xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright (C) 2012 Texas Instruments
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/component.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/module.h>
22 #include <linux/platform_data/tda9950.h>
23 #include <linux/irq.h>
24 #include <sound/asoundef.h>
25 #include <sound/hdmi-codec.h>
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_atomic_helper.h>
29 #include <drm/drm_crtc_helper.h>
30 #include <drm/drm_edid.h>
31 #include <drm/drm_of.h>
32 #include <drm/i2c/tda998x.h>
33 
34 #include <media/cec-notifier.h>
35 
36 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
37 
38 struct tda998x_audio_port {
39 	u8 format;		/* AFMT_xxx */
40 	u8 config;		/* AP value */
41 };
42 
43 struct tda998x_priv {
44 	struct i2c_client *cec;
45 	struct i2c_client *hdmi;
46 	struct mutex mutex;
47 	u16 rev;
48 	u8 cec_addr;
49 	u8 current_page;
50 	bool is_on;
51 	bool supports_infoframes;
52 	bool sink_has_audio;
53 	u8 vip_cntrl_0;
54 	u8 vip_cntrl_1;
55 	u8 vip_cntrl_2;
56 	unsigned long tmds_clock;
57 	struct tda998x_audio_params audio_params;
58 
59 	struct platform_device *audio_pdev;
60 	struct mutex audio_mutex;
61 
62 	struct mutex edid_mutex;
63 	wait_queue_head_t wq_edid;
64 	volatile int wq_edid_wait;
65 
66 	struct work_struct detect_work;
67 	struct timer_list edid_delay_timer;
68 	wait_queue_head_t edid_delay_waitq;
69 	bool edid_delay_active;
70 
71 	struct drm_encoder encoder;
72 	struct drm_connector connector;
73 
74 	struct tda998x_audio_port audio_port[2];
75 	struct tda9950_glue cec_glue;
76 	struct gpio_desc *calib;
77 	struct cec_notifier *cec_notify;
78 };
79 
80 #define conn_to_tda998x_priv(x) \
81 	container_of(x, struct tda998x_priv, connector)
82 
83 #define enc_to_tda998x_priv(x) \
84 	container_of(x, struct tda998x_priv, encoder)
85 
86 /* The TDA9988 series of devices use a paged register scheme.. to simplify
87  * things we encode the page # in upper bits of the register #.  To read/
88  * write a given register, we need to make sure CURPAGE register is set
89  * appropriately.  Which implies reads/writes are not atomic.  Fun!
90  */
91 
92 #define REG(page, addr) (((page) << 8) | (addr))
93 #define REG2ADDR(reg)   ((reg) & 0xff)
94 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
95 
96 #define REG_CURPAGE               0xff                /* write */
97 
98 
99 /* Page 00h: General Control */
100 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
101 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
102 # define MAIN_CNTRL0_SR           (1 << 0)
103 # define MAIN_CNTRL0_DECS         (1 << 1)
104 # define MAIN_CNTRL0_DEHS         (1 << 2)
105 # define MAIN_CNTRL0_CECS         (1 << 3)
106 # define MAIN_CNTRL0_CEHS         (1 << 4)
107 # define MAIN_CNTRL0_SCALER       (1 << 7)
108 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
109 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
110 # define SOFTRESET_AUDIO          (1 << 0)
111 # define SOFTRESET_I2C_MASTER     (1 << 1)
112 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
113 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
114 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
115 # define I2C_MASTER_DIS_MM        (1 << 0)
116 # define I2C_MASTER_DIS_FILT      (1 << 1)
117 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
118 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
119 # define FEAT_POWERDOWN_PREFILT   BIT(0)
120 # define FEAT_POWERDOWN_CSC       BIT(1)
121 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
122 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
123 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
124 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
125 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
126 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
127 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
128 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
129 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
130 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
131 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
132 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
133 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
134 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
135 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
136 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
137 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
138 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
139 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
140 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
141 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
142 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
143 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
144 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
145 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
146 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
147 # define VIP_CNTRL_3_X_TGL        (1 << 0)
148 # define VIP_CNTRL_3_H_TGL        (1 << 1)
149 # define VIP_CNTRL_3_V_TGL        (1 << 2)
150 # define VIP_CNTRL_3_EMB          (1 << 3)
151 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
152 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
153 # define VIP_CNTRL_3_DE_INT       (1 << 6)
154 # define VIP_CNTRL_3_EDGE         (1 << 7)
155 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
156 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
157 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
158 # define VIP_CNTRL_4_CCIR656      (1 << 4)
159 # define VIP_CNTRL_4_656_ALT      (1 << 5)
160 # define VIP_CNTRL_4_TST_656      (1 << 6)
161 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
162 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
163 # define VIP_CNTRL_5_CKCASE       (1 << 0)
164 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
165 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
166 # define MUX_AP_SELECT_I2S	  0x64
167 # define MUX_AP_SELECT_SPDIF	  0x40
168 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
169 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
170 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
171 # define MAT_CONTRL_MAT_BP        (1 << 2)
172 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
173 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
174 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
175 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
176 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
177 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
178 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
179 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
180 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
181 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
182 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
183 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
184 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
185 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
186 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
187 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
188 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
189 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
190 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
191 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
192 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
193 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
194 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
195 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
196 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
197 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
198 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
199 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
200 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
201 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
202 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
203 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
204 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
205 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
206 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
207 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
208 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
209 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
210 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
211 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
212 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
213 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
214 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
215 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
216 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
217 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
218 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
219 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
220 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
221 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
222 # define TBG_CNTRL_1_H_TGL        (1 << 0)
223 # define TBG_CNTRL_1_V_TGL        (1 << 1)
224 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
225 # define TBG_CNTRL_1_X_EXT        (1 << 3)
226 # define TBG_CNTRL_1_H_EXT        (1 << 4)
227 # define TBG_CNTRL_1_V_EXT        (1 << 5)
228 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
229 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
230 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
231 # define HVF_CNTRL_0_SM           (1 << 7)
