1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Texas Instruments 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #include <linux/component.h> 8 #include <linux/gpio/consumer.h> 9 #include <linux/hdmi.h> 10 #include <linux/module.h> 11 #include <linux/platform_data/tda9950.h> 12 #include <linux/irq.h> 13 #include <sound/asoundef.h> 14 #include <sound/hdmi-codec.h> 15 16 #include <drm/drm_atomic_helper.h> 17 #include <drm/drm_bridge.h> 18 #include <drm/drm_edid.h> 19 #include <drm/drm_of.h> 20 #include <drm/drm_print.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/i2c/tda998x.h> 23 24 #include <media/cec-notifier.h> 25 26 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) 27 28 enum { 29 AUDIO_ROUTE_I2S, 30 AUDIO_ROUTE_SPDIF, 31 AUDIO_ROUTE_NUM 32 }; 33 34 struct tda998x_audio_route { 35 u8 ena_aclk; 36 u8 mux_ap; 37 u8 aip_clksel; 38 }; 39 40 struct tda998x_audio_settings { 41 const struct tda998x_audio_route *route; 42 struct hdmi_audio_infoframe cea; 43 unsigned int sample_rate; 44 u8 status[5]; 45 u8 ena_ap; 46 u8 i2s_format; 47 u8 cts_n; 48 }; 49 50 struct tda998x_priv { 51 struct i2c_client *cec; 52 struct i2c_client *hdmi; 53 struct mutex mutex; 54 u16 rev; 55 u8 cec_addr; 56 u8 current_page; 57 bool is_on; 58 bool supports_infoframes; 59 bool sink_has_audio; 60 enum hdmi_quantization_range rgb_quant_range; 61 u8 vip_cntrl_0; 62 u8 vip_cntrl_1; 63 u8 vip_cntrl_2; 64 unsigned long tmds_clock; 65 struct tda998x_audio_settings audio; 66 67 struct platform_device *audio_pdev; 68 struct mutex audio_mutex; 69 70 struct mutex edid_mutex; 71 wait_queue_head_t wq_edid; 72 volatile int wq_edid_wait; 73 74 struct work_struct detect_work; 75 struct timer_list edid_delay_timer; 76 wait_queue_head_t edid_delay_waitq; 77 bool edid_delay_active; 78 79 struct drm_encoder encoder; 80 struct drm_bridge bridge; 81 struct drm_connector connector; 82 83 u8 audio_port_enable[AUDIO_ROUTE_NUM]; 84 struct tda9950_glue cec_glue; 85 struct gpio_desc *calib; 86 struct cec_notifier *cec_notify; 87 }; 88 89 #define conn_to_tda998x_priv(x) \ 90 container_of(x, struct tda998x_priv, connector) 91 #define enc_to_tda998x_priv(x) \ 92 container_of(x, struct tda998x_priv, encoder) 93 #define bridge_to_tda998x_priv(x) \ 94 container_of(x, struct tda998x_priv, bridge) 95 96 /* The TDA9988 series of devices use a paged register scheme.. to simplify 97 * things we encode the page # in upper bits of the register #. To read/ 98 * write a given register, we need to make sure CURPAGE register is set 99 * appropriately. Which implies reads/writes are not atomic. Fun! 100 */ 101 102 #define REG(page, addr) (((page) << 8) | (addr)) 103 #define REG2ADDR(reg) ((reg) & 0xff) 104 #define REG2PAGE(reg) (((reg) >> 8) & 0xff) 105 106 #define REG_CURPAGE 0xff /* write */ 107 108 109 /* Page 00h: General Control */ 110 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ 111 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ 112 # define MAIN_CNTRL0_SR (1 << 0) 113 # define MAIN_CNTRL0_DECS (1 << 1) 114 # define MAIN_CNTRL0_DEHS (1 << 2) 115 # define MAIN_CNTRL0_CECS (1 << 3) 116 # define MAIN_CNTRL0_CEHS (1 << 4) 117 # define MAIN_CNTRL0_SCALER (1 << 7) 118 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ 119 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ 120 # define SOFTRESET_AUDIO (1 << 0) 121 # define SOFTRESET_I2C_MASTER (1 << 1) 122 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ 123 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ 124 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ 125 # define I2C_MASTER_DIS_MM (1 << 0) 126 # define I2C_MASTER_DIS_FILT (1 << 1) 127 # define I2C_MASTER_APP_STRT_LAT (1 << 2) 128 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ 129 # define FEAT_POWERDOWN_PREFILT BIT(0) 130 # define FEAT_POWERDOWN_CSC BIT(1) 131 # define FEAT_POWERDOWN_SPDIF (1 << 3) 132 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ 133 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ 134 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ 135 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) 136 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ 137 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ 138 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ 139 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ 140 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ 141 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ 142 # define VIP_CNTRL_0_MIRR_A (1 << 7) 143 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) 144 # define VIP_CNTRL_0_MIRR_B (1 << 3) 145 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) 146 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ 147 # define VIP_CNTRL_1_MIRR_C (1 << 7) 148 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) 149 # define VIP_CNTRL_1_MIRR_D (1 << 3) 150 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) 151 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ 152 # define VIP_CNTRL_2_MIRR_E (1 << 7) 153 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) 154 # define VIP_CNTRL_2_MIRR_F (1 << 3) 155 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) 156 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ 157 # define VIP_CNTRL_3_X_TGL (1 << 0) 158 # define VIP_CNTRL_3_H_TGL (1 << 1) 159 # define VIP_CNTRL_3_V_TGL (1 << 2) 160 # define VIP_CNTRL_3_EMB (1 << 3) 161 # define VIP_CNTRL_3_SYNC_DE (1 << 4) 162 # define VIP_CNTRL_3_SYNC_HS (1 << 5) 163 # define VIP_CNTRL_3_DE_INT (1 << 6) 164 # define VIP_CNTRL_3_EDGE (1 << 7) 165 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ 166 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) 167 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) 168 # define VIP_CNTRL_4_CCIR656 (1 << 4) 169 # define VIP_CNTRL_4_656_ALT (1 << 5) 170 # define VIP_CNTRL_4_TST_656 (1 << 6) 171 # define VIP_CNTRL_4_TST_PAT (1 << 7) 172 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ 173 # define VIP_CNTRL_5_CKCASE (1 << 0) 174 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) 175 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ 176 # define MUX_AP_SELECT_I2S 0x64 177 # define MUX_AP_SELECT_SPDIF 0x40 178 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ 179 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ 180 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) 181 # define MAT_CONTRL_MAT_BP (1 << 2) 182 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ 183 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ 184 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ 185 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ 186 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ 187 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ 188 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ 189 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ 190 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ 191 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ 192 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ 193 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ 194 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ 195 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ 196 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ 197 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ 198 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ 199 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ 200 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ 201 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ 202 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ 203 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ 204 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ 205 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ 206 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ 207 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ 208 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ 209 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ 210 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ 211 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ 212 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ 213 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ 214 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ 215 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ 216 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ 217 