1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Texas Instruments 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #include <linux/component.h> 8 #include <linux/gpio/consumer.h> 9 #include <linux/hdmi.h> 10 #include <linux/module.h> 11 #include <linux/platform_data/tda9950.h> 12 #include <linux/irq.h> 13 #include <sound/asoundef.h> 14 #include <sound/hdmi-codec.h> 15 16 #include <drm/drmP.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_edid.h> 19 #include <drm/drm_of.h> 20 #include <drm/drm_probe_helper.h> 21 #include <drm/i2c/tda998x.h> 22 23 #include <media/cec-notifier.h> 24 25 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) 26 27 enum { 28 AUDIO_ROUTE_I2S, 29 AUDIO_ROUTE_SPDIF, 30 AUDIO_ROUTE_NUM 31 }; 32 33 struct tda998x_audio_route { 34 u8 ena_aclk; 35 u8 mux_ap; 36 u8 aip_clksel; 37 }; 38 39 struct tda998x_audio_settings { 40 const struct tda998x_audio_route *route; 41 struct hdmi_audio_infoframe cea; 42 unsigned int sample_rate; 43 u8 status[5]; 44 u8 ena_ap; 45 u8 i2s_format; 46 u8 cts_n; 47 }; 48 49 struct tda998x_priv { 50 struct i2c_client *cec; 51 struct i2c_client *hdmi; 52 struct mutex mutex; 53 u16 rev; 54 u8 cec_addr; 55 u8 current_page; 56 bool is_on; 57 bool supports_infoframes; 58 bool sink_has_audio; 59 enum hdmi_quantization_range rgb_quant_range; 60 u8 vip_cntrl_0; 61 u8 vip_cntrl_1; 62 u8 vip_cntrl_2; 63 unsigned long tmds_clock; 64 struct tda998x_audio_settings audio; 65 66 struct platform_device *audio_pdev; 67 struct mutex audio_mutex; 68 69 struct mutex edid_mutex; 70 wait_queue_head_t wq_edid; 71 volatile int wq_edid_wait; 72 73 struct work_struct detect_work; 74 struct timer_list edid_delay_timer; 75 wait_queue_head_t edid_delay_waitq; 76 bool edid_delay_active; 77 78 struct drm_encoder encoder; 79 struct drm_bridge bridge; 80 struct drm_connector connector; 81 82 u8 audio_port_enable[AUDIO_ROUTE_NUM]; 83 struct tda9950_glue cec_glue; 84 struct gpio_desc *calib; 85 struct cec_notifier *cec_notify; 86 }; 87 88 #define conn_to_tda998x_priv(x) \ 89 container_of(x, struct tda998x_priv, connector) 90 #define enc_to_tda998x_priv(x) \ 91 container_of(x, struct tda998x_priv, encoder) 92 #define bridge_to_tda998x_priv(x) \ 93 container_of(x, struct tda998x_priv, bridge) 94 95 /* The TDA9988 series of devices use a paged register scheme.. to simplify 96 * things we encode the page # in upper bits of the register #. To read/ 97 * write a given register, we need to make sure CURPAGE register is set 98 * appropriately. Which implies reads/writes are not atomic. Fun! 99 */ 100 101 #define REG(page, addr) (((page) << 8) | (addr)) 102 #define REG2ADDR(reg) ((reg) & 0xff) 103 #define REG2PAGE(reg) (((reg) >> 8) & 0xff) 104 105 #define REG_CURPAGE 0xff /* write */ 106 107 108 /* Page 00h: General Control */ 109 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ 110 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ 111 # define MAIN_CNTRL0_SR (1 << 0) 112 # define MAIN_CNTRL0_DECS (1 << 1) 113 # define MAIN_CNTRL0_DEHS (1 << 2) 114 # define MAIN_CNTRL0_CECS (1 << 3) 115 # define MAIN_CNTRL0_CEHS (1 << 4) 116 # define MAIN_CNTRL0_SCALER (1 << 7) 117 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ 118 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ 119 # define SOFTRESET_AUDIO (1 << 0) 120 # define SOFTRESET_I2C_MASTER (1 << 1) 121 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ 122 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ 123 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ 124 # define I2C_MASTER_DIS_MM (1 << 0) 125 # define I2C_MASTER_DIS_FILT (1 << 1) 126 # define I2C_MASTER_APP_STRT_LAT (1 << 2) 127 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ 128 # define FEAT_POWERDOWN_PREFILT BIT(0) 129 # define FEAT_POWERDOWN_CSC BIT(1) 130 # define FEAT_POWERDOWN_SPDIF (1 << 3) 131 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ 132 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ 133 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ 134 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) 135 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ 136 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ 137 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ 138 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ 139 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ 140 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ 141 # define VIP_CNTRL_0_MIRR_A (1 << 7) 142 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) 143 # define VIP_CNTRL_0_MIRR_B (1 << 3) 144 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) 145 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ 146 # define VIP_CNTRL_1_MIRR_C (1 << 7) 147 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) 148 # define VIP_CNTRL_1_MIRR_D (1 << 3) 149 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) 150 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ 151 # define VIP_CNTRL_2_MIRR_E (1 << 7) 152 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) 153 # define VIP_CNTRL_2_MIRR_F (1 << 3) 154 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) 155 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ 156 # define VIP_CNTRL_3_X_TGL (1 << 0) 157 # define VIP_CNTRL_3_H_TGL (1 << 1) 158 # define VIP_CNTRL_3_V_TGL (1 << 2) 159 # define VIP_CNTRL_3_EMB (1 << 3) 160 # define VIP_CNTRL_3_SYNC_DE (1 << 4) 161 # define VIP_CNTRL_3_SYNC_HS (1 << 5) 162 # define VIP_CNTRL_3_DE_INT (1 << 6) 163 # define VIP_CNTRL_3_EDGE (1 << 7) 164 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ 165 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) 166 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) 167 # define VIP_CNTRL_4_CCIR656 (1 << 4) 168 # define VIP_CNTRL_4_656_ALT (1 << 5) 169 # define VIP_CNTRL_4_TST_656 (1 << 6) 170 # define VIP_CNTRL_4_TST_PAT (1 << 7) 171 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ 172 # define VIP_CNTRL_5_CKCASE (1 << 0) 173 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) 174 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ 175 # define MUX_AP_SELECT_I2S 0x64 176 # define MUX_AP_SELECT_SPDIF 0x40 177 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ 178 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ 179 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) 180 # define MAT_CONTRL_MAT_BP (1 << 2) 181 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ 182 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ 183 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ 184 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ 185 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ 186 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ 187 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ 188 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ 189 