on port %c\n", 2899 child->device_type, port_name(port)); 2900 } 2901 2902 /* Bypass some minimum baseline VBT version checks */ 2903 i915->vbt.version = 155; 2904 } 2905 2906 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt) 2907 { 2908 const void *_vbt = vbt; 2909 2910 return _vbt + vbt->bdb_offset; 2911 } 2912 2913 /** 2914 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT 2915 * @buf: pointer to a buffer to validate 2916 * @size: size of the buffer 2917 * 2918 * Returns true on valid VBT. 2919 */ 2920 bool intel_bios_is_valid_vbt(const void *buf, size_t size) 2921 { 2922 const struct vbt_header *vbt = buf; 2923 const struct bdb_header *bdb; 2924 2925 if (!vbt) 2926 return false; 2927 2928 if (sizeof(struct vbt_header) > size) { 2929 DRM_DEBUG_DRIVER("VBT header incomplete\n"); 2930 return false; 2931 } 2932 2933 if (memcmp(vbt->signature, "$VBT", 4)) { 2934 DRM_DEBUG_DRIVER("VBT invalid signature\n"); 2935 return false; 2936 } 2937 2938 if (vbt->vbt_size > size) { 2939 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n"); 2940 return false; 2941 } 2942 2943 size = vbt->vbt_size; 2944 2945 if (range_overflows_t(size_t, 2946 vbt->bdb_offset, 2947 sizeof(struct bdb_header), 2948 size)) { 2949 DRM_DEBUG_DRIVER("BDB header incomplete\n"); 2950 return false; 2951 } 2952 2953 bdb = get_bdb_header(vbt); 2954 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) { 2955 DRM_DEBUG_DRIVER("BDB incomplete\n"); 2956 return false; 2957 } 2958 2959 return vbt; 2960 } 2961 2962 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915) 2963 { 2964 u32 count, data, found, store = 0; 2965 u32 static_region, oprom_offset; 2966 u32 oprom_size = 0x200000; 2967 u16 vbt_size; 2968 u32 *vbt; 2969 2970 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS); 2971 static_region &= OPTIONROM_SPI_REGIONID_MASK; 2972 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region); 2973 2974 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET); 2975 oprom_offset &= OROM_OFFSET_MASK; 2976 2977 for (count = 0; count < oprom_size; count += 4) { 2978 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count); 2979 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 2980 2981 if (data == *((const u32 *)"$VBT")) { 2982 found = oprom_offset + count; 2983 break; 2984 } 2985 } 2986 2987 if (count >= oprom_size) 2988 goto err_not_found; 2989 2990 /* Get VBT size and allocate space for the VBT */ 2991 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + 2992 offsetof(struct vbt_header, vbt_size)); 2993 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 2994 vbt_size &= 0xffff; 2995 2996 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL); 2997 if (!vbt) 2998 goto err_not_found; 2999 3000 for (count = 0; count < vbt_size; count += 4) { 3001 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count); 3002 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER); 3003 *(vbt + store++) = data; 3004 } 3005 3006 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3007 goto err_free_vbt; 3008 3009 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n"); 3010 3011 return (struct vbt_header *)vbt; 3012 3013 err_free_vbt: 3014 kfree(vbt); 3015 err_not_found: 3016 return NULL; 3017 } 3018 3019 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915) 3020 { 3021 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 3022 void __iomem *p = NULL, *oprom; 3023 struct vbt_header *vbt; 3024 u16 vbt_size; 3025 size_t i, size; 3026 3027 oprom = pci_map_rom(pdev, &size); 3028 if (!oprom) 3029 return NULL; 3030 3031 /* Scour memory looking for the VBT signature. */ 3032 for (i = 0; i + 4 < size; i += 4) { 3033 if (ioread32(oprom + i) != *((const u32 *)"$VBT")) 3034 continue; 3035 3036 p = oprom + i; 3037 size -= i; 3038 break; 3039 } 3040 3041 if (!p) 3042 goto