232 # define HVF_CNTRL_0_RWB          (1 << 6)
233 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
234 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
235 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
236 # define HVF_CNTRL_1_FOR          (1 << 0)
237 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
238 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
239 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
240 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
241 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
242 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
243 # define I2S_FORMAT(x)            (((x) & 3) << 0)
244 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
245 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
246 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
247 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
248 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
249 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
250 
251 /* Page 02h: PLL settings */
252 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
253 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
254 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
255 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
256 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
257 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
258 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
259 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
260 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
261 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
262 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
263 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
264 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
265 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
266 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
267 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
268 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
269 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
270 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
271 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
272 # define AUDIO_DIV_SERCLK_1       0
273 # define AUDIO_DIV_SERCLK_2       1
274 # define AUDIO_DIV_SERCLK_4       2
275 # define AUDIO_DIV_SERCLK_8       3
276 # define AUDIO_DIV_SERCLK_16      4
277 # define AUDIO_DIV_SERCLK_32      5
278 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
279 # define SEL_CLK_SEL_CLK1         (1 << 0)
280 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
281 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
282 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
283 
284 
285 /* Page 09h: EDID Control */
286 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
287 /* next 127 successive registers are the EDID block */
288 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
289 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
290 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
291 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
292 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
293 
294 
295 /* Page 10h: information frames and packets */
296 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
297 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
298 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
299 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
300 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
301 
302 
303 /* Page 11h: audio settings and content info packets */
304 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
305 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
306 # define AIP_CNTRL_0_SWAP         (1 << 1)
307 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
308 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
309 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
310 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
311 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
312 # define CA_I2S_HBR_CHSTAT        (1 << 6)
313 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
314 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
315 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
316 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
317 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
318 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
319 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
320 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
321 # define CTS_N_K(x)               (((x) & 7) << 0)
322 # define CTS_N_M(x)               (((x) & 3) << 4)
323 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
324 # define ENC_CNTRL_RST_ENC        (1 << 0)
325 # define ENC_CNTRL_RST_SEL        (1 << 1)
326 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
327 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
328 # define DIP_FLAGS_ACR            (1 << 0)
329 # define DIP_FLAGS_GC             (1 << 1)
330 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
331 # define DIP_IF_FLAGS_IF1         (1 << 1)
332 # define DIP_IF_FLAGS_IF2         (1 << 2)
333 # define DIP_IF_FLAGS_IF3         (1 << 3)
334 # define DIP_IF_FLAGS_IF4         (1 << 4)
335 # define DIP_IF_FLAGS_IF5         (1 << 5)
336 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
337 
338 
339 /* Page 12h: HDCP and OTP */
340 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
341 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
342 # define TX4_PD_RAM               (1 << 1)
343 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
344 # define TX33_HDMI                (1 << 1)
345 
346 
347 /* Page 13h: Gamut related metadata packets */
348 
349 
350 
351 /* CEC registers: (not paged)
352  */
353 #define REG_CEC_INTSTATUS	  0xee		      /* read */
354 # define CEC_INTSTATUS_CEC	  (1 << 0)
355 # define CEC_INTSTATUS_HDMI	  (1 << 1)
356 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
357 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
358 #define REG_CEC_DES_FREQ2         0xf5
359 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
360 #define REG_CEC_CLK               0xf6
361 # define CEC_CLK_FRO              0x11
362 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
363 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
364 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
365 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
366 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
367 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
368 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
369 # define CEC_RXSHPDINT_RXSENS     BIT(0)
370 # define CEC_RXSHPDINT_HPD        BIT(1)
371 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
372 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
373 # define CEC_RXSHPDLEV_HPD        (1 << 1)
374 
375 #define REG_CEC_ENAMODS           0xff                /* read/write */
376 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
377 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
378 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
379 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
380 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
381 # define CEC_ENAMODS_EN_CEC       (1 << 0)
382 
383 
384 /* Device versions: */
385 #define TDA9989N2                 0x0101
386 #define TDA19989                  0x0201
387 #define TDA19989N2                0x0202
388 #define TDA19988                  0x0301
389 
390 static void
391 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
392 {
393 	u8 buf[] = {addr, val};
394 	struct i2c_msg msg = {
395 		.addr = priv->cec_addr,
396 		.len = 2,
397 		.buf = buf,
398 	};
399 	int ret;
400 
401 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
402 	if (ret < 0)
403 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
404 			ret, addr);
405 }
406 
407 static u8
408 cec_read(struct tda998x_priv *priv, u8 addr)
409 {
410 	u8 val;
411 	struct i2c_msg msg[2] = {
412 		{
413 			.addr = priv->cec_addr,
414 			.len = 1,
415 			.buf = &addr,
416 		}, {
417 			.addr = priv->cec_addr,
418 			.flags = I2C_M_RD,
419 			.len = 1,
420 			.buf = &val,
421 		},
422 	};
423 	int ret;
424 
425 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
426 	if (ret < 0) {
427 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
428 			ret, addr);
429 		val = 0;
430 	}
431 
432 	return val;
433 }
434 
435 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
436 {
437 	int val = cec_read(priv, REG_CEC_ENAMODS);
438 
439 	if (val < 0)
440 		return;
441 
442 	if (enable)
443 		val |= mods;
444 	else
445 		val &= ~mods;
446 
447 	cec_write(priv, REG_CEC_ENAMODS, val);
448 }
449 
450 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
451 {
452 	if (enable) {
453 		u8 val;
454 
455 		cec_write(priv, 0xf3, 0xc0);
456 		cec_write(priv, 0xf4, 0xd4);
457 
458 		/* Enable automatic calibration mode */
459 		val = cec_read(priv, REG_CEC_DES_FREQ2);
460 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
461 		cec_write(priv, REG_CEC_DES_FREQ2, val);
462 
463 		/* Enable free running oscillator */
464 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
465 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
466 
467 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
468 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
469 	} else {
470 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
471 	}
472 }
473 
474 /*
475  * Calibration for the internal oscillator: we need to set calibration mode,
476  * and then pulse the IRQ line low for a 10ms ± 1% period.