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ 190 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ 191 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ 192 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ 193 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ 194 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ 195 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ 196 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ 197 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ 198 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ 199 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ 200 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ 201 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ 202 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ 203 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ 204 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ 205 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ 206 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ 207 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ 208 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ 209 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ 210 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ 211 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ 212 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ 213 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ 214 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ 215 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ 216 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ 217 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ 218 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ 219 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ 220 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ 221 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ 222 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ 223 # define TBG_CNTRL_0_TOP_TGL (1 << 0) 224 # define TBG_CNTRL_0_TOP_SEL (1 << 1) 225 # define TBG_CNTRL_0_DE_EXT (1 << 2) 226 # define TBG_CNTRL_0_TOP_EXT (1 << 3) 227 # define TBG_CNTRL_0_FRAME_DIS (1 << 5) 228 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) 229 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) 230 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ 231 # define TBG_CNTRL_1_H_TGL (1 << 0) 232 # define TBG_CNTRL_1_V_TGL (1 << 1) 233 # define TBG_CNTRL_1_TGL_EN (1 << 2) 234 # define TBG_CNTRL_1_X_EXT (1 << 3) 235 # define TBG_CNTRL_1_H_EXT (1 << 4) 236 # define TBG_CNTRL_1_V_EXT (1 << 5) 237 # define TBG_CNTRL_1_DWIN_DIS (1 << 6) 238 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ 239 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ 240 # define HVF_CNTRL_0_SM (1 << 7) 241 # define HVF_CNTRL_0_RWB (1 << 6) 242 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) 243 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) 244 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ 245 # define HVF_CNTRL_1_FOR (1 << 0) 246 # define HVF_CNTRL_1_YUVBLK (1 << 1) 247 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) 248 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) 249 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) 250 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ 251 # define RPT_CNTRL_REPEAT(x) ((x) & 15) 252 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ 253 # define I2S_FORMAT_PHILIPS (0 << 0) 254 # define I2S_FORMAT_LEFT_J (2 << 0) 255 # define I2S_FORMAT_RIGHT_J (3 << 0) 256 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ 257 # define AIP_CLKSEL_AIP_SPDIF (0 << 3) 258 # define AIP_CLKSEL_AIP_I2S (1 << 3) 259 # define AIP_CLKSEL_FS_ACLK (0 << 0) 260 # define AIP_CLKSEL_FS_MCLK (1 << 0) 261 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0) 262 263 /* Page 02h: PLL settings */ 264 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ 265 # define PLL_SERIAL_1_SRL_FDN (1 << 0) 266 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) 267 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) 268 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ 269 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0) 270 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) 271 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ 272 # define PLL_SERIAL_3_SRL_CCIR (1 << 0) 273 # define PLL_SERIAL_3_SRL_DE (1 << 2) 274 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) 275 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ 276 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ 277 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ 278 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ 279 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ 280 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ 281 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ 282 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ 283 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ 284 # define AUDIO_DIV_SERCLK_1 0 285 # define AUDIO_DIV_SERCLK_2 1 286 # define AUDIO_DIV_SERCLK_4 2 287 # define AUDIO_DIV_SERCLK_8 3 288 # define AUDIO_DIV_SERCLK_16 4 289 # define AUDIO_DIV_SERCLK_32 5 290 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ 291 # define SEL_CLK_SEL_CLK1 (1 << 0) 292 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) 293 # define SEL_CLK_ENA_SC_CLK (1 << 3) 294 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ 295 296 297 /* Page 09h: EDID Control */ 298 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ 299 /* next 127 successive registers are the EDID block */ 300 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ 301 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ 302 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ 303 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ 304 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ 305 306 307 /* Page 10h: information frames and packets */ 308 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ 309 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ 310 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ 311 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ 312 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ 313 314 315 /* Page 11h: audio settings and content info packets */ 316 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ 317 # define AIP_CNTRL_0_RST_FIFO (1 << 0) 318 # define AIP_CNTRL_0_SWAP (1 << 1) 319 # define AIP_CNTRL_0_LAYOUT (1 << 2) 320 # define AIP_CNTRL_0_ACR_MAN (1 << 5) 321 # define AIP_CNTRL_0_RST_CTS (1 << 6) 322 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ 323 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) 324 # define CA_I2S_HBR_CHSTAT (1 << 6) 325 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ 326 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ 327 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ 328 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ 329 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ 330 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ 331 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ 332 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ 333 # define CTS_N_K(x) (((x) & 7) << 0) 334 # define CTS_N_M(x) (((x) & 3) << 4) 335 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ 336 # define ENC_CNTRL_RST_ENC (1 << 0) 337 # define ENC_CNTRL_RST_SEL (1 << 1) 338 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) 339 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ 340 # define DIP_FLAGS_ACR (1 << 0) 341 # define DIP_FLAGS_GC (1 << 1) 342 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ 343 # define DIP_IF_FLAGS_IF1 (1 << 1) 344 # define DIP_IF_FLAGS_IF2 (1 << 2) 345 # define DIP_IF_FLAGS_IF3 (1 << 3) 346 # define DIP_IF_FLAGS_IF4 (1 << 4) 347 # define DIP_IF_FLAGS_IF5 (1 << 5) 348 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ 349 350 351 /* Page 12h: HDCP and OTP */ 352 #define REG_TX3 REG(0x12, 0x9a) /* read/write */ 353 #define REG_TX4 REG(0x12, 0x9b) /* read/write */ 354 # define TX4_PD_RAM (1 << 1) 355 #define REG_TX33 REG(0x12, 0xb8) /* read/write */ 356 # define TX33_HDMI (1 << 1) 357 358 359 /* Page 13h: Gamut related metadata packets */ 360 361 362 363 /* CEC registers: (not paged) 364 */ 365 #define REG_CEC_INTSTATUS 0xee /* read */ 366 # define CEC_INTSTATUS_CEC (1 << 0) 367 # define CEC_INTSTATUS_HDMI (1 << 1) 368 #define REG_CEC_CAL_XOSC_CTRL1 0xf2 369 # define CEC_CAL_XOSC_CTRL1_ENA_CAL BIT(0) 370 #define REG_CEC_DES_FREQ2 0xf5 371 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7) 372 #define REG_CEC_CLK 0xf6 373 # define CEC_CLK_FRO 0x11 374 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ 375 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) 376 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) 377 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) 378 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) 379 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */ 380 #define REG_CEC_RXSHPDINT 0xfd /* read */ 381 # define CEC_RXSHPDINT_RXSENS BIT(0) 382 # define CEC_RXSHPDINT_HPD BIT(1) 383 #define REG_CEC_RXSHPDLEV 0xfe /* read */ 384 # define CEC_RXSHPDLEV_RXSENS (1 << 0) 385 # define CEC_RXSHPDLEV_HPD (1 << 1) 386 387 #define REG_CEC_ENAMODS 0xff /* read/write */ 388 # define CEC_ENAMODS_EN_CEC_CLK (1 << 7) 389 # define CEC_ENAMODS_DIS_FRO (1 << 6) 390 # define CEC_ENAMODS_DIS_CCLK (1 << 5) 391 # define CEC_ENAMODS_EN_RXSENS (1 << 2) 392 # define CEC_ENAMODS_EN_HDMI (1 << 1) 393 # define CEC_ENAMODS_EN_CEC (1 << 0) 394 395 396 /* Device versions: */ 397 #define TDA9989N2 0x0101 398 #define TDA19989 0x0201 399 #define TDA19989N2 0x0202 400 #define TDA19988 0x0301 401 402 static void 403 cec_write(struct tda998x_priv *priv, u16 addr, u8 val) 404 { 405 u8 buf[] = {addr, val}; 406 struct i2c_msg msg = { 407 .addr = priv->cec_addr, 408 .len = 2, 409 .buf = buf, 410 }; 411 int ret; 412 413 ret = i2c_transfer(priv->hdmi->adapter, &msg, 1); 414 if (ret < 0) 415 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n", 416 ret, addr); 417 } 418 419 static u8 420 cec_read(struct tda998x_priv *priv, u8 addr) 421 { 422 u8 val; 423 struct i2c_msg msg[2] = { 424 { 425 .addr = priv->cec_addr, 426 .len = 1, 427 .buf = &addr, 428 }, { 429 .addr = priv->cec_addr, 430 .flags = I2C_M_RD, 431 .len = 1, 432 .buf = &val, 433 }, 434 }; 435 int ret; 436 437 ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg)); 438 if (ret < 0) { 439 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n", 440 ret, addr); 441 val = 0; 442 } 443 444 return val; 445 } 446 447 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable) 448 { 449 int val = cec_read(priv, REG_CEC_ENAMODS); 450 451 if (val < 0) 452 return; 453 454 if (enable) 455 val |= mods; 456 else 457 val &= ~mods; 458 459 cec_write(priv, REG_CEC_ENAMODS, val); 460 } 461 462 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable) 463 { 464 if (enable) { 465 u8 val; 466 467 cec_write(priv, 0xf3, 0xc0); 468 cec_write(priv, 0xf4, 0xd4); 469 470 /* Enable automatic calibration mode */ 471 val = cec_read(priv, REG_CEC_DES_FREQ2); 472 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL; 473 cec_write(priv, REG_CEC_DES_FREQ2, val); 474 475 /* Enable free running oscillator */ 476 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO); 477 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false); 478 479 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 480 CEC_CAL_XOSC_CTRL1_ENA_CAL); 481 } else { 482 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0); 483 } 484 } 485 486 /* 487 * Calibration for the internal oscillator: we need to set calibration mode, 488 * and then pulse the IRQ line low for a 10ms ± 1% period. 489 */ 490 static void tda998x_cec_calibration(struct tda998x_priv *priv) 491 { 492 struct gpio_desc *calib = priv->calib; 493 494 mutex_lock(&priv->edid_mutex); 495 if (priv->hdmi->irq > 0) 496 disable_irq(priv->hdmi->irq); 497 gpiod_direction_output(calib, 1); 498 tda998x_cec_set_calibration(priv, true); 499 500 local_irq_disable(); 501 gpiod_set_value(calib, 0); 502 mdelay(10); 503 gpiod_set_value(calib, 1); 504 local_irq_enable(); 505 506 tda998x_cec_set_calibration(priv, false); 507 gpiod_direction_input(calib); 508 if (priv->hdmi->irq > 0) 509 enable_irq(priv->hdmi->irq); 510 mutex_unlock(&priv->edid_mutex); 511 } 512 513 static int tda998x_cec_hook_init(void *data) 514 { 515 struct tda998x_priv *priv = data; 516 struct gpio_desc *calib; 517 518 calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS); 519 if (IS_ERR(calib)) { 520 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n", 521 PTR_ERR(calib)); 522 return PTR_ERR(calib); 523 } 524 525 priv->calib = calib; 526 527 return 0; 528 } 529 530 static void tda998x_cec_hook_exit(void *data) 531 { 532 struct tda998x_priv *priv = data; 533 534 gpiod_put(priv->calib); 535 priv->calib = NULL; 536 } 537 538 static int tda998x_cec_hook_open(void *data) 539 { 540 struct tda998x_priv *priv = data; 541 542 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true); 543 tda998x_cec_calibration(priv); 544 545 return 0; 546 } 547 548 static void tda998x_cec_hook_release(void *data) 549 { 550 struct tda998x_priv *priv = data; 551 552 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false); 553 } 554 555 static int 556 set_page(struct tda998x_priv *priv, u16 reg) 557 { 558 if (REG2PAGE(reg) != priv->current_page) { 559 struct i2c_client *client = priv->hdmi; 560 u8 buf[] = { 561 REG_CURPAGE, REG2PAGE(reg) 562 }; 563 int ret = i2c_master_send(client, buf, sizeof(buf)); 564 if (ret < 0) { 565 dev_err(&client->dev, "%s %04x err %d\n", __func__, 566 reg, ret); 567 return ret; 568 } 569 570 priv->current_page = REG2PAGE(reg); 571 } 572 return 0; 573 } 574 575 static int 576 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt) 577 { 578 struct i2c_client *client = priv->hdmi; 579 u8 addr = REG2ADDR(reg); 580 int ret; 581 582 mutex_lock(&priv->mutex); 583 ret = set_page(priv, reg); 584 if (ret < 0) 585 goto out; 586 587 ret = i2c_master_send(client, &addr, sizeof(addr)); 588 if (ret < 0) 589 goto fail; 590 591 ret = i2c_master_recv(client, buf, cnt); 592 if (ret < 0) 593 goto fail; 594 595 goto out; 596 597 fail: 598 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); 599 out: 600 mutex_unlock(&priv->mutex); 601 return ret; 602 } 603 604 #define MAX_WRITE_RANGE_BUF 32 605 606 static void 607 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt) 608 { 609 struct i2c_client *client = priv->hdmi; 610 /* This is the maximum size of the buffer passed in */ 611 u8 buf[MAX_WRITE_RANGE_BUF + 1]; 612 int ret; 613 614 if (cnt > MAX_WRITE_RANGE_BUF) { 615 dev_err(&client->dev, "Fixed write buffer too small (%d)\n", 616 MAX_WRITE_RANGE_BUF); 617 return; 618 } 619 620 buf[0] = REG2ADDR(reg); 621 memcpy(&buf[1], p, cnt); 622 623 mutex_lock(&priv->mutex); 624 ret = set_page(priv, reg); 625 if (ret < 0) 626 goto out; 627 628 ret = i2c_master_send(client, buf, cnt + 1); 629 if (ret < 0) 630 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 631 out: 632 mutex_unlock(&priv->mutex); 633 } 634 635 static int 636 reg_read(struct tda998x_priv *priv, u16 reg) 637 { 638 u8 val = 0; 639 int ret; 640 641 ret = reg_read_range(priv, reg, &val, sizeof(val)); 642 if (ret < 0) 643 return ret; 644 return val; 645 } 646 647 static void 648 reg_write(struct tda998x_priv *priv, u16 reg, u8 val) 649 { 650 struct i2c_client *client = priv->hdmi; 651 u8 buf[] = {REG2ADDR(reg), val}; 652 int ret; 653 654 mutex_lock(&priv->mutex); 655 ret = set_page(priv, reg); 656 if (ret < 0) 657 goto out; 658 659 ret = i2c_master_send(client, buf, sizeof(buf)); 660 if (ret < 0) 661 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 662 out: 663 mutex_unlock(&priv->mutex); 664 } 665 666 static void 667 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val) 668 { 669 struct i2c_client *client = priv->hdmi; 670 u8 buf[] = {REG2ADDR(reg), val >> 8, val}; 671 int ret; 672 673 mutex_lock(&priv->mutex); 674 ret = set_page(priv, reg); 675 if (ret < 0) 676 goto out; 677 678 ret = i2c_master_send(client, buf, sizeof(buf)); 679 if (ret < 0) 680 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 681 out: 682 mutex_unlock(&priv->mutex); 683 } 684 685 static void 686 reg_set(struct tda998x_priv *priv, u16 reg, u8 val) 687 { 688 int old_val; 689 690 old_val = reg_read(priv, reg); 691 if (old_val >= 0) 692 reg_write(priv, reg, old_val | val); 693 } 694 695 static void 696 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val) 697 { 698 int old_val; 699 700 old_val = reg_read(priv, reg); 701 if (old_val >= 0) 702 reg_write(priv, reg, old_val & ~val); 703 } 704 705 static void 706 tda998x_reset(struct tda998x_priv *priv) 707 { 708 /* reset audio and i2c master: */ 709 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); 710 msleep(50); 711 reg_write(priv, REG_SOFTRESET, 0); 712 msleep(50); 713 714 /* reset transmitter: */ 715 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 716 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 717 718 /* PLL registers common configuration */ 719 reg_write(priv, REG_PLL_SERIAL_1, 0x00); 720 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); 721 reg_write(priv, REG_PLL_SERIAL_3, 0x00); 722 reg_write(priv, REG_SERIALIZER, 0x00); 723 reg_write(priv, REG_BUFFER_OUT, 0x00); 724 reg_write(priv, REG_PLL_SCG1, 0x00); 725 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); 726 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); 727 reg_write(priv, REG_PLL_SCGN1, 0xfa); 728 reg_write(priv, REG_PLL_SCGN2, 0x00); 729 reg_write(priv, REG_PLL_SCGR1, 0x5b); 730 reg_write(priv, REG_PLL_SCGR2, 0x00); 731 reg_write(priv, REG_PLL_SCG2, 0x10); 732 733 /* Write the default value MUX register */ 734 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24); 735 } 736 737 /* 738 * The TDA998x has a problem when trying to read the EDID close to a 739 * HPD assertion: it needs a delay of 100ms to avoid timing out while 740 * trying to read EDID data. 741 * 742 * However, tda998x_connector_get_modes() may be called at any moment 743 * after tda998x_connector_detect() indicates that we are connected, so 744 * we need to delay probing modes in tda998x_connector_get_modes() after 745 * we have seen a HPD inactive->active transition. This code implements 746 * that delay. 747 */ 748 static void tda998x_edid_delay_done(struct timer_list *t) 749 { 750 struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer); 751 752 priv->edid_delay_active = false; 753 wake_up(&priv->edid_delay_waitq); 754 schedule_work(&priv->detect_work); 755 } 756 757 static void tda998x_edid_delay_start(struct tda998x_priv *priv) 758 { 759 priv->edid_delay_active = true; 760 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10); 761 } 762 763 static int tda998x_edid_delay_wait(struct tda998x_priv *priv) 764 { 765 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active); 766 } 767 768 /* 769 * We need to run the KMS hotplug event helper outside of our threaded 770 * interrupt routine as this can call back into our get_modes method, 771 * which will want to make use of interrupts. 772 */ 773 static void tda998x_detect_work(struct work_struct *work) 774 { 775 struct tda998x_priv *priv = 776 container_of(work, struct tda998x_priv, detect_work); 777 struct drm_device *dev = priv->connector.dev; 778 779 if (dev) 780 drm_kms_helper_hotplug_event(dev); 781 } 782 783 /* 784 * only 2 interrupts may occur: screen plug/unplug and EDID read 785 */ 786 static irqreturn_t tda998x_irq_thread(int irq, void *data) 787 { 788 struct tda998x_priv *priv = data; 789 u8 sta, cec, lvl, flag0, flag1, flag2; 790 bool handled = false; 791 792 sta = cec_read(priv, REG_CEC_INTSTATUS); 793 if (sta & CEC_INTSTATUS_HDMI) { 794 cec = cec_read(priv, REG_CEC_RXSHPDINT); 795 lvl = cec_read(priv, REG_CEC_RXSHPDLEV); 796 flag0 = reg_read(priv, REG_INT_FLAGS_0); 797 flag1 = reg_read(priv, REG_INT_FLAGS_1); 798 flag2 = reg_read(priv, REG_INT_FLAGS_2); 799 DRM_DEBUG_DRIVER( 800 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n", 801 sta, cec, lvl, flag0, flag1, flag2); 802 803 if (cec & CEC_RXSHPDINT_HPD) { 804 if (lvl & CEC_RXSHPDLEV_HPD) { 805 tda998x_edid_delay_start(priv); 806 } else { 807 schedule_work(&priv->detect_work); 808 cec_notifier_set_phys_addr(priv->cec_notify, 809 CEC_PHYS_ADDR_INVALID); 810 } 811 812 handled = true; 813 } 814 815 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) { 