err_unmap_oprom; 3043 3044 if (sizeof(struct vbt_header) > size) { 3045 drm_dbg(&i915->drm, "VBT header incomplete\n"); 3046 goto err_unmap_oprom; 3047 } 3048 3049 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size)); 3050 if (vbt_size > size) { 3051 drm_dbg(&i915->drm, 3052 "VBT incomplete (vbt_size overflows)\n"); 3053 goto err_unmap_oprom; 3054 } 3055 3056 /* The rest will be validated by intel_bios_is_valid_vbt() */ 3057 vbt = kmalloc(vbt_size, GFP_KERNEL); 3058 if (!vbt) 3059 goto err_unmap_oprom; 3060 3061 memcpy_fromio(vbt, p, vbt_size); 3062 3063 if (!intel_bios_is_valid_vbt(vbt, vbt_size)) 3064 goto err_free_vbt; 3065 3066 pci_unmap_rom(pdev, oprom); 3067 3068 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n"); 3069 3070 return vbt; 3071 3072 err_free_vbt: 3073 kfree(vbt); 3074 err_unmap_oprom: 3075 pci_unmap_rom(pdev, oprom); 3076 3077 return NULL; 3078 } 3079 3080 /** 3081 * intel_bios_init - find VBT and initialize settings from the BIOS 3082 * @i915: i915 device instance 3083 * 3084 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT 3085 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also 3086 * initialize some defaults if the VBT is not present at all. 3087 */ 3088 void intel_bios_init(struct drm_i915_private *i915) 3089 { 3090 const struct vbt_header *vbt = i915->opregion.vbt; 3091 struct vbt_header *oprom_vbt = NULL; 3092 const struct bdb_header *bdb; 3093 3094 INIT_LIST_HEAD(&i915->vbt.display_devices); 3095 INIT_LIST_HEAD(&i915->vbt.bdb_blocks); 3096 3097 if (!HAS_DISPLAY(i915)) { 3098 drm_dbg_kms(&i915->drm, 3099 "Skipping VBT init due to disabled display.\n"); 3100 return; 3101 } 3102 3103 init_vbt_defaults(i915); 3104 3105 /* 3106 * If the OpRegion does not have VBT, look in SPI flash through MMIO or 3107 * PCI mapping 3108 */ 3109 if (!vbt && IS_DGFX(i915)) { 3110 oprom_vbt = spi_oprom_get_vbt(i915); 3111 vbt = oprom_vbt; 3112 } 3113 3114 if (!vbt) { 3115 oprom_vbt = oprom_get_vbt(i915); 3116 vbt = oprom_vbt; 3117 } 3118 3119 if (!vbt) 3120 goto out; 3121 3122 bdb = get_bdb_header(vbt); 3123 i915->vbt.version = bdb->version; 3124 3125 drm_dbg_kms(&i915->drm, 3126 "VBT signature \"%.*s\", BDB version %d\n", 3127 (int)sizeof(vbt->signature), vbt->signature, i915->vbt.version); 3128 3129 init_bdb_blocks(i915, bdb); 3130 3131 /* Grab useful general definitions */ 3132 parse_general_features(i915); 3133 parse_general_definitions(i915); 3134 parse_driver_features(i915); 3135 3136 /* Depends on child device list */ 3137 parse_compression_parameters(i915); 3138 3139 out: 3140 if (!vbt) { 3141 drm_info(&i915->drm, 3142 "Failed to find VBIOS tables (VBT)\n"); 3143 init_vbt_missing_defaults(i915); 3144 } 3145 3146 /* Further processing on pre-parsed or generated child device data */ 3147 parse_sdvo_device_mapping(i915); 3148 parse_ddi_ports(i915); 3149 3150 kfree(oprom_vbt); 3151 } 3152 3153 void intel_bios_init_panel(struct drm_i915_private *i915, 3154 struct intel_panel *panel, 3155 const struct intel_bios_encoder_data *devdata, 3156 const struct edid *edid) 3157 { 3158 init_vbt_panel_defaults(panel); 3159 3160 panel->vbt.panel_type = get_panel_type(i915, devdata, edid); 3161 3162 parse_panel_options(i915, panel); 3163 parse_generic_dtd(i915, panel); 3164 parse_lfp_data(i915, panel); 3165 parse_lfp_backlight(i915, panel); 3166 parse_sdvo_panel_data(i915, panel); 3167 parse_panel_driver_features(i915, panel); 3168 parse_power_conservation_features(i915, panel); 3169 parse_edp(i915, panel); 3170 parse_psr(i915, panel); 3171 parse_mipi_config(i915, panel); 3172 parse_mipi_sequence(i915, panel); 3173 } 3174 3175 /** 3176 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init() 3177 * @i915: i915 device instance 3178 */ 3179 void intel_bios_driver_remove(struct drm_i915_private *i915) 3180 { 3181 struct