477  */
478 static void tda998x_cec_calibration(struct tda998x_priv *priv)
479 {
480 	struct gpio_desc *calib = priv->calib;
481 
482 	mutex_lock(&priv->edid_mutex);
483 	if (priv->hdmi->irq > 0)
484 		disable_irq(priv->hdmi->irq);
485 	gpiod_direction_output(calib, 1);
486 	tda998x_cec_set_calibration(priv, true);
487 
488 	local_irq_disable();
489 	gpiod_set_value(calib, 0);
490 	mdelay(10);
491 	gpiod_set_value(calib, 1);
492 	local_irq_enable();
493 
494 	tda998x_cec_set_calibration(priv, false);
495 	gpiod_direction_input(calib);
496 	if (priv->hdmi->irq > 0)
497 		enable_irq(priv->hdmi->irq);
498 	mutex_unlock(&priv->edid_mutex);
499 }
500 
501 static int tda998x_cec_hook_init(void *data)
502 {
503 	struct tda998x_priv *priv = data;
504 	struct gpio_desc *calib;
505 
506 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
507 	if (IS_ERR(calib)) {
508 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
509 			 PTR_ERR(calib));
510 		return PTR_ERR(calib);
511 	}
512 
513 	priv->calib = calib;
514 
515 	return 0;
516 }
517 
518 static void tda998x_cec_hook_exit(void *data)
519 {
520 	struct tda998x_priv *priv = data;
521 
522 	gpiod_put(priv->calib);
523 	priv->calib = NULL;
524 }
525 
526 static int tda998x_cec_hook_open(void *data)
527 {
528 	struct tda998x_priv *priv = data;
529 
530 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
531 	tda998x_cec_calibration(priv);
532 
533 	return 0;
534 }
535 
536 static void tda998x_cec_hook_release(void *data)
537 {
538 	struct tda998x_priv *priv = data;
539 
540 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
541 }
542 
543 static int
544 set_page(struct tda998x_priv *priv, u16 reg)
545 {
546 	if (REG2PAGE(reg) != priv->current_page) {
547 		struct i2c_client *client = priv->hdmi;
548 		u8 buf[] = {
549 				REG_CURPAGE, REG2PAGE(reg)
550 		};
551 		int ret = i2c_master_send(client, buf, sizeof(buf));
552 		if (ret < 0) {
553 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
554 					reg, ret);
555 			return ret;
556 		}
557 
558 		priv->current_page = REG2PAGE(reg);
559 	}
560 	return 0;
561 }
562 
563 static int
564 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
565 {
566 	struct i2c_client *client = priv->hdmi;
567 	u8 addr = REG2ADDR(reg);
568 	int ret;
569 
570 	mutex_lock(&priv->mutex);
571 	ret = set_page(priv, reg);
572 	if (ret < 0)
573 		goto out;
574 
575 	ret = i2c_master_send(client, &addr, sizeof(addr));
576 	if (ret < 0)
577 		goto fail;
578 
579 	ret = i2c_master_recv(client, buf, cnt);
580 	if (ret < 0)
581 		goto fail;
582 
583 	goto out;
584 
585 fail:
586 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
587 out:
588 	mutex_unlock(&priv->mutex);
589 	return ret;
590 }
591 
592 static void
593 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
594 {
595 	struct i2c_client *client = priv->hdmi;
596 	u8 buf[cnt+1];
597 	int ret;
598 
599 	buf[0] = REG2ADDR(reg);
600 	memcpy(&buf[1], p, cnt);
601 
602 	mutex_lock(&priv->mutex);
603 	ret = set_page(priv, reg);
604 	if (ret < 0)
605 		goto out;
606 
607 	ret = i2c_master_send(client, buf, cnt + 1);
608 	if (ret < 0)
609 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
610 out:
611 	mutex_unlock(&priv->mutex);
612 }
613 
614 static int
615 reg_read(struct tda998x_priv *priv, u16 reg)
616 {
617 	u8 val = 0;
618 	int ret;
619 
620 	ret = reg_read_range(priv, reg, &val, sizeof(val));
621 	if (ret < 0)
622 		return ret;
623 	return val;
624 }
625 
626 static void
627 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
628 {
629 	struct i2c_client *client = priv->hdmi;
630 	u8 buf[] = {REG2ADDR(reg), val};
631 	int ret;
632 
633 	mutex_lock(&priv->mutex);
634 	ret = set_page(priv, reg);
635 	if (ret < 0)
636 		goto out;
637 
638 	ret = i2c_master_send(client, buf, sizeof(buf));
639 	if (ret < 0)
640 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
641 out:
642 	mutex_unlock(&priv->mutex);
643 }
644 
645 static void
646 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
647 {
648 	struct i2c_client *client = priv->hdmi;
649 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
650 	int ret;
651 
652 	mutex_lock(&priv->mutex);
653 	ret = set_page(priv, reg);
654 	if (ret < 0)
655 		goto out;
656 
657 	ret = i2c_master_send(client, buf, sizeof(buf));
658 	if (ret < 0)
659 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
660 out:
661 	mutex_unlock(&priv->mutex);
662 }
663 
664 static void
665 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
666 {
667 	int old_val;
668 
669 	old_val = reg_read(priv, reg);
670 	if (old_val >= 0)
671 		reg_write(priv, reg, old_val | val);
672 }
673 
674 static void
675 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
676 {
677 	int old_val;
678 
679 	old_val = reg_read(priv, reg);
680 	if (old_val >= 0)
681 		reg_write(priv, reg, old_val & ~val);
682 }
683 
684 static void
685 tda998x_reset(struct tda998x_priv *priv)
686 {
687 	/* reset audio and i2c master: */
688 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
689 	msleep(50);
690 	reg_write(priv, REG_SOFTRESET, 0);
691 	msleep(50);
692 
693 	/* reset transmitter: */
694 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
695 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
696 
697 	/* PLL registers common configuration */
698 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
699 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
700 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
701 	reg_write(priv, REG_SERIALIZER,   0x00);
702 	reg_write(priv, REG_BUFFER_OUT,   0x00);
703 	reg_write(priv, REG_PLL_SCG1,     0x00);
704 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
705 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
706 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
707 	reg_write(priv, REG_PLL_SCGN2,    0x00);
708 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
709 	reg_write(priv, REG_PLL_SCGR2,    0x00);
710 	reg_write(priv, REG_PLL_SCG2,     0x10);
711 
712 	/* Write the default value MUX register */
713 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
714 }
715 
716 /*
717  * The TDA998x has a problem when trying to read the EDID close to a
718  * HPD assertion: it needs a delay of 100ms to avoid timing out while
719  * trying to read EDID data.
720  *
721  * However, tda998x_connector_get_modes() may be called at any moment
722  * after tda998x_connector_detect() indicates that we are connected, so
723  * we need to delay probing modes in tda998x_connector_get_modes() after
724  * we have seen a HPD inactive->active transition.  This code implements
725  * that delay.
726  */
727 static void tda998x_edid_delay_done(struct timer_list *t)
728 {
729 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
730 
731 	priv->edid_delay_active = false;
732 	wake_up(&priv->edid_delay_waitq);
733 	schedule_work(&priv->detect_work);
734 }
735 
736 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
737 {
738 	priv->edid_delay_active = true;
739 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
740 }
741 
742 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
743 {
744 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
745 }
746 
747 /*
748  * We need to run the KMS hotplug event helper outside of our threaded
749  * interrupt routine as this can call back into our get_modes method,
750  * which will want to make use of interrupts.