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ 218 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ 219 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ 220 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ 221 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ 222 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ 223 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ 224 # define TBG_CNTRL_0_TOP_TGL (1 << 0) 225 # define TBG_CNTRL_0_TOP_SEL (1 << 1) 226 # define TBG_CNTRL_0_DE_EXT (1 << 2) 227 # define TBG_CNTRL_0_TOP_EXT (1 << 3) 228 # define TBG_CNTRL_0_FRAME_DIS (1 << 5) 229 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) 230 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) 231 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ 232 # define TBG_CNTRL_1_H_TGL (1 << 0) 233 # define TBG_CNTRL_1_V_TGL (1 << 1) 234 # define TBG_CNTRL_1_TGL_EN (1 << 2) 235 # define TBG_CNTRL_1_X_EXT (1 << 3) 236 # define TBG_CNTRL_1_H_EXT (1 << 4) 237 # define TBG_CNTRL_1_V_EXT (1 << 5) 238 # define TBG_CNTRL_1_DWIN_DIS (1 << 6) 239 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ 240 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ 241 # define HVF_CNTRL_0_SM (1 << 7) 242 # define HVF_CNTRL_0_RWB (1 << 6) 243 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) 244 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) 245 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ 246 # define HVF_CNTRL_1_FOR (1 << 0) 247 # define HVF_CNTRL_1_YUVBLK (1 << 1) 248 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) 249 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) 250 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) 251 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ 252 # define RPT_CNTRL_REPEAT(x) ((x) & 15) 253 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ 254 # define I2S_FORMAT_PHILIPS (0 << 0) 255 # define I2S_FORMAT_LEFT_J (2 << 0) 256 # define I2S_FORMAT_RIGHT_J (3 << 0) 257 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ 258 # define AIP_CLKSEL_AIP_SPDIF (0 << 3) 259 # define AIP_CLKSEL_AIP_I2S (1 << 3) 260 # define AIP_CLKSEL_FS_ACLK (0 << 0) 261 # define AIP_CLKSEL_FS_MCLK (1 << 0) 262 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0) 263 264 /* Page 02h: PLL settings */ 265 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ 266 # define PLL_SERIAL_1_SRL_FDN (1 << 0) 267 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) 268 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) 269 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ 270 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0) 271 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) 272 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ 273 # define PLL_SERIAL_3_SRL_CCIR (1 << 0) 274 # define PLL_SERIAL_3_SRL_DE (1 << 2) 275 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) 276 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ 277 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ 278 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ 279 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ 280 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ 281 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ 282 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ 283 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ 284 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ 285 # define AUDIO_DIV_SERCLK_1 0 286 # define AUDIO_DIV_SERCLK_2 1 287 # define AUDIO_DIV_SERCLK_4 2 288 # define AUDIO_DIV_SERCLK_8 3 289 # define AUDIO_DIV_SERCLK_16 4 290 # define AUDIO_DIV_SERCLK_32 5 291 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ 292 # define SEL_CLK_SEL_CLK1 (1 << 0) 293 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) 294 # define SEL_CLK_ENA_SC_CLK (1 << 3) 295 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ 296 297 298 /* Page 09h: EDID Control */ 299 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ 300 /* next 127 successive registers are the EDID block */ 301 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ 302 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ 303 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ 304 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ 305 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ 306 307 308 /* Page 10h: information frames and packets */ 309 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ 310 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ 311 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ 312 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ 313 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ 314 315 316 /* Page 11h: audio settings and content info packets */ 317 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ 318 # define AIP_CNTRL_0_RST_FIFO (1 << 0) 319 # define AIP_CNTRL_0_SWAP (1 << 1) 320 # define AIP_CNTRL_0_LAYOUT (1 << 2) 321 # define AIP_CNTRL_0_ACR_MAN (1 << 5) 322 # define AIP_CNTRL_0_RST_CTS (1 << 6) 323 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ 324 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) 325 # define CA_I2S_HBR_CHSTAT (1 << 6) 326 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ 327 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ 328 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ 329 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ 330 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ 331 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ 332 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ 333 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ 334 # define CTS_N_K(x) (((x) & 7) << 0) 335 # define CTS_N_M(x) (((x) & 3) << 4) 336 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ 337 # define ENC_CNTRL_RST_ENC (1 << 0) 338 # define ENC_CNTRL_RST_SEL (1 << 1) 339 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) 340 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ 341 # define DIP_FLAGS_ACR (1 << 0) 342 # define DIP_FLAGS_GC (1 << 1) 343 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ 344 # define DIP_IF_FLAGS_IF1 (1 << 1) 345 # define DIP_IF_FLAGS_IF2 (1 << 2) 346 # define DIP_IF_FLAGS_IF3 (1 << 3) 347 # define DIP_IF_FLAGS_IF4 (1 << 4) 348 # define DIP_IF_FLAGS_IF5 (1 << 5) 349 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ 350 351 352 /* Page 12h: HDCP and OTP */ 353 #define REG_TX3 REG(0x12, 0x9a) /* read/write */ 354 #define REG_TX4 REG(0x12, 0x9b) /* read/write */ 355 # define TX4_PD_RAM (1 << 1) 356 #define REG_TX33 REG(0x12, 0xb8) /* read/write */ 357 # define TX33_HDMI (1 << 1) 358 359 360 /* Page 13h: Gamut related metadata packets */ 361 362 363 364 /* CEC registers: (not paged) 365 */ 366 #define REG_CEC_INTSTATUS 0xee /* read */ 367 # define CEC_INTSTATUS_CEC (1 << 0) 368 # define CEC_INTSTATUS_HDMI (1 << 1) 369 #define REG_CEC_CAL_XOSC_CTRL1 0xf2 370 # define CEC_CAL_XOSC_CTRL1_ENA_CAL BIT(0) 371 #define REG_CEC_DES_FREQ2 0xf5 372 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7) 373 #define REG_CEC_CLK 0xf6 374 # define CEC_CLK_FRO 0x11 375 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ 376 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) 377 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) 378 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) 379 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) 380 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */ 381 #define REG_CEC_RXSHPDINT 0xfd /* read */ 382 # define CEC_RXSHPDINT_RXSENS BIT(0) 383 # define CEC_RXSHPDINT_HPD BIT(1) 384 #define REG_CEC_RXSHPDLEV 0xfe /* read */ 385 # define CEC_RXSHPDLEV_RXSENS (1 << 0) 386 # define CEC_RXSHPDLEV_HPD (1 << 1) 387 388 #define REG_CEC_ENAMODS 0xff /* read/write */ 389 # define CEC_ENAMODS_EN_CEC_CLK (1 << 7) 390 # define CEC_ENAMODS_DIS_FRO (1 << 6) 391 # define CEC_ENAMODS_DIS_CCLK (1 << 5) 392 # define CEC_ENAMODS_EN_RXSENS (1 << 2) 393 # define CEC_ENAMODS_EN_HDMI (1 << 1) 394 # define CEC_ENAMODS_EN_CEC (1 << 0) 395 396 397 /* Device versions: */ 398 #define TDA9989N2 0x0101 399 #define TDA19989 0x0201 400 #define TDA19989N2 0x0202 401 #define TDA19988 0x0301 402 403 static void 404 cec_write(struct tda998x_priv *priv, u16 addr, u8 val) 405 { 406 u8 buf[] = {addr, val}; 407 struct i2c_msg msg = { 408 .addr = priv->cec_addr, 409 .len = 2, 410 .buf = buf, 411 }; 412 int ret; 413 414 ret = i2c_transfer(priv->hdmi->adapter, &msg, 1); 415 if (ret < 0) 416 