intel_bios_encoder_data *devdata, *nd; 3182 struct bdb_block_entry *entry, *ne; 3183 3184 list_for_each_entry_safe(devdata, nd, &i915->vbt.display_devices, node) { 3185 list_del(&devdata->node); 3186 kfree(devdata->dsc); 3187 kfree(devdata); 3188 } 3189 3190 list_for_each_entry_safe(entry, ne, &i915->vbt.bdb_blocks, node) { 3191 list_del(&entry->node); 3192 kfree(entry); 3193 } 3194 } 3195 3196 void intel_bios_fini_panel(struct intel_panel *panel) 3197 { 3198 kfree(panel->vbt.sdvo_lvds_vbt_mode); 3199 panel->vbt.sdvo_lvds_vbt_mode = NULL; 3200 kfree(panel->vbt.lfp_lvds_vbt_mode); 3201 panel->vbt.lfp_lvds_vbt_mode = NULL; 3202 kfree(panel->vbt.dsi.data); 3203 panel->vbt.dsi.data = NULL; 3204 kfree(panel->vbt.dsi.pps); 3205 panel->vbt.dsi.pps = NULL; 3206 kfree(panel->vbt.dsi.config); 3207 panel->vbt.dsi.config = NULL; 3208 kfree(panel->vbt.dsi.deassert_seq); 3209 panel->vbt.dsi.deassert_seq = NULL; 3210 } 3211 3212 /** 3213 * intel_bios_is_tv_present - is integrated TV present in VBT 3214 * @i915: i915 device instance 3215 * 3216 * Return true if TV is present. If no child devices were parsed from VBT, 3217 * assume TV is present. 3218 */ 3219 bool intel_bios_is_tv_present(struct drm_i915_private *i915) 3220 { 3221 const struct intel_bios_encoder_data *devdata; 3222 const struct child_device_config *child; 3223 3224 if (!i915->vbt.int_tv_support) 3225 return false; 3226 3227 if (list_empty(&i915->vbt.display_devices)) 3228 return true; 3229 3230 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3231 child = &devdata->child; 3232 3233 /* 3234 * If the device type is not TV, continue. 3235 */ 3236 switch (child->device_type) { 3237 case DEVICE_TYPE_INT_TV: 3238 case DEVICE_TYPE_TV: 3239 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE: 3240 break; 3241 default: 3242 continue; 3243 } 3244 /* Only when the addin_offset is non-zero, it is regarded 3245 * as present. 3246 */ 3247 if (child->addin_offset) 3248 return true; 3249 } 3250 3251 return false; 3252 } 3253 3254 /** 3255 * intel_bios_is_lvds_present - is LVDS present in VBT 3256 * @i915: i915 device instance 3257 * @i2c_pin: i2c pin for LVDS if present 3258 * 3259 * Return true if LVDS is present. If no child devices were parsed from VBT, 3260 * assume LVDS is present. 3261 */ 3262 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin) 3263 { 3264 const struct intel_bios_encoder_data *devdata; 3265 const struct child_device_config *child; 3266 3267 if (list_empty(&i915->vbt.display_devices)) 3268 return true; 3269 3270 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3271 child = &devdata->child; 3272 3273 /* If the device type is not LFP, continue. 3274 * We have to check both the new identifiers as well as the 3275 * old for compatibility with some BIOSes. 3276 */ 3277 if (child->device_type != DEVICE_TYPE_INT_LFP && 3278 child->device_type != DEVICE_TYPE_LFP) 3279 continue; 3280 3281 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin)) 3282 *i2c_pin = child->i2c_pin; 3283 3284 /* However, we cannot trust the BIOS writers to populate 3285 * the VBT correctly. Since LVDS requires additional 3286 * information from AIM blocks, a non-zero addin offset is 3287 * a good indicator that the LVDS is actually present. 3288 */ 3289 if (child->addin_offset) 3290 return true; 3291 3292 /* But even then some BIOS writers perform some black magic 3293 * and instantiate the device without reference to any 3294 * additional data. Trust that if the VBT was written into 3295 * the OpRegion then they have validated the LVDS's existence. 3296 */ 3297 if (i915->opregion.vbt) 3298 return true; 3299 } 3300 3301 return false; 3302 } 3303 3304 /** 3305 * intel_bios_is_port_present - is the specified digital port present 3306 * @i915: i915 device instance 3307 * @port: port to check 3308 * 3309 * Return true if the device in %port is present. 