751  */
752 static void tda998x_detect_work(struct work_struct *work)
753 {
754 	struct tda998x_priv *priv =
755 		container_of(work, struct tda998x_priv, detect_work);
756 	struct drm_device *dev = priv->encoder.dev;
757 
758 	if (dev)
759 		drm_kms_helper_hotplug_event(dev);
760 }
761 
762 /*
763  * only 2 interrupts may occur: screen plug/unplug and EDID read
764  */
765 static irqreturn_t tda998x_irq_thread(int irq, void *data)
766 {
767 	struct tda998x_priv *priv = data;
768 	u8 sta, cec, lvl, flag0, flag1, flag2;
769 	bool handled = false;
770 
771 	sta = cec_read(priv, REG_CEC_INTSTATUS);
772 	if (sta & CEC_INTSTATUS_HDMI) {
773 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
774 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
775 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
776 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
777 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
778 		DRM_DEBUG_DRIVER(
779 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
780 			sta, cec, lvl, flag0, flag1, flag2);
781 
782 		if (cec & CEC_RXSHPDINT_HPD) {
783 			if (lvl & CEC_RXSHPDLEV_HPD) {
784 				tda998x_edid_delay_start(priv);
785 			} else {
786 				schedule_work(&priv->detect_work);
787 				cec_notifier_set_phys_addr(priv->cec_notify,
788 						   CEC_PHYS_ADDR_INVALID);
789 			}
790 
791 			handled = true;
792 		}
793 
794 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
795 			priv->wq_edid_wait = 0;
796 			wake_up(&priv->wq_edid);
797 			handled = true;
798 		}
799 	}
800 
801 	return IRQ_RETVAL(handled);
802 }
803 
804 static void
805 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
806 		 union hdmi_infoframe *frame)
807 {
808 	u8 buf[32];
809 	ssize_t len;
810 
811 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
812 	if (len < 0) {
813 		dev_err(&priv->hdmi->dev,
814 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
815 			frame->any.type, len);
816 		return;
817 	}
818 
819 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
820 	reg_write_range(priv, addr, buf, len);
821 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
822 }
823 
824 static int tda998x_write_aif(struct tda998x_priv *priv,
825 			     struct hdmi_audio_infoframe *cea)
826 {
827 	union hdmi_infoframe frame;
828 
829 	frame.audio = *cea;
830 
831 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
832 
833 	return 0;
834 }
835 
836 static void
837 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
838 {
839 	union hdmi_infoframe frame;
840 
841 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode, false);
842 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
843 
844 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
845 }
846 
847 /* Audio support */
848 
849 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
850 {
851 	if (on) {
852 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
853 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
854 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
855 	} else {
856 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
857 	}
858 }
859 
860 static int
861 tda998x_configure_audio(struct tda998x_priv *priv,
862 			struct tda998x_audio_params *params)
863 {
864 	u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
865 	u32 n;
866 
867 	/* Enable audio ports */
868 	reg_write(priv, REG_ENA_AP, params->config);
869 
870 	/* Set audio input source */
871 	switch (params->format) {
872 	case AFMT_SPDIF:
873 		reg_write(priv, REG_ENA_ACLK, 0);
874 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
875 		clksel_aip = AIP_CLKSEL_AIP_SPDIF;
876 		clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
877 		cts_n = CTS_N_M(3) | CTS_N_K(3);
878 		break;
879 
880 	case AFMT_I2S:
881 		reg_write(priv, REG_ENA_ACLK, 1);
882 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
883 		clksel_aip = AIP_CLKSEL_AIP_I2S;
884 		clksel_fs = AIP_CLKSEL_FS_ACLK;
885 		switch (params->sample_width) {
886 		case 16:
887 			cts_n = CTS_N_M(3) | CTS_N_K(1);
888 			break;
889 		case 18:
890 		case 20:
891 		case 24:
892 			cts_n = CTS_N_M(3) | CTS_N_K(2);
893 			break;
894 		default:
895 		case 32:
896 			cts_n = CTS_N_M(3) | CTS_N_K(3);
897 			break;
898 		}
899 		break;
900 
901 	default:
902 		dev_err(&priv->hdmi->dev, "Unsupported I2S format\n");
903 		return -EINVAL;
904 	}
905 
906 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
907 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
908 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
909 	reg_write(priv, REG_CTS_N, cts_n);
910 
911 	/*
912 	 * Audio input somehow depends on HDMI line rate which is
913 	 * related to pixclk. Testing showed that modes with pixclk
914 	 * >100MHz need a larger divider while <40MHz need the default.
915 	 * There is no detailed info in the datasheet, so we just
916 	 * assume 100MHz requires larger divider.
917 	 */
918 	adiv = AUDIO_DIV_SERCLK_8;
919 	if (priv->tmds_clock > 100000)
920 		adiv++;			/* AUDIO_DIV_SERCLK_16 */
921 
922 	/* S/PDIF asks for a larger divider */
923 	if (params->format == AFMT_SPDIF)
924 		adiv++;			/* AUDIO_DIV_SERCLK_16 or _32 */
925 
926 	reg_write(priv, REG_AUDIO_DIV, adiv);
927 
928 	/*
929 	 * This is the approximate value of N, which happens to be
930 	 * the recommended values for non-coherent clocks.
931 	 */
932 	n = 128 * params->sample_rate / 1000;
933 
934 	/* Write the CTS and N values */
935 	buf[0] = 0x44;
936 	buf[1] = 0x42;
937 	buf[2] = 0x01;
938 	buf[3] = n;
939 	buf[4] = n >> 8;
940 	buf[5] = n >> 16;
941 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
942 
943 	/* Set CTS clock reference */
944 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
945 
946 	/* Reset CTS generator */
947 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
948 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
949 
950 	/* Write the channel status
951 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
952 	 * there is a separate register for each I2S wire.
953 	 */
954 	buf[0] = params->status[0];
955 	buf[1] = params->status[1];
956 	buf[2] = params->status[3];
957 	buf[3] = params->status[4];
958 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
959 
960 	tda998x_audio_mute(priv, true);
961 	msleep(20);
962 	tda998x_audio_mute(priv, false);
963 
964 	return tda998x_write_aif(priv, &params->cea);
965 }
966 
967 static int tda998x_audio_hw_params(struct device *dev, void *data,
968 				   struct hdmi_codec_daifmt *daifmt,
969 				   struct hdmi_codec_params *params)
970 {
971 	struct tda998x_priv *priv = dev_get_drvdata(dev);
972 	int i, ret;
973 	struct tda998x_audio_params audio = {
974 		.sample_width = params->sample_width,
975 		.sample_rate = params->sample_rate,
976 		.cea = params->cea,
977 	};
978 
979 	memcpy(audio.status, params->iec.status,
980 	       min(sizeof(audio.status), sizeof(params->iec.status)));
981 
982 	switch (daifmt->fmt) {
983 	case HDMI_I2S:
984 		if (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
985 		    daifmt->bit_clk_master || daifmt->frame_clk_master) {