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n", 417 ret, addr); 418 } 419 420 static u8 421 cec_read(struct tda998x_priv *priv, u8 addr) 422 { 423 u8 val; 424 struct i2c_msg msg[2] = { 425 { 426 .addr = priv->cec_addr, 427 .len = 1, 428 .buf = &addr, 429 }, { 430 .addr = priv->cec_addr, 431 .flags = I2C_M_RD, 432 .len = 1, 433 .buf = &val, 434 }, 435 }; 436 int ret; 437 438 ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg)); 439 if (ret < 0) { 440 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n", 441 ret, addr); 442 val = 0; 443 } 444 445 return val; 446 } 447 448 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable) 449 { 450 int val = cec_read(priv, REG_CEC_ENAMODS); 451 452 if (val < 0) 453 return; 454 455 if (enable) 456 val |= mods; 457 else 458 val &= ~mods; 459 460 cec_write(priv, REG_CEC_ENAMODS, val); 461 } 462 463 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable) 464 { 465 if (enable) { 466 u8 val; 467 468 cec_write(priv, 0xf3, 0xc0); 469 cec_write(priv, 0xf4, 0xd4); 470 471 /* Enable automatic calibration mode */ 472 val = cec_read(priv, REG_CEC_DES_FREQ2); 473 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL; 474 cec_write(priv, REG_CEC_DES_FREQ2, val); 475 476 /* Enable free running oscillator */ 477 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO); 478 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false); 479 480 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 481 CEC_CAL_XOSC_CTRL1_ENA_CAL); 482 } else { 483 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0); 484 } 485 } 486 487 /* 488 * Calibration for the internal oscillator: we need to set calibration mode, 489 * and then pulse the IRQ line low for a 10ms ± 1% period. 490 */ 491 static void tda998x_cec_calibration(struct tda998x_priv *priv) 492 { 493 struct gpio_desc *calib = priv->calib; 494 495 mutex_lock(&priv->edid_mutex); 496 if (priv->hdmi->irq > 0) 497 disable_irq(priv->hdmi->irq); 498 gpiod_direction_output(calib, 1); 499 tda998x_cec_set_calibration(priv, true); 500 501 local_irq_disable(); 502 gpiod_set_value(calib, 0); 503 mdelay(10); 504 gpiod_set_value(calib, 1); 505 local_irq_enable(); 506 507 tda998x_cec_set_calibration(priv, false); 508 gpiod_direction_input(calib); 509 if (priv->hdmi->irq > 0) 510 enable_irq(priv->hdmi->irq); 511 mutex_unlock(&priv->edid_mutex); 512 } 513 514 static int tda998x_cec_hook_init(void *data) 515 { 516 struct tda998x_priv *priv = data; 517 struct gpio_desc *calib; 518 519 calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS); 520 if (IS_ERR(calib)) { 521 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n", 522 PTR_ERR(calib)); 523 return PTR_ERR(calib); 524 } 525 526 priv->calib = calib; 527 528 return 0; 529 } 530 531 static void tda998x_cec_hook_exit(void *data) 532 { 533 struct tda998x_priv *priv = data; 534 535 gpiod_put(priv->calib); 536 priv->calib = NULL; 537 } 538 539 static int tda998x_cec_hook_open(void *data) 540 { 541 struct tda998x_priv *priv = data; 542 543 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true); 544 tda998x_cec_calibration(priv); 545 546 return 0; 547 } 548 549 static void tda998x_cec_hook_release(void *data) 550 { 551 struct tda998x_priv *priv = data; 552 553 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false); 554 } 555 556 static int 557 set_page(struct tda998x_priv *priv, u16 reg) 558 { 559 if (REG2PAGE(reg) != priv->current_page) { 560 struct i2c_client *client = priv->hdmi; 561 u8 buf[] = { 562 REG_CURPAGE, REG2PAGE(reg) 563 }; 564 int ret = i2c_master_send(client, buf, sizeof(buf)); 565 if (ret < 0) { 566 dev_err(&client->dev, "%s %04x err %d\n", __func__, 567 reg, ret); 568 return ret; 569 } 570 571 priv->current_page = REG2PAGE(reg); 572 } 573 return 0; 574 } 575 576 static int 577 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt) 578 { 579 struct i2c_client *client = priv->hdmi; 580 u8 addr = REG2ADDR(reg); 581 int ret; 582 583 mutex_lock(&priv->mutex); 584 ret = set_page(priv, reg); 585 if (ret < 0) 586 goto out; 587 588 ret = i2c_master_send(client, &addr, sizeof(addr)); 589 if (ret < 0) 590 goto fail; 591 592 ret = i2c_master_recv(client, buf, cnt); 593 if (ret < 0) 594 goto fail; 595 596 goto out; 597 598 fail: 599 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); 600 out: 601 mutex_unlock(&priv->mutex); 602 return ret; 603 } 604 605 #define MAX_WRITE_RANGE_BUF 32 606 607 static void 608 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt) 609 { 610 struct i2c_client *client = priv->hdmi; 611 /* This is the maximum size of the buffer passed in */ 612 u8 buf[MAX_WRITE_RANGE_BUF + 1]; 613 int ret; 614 615 if (cnt > MAX_WRITE_RANGE_BUF) { 616 dev_err(&client->dev, "Fixed write buffer too small (%d)\n", 617 MAX_WRITE_RANGE_BUF); 618 return; 619 } 620 621 buf[0] = REG2ADDR(reg); 622 memcpy(&buf[1], p, cnt); 623 624 mutex_lock(&priv->mutex); 625 ret = set_page(priv, reg); 626 if (ret < 0) 627 goto out; 628 629 ret = i2c_master_send(client, buf, cnt + 1); 630 if (ret < 0) 631 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 632 out: 633 mutex_unlock(&priv->mutex); 634 } 635 636 static int 637 reg_read(struct tda998x_priv *priv, u16 reg) 638 { 639 u8 val = 0; 640 int ret; 641 642 ret = reg_read_range(priv, reg, &val, sizeof(val)); 643 if (ret < 0) 644 return ret; 645 return val; 646 } 647 648 static void 649 reg_write(struct tda998x_priv *priv, u16 reg, u8 val) 650 { 651 struct i2c_client *client = priv->hdmi; 652 u8 buf[] = {REG2ADDR(reg), val}; 653 int ret; 654 655 mutex_lock(&priv->mutex); 656 ret = set_page(priv, reg); 657 if (ret < 0) 658 goto out; 659 660 ret = i2c_master_send(client, buf, sizeof(buf)); 661 if (ret < 0) 662 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 663 out: 664 mutex_unlock(&priv->mutex); 665 } 666 667 static void 668 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val) 669 { 670 struct i2c_client *client = priv->hdmi; 671 u8 buf[] = {REG2ADDR(reg), val >> 8, val}; 672 int ret; 673 674 mutex_lock(&priv->mutex); 675 ret = set_page(priv, reg); 676 if (ret < 0) 677 goto out; 678 679 ret = i2c_master_send(client, buf, sizeof(buf)); 680 if (ret < 0) 681 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 682 out: 683 mutex_unlock(&priv->mutex); 684 } 685 686 static void 687 reg_set(struct tda998x_priv *priv, u16 reg, u8 val) 688 { 689 int old_val; 690 691 old_val = reg_read(priv, reg); 692 if (old_val >= 0) 693 reg_write(priv, reg, old_val | val); 694 } 695 696 static void 697 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val) 698 { 699 int old_val; 700 701 old_val = reg_read(priv, reg); 702 if (old_val >= 0) 703 reg_write(priv, reg, old_val & ~val); 704 } 705 706 static void 707 tda998x_reset(struct tda998x_priv *priv) 708 { 709 /* reset audio and i2c master: */ 710 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); 711 msleep(50); 712 reg_write(priv, REG_SOFTRESET, 0); 713 msleep(50); 714 715 /* reset transmitter: */ 716 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 717 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 718 719 /* PLL registers common configuration */ 720 reg_write(priv, REG_PLL_SERIAL_1, 0x00); 721 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); 722 reg_write(priv, REG_PLL_SERIAL_3, 0x00); 723 reg_write(priv, REG_SERIALIZER, 0x00); 724 reg_write(priv, REG_BUFFER_OUT, 0x00); 725 reg_write(priv, REG_PLL_SCG1, 0x00); 726 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); 727 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); 728 reg_write(priv, REG_PLL_SCGN1, 0xfa); 729 reg_write(priv, REG_PLL_SCGN2, 0x00); 730 reg_write(priv, REG_PLL_SCGR1, 0x5b); 731 reg_write(priv, REG_PLL_SCGR2, 0x00); 732 reg_write(priv, REG_PLL_SCG2, 0x10); 733 734 /* Write the default value MUX register */ 735 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24); 736 } 737 738 /* 739 * The TDA998x has a problem when trying to read the EDID close to a 740 * HPD assertion: it needs a delay of 100ms to avoid timing out while 741 * trying to read EDID data. 742 * 743 * However, tda998x_connector_get_modes() may be called at any moment 744 * after tda998x_connector_detect() indicates that we are connected, so 745 * we need to delay probing modes in tda998x_connector_get_modes() after 746 * we have seen a HPD inactive->active transition. This code implements 747 * that delay. 