816 priv->wq_edid_wait = 0; 817 wake_up(&priv->wq_edid); 818 handled = true; 819 } 820 } 821 822 return IRQ_RETVAL(handled); 823 } 824 825 static void 826 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr, 827 union hdmi_infoframe *frame) 828 { 829 u8 buf[MAX_WRITE_RANGE_BUF]; 830 ssize_t len; 831 832 len = hdmi_infoframe_pack(frame, buf, sizeof(buf)); 833 if (len < 0) { 834 dev_err(&priv->hdmi->dev, 835 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n", 836 frame->any.type, len); 837 return; 838 } 839 840 reg_clear(priv, REG_DIP_IF_FLAGS, bit); 841 reg_write_range(priv, addr, buf, len); 842 reg_set(priv, REG_DIP_IF_FLAGS, bit); 843 } 844 845 static void tda998x_write_aif(struct tda998x_priv *priv, 846 const struct hdmi_audio_infoframe *cea) 847 { 848 union hdmi_infoframe frame; 849 850 frame.audio = *cea; 851 852 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame); 853 } 854 855 static void 856 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode) 857 { 858 union hdmi_infoframe frame; 859 860 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, 861 &priv->connector, mode); 862 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; 863 drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode, 864 priv->rgb_quant_range); 865 866 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame); 867 } 868 869 static void tda998x_write_vsi(struct tda998x_priv *priv, 870 const struct drm_display_mode *mode) 871 { 872 union hdmi_infoframe frame; 873 874 if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, 875 &priv->connector, 876 mode)) 877 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1); 878 else 879 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame); 880 } 881 882 /* Audio support */ 883 884 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = { 885 [AUDIO_ROUTE_I2S] = { 886 .ena_aclk = 1, 887 .mux_ap = MUX_AP_SELECT_I2S, 888 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK, 889 }, 890 [AUDIO_ROUTE_SPDIF] = { 891 .ena_aclk = 0, 892 .mux_ap = MUX_AP_SELECT_SPDIF, 893 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF, 894 }, 895 }; 896 897 /* Configure the TDA998x audio data and clock routing. */ 898 static int tda998x_derive_routing(struct tda998x_priv *priv, 899 struct tda998x_audio_settings *s, 900 unsigned int route) 901 { 902 s->route = &tda998x_audio_route[route]; 903 s->ena_ap = priv->audio_port_enable[route]; 904 if (s->ena_ap == 0) { 905 dev_err(&priv->hdmi->dev, "no audio configuration found\n"); 906 return -EINVAL; 907 } 908 909 return 0; 910 } 911 912 /* 913 * The audio clock divisor register controls a divider producing Audio_Clk_Out 914 * from SERclk by dividing it by 2^n where 0 <= n <= 5. We don't know what 915 * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock. 916 * 917 * It seems that Audio_Clk_Out must be the smallest value that is greater 918 * than 128*fs, otherwise audio does not function. There is some suggestion 919 * that 126*fs is a better value. 920 */ 921 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs) 922 { 923 unsigned long min_audio_clk = fs * 128; 924 unsigned long ser_clk = priv->tmds_clock * 1000; 925 u8 adiv; 926 927 for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--) 928 if (ser_clk > min_audio_clk << adiv) 929 break; 930 931 dev_dbg(&priv->hdmi->dev, 932 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n", 933 ser_clk, fs, min_audio_clk, adiv); 934 935 return adiv; 936 } 937 938 /* 939 * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to 940 * generate the CTS value. It appears that the "measured time stamp" is 941 * the number of TDMS clock cycles within a number of audio input clock 942 * cycles defined by the k and N parameters defined below, in a similar 943 * way to that which is set out in the CTS generation in the HDMI spec. 944 * 945 * tmdsclk ----> mts -> /m ---> CTS 946 * ^ 947 * sclk -> /k -> /N 948 * 949 * CTS = mts / m, where m is 2^M. 950 * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4 951 * /N is a divider based on the HDMI specified N value. 952 * 953 * This produces the following equation: 954 * CTS = tmds_clock * k * N / (sclk * m) 955 * 956 * When combined with the sink-side equation, and realising that sclk is 957 * bclk_ratio * fs, we end up with: 958 * k = m * bclk_ratio / 128. 959 * 960 * Note: S/PDIF always uses a bclk_ratio of 64. 961 */ 962 static int tda998x_derive_cts_n(struct tda998x_priv *priv, 963 struct tda998x_audio_settings *settings, 964 unsigned int ratio) 965 { 966 switch (ratio) { 967 case 16: 968 settings->cts_n = CTS_N_M(3) | CTS_N_K(0); 969 break; 970 case 32: 971 settings->cts_n = CTS_N_M(3) | CTS_N_K(1); 972 break; 973 case 48: 974 settings->cts_n = CTS_N_M(3) | CTS_N_K(2); 975 break; 976 case 64: 977 settings->cts_n = CTS_N_M(3) | CTS_N_K(3); 978 break; 979 case 128: 980 settings->cts_n = CTS_N_M(0) | CTS_N_K(0); 981 break; 982 default: 983 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n", 984 ratio); 985 return -EINVAL; 986 } 987 return 0; 988 } 989 990 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on) 991 { 992 if (on) { 993 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 994 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 995 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 996 } else { 997 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 998 } 999 } 1000 1001 static void tda998x_configure_audio(struct tda998x_priv *priv) 1002 { 1003 const struct tda998x_audio_settings *settings = &priv->audio; 1004 u8 buf[6], adiv; 1005 u32 n; 1006 1007 /* If audio is not configured, there is nothing to do. */ 1008 if (settings->ena_ap == 0) 1009 return; 1010 1011 adiv = tda998x_get_adiv(priv, settings->sample_rate); 1012 1013 /* Enable audio ports */ 1014 reg_write(priv, REG_ENA_AP, settings->ena_ap); 1015 reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk); 1016 reg_write(priv, REG_MUX_AP, settings->route->mux_ap); 1017 reg_write(priv, REG_I2S_FORMAT, settings->i2s_format); 1018 reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel); 1019 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT | 1020 AIP_CNTRL_0_ACR_MAN); /* auto CTS */ 1021 reg_write(priv, REG_CTS_N, settings->cts_n); 1022 reg_write(priv, REG_AUDIO_DIV, adiv); 1023 1024 /* 1025 * This is the approximate value of N, which happens to be 1026 * the recommended values for non-coherent clocks. 