986 			dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
987 				daifmt->bit_clk_inv, daifmt->frame_clk_inv,
988 				daifmt->bit_clk_master,
989 				daifmt->frame_clk_master);
990 			return -EINVAL;
991 		}
992 		for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
993 			if (priv->audio_port[i].format == AFMT_I2S)
994 				audio.config = priv->audio_port[i].config;
995 		audio.format = AFMT_I2S;
996 		break;
997 	case HDMI_SPDIF:
998 		for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
999 			if (priv->audio_port[i].format == AFMT_SPDIF)
1000 				audio.config = priv->audio_port[i].config;
1001 		audio.format = AFMT_SPDIF;
1002 		break;
1003 	default:
1004 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1005 		return -EINVAL;
1006 	}
1007 
1008 	if (audio.config == 0) {
1009 		dev_err(dev, "%s: No audio configuration found\n", __func__);
1010 		return -EINVAL;
1011 	}
1012 
1013 	mutex_lock(&priv->audio_mutex);
1014 	if (priv->supports_infoframes && priv->sink_has_audio)
1015 		ret = tda998x_configure_audio(priv, &audio);
1016 	else
1017 		ret = 0;
1018 
1019 	if (ret == 0)
1020 		priv->audio_params = audio;
1021 	mutex_unlock(&priv->audio_mutex);
1022 
1023 	return ret;
1024 }
1025 
1026 static void tda998x_audio_shutdown(struct device *dev, void *data)
1027 {
1028 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1029 
1030 	mutex_lock(&priv->audio_mutex);
1031 
1032 	reg_write(priv, REG_ENA_AP, 0);
1033 
1034 	priv->audio_params.format = AFMT_UNUSED;
1035 
1036 	mutex_unlock(&priv->audio_mutex);
1037 }
1038 
1039 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1040 {
1041 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1042 
1043 	mutex_lock(&priv->audio_mutex);
1044 
1045 	tda998x_audio_mute(priv, enable);
1046 
1047 	mutex_unlock(&priv->audio_mutex);
1048 	return 0;
1049 }
1050 
1051 static int tda998x_audio_get_eld(struct device *dev, void *data,
1052 				 uint8_t *buf, size_t len)
1053 {
1054 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1055 
1056 	mutex_lock(&priv->audio_mutex);
1057 	memcpy(buf, priv->connector.eld,
1058 	       min(sizeof(priv->connector.eld), len));
1059 	mutex_unlock(&priv->audio_mutex);
1060 
1061 	return 0;
1062 }
1063 
1064 static const struct hdmi_codec_ops audio_codec_ops = {
1065 	.hw_params = tda998x_audio_hw_params,
1066 	.audio_shutdown = tda998x_audio_shutdown,
1067 	.digital_mute = tda998x_audio_digital_mute,
1068 	.get_eld = tda998x_audio_get_eld,
1069 };
1070 
1071 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1072 				    struct device *dev)
1073 {
1074 	struct hdmi_codec_pdata codec_data = {
1075 		.ops = &audio_codec_ops,
1076 		.max_i2s_channels = 2,
1077 	};
1078 	int i;
1079 
1080 	for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) {
1081 		if (priv->audio_port[i].format == AFMT_I2S &&
1082 		    priv->audio_port[i].config != 0)
1083 			codec_data.i2s = 1;
1084 		if (priv->audio_port[i].format == AFMT_SPDIF &&
1085 		    priv->audio_port[i].config != 0)
1086 			codec_data.spdif = 1;
1087 	}
1088 
1089 	priv->audio_pdev = platform_device_register_data(
1090 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1091 		&codec_data, sizeof(codec_data));
1092 
1093 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1094 }
1095 
1096 /* DRM connector functions */
1097 
1098 static int tda998x_connector_fill_modes(struct drm_connector *connector,
1099 					uint32_t maxX, uint32_t maxY)
1100 {
1101 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1102 	int ret;
1103 
1104 	mutex_lock(&priv->audio_mutex);
1105 	ret = drm_helper_probe_single_connector_modes(connector, maxX, maxY);
1106 
1107 	if (connector->edid_blob_ptr) {
1108 		struct edid *edid = (void *)connector->edid_blob_ptr->data;
1109 
1110 		cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1111 
1112 		priv->sink_has_audio = drm_detect_monitor_audio(edid);
1113 	} else {
1114 		priv->sink_has_audio = false;
1115 	}
1116 	mutex_unlock(&priv->audio_mutex);
1117 
1118 	return ret;
1119 }
1120 
1121 static enum drm_connector_status
1122 tda998x_connector_detect(struct drm_connector *connector, bool force)
1123 {
1124 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1125 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1126 
1127 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1128 			connector_status_disconnected;
1129 }
1130 
1131 static void tda998x_connector_destroy(struct drm_connector *connector)
1132 {
1133 	drm_connector_cleanup(connector);
1134 }
1135 
1136 static const struct drm_connector_funcs tda998x_connector_funcs = {
1137 	.dpms = drm_helper_connector_dpms,
1138 	.reset = drm_atomic_helper_connector_reset,
1139 	.fill_modes = tda998x_connector_fill_modes,
1140 	.detect = tda998x_connector_detect,
1141 	.destroy = tda998x_connector_destroy,
1142 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1143 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1144 };
1145 
1146 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1147 {
1148 	struct tda998x_priv *priv = data;
1149 	u8 offset, segptr;
1150 	int ret, i;
1151 
1152 	offset = (blk & 1) ? 128 : 0;
1153 	segptr = blk / 2;
1154 
1155 	mutex_lock(&priv->edid_mutex);
1156 
1157 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1158 	reg_write(priv, REG_DDC_OFFS, offset);
1159 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1160 	reg_write(priv, REG_DDC_SEGM, segptr);
1161 
1162 	/* enable reading EDID: */
1163 	priv->wq_edid_wait = 1;
1164 	reg_write(priv, REG_EDID_CTRL, 0x1);
1165 
1166 	/* flag must be cleared by sw: */
1167 	reg_write(priv, REG_EDID_CTRL, 0x0);
1168 
1169 	/* wait for block read to complete: */
1170 	if (priv->hdmi->irq) {
1171 		i = wait_event_timeout(priv->wq_edid,
1172 					!priv->wq_edid_wait,
1173 					msecs_to_jiffies(100));
1174 		if (i < 0) {
1175 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1176 			ret = i;
1177 			goto failed;
1178 		}
1179 	} else {
1180 		for (i = 100; i > 0; i--) {
1181 			msleep(1);
1182 			ret = reg_read(priv, REG_INT_FLAGS_2);
1183 			if (ret < 0)
1184 				goto failed;
1185 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1186 				break;
1187 		}
1188 	}
1189 
1190 	if (i == 0) {
1191 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1192 		ret = -ETIMEDOUT;
1193 		goto failed;
1194 	}
1195 
1196 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1197 	if (ret != length) {
1198 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1199 			blk, ret);
1200 		goto failed;
1201 	}
1202 
1203 	ret = 0;
1204 
1205  failed:
1206 	mutex_unlock(&priv->edid_mutex);
1207 	return ret;
1208 }
1209 
1210 static int tda998x_connector_get_modes(struct drm_connector *connector)
1211 {
1212 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1213 	struct edid *edid;
1214 	int n;
1215 
1216 	/*
1217 	 * If we get killed while waiting for the HPD timeout, return
1218 	 * no modes found: we are not in a restartable path, so we
1219 	 * can't handle signals gracefully.