3310 */ 3311 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port) 3312 { 3313 if (WARN_ON(!has_ddi_port_info(i915))) 3314 return true; 3315 3316 return i915->vbt.ports[port]; 3317 } 3318 3319 /** 3320 * intel_bios_is_port_edp - is the device in given port eDP 3321 * @i915: i915 device instance 3322 * @port: port to check 3323 * 3324 * Return true if the device in %port is eDP. 3325 */ 3326 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port) 3327 { 3328 const struct intel_bios_encoder_data *devdata = 3329 intel_bios_encoder_data_lookup(i915, port); 3330 3331 return devdata && intel_bios_encoder_supports_edp(devdata); 3332 } 3333 3334 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata) 3335 { 3336 const struct child_device_config *child = &devdata->child; 3337 3338 if (!intel_bios_encoder_supports_dp(devdata) || 3339 !intel_bios_encoder_supports_hdmi(devdata)) 3340 return false; 3341 3342 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA) 3343 return true; 3344 3345 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */ 3346 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA && 3347 child->aux_channel != 0) 3348 return true; 3349 3350 return false; 3351 } 3352 3353 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915, 3354 enum port port) 3355 { 3356 const struct intel_bios_encoder_data *devdata = 3357 intel_bios_encoder_data_lookup(i915, port); 3358 3359 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata); 3360 } 3361 3362 /** 3363 * intel_bios_is_dsi_present - is DSI present in VBT 3364 * @i915: i915 device instance 3365 * @port: port for DSI if present 3366 * 3367 * Return true if DSI is present, and return the port in %port. 3368 */ 3369 bool intel_bios_is_dsi_present(struct drm_i915_private *i915, 3370 enum port *port) 3371 { 3372 const struct intel_bios_encoder_data *devdata; 3373 const struct child_device_config *child; 3374 u8 dvo_port; 3375 3376 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3377 child = &devdata->child; 3378 3379 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3380 continue; 3381 3382 dvo_port = child->dvo_port; 3383 3384 if (dvo_port == DVO_PORT_MIPIA || 3385 (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) || 3386 (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) { 3387 if (port) 3388 *port = dvo_port - DVO_PORT_MIPIA; 3389 return true; 3390 } else if (dvo_port == DVO_PORT_MIPIB || 3391 dvo_port == DVO_PORT_MIPIC || 3392 dvo_port == DVO_PORT_MIPID) { 3393 drm_dbg_kms(&i915->drm, 3394 "VBT has unsupported DSI port %c\n", 3395 port_name(dvo_port - DVO_PORT_MIPIA)); 3396 } 3397 } 3398 3399 return false; 3400 } 3401 3402 static void fill_dsc(struct intel_crtc_state *crtc_state, 3403 struct dsc_compression_parameters_entry *dsc, 3404 int dsc_max_bpc) 3405 { 3406 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 3407 int bpc = 8; 3408 3409 vdsc_cfg->dsc_version_major = dsc->version_major; 3410 vdsc_cfg->dsc_version_minor = dsc->version_minor; 3411 3412 if (dsc->support_12bpc && dsc_max_bpc >= 12) 3413 bpc = 12; 3414 else if (dsc->support_10bpc && dsc_max_bpc >= 10) 3415 bpc = 10; 3416 else if (dsc->support_8bpc && dsc_max_bpc >= 8) 3417 bpc = 8; 3418 else 3419 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n", 3420 dsc_max_bpc); 3421 3422 crtc_state->pipe_bpp = bpc * 3; 3423 3424 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp, 3425 VBT_DSC_MAX_BPP(dsc->max_bpp)); 3426 3427 /* 3428 * FIXME: This is ugly, and slice count should take DSC engine 3429 * throughput etc. into account. 3430 * 3431 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices. 3432 */ 3433 if (dsc->slices_per_line & BIT(2)) { 3434 crtc_state->dsc.slice_count = 4; 3435 } else if (dsc->slices_per_line & BIT(1)) { 3436 crtc_state->dsc.slice_count = 2; 3437 } else { 3438 /* FIXME */ 3439 if (!