748 */ 749 static void tda998x_edid_delay_done(struct timer_list *t) 750 { 751 struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer); 752 753 priv->edid_delay_active = false; 754 wake_up(&priv->edid_delay_waitq); 755 schedule_work(&priv->detect_work); 756 } 757 758 static void tda998x_edid_delay_start(struct tda998x_priv *priv) 759 { 760 priv->edid_delay_active = true; 761 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10); 762 } 763 764 static int tda998x_edid_delay_wait(struct tda998x_priv *priv) 765 { 766 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active); 767 } 768 769 /* 770 * We need to run the KMS hotplug event helper outside of our threaded 771 * interrupt routine as this can call back into our get_modes method, 772 * which will want to make use of interrupts. 773 */ 774 static void tda998x_detect_work(struct work_struct *work) 775 { 776 struct tda998x_priv *priv = 777 container_of(work, struct tda998x_priv, detect_work); 778 struct drm_device *dev = priv->connector.dev; 779 780 if (dev) 781 drm_kms_helper_hotplug_event(dev); 782 } 783 784 /* 785 * only 2 interrupts may occur: screen plug/unplug and EDID read 786 */ 787 static irqreturn_t tda998x_irq_thread(int irq, void *data) 788 { 789 struct tda998x_priv *priv = data; 790 u8 sta, cec, lvl, flag0, flag1, flag2; 791 bool handled = false; 792 793 sta = cec_read(priv, REG_CEC_INTSTATUS); 794 if (sta & CEC_INTSTATUS_HDMI) { 795 cec = cec_read(priv, REG_CEC_RXSHPDINT); 796 lvl = cec_read(priv, REG_CEC_RXSHPDLEV); 797 flag0 = reg_read(priv, REG_INT_FLAGS_0); 798 flag1 = reg_read(priv, REG_INT_FLAGS_1); 799 flag2 = reg_read(priv, REG_INT_FLAGS_2); 800 DRM_DEBUG_DRIVER( 801 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n", 802 sta, cec, lvl, flag0, flag1, flag2); 803 804 if (cec & CEC_RXSHPDINT_HPD) { 805 if (lvl & CEC_RXSHPDLEV_HPD) { 806 tda998x_edid_delay_start(priv); 807 } else { 808 schedule_work(&priv->detect_work); 809 cec_notifier_phys_addr_invalidate( 810 priv->cec_notify); 811 } 812 813 handled = true; 814 } 815 816 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) { 817 priv->wq_edid_wait = 0; 818 wake_up(&priv->wq_edid); 819 handled = true; 820 } 821 } 822 823 return IRQ_RETVAL(handled); 824 } 825 826 static void 827 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr, 828 union hdmi_infoframe *frame) 829 { 830 u8 buf[MAX_WRITE_RANGE_BUF]; 831 ssize_t len; 832 833 len = hdmi_infoframe_pack(frame, buf, sizeof(buf)); 834 if (len < 0) { 835 dev_err(&priv->hdmi->dev, 836 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n", 837 frame->any.type, len); 838 return; 839 } 840 841 reg_clear(priv, REG_DIP_IF_FLAGS, bit); 842 reg_write_range(priv, addr, buf, len); 843 reg_set(priv, REG_DIP_IF_FLAGS, bit); 844 } 845 846 static void tda998x_write_aif(struct tda998x_priv *priv, 847 const struct hdmi_audio_infoframe *cea) 848 { 849 union hdmi_infoframe frame; 850 851 frame.audio = *cea; 852 853 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame); 854 } 855 856 static void 857 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode) 858 { 859 union hdmi_infoframe frame; 860 861 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, 862 &priv->connector, mode); 863 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; 864 drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode, 865 priv->rgb_quant_range); 866 867 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame); 868 } 869 870 static void tda998x_write_vsi(struct tda998x_priv *priv, 871 const struct drm_display_mode *mode) 872 { 873 union hdmi_infoframe frame; 874 875 if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, 876 &priv->connector, 877 mode)) 878 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1); 879 else 880 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame); 881 } 882 883 /* Audio support */ 884 885 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = { 886 [AUDIO_ROUTE_I2S] = { 887 .ena_aclk = 1, 888 .mux_ap = MUX_AP_SELECT_I2S, 889 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK, 890 }, 891 [AUDIO_ROUTE_SPDIF] = { 892 .ena_aclk = 0, 893 .mux_ap = MUX_AP_SELECT_SPDIF, 894 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF, 895 }, 896 }; 897 898 /* Configure the TDA998x audio data and clock routing. */ 899 static int tda998x_derive_routing(struct tda998x_priv *priv, 900 struct tda998x_audio_settings *s, 901 unsigned int route) 902 { 903 s->route = &tda998x_audio_route[route]; 904 s->ena_ap = priv->audio_port_enable[route]; 905 if (s->ena_ap == 0) { 906 dev_err(&priv->hdmi->dev, "no audio configuration found\n"); 907 return -EINVAL; 908 } 909 910 return 0; 911 } 912 913 /* 914 * The audio clock divisor register controls a divider producing Audio_Clk_Out 915 * from SERclk by dividing it by 2^n where 0 <= n <= 5. We don't know what 916 * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock. 917 * 918 * It seems that Audio_Clk_Out must be the smallest value that is greater 919 * than 128*fs, otherwise audio does not function. There is some suggestion 920 * that 126*fs is a better value. 921 */ 922 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs) 923 { 924 unsigned long min_audio_clk = fs * 128; 925 unsigned long ser_clk = priv->tmds_clock * 1000; 926 u8 adiv; 927 928 for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--) 929 if (ser_clk > min_audio_clk << adiv) 930 break; 931 932 dev_dbg(&priv->hdmi->dev, 933 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n", 934 ser_clk, fs, min_audio_clk, adiv); 935 936 return adiv; 937 } 938 939 /* 940 * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to 941 * generate the CTS value. It appears that the "measured time stamp" is 942 * the number of TDMS clock cycles within a number of audio input clock 943 * cycles defined by the k and N parameters defined below, in a similar 944 * way to that which is set out in the CTS generation in the HDMI spec. 945 * 946 * tmdsclk ----> mts -> /m ---> CTS 947 * ^ 948 * sclk -> /k -> /N 949 * 950 * CTS = mts / m, where m is 2^M. 951 * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4 952 * /N is a divider based on the HDMI specified N value. 953 * 954 * This produces the following equation: 955 * CTS = tmds_clock * k * N / (sclk * m) 956 * 957 * When combined with the sink-side equation, and realising that sclk is 958 * bclk_ratio * fs, we end up with: 959 * k = m * bclk_ratio / 128. 960 * 961 * Note: S/PDIF always uses a bclk_ratio of 64. 962 */ 963 static int tda998x_derive_cts_n(struct tda998x_priv *priv, 964 struct tda998x_audio_settings *settings, 965 unsigned int ratio) 966 { 967 switch (ratio) { 968 case 16: 969 settings->cts_n = CTS_N_M(3) | CTS_N_K(0); 970 break; 971 case 32: 972 settings->cts_n = CTS_N_M(3) | CTS_N_K(1); 973 break; 974 case 48: 975 settings->cts_n = CTS_N_M(3) | CTS_N_K(2); 976 break; 977 case 64: 978 settings->cts_n = CTS_N_M(3) | CTS_N_K(3); 979 break; 980 case 128: 981 settings->cts_n = CTS_N_M(0) | CTS_N_K(0); 982 break; 983 default: 984 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n", 985 ratio); 986 return -EINVAL; 987 } 988 return 0; 989 } 990 991 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on) 992 { 993 if (on) { 994 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 995 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 996 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 997 } else { 998 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 999 } 1000 } 1001 1002 static void tda998x_configure_audio(struct tda998x_priv *priv) 1003 { 1004 const struct tda998x_audio_settings *settings = &priv->audio; 1005 u8 buf[6], adiv; 1006 u32 n; 1007 1008 /* If audio is not configured, there is nothing to do. */ 1009 if (settings->ena_ap == 0) 1010 return; 1011 1012 adiv = tda998x_get_adiv(priv, settings->sample_rate); 1013 1014 /* Enable audio ports */ 1015 reg_write(priv, REG_ENA_AP, settings->ena_ap); 1016 reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk); 1017 reg_write(priv, REG_MUX_AP, settings->route->mux_ap); 1018 reg_write(priv, REG_I2S_FORMAT, settings->i2s_format); 1019 reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel); 1020 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT | 1021 AIP_CNTRL_0_ACR_MAN); /* auto CTS */ 1022 reg_write(priv, REG_CTS_N, settings->cts_n); 1023 reg_write(priv, REG_AUDIO_DIV, adiv); 1024 1025 /* 1026 * This is the approximate value of N, which happens to be 1027 * the recommended values for non-coherent clocks. 