1220 	 */
1221 	if (tda998x_edid_delay_wait(priv))
1222 		return 0;
1223 
1224 	if (priv->rev == TDA19988)
1225 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1226 
1227 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1228 
1229 	if (priv->rev == TDA19988)
1230 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1231 
1232 	if (!edid) {
1233 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1234 		return 0;
1235 	}
1236 
1237 	drm_mode_connector_update_edid_property(connector, edid);
1238 	n = drm_add_edid_modes(connector, edid);
1239 
1240 	kfree(edid);
1241 
1242 	return n;
1243 }
1244 
1245 static enum drm_mode_status tda998x_connector_mode_valid(struct drm_connector *connector,
1246 					struct drm_display_mode *mode)
1247 {
1248 	/* TDA19988 dotclock can go up to 165MHz */
1249 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1250 
1251 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1252 		return MODE_CLOCK_HIGH;
1253 	if (mode->htotal >= BIT(13))
1254 		return MODE_BAD_HVALUE;
1255 	if (mode->vtotal >= BIT(11))
1256 		return MODE_BAD_VVALUE;
1257 	return MODE_OK;
1258 }
1259 
1260 static struct drm_encoder *
1261 tda998x_connector_best_encoder(struct drm_connector *connector)
1262 {
1263 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1264 
1265 	return &priv->encoder;
1266 }
1267 
1268 static
1269 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1270 	.get_modes = tda998x_connector_get_modes,
1271 	.mode_valid = tda998x_connector_mode_valid,
1272 	.best_encoder = tda998x_connector_best_encoder,
1273 };
1274 
1275 static int tda998x_connector_init(struct tda998x_priv *priv,
1276 				  struct drm_device *drm)
1277 {
1278 	struct drm_connector *connector = &priv->connector;
1279 	int ret;
1280 
1281 	connector->interlace_allowed = 1;
1282 
1283 	if (priv->hdmi->irq)
1284 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1285 	else
1286 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1287 			DRM_CONNECTOR_POLL_DISCONNECT;
1288 
1289 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1290 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1291 				 DRM_MODE_CONNECTOR_HDMIA);
1292 	if (ret)
1293 		return ret;
1294 
1295 	drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
1296 
1297 	return 0;
1298 }
1299 
1300 /* DRM encoder functions */
1301 
1302 static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
1303 {
1304 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
1305 	bool on;
1306 
1307 	/* we only care about on or off: */
1308 	on = mode == DRM_MODE_DPMS_ON;
1309 
1310 	if (on == priv->is_on)
1311 		return;
1312 
1313 	if (on) {
1314 		/* enable video ports, audio will be enabled later */
1315 		reg_write(priv, REG_ENA_VP_0, 0xff);
1316 		reg_write(priv, REG_ENA_VP_1, 0xff);
1317 		reg_write(priv, REG_ENA_VP_2, 0xff);
1318 		/* set muxing after enabling ports: */
1319 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1320 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1321 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1322 
1323 		priv->is_on = true;
1324 	} else {
1325 		/* disable video ports */
1326 		reg_write(priv, REG_ENA_VP_0, 0x00);
1327 		reg_write(priv, REG_ENA_VP_1, 0x00);
1328 		reg_write(priv, REG_ENA_VP_2, 0x00);
1329 
1330 		priv->is_on = false;
1331 	}
1332 }
1333 
1334 static void
1335 tda998x_encoder_mode_set(struct drm_encoder *encoder,
1336 			 struct drm_display_mode *mode,
1337 			 struct drm_display_mode *adjusted_mode)
1338 {
1339 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
1340 	u16 ref_pix, ref_line, n_pix, n_line;
1341 	u16 hs_pix_s, hs_pix_e;
1342 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1343 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1344 	u16 vwin1_line_s, vwin1_line_e;
1345 	u16 vwin2_line_s, vwin2_line_e;
1346 	u16 de_pix_s, de_pix_e;
1347 	u8 reg, div, rep;
1348 
1349 	/*
1350 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1351 	 * we get VESA style sync. TDA998x is using a reference pixel
1352 	 * relative to ITU to sync to the input frame and for output
1353 	 * sync generation. Currently, we are using reference detection
1354 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1355 	 * which is position of rising VS with coincident rising HS.
1356 	 *
1357 	 * Now there is some issues to take care of:
1358 	 * - HDMI data islands require sync-before-active
1359 	 * - TDA998x register values must be > 0 to be enabled
1360 	 * - REFLINE needs an additional offset of +1
1361 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1362 	 *
1363 	 * So we add +1 to all horizontal and vertical register values,
1364 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1365 	 */
1366 	n_pix        = mode->htotal;
1367 	n_line       = mode->vtotal;
1368 
1369 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1370 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1371 	de_pix_e     = mode->htotal;
1372 	de_pix_s     = mode->htotal - mode->hdisplay;
1373 	ref_pix      = 3 + hs_pix_s;
1374 
1375 	/*
1376 	 * Attached LCD controllers may generate broken sync. Allow
1377 	 * those to adjust the position of the rising VS edge by adding
1378 	 * HSKEW to ref_pix.
1379 	 */
1380 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1381 		ref_pix += adjusted_mode->hskew;
1382 
1383 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1384 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1385 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1386 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1387 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1388 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1389 		vs1_line_e   = vs1_line_s +
1390 			       mode->vsync_end - mode->vsync_start;
1391 		vwin2_line_s = vwin2_line_e = 0;
1392 		vs2_pix_s    = vs2_pix_e  = 0;
1393 		vs2_line_s   = vs2_line_e = 0;
1394 	} else {
1395 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1396 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1397 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1398 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1399 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1400 		vs1_line_e   = vs1_line_s +
1401 			       (mode->vsync_end - mode->vsync_start)/2;
1402 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1403 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1404 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1405 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1406 		vs2_line_e   = vs2_line_s +
1407 			       (mode->vsync_end - mode->vsync_start)/2;
1408 	}
1409 
1410 	div = 148500 / mode->clock;
1411 	if (div != 0) {
1412 		div--;
1413 		if (div > 3)
1414 			div = 3;
1415 	}
1416 
1417 	mutex_lock(&priv->audio_mutex);
1418 
1419 	/* mute the audio FIFO: */
1420 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1421 
1422 	/* set HDMI HDCP mode off: */
1423 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1424 	reg_clear(priv, REG_TX33, TX33_HDMI);
1425 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1426 
1427 	/* no pre-filter or interpolator: */
1428 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1429 			HVF_CNTRL_0_INTPOL(0));
1430 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1431 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1432 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1433 			VIP_CNTRL_4_BLC(0));
1434 
1435 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1436 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1437 					  PLL_SERIAL_3_SRL_DE);
1438 	reg_write(priv, REG_SERIALIZER, 0);
1439 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1440 
1441 	/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
1442 	rep = 0;
1443 	reg_write(priv, REG_RPT_CNTRL, 0);
1444 	reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
1445 			SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
1446 
1447 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1448 			PLL_SERIAL_2_SRL_PR(rep));
1449 
1450 	/* set color matrix bypass flag: */
1451 	reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1452 				MAT_CONTRL_MAT_SC(1));
1453 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1454 
1455 	/* set BIAS tmds value: */
1456 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1457 
1458 	/*
1459 	 * Sync on rising HSYNC/VSYNC
1460 	 */
1461 	reg = VIP_CNTRL_3_SYNC_HS;
1462 
1463 	/*
1464 	 * TDA19988 requires high-active sync at input stage,
1465 	 * so invert low-active sync provided by master encoder here
1466 	 */
1467 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1468 		reg |= VIP_CNTRL_3_H_TGL;
1469 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1470 		reg |= VIP_CNTRL_3_V_TGL;
1471 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1472 
1473 	reg_write(priv, REG_VIDFORMAT, 0x00);
1474 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1475 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1476 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1477 	reg_write16(priv, REG_NLINE_MSB, n_line);
1478 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1479 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1480 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1481 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1482 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1483 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1484 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1485 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1486 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1487 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1488 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1489 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1490 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1491 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1492 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1493 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1494 
1495 	if (priv->rev == TDA19988) {
1496 		/* let incoming pixels fill the active space (if any) */
1497 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1498 	}
1499 
1500 	/*
1501 	 * Always generate sync polarity relative to input sync and
1502 	 * revert input stage toggled sync at output stage
1503 	 */
1504 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1505 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1506 		reg |= TBG_CNTRL_1_H_TGL;
1507 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1508 		reg |= TBG_CNTRL_1_V_TGL;
1509 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1510 
1511 	/* must be last register set: */
1512 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1513 
1514 	priv->tmds_clock = adjusted_mode->clock;
1515 
1516 	/* CEA-861B section 6 says that:
1517 	 * CEA version 1 (CEA-861) has no support for infoframes.