(dsc->slices_per_line & BIT(0))) 3440 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n"); 3441 3442 crtc_state->dsc.slice_count = 1; 3443 } 3444 3445 if (crtc_state->hw.adjusted_mode.crtc_hdisplay % 3446 crtc_state->dsc.slice_count != 0) 3447 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n", 3448 crtc_state->hw.adjusted_mode.crtc_hdisplay, 3449 crtc_state->dsc.slice_count); 3450 3451 /* 3452 * The VBT rc_buffer_block_size and rc_buffer_size definitions 3453 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63. 3454 */ 3455 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size, 3456 dsc->rc_buffer_size); 3457 3458 /* FIXME: DSI spec says bpc + 1 for this one */ 3459 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth); 3460 3461 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable; 3462 3463 vdsc_cfg->slice_height = dsc->slice_height; 3464 } 3465 3466 /* FIXME: initially DSI specific */ 3467 bool intel_bios_get_dsc_params(struct intel_encoder *encoder, 3468 struct intel_crtc_state *crtc_state, 3469 int dsc_max_bpc) 3470 { 3471 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3472 const struct intel_bios_encoder_data *devdata; 3473 const struct child_device_config *child; 3474 3475 list_for_each_entry(devdata, &i915->vbt.display_devices, node) { 3476 child = &devdata->child; 3477 3478 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT)) 3479 continue; 3480 3481 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) { 3482 if (!devdata->dsc) 3483 return false; 3484 3485 if (crtc_state) 3486 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc); 3487 3488 return true; 3489 } 3490 } 3491 3492 return false; 3493 } 3494 3495 /** 3496 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port 3497 * @i915: i915 device instance 3498 * @port: port to check 3499 * 3500 * Return true if HPD should be inverted for %port. 3501 */ 3502 bool 3503 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915, 3504 enum port port) 3505 { 3506 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3507 3508 if (drm_WARN_ON_ONCE(&i915->drm, 3509 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915))) 3510 return false; 3511 3512 return devdata && devdata->child.hpd_invert; 3513 } 3514 3515 /** 3516 * intel_bios_is_lspcon_present - if LSPCON is attached on %port 3517 * @i915: i915 device instance 3518 * @port: port to check 3519 * 3520 * Return true if LSPCON is present on this port 3521 */ 3522 bool 3523 intel_bios_is_lspcon_present(const struct drm_i915_private *i915, 3524 enum port port) 3525 { 3526 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3527 3528 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon; 3529 } 3530 3531 /** 3532 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port 3533 * @i915: i915 device instance 3534 * @port: port to check 3535 * 3536 * Return true if port requires lane reversal 3537 */ 3538 bool 3539 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915, 3540 enum port port) 3541 { 3542 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3543 3544 return devdata && devdata->child.lane_reversal; 3545 } 3546 3547 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915, 3548 enum port port) 3549 { 3550 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port]; 3551 enum aux_ch aux_ch; 3552 3553 if (!devdata || !devdata->child.aux_channel) { 3554 aux_ch = (enum aux_ch)port; 3555 3556 drm_dbg_kms(&i915->drm, 3557 "using AUX %c for port %c (platform default)\n", 3558 aux_ch_name(aux_ch), port_name(port)); 3559 return aux_ch; 3560 } 3561 3562 /* 3563 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D 3564 * map to DDI A,B,TC1,TC2 respectively. 3565 * 3566 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E 3567 * map to DDI A,TC1,TC2,TC3,TC4 respectively. 