1028 */ 1029 n = 128 * settings->sample_rate / 1000; 1030 1031 /* Write the CTS and N values */ 1032 buf[0] = 0x44; 1033 buf[1] = 0x42; 1034 buf[2] = 0x01; 1035 buf[3] = n; 1036 buf[4] = n >> 8; 1037 buf[5] = n >> 16; 1038 reg_write_range(priv, REG_ACR_CTS_0, buf, 6); 1039 1040 /* Reset CTS generator */ 1041 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 1042 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 1043 1044 /* Write the channel status 1045 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because 1046 * there is a separate register for each I2S wire. 1047 */ 1048 buf[0] = settings->status[0]; 1049 buf[1] = settings->status[1]; 1050 buf[2] = settings->status[3]; 1051 buf[3] = settings->status[4]; 1052 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4); 1053 1054 tda998x_audio_mute(priv, true); 1055 msleep(20); 1056 tda998x_audio_mute(priv, false); 1057 1058 tda998x_write_aif(priv, &settings->cea); 1059 } 1060 1061 static int tda998x_audio_hw_params(struct device *dev, void *data, 1062 struct hdmi_codec_daifmt *daifmt, 1063 struct hdmi_codec_params *params) 1064 { 1065 struct tda998x_priv *priv = dev_get_drvdata(dev); 1066 unsigned int bclk_ratio; 1067 bool spdif = daifmt->fmt == HDMI_SPDIF; 1068 int ret; 1069 struct tda998x_audio_settings audio = { 1070 .sample_rate = params->sample_rate, 1071 .cea = params->cea, 1072 }; 1073 1074 memcpy(audio.status, params->iec.status, 1075 min(sizeof(audio.status), sizeof(params->iec.status))); 1076 1077 switch (daifmt->fmt) { 1078 case HDMI_I2S: 1079 audio.i2s_format = I2S_FORMAT_PHILIPS; 1080 break; 1081 case HDMI_LEFT_J: 1082 audio.i2s_format = I2S_FORMAT_LEFT_J; 1083 break; 1084 case HDMI_RIGHT_J: 1085 audio.i2s_format = I2S_FORMAT_RIGHT_J; 1086 break; 1087 case HDMI_SPDIF: 1088 audio.i2s_format = 0; 1089 break; 1090 default: 1091 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt); 1092 return -EINVAL; 1093 } 1094 1095 if (!spdif && 1096 (daifmt->bit_clk_inv || daifmt->frame_clk_inv || 1097 daifmt->bit_clk_master || daifmt->frame_clk_master)) { 1098 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, 1099 daifmt->bit_clk_inv, daifmt->frame_clk_inv, 1100 daifmt->bit_clk_master, 1101 daifmt->frame_clk_master); 1102 return -EINVAL; 1103 } 1104 1105 ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif); 1106 if (ret < 0) 1107 return ret; 1108 1109 bclk_ratio = spdif ? 64 : params->sample_width * 2; 1110 ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio); 1111 if (ret < 0) 1112 return ret; 1113 1114 mutex_lock(&priv->audio_mutex); 1115 priv->audio = audio; 1116 if (priv->supports_infoframes && priv->sink_has_audio) 1117 tda998x_configure_audio(priv); 1118 mutex_unlock(&priv->audio_mutex); 1119 1120 return 0; 1121 } 1122 1123 static void tda998x_audio_shutdown(struct device *dev, void *data) 1124 { 1125 struct tda998x_priv *priv = dev_get_drvdata(dev); 1126 1127 mutex_lock(&priv->audio_mutex); 1128 1129 reg_write(priv, REG_ENA_AP, 0); 1130 priv->audio.ena_ap = 0; 1131 1132 mutex_unlock(&priv->audio_mutex); 1133 } 1134 1135 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable) 1136 { 1137 struct tda998x_priv *priv = dev_get_drvdata(dev); 1138 1139 mutex_lock(&priv->audio_mutex); 1140 1141 tda998x_audio_mute(priv, enable); 1142 1143 mutex_unlock(&priv->audio_mutex); 1144 return 0; 1145 } 1146 1147 static int tda998x_audio_get_eld(struct device *dev, void *data, 1148 uint8_t *buf, size_t len) 1149 { 1150 struct tda998x_priv *priv = dev_get_drvdata(dev); 1151 1152 mutex_lock(&priv->audio_mutex); 1153 memcpy(buf, priv->connector.eld, 1154 min(sizeof(priv->connector.eld), len)); 1155 mutex_unlock(&priv->audio_mutex); 1156 1157 return 0; 1158 } 1159 1160 static const struct hdmi_codec_ops audio_codec_ops = { 1161 .hw_params = tda998x_audio_hw_params, 1162 .audio_shutdown = tda998x_audio_shutdown, 1163 .digital_mute = tda998x_audio_digital_mute, 1164 .get_eld = tda998x_audio_get_eld, 1165 }; 1166 1167 static int tda998x_audio_codec_init(struct tda998x_priv *priv, 1168 struct device *dev) 1169 { 1170 struct hdmi_codec_pdata codec_data = { 1171 .ops = &audio_codec_ops, 1172 .max_i2s_channels = 2, 1173 }; 1174 1175 if (priv->audio_port_enable[AUDIO_ROUTE_I2S]) 1176 codec_data.i2s = 1; 1177 if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) 1178 codec_data.spdif = 1; 1179 1180 priv->audio_pdev = platform_device_register_data( 1181 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, 1182 &codec_data, sizeof(codec_data)); 1183 1184 return PTR_ERR_OR_ZERO(priv->audio_pdev); 1185 } 1186 1187 /* DRM connector functions */ 1188 1189 static enum drm_connector_status 1190 tda998x_connector_detect(struct drm_connector *connector, bool force) 1191 { 1192 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1193 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV); 1194 1195 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : 1196 connector_status_disconnected; 1197 } 1198 1199 static void tda998x_connector_destroy(struct drm_connector *connector) 1200 { 1201 drm_connector_cleanup(connector); 1202 } 1203 1204 static const struct drm_connector_funcs tda998x_connector_funcs = { 1205 .reset = drm_atomic_helper_connector_reset, 1206 .fill_modes = drm_helper_probe_single_connector_modes, 1207 .detect = tda998x_connector_detect, 1208 .destroy = tda998x_connector_destroy, 1209 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 1210 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1211 }; 1212 1213 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length) 1214 { 1215 struct tda998x_priv *priv = data; 1216 u8 offset, segptr; 1217 int ret, i; 1218 1219 offset = (blk & 1) ? 128 : 0; 1220 segptr = blk / 2; 1221 1222 mutex_lock(&priv->edid_mutex); 1223 1224 reg_write(priv, REG_DDC_ADDR, 0xa0); 1225 reg_write(priv, REG_DDC_OFFS, offset); 1226 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60); 1227 reg_write(priv, REG_DDC_SEGM, segptr); 1228 1229 /* enable reading EDID: */ 1230 priv->wq_edid_wait = 1; 1231 reg_write(priv, REG_EDID_CTRL, 0x1); 1232 1233 /* flag must be cleared by sw: */ 1234 reg_write(priv, REG_EDID_CTRL, 0x0); 1235 1236 /* wait for block read to complete: */ 1237 if (priv->hdmi->irq) { 1238 i = wait_event_timeout(priv->wq_edid, 1239 !priv->wq_edid_wait, 1240 msecs_to_jiffies(100)); 1241 if (i < 0) { 1242 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i); 1243 ret = i; 1244 goto failed; 1245 } 1246 } else { 1247 for (i = 100; i > 0; i--) { 1248 msleep(1); 1249 ret = reg_read(priv, REG_INT_FLAGS_2); 1250 if (ret < 0) 1251 goto failed; 1252 if (ret & INT_FLAGS_2_EDID_BLK_RD) 1253 break; 1254 } 1255 } 1256 1257 if (i == 0) { 1258 dev_err(&priv->hdmi->dev, "read edid timeout\n"); 1259 ret = -ETIMEDOUT; 1260 goto failed; 1261 } 1262 1263 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length); 1264 if (ret != length) { 1265 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n", 1266 blk, ret); 1267 goto failed; 1268 } 1269 1270 ret = 0; 1271 1272 failed: 1273 mutex_unlock(&priv->edid_mutex); 1274 return ret; 1275 } 1276 1277 static int tda998x_connector_get_modes(struct drm_connector *connector) 1278 { 1279 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1280 struct edid *edid; 1281 int n; 1282 1283 /* 1284 * If we get killed while waiting for the HPD timeout, return 1285 * no modes found: we are not in a restartable path, so we 1286 * can't handle signals gracefully. 