1518 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1519 	 * and optional basic audio.
1520 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1521 	 * and optional digital audio, with audio infoframes.
1522 	 *
1523 	 * Since we only support generation of version 2 AVI infoframes,
1524 	 * ignore CEA version 2 and below (iow, behave as if we're a
1525 	 * CEA-861 source.)
1526 	 */
1527 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1528 
1529 	if (priv->supports_infoframes) {
1530 		/* We need to turn HDMI HDCP stuff on to get audio through */
1531 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1532 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1533 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1534 		reg_set(priv, REG_TX33, TX33_HDMI);
1535 
1536 		tda998x_write_avi(priv, adjusted_mode);
1537 
1538 		if (priv->audio_params.format != AFMT_UNUSED &&
1539 		    priv->sink_has_audio)
1540 			tda998x_configure_audio(priv, &priv->audio_params);
1541 	}
1542 
1543 	mutex_unlock(&priv->audio_mutex);
1544 }
1545 
1546 static void tda998x_destroy(struct tda998x_priv *priv)
1547 {
1548 	/* disable all IRQs and free the IRQ handler */
1549 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1550 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1551 
1552 	if (priv->audio_pdev)
1553 		platform_device_unregister(priv->audio_pdev);
1554 
1555 	if (priv->hdmi->irq)
1556 		free_irq(priv->hdmi->irq, priv);
1557 
1558 	del_timer_sync(&priv->edid_delay_timer);
1559 	cancel_work_sync(&priv->detect_work);
1560 
1561 	i2c_unregister_device(priv->cec);
1562 
1563 	if (priv->cec_notify)
1564 		cec_notifier_put(priv->cec_notify);
1565 }
1566 
1567 /* I2C driver functions */
1568 
1569 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1570 				   struct device_node *np)
1571 {
1572 	const u32 *port_data;
1573 	u32 size;
1574 	int i;
1575 
1576 	port_data = of_get_property(np, "audio-ports", &size);
1577 	if (!port_data)
1578 		return 0;
1579 
1580 	size /= sizeof(u32);
1581 	if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) {
1582 		dev_err(&priv->hdmi->dev,
1583 			"Bad number of elements in audio-ports dt-property\n");
1584 		return -EINVAL;
1585 	}
1586 
1587 	size /= 2;
1588 
1589 	for (i = 0; i < size; i++) {
1590 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1591 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1592 
1593 		if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) {
1594 			dev_err(&priv->hdmi->dev,
1595 				"Bad audio format %u\n", afmt);
1596 			return -EINVAL;
1597 		}
1598 
1599 		priv->audio_port[i].format = afmt;
1600 		priv->audio_port[i].config = ena_ap;
1601 	}
1602 
1603 	if (priv->audio_port[0].format == priv->audio_port[1].format) {
1604 		dev_err(&priv->hdmi->dev,
1605 			"There can only be on I2S port and one SPDIF port\n");
1606 		return -EINVAL;
1607 	}
1608 	return 0;
1609 }
1610 
1611 static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
1612 {
1613 	struct device_node *np = client->dev.of_node;
1614 	struct i2c_board_info cec_info;
1615 	u32 video;
1616 	int rev_lo, rev_hi, ret;
1617 
1618 	mutex_init(&priv->mutex);	/* protect the page access */
1619 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1620 	mutex_init(&priv->edid_mutex);
1621 	init_waitqueue_head(&priv->edid_delay_waitq);
1622 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1623 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1624 
1625 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1626 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1627 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1628 
1629 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1630 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1631 	priv->current_page = 0xff;
1632 	priv->hdmi = client;
1633 
1634 	/* wake up the device: */
1635 	cec_write(priv, REG_CEC_ENAMODS,
1636 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1637 
1638 	tda998x_reset(priv);
1639 
1640 	/* read version: */
1641 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1642 	if (rev_lo < 0) {
1643 		dev_err(&client->dev, "failed to read version: %d\n", rev_lo);
1644 		return rev_lo;
1645 	}
1646 
1647 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1648 	if (rev_hi < 0) {
1649 		dev_err(&client->dev, "failed to read version: %d\n", rev_hi);
1650 		return rev_hi;
1651 	}
1652 
1653 	priv->rev = rev_lo | rev_hi << 8;
1654 
1655 	/* mask off feature bits: */
1656 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1657 
1658 	switch (priv->rev) {
1659 	case TDA9989N2:
1660 		dev_info(&client->dev, "found TDA9989 n2");
1661 		break;
1662 	case TDA19989:
1663 		dev_info(&client->dev, "found TDA19989");
1664 		break;
1665 	case TDA19989N2:
1666 		dev_info(&client->dev, "found TDA19989 n2");
1667 		break;
1668 	case TDA19988:
1669 		dev_info(&client->dev, "found TDA19988");
1670 		break;
1671 	default:
1672 		dev_err(&client->dev, "found unsupported device: %04x\n",
1673 			priv->rev);
1674 		return -ENXIO;
1675 	}
1676 
1677 	/* after reset, enable DDC: */
1678 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1679 
1680 	/* set clock on DDC channel: */
1681 	reg_write(priv, REG_TX3, 39);
1682 
1683 	/* if necessary, disable multi-master: */
1684 	if (priv->rev == TDA19989)
1685 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1686 
1687 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1688 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1689 
1690 	/* ensure interrupts are disabled */
1691 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1692 
1693 	/* clear pending interrupts */
1694 	cec_read(priv, REG_CEC_RXSHPDINT);
1695 	reg_read(priv, REG_INT_FLAGS_0);
1696 	reg_read(priv, REG_INT_FLAGS_1);
1697 	reg_read(priv, REG_INT_FLAGS_2);
1698 
1699 	/* initialize the optional IRQ */
1700 	if (client->irq) {
1701 		unsigned long irq_flags;
1702 
1703 		/* init read EDID waitqueue and HDP work */
1704 		init_waitqueue_head(&priv->wq_edid);
1705 
1706 		irq_flags =
1707 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1708 
1709 		priv->cec_glue.irq_flags = irq_flags;
1710 
1711 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1712 		ret = request_threaded_irq(client->irq, NULL,
1713 					   tda998x_irq_thread, irq_flags,
1714 					   "tda998x", priv);
1715 		if (ret) {
1716 			dev_err(&client->dev,
1717 				"failed to request IRQ#%u: %d\n",
1718 				client->irq, ret);
1719 			goto err_irq;
1720 		}
1721 
1722 		/* enable HPD irq */
1723 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1724 	}
1725 
1726 	priv->cec_notify = cec_notifier_get(&client->dev);
1727 	if (!priv->cec_notify) {
1728 		ret = -ENOMEM;
1729 		goto fail;
1730 	}
1731 
1732 	priv->cec_glue.parent = &client->dev;
1733 	priv->cec_glue.data = priv;
1734 	priv->cec_glue.init = tda998x_cec_hook_init;
1735 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1736 	priv->cec_glue.open = tda998x_cec_hook_open;
1737 	priv->cec_glue.release = tda998x_cec_hook_release;
1738 
1739 	/*
1740 	 * Some TDA998x are actually two I2C devices merged onto one piece
1741 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1742 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1743 	 * is at the TDA9950 address, with the address pins strapped across
1744 	 * to the TDA998x address pins.  Hence, it always has the same
1745 	 * offset.