3568 */ 3569 switch (devdata->child.aux_channel) { 3570 case DP_AUX_A: 3571 aux_ch = AUX_CH_A; 3572 break; 3573 case DP_AUX_B: 3574 if (IS_ALDERLAKE_S(i915)) 3575 aux_ch = AUX_CH_USBC1; 3576 else 3577 aux_ch = AUX_CH_B; 3578 break; 3579 case DP_AUX_C: 3580 if (IS_ALDERLAKE_S(i915)) 3581 aux_ch = AUX_CH_USBC2; 3582 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3583 aux_ch = AUX_CH_USBC1; 3584 else 3585 aux_ch = AUX_CH_C; 3586 break; 3587 case DP_AUX_D: 3588 if (DISPLAY_VER(i915) == 13) 3589 aux_ch = AUX_CH_D_XELPD; 3590 else if (IS_ALDERLAKE_S(i915)) 3591 aux_ch = AUX_CH_USBC3; 3592 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) 3593 aux_ch = AUX_CH_USBC2; 3594 else 3595 aux_ch = AUX_CH_D; 3596 break; 3597 case DP_AUX_E: 3598 if (DISPLAY_VER(i915) == 13) 3599 aux_ch = AUX_CH_E_XELPD; 3600 else if (IS_ALDERLAKE_S(i915)) 3601 aux_ch = AUX_CH_USBC4; 3602 else 3603 aux_ch = AUX_CH_E; 3604 break; 3605 case DP_AUX_F: 3606 if (DISPLAY_VER(i915) == 13) 3607 aux_ch = AUX_CH_USBC1; 3608 else 3609 aux_ch = AUX_CH_F; 3610 break; 3611 case DP_AUX_G: 3612 if (DISPLAY_VER(i915) == 13) 3613 aux_ch = AUX_CH_USBC2; 3614 else 3615 aux_ch = AUX_CH_G; 3616 break; 3617 case DP_AUX_H: 3618 if (DISPLAY_VER(i915) == 13) 3619 aux_ch = AUX_CH_USBC3; 3620 else 3621 aux_ch = AUX_CH_H; 3622 break; 3623 case DP_AUX_I: 3624 if (DISPLAY_VER(i915) == 13) 3625 aux_ch = AUX_CH_USBC4; 3626 else 3627 aux_ch = AUX_CH_I; 3628 break; 3629 default: 3630 MISSING_CASE(devdata->child.aux_channel); 3631 aux_ch = AUX_CH_A; 3632 break; 3633 } 3634 3635 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n", 3636 aux_ch_name(aux_ch), port_name(port)); 3637 3638 return aux_ch; 3639 } 3640 3641 int intel_bios_max_tmds_clock(struct intel_encoder *encoder) 3642 { 3643 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3644 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3645 3646 return _intel_bios_max_tmds_clock(devdata); 3647 } 3648 3649 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */ 3650 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder) 3651 { 3652 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3653 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3654 3655 return _intel_bios_hdmi_level_shift(devdata); 3656 } 3657 3658 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata) 3659 { 3660 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost) 3661 return 0; 3662 3663 return translate_iboost(devdata->child.dp_iboost_level); 3664 } 3665 3666 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata) 3667 { 3668 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost) 3669 return 0; 3670 3671 return translate_iboost(devdata->child.hdmi_iboost_level); 3672 } 3673 3674 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder) 3675 { 3676 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3677 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3678 3679 return _intel_bios_dp_max_link_rate(devdata); 3680 } 3681 3682 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder) 3683 { 3684 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 3685 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port]; 3686 3687 if (!devdata || !devdata->child.ddc_pin) 3688 return 0; 3689 3690 return map_ddc_pin(i915, devdata->child.ddc_pin); 3691 } 3692 3693 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata) 3694 { 3695 return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c; 3696 } 3697 3698 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata) 3699 { 3700 return devdata->i915->vbt.version >= 209 && devdata->child.tbt; 3701 } 3702 3703 const struct intel_bios_encoder_data * 3704 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port) 3705 { 3706 return i915->vbt.ports[port]; 3707 } 3708