1287 */ 1288 if (tda998x_edid_delay_wait(priv)) 1289 return 0; 1290 1291 if (priv->rev == TDA19988) 1292 reg_clear(priv, REG_TX4, TX4_PD_RAM); 1293 1294 edid = drm_do_get_edid(connector, read_edid_block, priv); 1295 1296 if (priv->rev == TDA19988) 1297 reg_set(priv, REG_TX4, TX4_PD_RAM); 1298 1299 if (!edid) { 1300 dev_warn(&priv->hdmi->dev, "failed to read EDID\n"); 1301 return 0; 1302 } 1303 1304 drm_connector_update_edid_property(connector, edid); 1305 cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid); 1306 1307 mutex_lock(&priv->audio_mutex); 1308 n = drm_add_edid_modes(connector, edid); 1309 priv->sink_has_audio = drm_detect_monitor_audio(edid); 1310 mutex_unlock(&priv->audio_mutex); 1311 1312 kfree(edid); 1313 1314 return n; 1315 } 1316 1317 static struct drm_encoder * 1318 tda998x_connector_best_encoder(struct drm_connector *connector) 1319 { 1320 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1321 1322 return priv->bridge.encoder; 1323 } 1324 1325 static 1326 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = { 1327 .get_modes = tda998x_connector_get_modes, 1328 .best_encoder = tda998x_connector_best_encoder, 1329 }; 1330 1331 static int tda998x_connector_init(struct tda998x_priv *priv, 1332 struct drm_device *drm) 1333 { 1334 struct drm_connector *connector = &priv->connector; 1335 int ret; 1336 1337 connector->interlace_allowed = 1; 1338 1339 if (priv->hdmi->irq) 1340 connector->polled = DRM_CONNECTOR_POLL_HPD; 1341 else 1342 connector->polled = DRM_CONNECTOR_POLL_CONNECT | 1343 DRM_CONNECTOR_POLL_DISCONNECT; 1344 1345 drm_connector_helper_add(connector, &tda998x_connector_helper_funcs); 1346 ret = drm_connector_init(drm, connector, &tda998x_connector_funcs, 1347 DRM_MODE_CONNECTOR_HDMIA); 1348 if (ret) 1349 return ret; 1350 1351 drm_connector_attach_encoder(&priv->connector, 1352 priv->bridge.encoder); 1353 1354 return 0; 1355 } 1356 1357 /* DRM bridge functions */ 1358 1359 static int tda998x_bridge_attach(struct drm_bridge *bridge) 1360 { 1361 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1362 1363 return tda998x_connector_init(priv, bridge->dev); 1364 } 1365 1366 static void tda998x_bridge_detach(struct drm_bridge *bridge) 1367 { 1368 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1369 1370 drm_connector_cleanup(&priv->connector); 1371 } 1372 1373 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge, 1374 const struct drm_display_mode *mode) 1375 { 1376 /* TDA19988 dotclock can go up to 165MHz */ 1377 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1378 1379 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000)) 1380 return MODE_CLOCK_HIGH; 1381 if (mode->htotal >= BIT(13)) 1382 return MODE_BAD_HVALUE; 1383 if (mode->vtotal >= BIT(11)) 1384 return MODE_BAD_VVALUE; 1385 return MODE_OK; 1386 } 1387 1388 static void tda998x_bridge_enable(struct drm_bridge *bridge) 1389 { 1390 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1391 1392 if (!priv->is_on) { 1393 /* enable video ports, audio will be enabled later */ 1394 reg_write(priv, REG_ENA_VP_0, 0xff); 1395 reg_write(priv, REG_ENA_VP_1, 0xff); 1396 reg_write(priv, REG_ENA_VP_2, 0xff); 1397 /* set muxing after enabling ports: */ 1398 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0); 1399 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1); 1400 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2); 1401 1402 priv->is_on = true; 1403 } 1404 } 1405 1406 static void tda998x_bridge_disable(struct drm_bridge *bridge) 1407 { 1408 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1409 1410 if (priv->is_on) { 1411 /* disable video ports */ 1412 reg_write(priv, REG_ENA_VP_0, 0x00); 1413 reg_write(priv, REG_ENA_VP_1, 0x00); 1414 reg_write(priv, REG_ENA_VP_2, 0x00); 1415 1416 priv->is_on = false; 1417 } 1418 } 1419 1420 static void tda998x_bridge_mode_set(struct drm_bridge *bridge, 1421 const struct drm_display_mode *mode, 1422 const struct drm_display_mode *adjusted_mode) 1423 { 1424 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1425 unsigned long tmds_clock; 1426 u16 ref_pix, ref_line, n_pix, n_line; 1427 u16 hs_pix_s, hs_pix_e; 1428 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; 1429 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; 1430 u16 vwin1_line_s, vwin1_line_e; 1431 u16 vwin2_line_s, vwin2_line_e; 1432 u16 de_pix_s, de_pix_e; 1433 u8 reg, div, rep, sel_clk; 1434 1435 /* 1436 * Since we are "computer" like, our source invariably produces 1437 * full-range RGB. If the monitor supports full-range, then use 1438 * it, otherwise reduce to limited-range. 1439 */ 1440 priv->rgb_quant_range = 1441 priv->connector.display_info.rgb_quant_range_selectable ? 1442 HDMI_QUANTIZATION_RANGE_FULL : 1443 drm_default_rgb_quant_range(adjusted_mode); 1444 1445 /* 1446 * Internally TDA998x is using ITU-R BT.656 style sync but 1447 * we get VESA style sync. TDA998x is using a reference pixel 1448 * relative to ITU to sync to the input frame and for output 1449 * sync generation. Currently, we are using reference detection 1450 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point 1451 * which is position of rising VS with coincident rising HS. 1452 * 1453 * Now there is some issues to take care of: 1454 * - HDMI data islands require sync-before-active 1455 * - TDA998x register values must be > 0 to be enabled 1456 * - REFLINE needs an additional offset of +1 1457 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB 1458 * 1459 * So we add +1 to all horizontal and vertical register values, 1460 * plus an additional +3 for REFPIX as we are using RGB input only. 1461 */ 1462 n_pix = mode->htotal; 1463 n_line = mode->vtotal; 1464 1465 hs_pix_e = mode->hsync_end - mode->hdisplay; 1466 hs_pix_s = mode->hsync_start - mode->hdisplay; 1467 de_pix_e = mode->htotal; 1468 de_pix_s = mode->htotal - mode->hdisplay; 1469 ref_pix = 3 + hs_pix_s; 1470 1471 /* 1472 * Attached LCD controllers may generate broken sync. Allow 1473 * those to adjust the position of the rising VS edge by adding 1474 * HSKEW to ref_pix. 1475 */ 1476 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) 1477 ref_pix += adjusted_mode->hskew; 1478 1479 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { 1480 ref_line = 1 + mode->vsync_start - mode->vdisplay; 1481 vwin1_line_s = mode->vtotal - mode->vdisplay - 1; 1482 vwin1_line_e = vwin1_line_s + mode->vdisplay; 1483 vs1_pix_s = vs1_pix_e = hs_pix_s; 1484 vs1_line_s = mode->vsync_start - mode->vdisplay; 1485 vs1_line_e = vs1_line_s + 1486 mode->vsync_end - mode->vsync_start; 1487 vwin2_line_s = vwin2_line_e = 0; 1488 vs2_pix_s = vs2_pix_e = 0; 1489 vs2_line_s = vs2_line_e = 0; 1490 } else { 1491 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; 1492 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; 1493 vwin1_line_e = vwin1_line_s + mode->vdisplay/2; 1494 vs1_pix_s = vs1_pix_e = hs_pix_s; 1495 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; 1496 vs1_line_e = vs1_line_s + 1497 (mode->vsync_end - mode->vsync_start)/2; 1498 vwin2_line_s = vwin1_line_s + mode->vtotal/2; 1499 vwin2_line_e = vwin2_line_s + mode->vdisplay/2; 1500 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; 1501 vs2_line_s = vs1_line_s + mode->vtotal/2 ; 1502 vs2_line_e = vs2_line_s + 1503 (mode->vsync_end - mode->vsync_start)/2; 1504 } 1505 1506 /* 1507 * Select pixel repeat depending on the double-clock flag 1508 * (which means we have to repeat each pixel once.) 1509 */ 1510 rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0; 1511 sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 | 1512 SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0); 1513 1514 /* the TMDS clock is scaled up by the pixel repeat */ 1515 tmds_clock = mode->clock * (1 + rep); 1516 1517 /* 1518 * The divisor is power-of-2. The TDA9983B datasheet gives 1519 * this as ranges of Msample/s, which is 10x the TMDS clock: 1520 * 0 - 800 to 1500 Msample/s 1521 * 1 - 400 to 800 Msample/s 1522 * 2 - 200 to 400 Msample/s 1523 * 3 - as 2 above 1524 */ 1525 for (div = 0; div < 3; div++) 1526 if (80000 >> div <= tmds_clock) 1527 break; 1528 1529 mutex_lock(&priv->audio_mutex); 1530 1531 priv->tmds_clock = tmds_clock; 1532 1533 /* mute the audio FIFO: */ 1534 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 1535 1536 /* set HDMI HDCP mode off: */ 1537 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); 1538 reg_clear(priv, REG_TX33, TX33_HDMI); 1539 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); 1540 1541 /* no pre-filter or interpolator: */ 1542 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | 1543 HVF_CNTRL_0_INTPOL(0)); 1544 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT); 1545 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); 1546 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | 1547 VIP_CNTRL_4_BLC(0)); 1548 1549 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); 1550 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR | 1551 PLL_SERIAL_3_SRL_DE); 1552 reg_write(priv, REG_SERIALIZER, 0); 1553 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); 1554 1555 reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep)); 1556 reg_write(priv, REG_SEL_CLK, sel_clk); 1557 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | 1558 PLL_SERIAL_2_SRL_PR(rep)); 1559 1560 /* set color matrix according to output rgb quant range */ 1561 if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) { 1562 static u8 tda998x_full_to_limited_range[] = { 1563 MAT_CONTRL_MAT_SC(2), 1564 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 1565 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00, 