1027 */ 1028 n = 128 * settings->sample_rate / 1000; 1029 1030 /* Write the CTS and N values */ 1031 buf[0] = 0x44; 1032 buf[1] = 0x42; 1033 buf[2] = 0x01; 1034 buf[3] = n; 1035 buf[4] = n >> 8; 1036 buf[5] = n >> 16; 1037 reg_write_range(priv, REG_ACR_CTS_0, buf, 6); 1038 1039 /* Reset CTS generator */ 1040 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 1041 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 1042 1043 /* Write the channel status 1044 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because 1045 * there is a separate register for each I2S wire. 1046 */ 1047 buf[0] = settings->status[0]; 1048 buf[1] = settings->status[1]; 1049 buf[2] = settings->status[3]; 1050 buf[3] = settings->status[4]; 1051 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4); 1052 1053 tda998x_audio_mute(priv, true); 1054 msleep(20); 1055 tda998x_audio_mute(priv, false); 1056 1057 tda998x_write_aif(priv, &settings->cea); 1058 } 1059 1060 static int tda998x_audio_hw_params(struct device *dev, void *data, 1061 struct hdmi_codec_daifmt *daifmt, 1062 struct hdmi_codec_params *params) 1063 { 1064 struct tda998x_priv *priv = dev_get_drvdata(dev); 1065 unsigned int bclk_ratio; 1066 bool spdif = daifmt->fmt == HDMI_SPDIF; 1067 int ret; 1068 struct tda998x_audio_settings audio = { 1069 .sample_rate = params->sample_rate, 1070 .cea = params->cea, 1071 }; 1072 1073 memcpy(audio.status, params->iec.status, 1074 min(sizeof(audio.status), sizeof(params->iec.status))); 1075 1076 switch (daifmt->fmt) { 1077 case HDMI_I2S: 1078 audio.i2s_format = I2S_FORMAT_PHILIPS; 1079 break; 1080 case HDMI_LEFT_J: 1081 audio.i2s_format = I2S_FORMAT_LEFT_J; 1082 break; 1083 case HDMI_RIGHT_J: 1084 audio.i2s_format = I2S_FORMAT_RIGHT_J; 1085 break; 1086 case HDMI_SPDIF: 1087 audio.i2s_format = 0; 1088 break; 1089 default: 1090 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt); 1091 return -EINVAL; 1092 } 1093 1094 if (!spdif && 1095 (daifmt->bit_clk_inv || daifmt->frame_clk_inv || 1096 daifmt->bit_clk_master || daifmt->frame_clk_master)) { 1097 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, 1098 daifmt->bit_clk_inv, daifmt->frame_clk_inv, 1099 daifmt->bit_clk_master, 1100 daifmt->frame_clk_master); 1101 return -EINVAL; 1102 } 1103 1104 ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif); 1105 if (ret < 0) 1106 return ret; 1107 1108 bclk_ratio = spdif ? 64 : params->sample_width * 2; 1109 ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio); 1110 if (ret < 0) 1111 return ret; 1112 1113 mutex_lock(&priv->audio_mutex); 1114 priv->audio = audio; 1115 if (priv->supports_infoframes && priv->sink_has_audio) 1116 tda998x_configure_audio(priv); 1117 mutex_unlock(&priv->audio_mutex); 1118 1119 return 0; 1120 } 1121 1122 static void tda998x_audio_shutdown(struct device *dev, void *data) 1123 { 1124 struct tda998x_priv *priv = dev_get_drvdata(dev); 1125 1126 mutex_lock(&priv->audio_mutex); 1127 1128 reg_write(priv, REG_ENA_AP, 0); 1129 priv->audio.ena_ap = 0; 1130 1131 mutex_unlock(&priv->audio_mutex); 1132 } 1133 1134 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable) 1135 { 1136 struct tda998x_priv *priv = dev_get_drvdata(dev); 1137 1138 mutex_lock(&priv->audio_mutex); 1139 1140 tda998x_audio_mute(priv, enable); 1141 1142 mutex_unlock(&priv->audio_mutex); 1143 return 0; 1144 } 1145 1146 static int tda998x_audio_get_eld(struct device *dev, void *data, 1147 uint8_t *buf, size_t len) 1148 { 1149 struct tda998x_priv *priv = dev_get_drvdata(dev); 1150 1151 mutex_lock(&priv->audio_mutex); 1152 memcpy(buf, priv->connector.eld, 1153 min(sizeof(priv->connector.eld), len)); 1154 mutex_unlock(&priv->audio_mutex); 1155 1156 return 0; 1157 } 1158 1159 static const struct hdmi_codec_ops audio_codec_ops = { 1160 .hw_params = tda998x_audio_hw_params, 1161 .audio_shutdown = tda998x_audio_shutdown, 1162 .digital_mute = tda998x_audio_digital_mute, 1163 .get_eld = tda998x_audio_get_eld, 1164 }; 1165 1166 static int tda998x_audio_codec_init(struct tda998x_priv *priv, 1167 struct device *dev) 1168 { 1169 struct hdmi_codec_pdata codec_data = { 1170 .ops = &audio_codec_ops, 1171 .max_i2s_channels = 2, 1172 }; 1173 1174 if (priv->audio_port_enable[AUDIO_ROUTE_I2S]) 1175 codec_data.i2s = 1; 1176 if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) 1177 codec_data.spdif = 1; 1178 1179 priv->audio_pdev = platform_device_register_data( 1180 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, 1181 &codec_data, sizeof(codec_data)); 1182 1183 return PTR_ERR_OR_ZERO(priv->audio_pdev); 1184 } 1185 1186 /* DRM connector functions */ 1187 1188 static enum drm_connector_status 1189 tda998x_connector_detect(struct drm_connector *connector, bool force) 1190 { 1191 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1192 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV); 1193 1194 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : 1195 connector_status_disconnected; 1196 } 1197 1198 static void tda998x_connector_destroy(struct drm_connector *connector) 1199 { 1200 drm_connector_cleanup(connector); 1201 } 1202 1203 static const struct drm_connector_funcs tda998x_connector_funcs = { 1204 .reset = drm_atomic_helper_connector_reset, 1205 .fill_modes = drm_helper_probe_single_connector_modes, 1206 .detect = tda998x_connector_detect, 1207 .destroy = tda998x_connector_destroy, 1208 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 1209 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1210 }; 1211 1212 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length) 1213 { 1214 struct tda998x_priv *priv = data; 1215 u8 offset, segptr; 1216 int ret, i; 1217 1218 offset = (blk & 1) ? 128 : 0; 1219 segptr = blk / 2; 1220 1221 mutex_lock(&priv->edid_mutex); 1222 1223 reg_write(priv, REG_DDC_ADDR, 0xa0); 1224 reg_write(priv, REG_DDC_OFFS, offset); 1225 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60); 1226 reg_write(priv, REG_DDC_SEGM, segptr); 1227 1228 /* enable reading EDID: */ 1229 priv->wq_edid_wait = 1; 1230 reg_write(priv, REG_EDID_CTRL, 0x1); 1231 1232 /* flag must be cleared by sw: */ 1233 reg_write(priv, REG_EDID_CTRL, 0x0); 1234 1235 /* wait for block read to complete: */ 1236 if (priv->hdmi->irq) { 1237 i = wait_event_timeout(priv->wq_edid, 1238 !priv->wq_edid_wait, 1239 msecs_to_jiffies(100)); 1240 if (i < 0) { 1241 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i); 1242 ret = i; 1243 goto failed; 1244 } 1245 } else { 1246 for (i = 100; i > 0; i--) { 1247 msleep(1); 1248 ret = reg_read(priv, REG_INT_FLAGS_2); 1249 if (ret < 0) 1250 goto failed; 1251 if (ret & INT_FLAGS_2_EDID_BLK_RD) 1252 break; 1253 } 1254 } 1255 1256 if (i == 0) { 1257 dev_err(&priv->hdmi->dev, "read edid timeout\n"); 1258 ret = -ETIMEDOUT; 1259 goto failed; 1260 } 1261 1262 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length); 1263 if (ret != length) { 1264 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n", 1265 blk, ret); 1266 goto failed; 1267 } 1268 1269 ret = 0; 1270 1271 failed: 1272 mutex_unlock(&priv->edid_mutex); 1273 return ret; 1274 } 1275 1276 static int tda998x_connector_get_modes(struct drm_connector *connector) 1277 { 1278 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1279 struct edid *edid; 1280 int n; 1281 1282 /* 1283 * If we get killed while waiting for the HPD timeout, return 1284 * no modes found: we are not in a restartable path, so we 1285 * can't handle signals gracefully. 