1746 	 */
1747 	memset(&cec_info, 0, sizeof(cec_info));
1748 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1749 	cec_info.addr = priv->cec_addr;
1750 	cec_info.platform_data = &priv->cec_glue;
1751 	cec_info.irq = client->irq;
1752 
1753 	priv->cec = i2c_new_device(client->adapter, &cec_info);
1754 	if (!priv->cec) {
1755 		ret = -ENODEV;
1756 		goto fail;
1757 	}
1758 
1759 	/* enable EDID read irq: */
1760 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1761 
1762 	if (!np)
1763 		return 0;		/* non-DT */
1764 
1765 	/* get the device tree parameters */
1766 	ret = of_property_read_u32(np, "video-ports", &video);
1767 	if (ret == 0) {
1768 		priv->vip_cntrl_0 = video >> 16;
1769 		priv->vip_cntrl_1 = video >> 8;
1770 		priv->vip_cntrl_2 = video;
1771 	}
1772 
1773 	ret = tda998x_get_audio_ports(priv, np);
1774 	if (ret)
1775 		goto fail;
1776 
1777 	if (priv->audio_port[0].format != AFMT_UNUSED)
1778 		tda998x_audio_codec_init(priv, &client->dev);
1779 
1780 	return 0;
1781 
1782 fail:
1783 	/* if encoder_init fails, the encoder slave is never registered,
1784 	 * so cleanup here:
1785 	 */
1786 	i2c_unregister_device(priv->cec);
1787 	if (priv->cec_notify)
1788 		cec_notifier_put(priv->cec_notify);
1789 	if (client->irq)
1790 		free_irq(client->irq, priv);
1791 err_irq:
1792 	return ret;
1793 }
1794 
1795 static void tda998x_encoder_prepare(struct drm_encoder *encoder)
1796 {
1797 	tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
1798 }
1799 
1800 static void tda998x_encoder_commit(struct drm_encoder *encoder)
1801 {
1802 	tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
1803 }
1804 
1805 static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
1806 	.dpms = tda998x_encoder_dpms,
1807 	.prepare = tda998x_encoder_prepare,
1808 	.commit = tda998x_encoder_commit,
1809 	.mode_set = tda998x_encoder_mode_set,
1810 };
1811 
1812 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1813 {
1814 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
1815 
1816 	tda998x_destroy(priv);
1817 	drm_encoder_cleanup(encoder);
1818 }
1819 
1820 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1821 	.destroy = tda998x_encoder_destroy,
1822 };
1823 
1824 static void tda998x_set_config(struct tda998x_priv *priv,
1825 			       const struct tda998x_encoder_params *p)
1826 {
1827 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1828 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1829 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1830 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1831 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1832 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1833 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1834 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1835 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1836 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1837 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1838 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1839 
1840 	priv->audio_params = p->audio_params;
1841 }
1842 
1843 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1844 {
1845 	struct tda998x_encoder_params *params = dev->platform_data;
1846 	struct i2c_client *client = to_i2c_client(dev);
1847 	struct drm_device *drm = data;
1848 	struct tda998x_priv *priv;
1849 	u32 crtcs = 0;
1850 	int ret;
1851 
1852 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1853 	if (!priv)
1854 		return -ENOMEM;
1855 
1856 	dev_set_drvdata(dev, priv);
1857 
1858 	if (dev->of_node)
1859 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1860 
1861 	/* If no CRTCs were found, fall back to our old behaviour */
1862 	if (crtcs == 0) {
1863 		dev_warn(dev, "Falling back to first CRTC\n");
1864 		crtcs = 1 << 0;
1865 	}
1866 
1867 	priv->encoder.possible_crtcs = crtcs;
1868 
1869 	ret = tda998x_create(client, priv);
1870 	if (ret)
1871 		return ret;
1872 
1873 	if (!dev->of_node && params)
1874 		tda998x_set_config(priv, params);
1875 
1876 	drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
1877 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1878 			       DRM_MODE_ENCODER_TMDS, NULL);
1879 	if (ret)
1880 		goto err_encoder;
1881 
1882 	ret = tda998x_connector_init(priv, drm);
1883 	if (ret)
1884 		goto err_connector;
1885 
1886 	return 0;
1887 
1888 err_connector:
1889 	drm_encoder_cleanup(&priv->encoder);
1890 err_encoder:
1891 	tda998x_destroy(priv);
1892 	return ret;
1893 }
1894 
1895 static void tda998x_unbind(struct device *dev, struct device *master,
1896 			   void *data)
1897 {
1898 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1899 
1900 	drm_connector_cleanup(&priv->connector);
1901 	drm_encoder_cleanup(&priv->encoder);
1902 	tda998x_destroy(priv);
1903 }
1904 
1905 static const struct component_ops tda998x_ops = {
1906 	.bind = tda998x_bind,
1907 	.unbind = tda998x_unbind,
1908 };
1909 
1910 static int
1911 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1912 {
1913 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1914 		dev_warn(&client->dev, "adapter does not support I2C\n");
1915 		return -EIO;
1916 	}
1917 	return component_add(&client->dev, &tda998x_ops);
1918 }
1919 
1920 static int tda998x_remove(struct i2c_client *client)
1921 {
1922 	component_del(&client->dev, &tda998x_ops);
1923 	return 0;
1924 }
1925 
1926 #ifdef CONFIG_OF
1927 static const struct of_device_id tda998x_dt_ids[] = {
1928 	{ .compatible = "nxp,tda998x", },
1929 	{ }
1930 };
1931 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1932 #endif
1933 
1934 static const struct i2c_device_id tda998x_ids[] = {
1935 	{ "tda998x", 0 },
1936 	{ }
1937 };
1938 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1939 
1940 static struct i2c_driver tda998x_driver = {
1941 	.probe = tda998x_probe,
1942 	.remove = tda998x_remove,
1943 	.driver = {
1944 		.name = "tda998x",
1945 		.of_match_table = of_match_ptr(tda998x_dt_ids),
1946 	},
1947 	.id_table = tda998x_ids,
1948 };
1949 
1950 module_i2c_driver(tda998x_driver);
1951 
1952 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1953 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1954 MODULE_LICENSE("GPL");
1955