1566 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00, 1567 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f, 1568 0x00, 0x40, 0x00, 0x40, 0x00, 0x40 1569 }; 1570 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1571 reg_write_range(priv, REG_MAT_CONTRL, 1572 tda998x_full_to_limited_range, 1573 sizeof(tda998x_full_to_limited_range)); 1574 } else { 1575 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP | 1576 MAT_CONTRL_MAT_SC(1)); 1577 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1578 } 1579 1580 /* set BIAS tmds value: */ 1581 reg_write(priv, REG_ANA_GENERAL, 0x09); 1582 1583 /* 1584 * Sync on rising HSYNC/VSYNC 1585 */ 1586 reg = VIP_CNTRL_3_SYNC_HS; 1587 1588 /* 1589 * TDA19988 requires high-active sync at input stage, 1590 * so invert low-active sync provided by master encoder here 1591 */ 1592 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1593 reg |= VIP_CNTRL_3_H_TGL; 1594 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1595 reg |= VIP_CNTRL_3_V_TGL; 1596 reg_write(priv, REG_VIP_CNTRL_3, reg); 1597 1598 reg_write(priv, REG_VIDFORMAT, 0x00); 1599 reg_write16(priv, REG_REFPIX_MSB, ref_pix); 1600 reg_write16(priv, REG_REFLINE_MSB, ref_line); 1601 reg_write16(priv, REG_NPIX_MSB, n_pix); 1602 reg_write16(priv, REG_NLINE_MSB, n_line); 1603 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s); 1604 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); 1605 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e); 1606 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e); 1607 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s); 1608 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); 1609 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e); 1610 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e); 1611 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s); 1612 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e); 1613 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s); 1614 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e); 1615 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s); 1616 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e); 1617 reg_write16(priv, REG_DE_START_MSB, de_pix_s); 1618 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e); 1619 1620 if (priv->rev == TDA19988) { 1621 /* let incoming pixels fill the active space (if any) */ 1622 reg_write(priv, REG_ENABLE_SPACE, 0x00); 1623 } 1624 1625 /* 1626 * Always generate sync polarity relative to input sync and 1627 * revert input stage toggled sync at output stage 1628 */ 1629 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN; 1630 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1631 reg |= TBG_CNTRL_1_H_TGL; 1632 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1633 reg |= TBG_CNTRL_1_V_TGL; 1634 reg_write(priv, REG_TBG_CNTRL_1, reg); 1635 1636 /* must be last register set: */ 1637 reg_write(priv, REG_TBG_CNTRL_0, 0); 1638 1639 /* CEA-861B section 6 says that: 1640 * CEA version 1 (CEA-861) has no support for infoframes. 1641 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes, 1642 * and optional basic audio. 1643 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes, 1644 * and optional digital audio, with audio infoframes. 1645 * 1646 * Since we only support generation of version 2 AVI infoframes, 1647 * ignore CEA version 2 and below (iow, behave as if we're a 1648 * CEA-861 source.) 1649 */ 1650 priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3; 1651 1652 if (priv->supports_infoframes) { 1653 /* We need to turn HDMI HDCP stuff on to get audio through */ 1654 reg &= ~TBG_CNTRL_1_DWIN_DIS; 1655 reg_write(priv, REG_TBG_CNTRL_1, reg); 1656 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); 1657 reg_set(priv, REG_TX33, TX33_HDMI); 1658 1659 tda998x_write_avi(priv, adjusted_mode); 1660 tda998x_write_vsi(priv, adjusted_mode); 1661 1662 if (priv->sink_has_audio) 1663 tda998x_configure_audio(priv); 1664 } 1665 1666 mutex_unlock(&priv->audio_mutex); 1667 } 1668 1669 static const struct drm_bridge_funcs tda998x_bridge_funcs = { 1670 .attach = tda998x_bridge_attach, 1671 .detach = tda998x_bridge_detach, 1672 .mode_valid = tda998x_bridge_mode_valid, 1673 .disable = tda998x_bridge_disable, 1674 .mode_set = tda998x_bridge_mode_set, 1675 .enable = tda998x_bridge_enable, 1676 }; 1677 1678 /* I2C driver functions */ 1679 1680 static int tda998x_get_audio_ports(struct tda998x_priv *priv, 1681 struct device_node *np) 1682 { 1683 const u32 *port_data; 1684 u32 size; 1685 int i; 1686 1687 port_data = of_get_property(np, "audio-ports", &size); 1688 if (!port_data) 1689 return 0; 1690 1691 size /= sizeof(u32); 1692 if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) { 1693 dev_err(&priv->hdmi->dev, 1694 "Bad number of elements in audio-ports dt-property\n"); 1695 return -EINVAL; 1696 } 1697 1698 size /= 2; 1699 1700 for (i = 0; i < size; i++) { 1701 unsigned int route; 1702 u8 afmt = be32_to_cpup(&port_data[2*i]); 1703 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]); 1704 1705 switch (afmt) { 1706 case AFMT_I2S: 1707 route = AUDIO_ROUTE_I2S; 1708 break; 1709 case AFMT_SPDIF: 1710 route = AUDIO_ROUTE_SPDIF; 1711 break; 1712 default: 1713 dev_err(&priv->hdmi->dev, 1714 "Bad audio format %u\n", afmt); 1715 return -EINVAL; 1716 } 1717 1718 if (!ena_ap) { 1719 dev_err(&priv->hdmi->dev, "invalid zero port config\n"); 1720 continue; 1721 } 1722 1723 if (priv->audio_port_enable[route]) { 1724 dev_err(&priv->hdmi->dev, 1725 "%s format already configured\n", 1726 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S"); 1727 return -EINVAL; 1728 } 1729 1730 priv->audio_port_enable[route] = ena_ap; 1731 } 1732 return 0; 1733 } 1734 1735 static int tda998x_set_config(struct tda998x_priv *priv, 1736 const struct tda998x_encoder_params *p) 1737 { 1738 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | 1739 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | 1740 VIP_CNTRL_0_SWAP_B(p->swap_b) | 1741 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); 1742 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | 1743 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | 1744 VIP_CNTRL_1_SWAP_D(p->swap_d) | 1745 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); 1746 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | 1747 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | 1748 VIP_CNTRL_2_SWAP_F(p->swap_f) | 1749 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); 1750 1751 if (p->audio_params.format != AFMT_UNUSED) { 1752 unsigned int ratio, route; 1753 bool spdif = p->audio_params.format == AFMT_SPDIF; 1754 1755 route = AUDIO_ROUTE_I2S + spdif; 1756 1757 priv->audio.route = &tda998x_audio_route[route]; 1758 priv->audio.cea = p->audio_params.cea; 1759 priv->audio.sample_rate = p->audio_params.sample_rate; 1760 memcpy(priv->audio.status, p->audio_params.status, 1761 min(sizeof(priv->audio.status), 1762 sizeof(p->audio_params.status))); 1763 priv->audio.ena_ap = p->audio_params.config; 1764 priv->audio.i2s_format = I2S_FORMAT_PHILIPS; 1765 1766 ratio = spdif ? 64 : p->audio_params.sample_width * 2; 1767 return tda998x_derive_cts_n(priv, &priv->audio, ratio); 1768 } 1769 1770 return 0; 1771 } 1772 1773 static void tda998x_destroy(struct device *dev) 1774 { 1775 struct tda998x_priv *priv = dev_get_drvdata(dev); 1776 1777 drm_bridge_remove(&priv->bridge); 1778 1779 /* disable all IRQs and free the IRQ handler */ 1780 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1781 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1782 1783 if (priv->audio_pdev) 1784 platform_device_unregister(priv->audio_pdev); 1785 1786 if (priv->hdmi->irq) 1787 free_irq(priv->hdmi->irq, priv); 1788 1789 del_timer_sync(&priv->edid_delay_timer); 1790 cancel_work_sync(&priv->detect_work); 1791 1792 i2c_unregister_device(priv->cec); 1793 1794 cec_notifier_conn_unregister(priv->cec_notify); 1795 } 1796 1797 static int tda998x_create(struct device *dev) 1798 { 1799 struct i2c_client *client = to_i2c_client(dev); 1800 struct device_node *np = client->dev.of_node; 1801 struct i2c_board_info cec_info; 1802 struct tda998x_priv *priv; 1803 u32 video; 1804 int rev_lo, rev_hi, ret; 1805 1806 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1807 if (!priv) 1808 return -ENOMEM; 1809 1810 dev_set_drvdata(dev, priv); 1811 1812 mutex_init(&priv->mutex); /* protect the page access */ 1813 mutex_init(&priv->audio_mutex); /* protect