1286 */ 1287 if (tda998x_edid_delay_wait(priv)) 1288 return 0; 1289 1290 if (priv->rev == TDA19988) 1291 reg_clear(priv, REG_TX4, TX4_PD_RAM); 1292 1293 edid = drm_do_get_edid(connector, read_edid_block, priv); 1294 1295 if (priv->rev == TDA19988) 1296 reg_set(priv, REG_TX4, TX4_PD_RAM); 1297 1298 if (!edid) { 1299 dev_warn(&priv->hdmi->dev, "failed to read EDID\n"); 1300 return 0; 1301 } 1302 1303 drm_connector_update_edid_property(connector, edid); 1304 cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid); 1305 1306 mutex_lock(&priv->audio_mutex); 1307 n = drm_add_edid_modes(connector, edid); 1308 priv->sink_has_audio = drm_detect_monitor_audio(edid); 1309 mutex_unlock(&priv->audio_mutex); 1310 1311 kfree(edid); 1312 1313 return n; 1314 } 1315 1316 static struct drm_encoder * 1317 tda998x_connector_best_encoder(struct drm_connector *connector) 1318 { 1319 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1320 1321 return priv->bridge.encoder; 1322 } 1323 1324 static 1325 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = { 1326 .get_modes = tda998x_connector_get_modes, 1327 .best_encoder = tda998x_connector_best_encoder, 1328 }; 1329 1330 static int tda998x_connector_init(struct tda998x_priv *priv, 1331 struct drm_device *drm) 1332 { 1333 struct drm_connector *connector = &priv->connector; 1334 int ret; 1335 1336 connector->interlace_allowed = 1; 1337 1338 if (priv->hdmi->irq) 1339 connector->polled = DRM_CONNECTOR_POLL_HPD; 1340 else 1341 connector->polled = DRM_CONNECTOR_POLL_CONNECT | 1342 DRM_CONNECTOR_POLL_DISCONNECT; 1343 1344 drm_connector_helper_add(connector, &tda998x_connector_helper_funcs); 1345 ret = drm_connector_init(drm, connector, &tda998x_connector_funcs, 1346 DRM_MODE_CONNECTOR_HDMIA); 1347 if (ret) 1348 return ret; 1349 1350 drm_connector_attach_encoder(&priv->connector, 1351 priv->bridge.encoder); 1352 1353 return 0; 1354 } 1355 1356 /* DRM bridge functions */ 1357 1358 static int tda998x_bridge_attach(struct drm_bridge *bridge) 1359 { 1360 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1361 1362 return tda998x_connector_init(priv, bridge->dev); 1363 } 1364 1365 static void tda998x_bridge_detach(struct drm_bridge *bridge) 1366 { 1367 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1368 1369 drm_connector_cleanup(&priv->connector); 1370 } 1371 1372 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge, 1373 const struct drm_display_mode *mode) 1374 { 1375 /* TDA19988 dotclock can go up to 165MHz */ 1376 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1377 1378 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000)) 1379 return MODE_CLOCK_HIGH; 1380 if (mode->htotal >= BIT(13)) 1381 return MODE_BAD_HVALUE; 1382 if (mode->vtotal >= BIT(11)) 1383 return MODE_BAD_VVALUE; 1384 return MODE_OK; 1385 } 1386 1387 static void tda998x_bridge_enable(struct drm_bridge *bridge) 1388 { 1389 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1390 1391 if (!priv->is_on) { 1392 /* enable video ports, audio will be enabled later */ 1393 reg_write(priv, REG_ENA_VP_0, 0xff); 1394 reg_write(priv, REG_ENA_VP_1, 0xff); 1395 reg_write(priv, REG_ENA_VP_2, 0xff); 1396 /* set muxing after enabling ports: */ 1397 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0); 1398 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1); 1399 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2); 1400 1401 priv->is_on = true; 1402 } 1403 } 1404 1405 static void tda998x_bridge_disable(struct drm_bridge *bridge) 1406 { 1407 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1408 1409 if (priv->is_on) { 1410 /* disable video ports */ 1411 reg_write(priv, REG_ENA_VP_0, 0x00); 1412 reg_write(priv, REG_ENA_VP_1, 0x00); 1413 reg_write(priv, REG_ENA_VP_2, 0x00); 1414 1415 priv->is_on = false; 1416 } 1417 } 1418 1419 static void tda998x_bridge_mode_set(struct drm_bridge *bridge, 1420 const struct drm_display_mode *mode, 1421 const struct drm_display_mode *adjusted_mode) 1422 { 1423 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1424 unsigned long tmds_clock; 1425 u16 ref_pix, ref_line, n_pix, n_line; 1426 u16 hs_pix_s, hs_pix_e; 1427 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; 1428 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; 1429 u16 vwin1_line_s, vwin1_line_e; 1430 u16 vwin2_line_s, vwin2_line_e; 1431 u16 de_pix_s, de_pix_e; 1432 u8 reg, div, rep, sel_clk; 1433 1434 /* 1435 * Since we are "computer" like, our source invariably produces 1436 * full-range RGB. If the monitor supports full-range, then use 1437 * it, otherwise reduce to limited-range. 1438 */ 1439 priv->rgb_quant_range = 1440 priv->connector.display_info.rgb_quant_range_selectable ? 1441 HDMI_QUANTIZATION_RANGE_FULL : 1442 drm_default_rgb_quant_range(adjusted_mode); 1443 1444 /* 1445 * Internally TDA998x is using ITU-R BT.656 style sync but 1446 * we get VESA style sync. TDA998x is using a reference pixel 1447 * relative to ITU to sync to the input frame and for output 1448 * sync generation. Currently, we are using reference detection 1449 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point 1450 * which is position of rising VS with coincident rising HS. 1451 * 1452 * Now there is some issues to take care of: 1453 * - HDMI data islands require sync-before-active 1454 * - TDA998x register values must be > 0 to be enabled 1455 * - REFLINE needs an additional offset of +1 1456 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB 1457 * 1458 * So we add +1 to all horizontal and vertical register values, 1459 * plus an additional +3 for REFPIX as we are using RGB input only. 1460 */ 1461 n_pix = mode->htotal; 1462 n_line = mode->vtotal; 1463 1464 hs_pix_e = mode->hsync_end - mode->hdisplay; 1465 hs_pix_s = mode->hsync_start - mode->hdisplay; 1466 de_pix_e = mode->htotal; 1467 de_pix_s = mode->htotal - mode->hdisplay; 1468 ref_pix = 3 + hs_pix_s; 1469 1470 /* 1471 * Attached LCD controllers may generate broken sync. Allow 1472 * those to adjust the position of the rising VS edge by adding 1473 * HSKEW to ref_pix. 1474 */ 1475 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) 1476 ref_pix += adjusted_mode->hskew; 1477 1478 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { 1479 ref_line = 1 + mode->vsync_start - mode->vdisplay; 1480 vwin1_line_s = mode->vtotal - mode->vdisplay - 1; 1481 vwin1_line_e = vwin1_line_s + mode->vdisplay; 1482 vs1_pix_s = vs1_pix_e = hs_pix_s; 1483 vs1_line_s = mode->vsync_start - mode->vdisplay; 1484 vs1_line_e = vs1_line_s + 1485 mode->vsync_end - mode->vsync_start; 1486 vwin2_line_s = vwin2_line_e = 0; 1487 vs2_pix_s = vs2_pix_e = 0; 1488 vs2_line_s = vs2_line_e = 0; 1489 } else { 1490 