access from audio thread */ 1814 mutex_init(&priv->edid_mutex); 1815 INIT_LIST_HEAD(&priv->bridge.list); 1816 init_waitqueue_head(&priv->edid_delay_waitq); 1817 timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0); 1818 INIT_WORK(&priv->detect_work, tda998x_detect_work); 1819 1820 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); 1821 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); 1822 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); 1823 1824 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */ 1825 priv->cec_addr = 0x34 + (client->addr & 0x03); 1826 priv->current_page = 0xff; 1827 priv->hdmi = client; 1828 1829 /* wake up the device: */ 1830 cec_write(priv, REG_CEC_ENAMODS, 1831 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); 1832 1833 tda998x_reset(priv); 1834 1835 /* read version: */ 1836 rev_lo = reg_read(priv, REG_VERSION_LSB); 1837 if (rev_lo < 0) { 1838 dev_err(dev, "failed to read version: %d\n", rev_lo); 1839 return rev_lo; 1840 } 1841 1842 rev_hi = reg_read(priv, REG_VERSION_MSB); 1843 if (rev_hi < 0) { 1844 dev_err(dev, "failed to read version: %d\n", rev_hi); 1845 return rev_hi; 1846 } 1847 1848 priv->rev = rev_lo | rev_hi << 8; 1849 1850 /* mask off feature bits: */ 1851 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ 1852 1853 switch (priv->rev) { 1854 case TDA9989N2: 1855 dev_info(dev, "found TDA9989 n2"); 1856 break; 1857 case TDA19989: 1858 dev_info(dev, "found TDA19989"); 1859 break; 1860 case TDA19989N2: 1861 dev_info(dev, "found TDA19989 n2"); 1862 break; 1863 case TDA19988: 1864 dev_info(dev, "found TDA19988"); 1865 break; 1866 default: 1867 dev_err(dev, "found unsupported device: %04x\n", priv->rev); 1868 return -ENXIO; 1869 } 1870 1871 /* after reset, enable DDC: */ 1872 reg_write(priv, REG_DDC_DISABLE, 0x00); 1873 1874 /* set clock on DDC channel: */ 1875 reg_write(priv, REG_TX3, 39); 1876 1877 /* if necessary, disable multi-master: */ 1878 if (priv->rev == TDA19989) 1879 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM); 1880 1881 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL, 1882 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); 1883 1884 /* ensure interrupts are disabled */ 1885 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1886 1887 /* clear pending interrupts */ 1888 cec_read(priv, REG_CEC_RXSHPDINT); 1889 reg_read(priv, REG_INT_FLAGS_0); 1890 reg_read(priv, REG_INT_FLAGS_1); 1891 reg_read(priv, REG_INT_FLAGS_2); 1892 1893 /* initialize the optional IRQ */ 1894 if (client->irq) { 1895 unsigned long irq_flags; 1896 1897 /* init read EDID waitqueue and HDP work */ 1898 init_waitqueue_head(&priv->wq_edid); 1899 1900 irq_flags = 1901 irqd_get_trigger_type(irq_get_irq_data(client->irq)); 1902 1903 priv->cec_glue.irq_flags = irq_flags; 1904 1905 irq_flags |= IRQF_SHARED | IRQF_ONESHOT; 1906 ret = request_threaded_irq(client->irq, NULL, 1907 tda998x_irq_thread, irq_flags, 1908 "tda998x", priv); 1909 if (ret) { 1910 dev_err(dev, "failed to request IRQ#%u: %d\n", 1911 client->irq, ret); 1912 goto err_irq; 1913 } 1914 1915 /* enable HPD irq */ 1916 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD); 1917 } 1918 1919 priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL); 1920 if (!priv->cec_notify) { 1921 ret = -ENOMEM; 1922 goto fail; 1923 } 1924 1925 priv->cec_glue.parent = dev; 1926 priv->cec_glue.data = priv; 1927 priv->cec_glue.init = tda998x_cec_hook_init; 1928 priv->cec_glue.exit = tda998x_cec_hook_exit; 1929 priv->cec_glue.open = tda998x_cec_hook_open; 1930 priv->cec_glue.release = tda998x_cec_hook_release; 1931 1932 /* 1933 * Some TDA998x are actually two I2C devices merged onto one piece 1934 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter 1935 * with a slightly modified TDA9950 CEC device. The CEC device 1936 * is at the TDA9950 address, with the address pins strapped across 1937 * to the TDA998x address pins. Hence, it always has the same 1938 * offset. 1939 */ 1940 memset(&cec_info, 0, sizeof(cec_info)); 1941 strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type)); 1942 cec_info.addr = priv->cec_addr; 1943 cec_info.platform_data = &priv->cec_glue; 1944 cec_info.irq = client->irq; 1945 1946 priv->cec = i2c_new_device(client->adapter, &cec_info); 1947 if (!priv->cec) { 1948 ret = -ENODEV; 1949 goto fail; 1950 } 1951 1952 /* enable EDID read irq: */ 1953 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1954 1955 if (np) { 1956 /* get the device tree parameters */ 1957 ret = of_property_read_u32(np, "video-ports", &video); 1958 if (ret == 0) { 1959 priv->vip_cntrl_0 = video >> 16; 1960 priv->vip_cntrl_1 = video >> 8; 1961 priv->vip_cntrl_2 = video; 1962 } 1963 1964 ret = tda998x_get_audio_ports(priv, np); 1965 if (ret) 1966 goto fail; 1967 1968 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] || 1969 priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) 1970 tda998x_audio_codec_init(priv, &client->dev); 1971 } else if (dev->platform_data) { 1972 ret = tda998x_set_config(priv, dev->platform_data); 1973 if (ret) 1974 goto fail; 1975 } 1976 1977 priv->bridge.funcs = &tda998x_bridge_funcs; 1978 #ifdef CONFIG_OF 1979 priv->bridge.of_node = dev->of_node; 1980 #endif 1981 1982 drm_bridge_add(&priv->bridge); 1983 1984 return 0; 1985 1986 fail: 1987 tda998x_destroy(dev); 1988 err_irq: 1989 return ret; 1990 } 1991 1992 /* DRM encoder functions */ 1993 1994 static void tda998x_encoder_destroy(struct drm_encoder *encoder) 1995 { 1996 drm_encoder_cleanup(encoder); 1997 } 1998 1999 static const struct drm_encoder_funcs tda998x_encoder_funcs = { 2000 .destroy = tda998x_encoder_destroy, 2001 }; 2002 2003 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm) 2004 { 2005 struct tda998x_priv *priv = dev_get_drvdata(dev); 2006 u32 crtcs = 0; 2007 int ret; 2008 2009 if (dev->of_node) 2010 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); 2011 2012 /* If no CRTCs were found, fall back to our old behaviour */ 2013 if (crtcs == 0) { 2014 dev_warn(dev, "Falling back to first CRTC\n"); 2015 crtcs = 1 << 0; 2016 } 2017 2018 priv->encoder.possible_crtcs = crtcs; 2019 2020 ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs, 2021 DRM_MODE_ENCODER_TMDS, NULL); 2022 if (ret) 2023 goto err_encoder; 2024 2025 ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL); 2026 if (ret) 2027 goto err_bridge; 2028 2029 return 0; 2030 2031 err_bridge: 2032 drm_encoder_cleanup(&priv->encoder); 2033 err_encoder: 2034 return ret; 2035 } 2036 2037 static int tda998x_bind(struct device *dev, struct device *master, void *data) 2038 { 2039 struct drm_device *drm = data; 2040 2041 return tda998x_encoder_init(dev, drm); 2042 } 2043 2044 static void tda998x_unbind(struct device *dev, struct device *master, 2045 void *data) 2046 { 2047 struct tda998x_priv *priv = dev_get_drvdata(dev); 2048 2049 drm_encoder_cleanup(&priv->encoder); 2050 } 2051 2052 static const struct component_ops tda998x_ops = { 2053 .bind = tda998x_bind, 2054 .unbind = tda998x_unbind, 2055 }; 2056 2057 static int 2058 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) 2059 { 2060 int ret; 2061 2062 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 2063 dev_warn(&client->dev, "adapter does not support I2C\n"); 2064 return -EIO; 2065 } 2066 2067 ret = tda998x_create(&client->dev); 2068 if (ret) 2069 return ret; 2070 2071 ret = component_add(&client->dev, &tda998x_ops); 2072 if (ret) 2073 tda998x_destroy(&client->dev); 2074 return ret; 2075 } 2076 2077 static int tda998x_remove(struct i2c_client *client) 2078 { 2079 component_del(&client->dev, &tda998x_ops); 2080 tda998x_destroy(&client->dev); 2081 return 0; 2082 } 2083 2084 #ifdef CONFIG_OF 2085 static const struct of_device_id tda998x_dt_ids[] = { 2086 { .compatible = "nxp,tda998x", }, 2087 { } 2088 }; 2089 MODULE_DEVICE_TABLE(of, tda998x_dt_ids); 2090 #endif 2091 2092 static const struct i2c_device_id tda998x_ids[] = { 2093 { "tda998x", 0 }, 2094 { } 2095 }; 2096 MODULE_DEVICE_TABLE(i2c, tda998x_ids); 2097 2098 static struct i2c_driver tda998x_driver = { 2099 .probe = tda998x_probe, 2100 .remove = tda998x_remove, 2101 .driver = { 2102 .name = "tda998x", 2103 .of_match_table = of_match_ptr(tda998x_dt_ids), 2104 }, 2105 .id_table = tda998x_ids, 2106 }; 2107 2108 module_i2c_driver(tda998x_driver); 2109 2110 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com"); 2111 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder"); 2112 MODULE_LICENSE("GPL"); 2113