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; 1491 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; 1492 vwin1_line_e = vwin1_line_s + mode->vdisplay/2; 1493 vs1_pix_s = vs1_pix_e = hs_pix_s; 1494 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; 1495 vs1_line_e = vs1_line_s + 1496 (mode->vsync_end - mode->vsync_start)/2; 1497 vwin2_line_s = vwin1_line_s + mode->vtotal/2; 1498 vwin2_line_e = vwin2_line_s + mode->vdisplay/2; 1499 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; 1500 vs2_line_s = vs1_line_s + mode->vtotal/2 ; 1501 vs2_line_e = vs2_line_s + 1502 (mode->vsync_end - mode->vsync_start)/2; 1503 } 1504 1505 /* 1506 * Select pixel repeat depending on the double-clock flag 1507 * (which means we have to repeat each pixel once.) 1508 */ 1509 rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0; 1510 sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 | 1511 SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0); 1512 1513 /* the TMDS clock is scaled up by the pixel repeat */ 1514 tmds_clock = mode->clock * (1 + rep); 1515 1516 /* 1517 * The divisor is power-of-2. The TDA9983B datasheet gives 1518 * this as ranges of Msample/s, which is 10x the TMDS clock: 1519 * 0 - 800 to 1500 Msample/s 1520 * 1 - 400 to 800 Msample/s 1521 * 2 - 200 to 400 Msample/s 1522 * 3 - as 2 above 1523 */ 1524 for (div = 0; div < 3; div++) 1525 if (80000 >> div <= tmds_clock) 1526 break; 1527 1528 mutex_lock(&priv->audio_mutex); 1529 1530 priv->tmds_clock = tmds_clock; 1531 1532 /* mute the audio FIFO: */ 1533 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 1534 1535 /* set HDMI HDCP mode off: */ 1536 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); 1537 reg_clear(priv, REG_TX33, TX33_HDMI); 1538 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); 1539 1540 /* no pre-filter or interpolator: */ 1541 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | 1542 HVF_CNTRL_0_INTPOL(0)); 1543 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT); 1544 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); 1545 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | 1546 VIP_CNTRL_4_BLC(0)); 1547 1548 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); 1549 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR | 1550 PLL_SERIAL_3_SRL_DE); 1551 reg_write(priv, REG_SERIALIZER, 0); 1552 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); 1553 1554 reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep)); 1555 reg_write(priv, REG_SEL_CLK, sel_clk); 1556 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | 1557 PLL_SERIAL_2_SRL_PR(rep)); 1558 1559 /* set color matrix according to output rgb quant range */ 1560 if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) { 1561 static u8 tda998x_full_to_limited_range[] = { 1562 MAT_CONTRL_MAT_SC(2), 1563 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 1564 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00, 1565 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00, 1566 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f, 1567 0x00, 0x40, 0x00, 0x40, 0x00, 0x40 1568 }; 1569 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1570 reg_write_range(priv, REG_MAT_CONTRL, 1571 tda998x_full_to_limited_range, 1572 sizeof(tda998x_full_to_limited_range)); 1573 } else { 1574 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP | 1575 MAT_CONTRL_MAT_SC(1)); 1576 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1577 } 1578 1579 /* set BIAS tmds value: */ 1580 reg_write(priv, REG_ANA_GENERAL, 0x09); 1581 1582 /* 1583 * Sync on rising HSYNC/VSYNC 1584 */ 1585 reg = VIP_CNTRL_3_SYNC_HS; 1586 1587 /* 1588 * TDA19988 requires high-active sync at input stage, 1589 * so invert low-active sync provided by master encoder here 1590 */ 1591 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1592 reg |= VIP_CNTRL_3_H_TGL; 1593 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1594 reg |= VIP_CNTRL_3_V_TGL; 1595 reg_write(priv, REG_VIP_CNTRL_3, reg); 1596 1597 reg_write(priv, REG_VIDFORMAT, 0x00); 1598 reg_write16(priv, REG_REFPIX_MSB, ref_pix); 1599 reg_write16(priv, REG_REFLINE_MSB, ref_line); 1600 reg_write16(priv, REG_NPIX_MSB, n_pix); 1601 reg_write16(priv, REG_NLINE_MSB, n_line); 1602 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s); 1603 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); 1604 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e); 1605 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e); 1606 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s); 1607 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); 1608 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e); 1609 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e); 1610 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s); 1611 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e); 1612 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s); 1613 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e); 1614 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s); 1615 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e); 1616 reg_write16(priv, REG_DE_START_MSB, de_pix_s); 1617 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e); 1618 1619 if (priv->rev == TDA19988) { 1620 /* let incoming pixels fill the active space (if any) */ 1621 reg_write(priv, REG_ENABLE_SPACE, 0x00); 1622 } 1623 1624 /* 1625 * Always generate sync polarity relative to input sync and 1626 * revert input stage toggled sync at output stage 1627 */ 1628 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN; 1629 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1630 reg |= TBG_CNTRL_1_H_TGL; 1631 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1632 reg |= TBG_CNTRL_1_V_TGL; 1633 reg_write(priv, REG_TBG_CNTRL_1, reg); 1634 1635 /* must be last register set: */ 1636 reg_write(priv, REG_TBG_CNTRL_0, 0); 1637 1638 /* CEA-861B section 6 says that: 1639 * CEA version 1 (CEA-861) has no support for infoframes. 1640 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes, 1641 * and optional basic audio. 1642 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes, 1643 * and optional digital audio, with audio infoframes. 1644 * 1645 * Since we only support generation of version 2 AVI infoframes, 1646 * ignore CEA version 2 and below (iow, behave as if we're a 1647 * CEA-861 source.) 1648 */ 1649 priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3; 1650 1651 if (priv->supports_infoframes) { 1652 /* We need to turn HDMI HDCP stuff on to get audio through */ 1653 reg &= ~TBG_CNTRL_1_DWIN_DIS; 1654 reg_write(priv, REG_TBG_CNTRL_1, reg); 1655 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); 1656 reg_set(priv, REG_TX33, TX33_HDMI); 1657 1658 tda998x_write_avi(priv, adjusted_mode); 1659 tda998x_write_vsi(priv, adjusted_mode); 1660 1661 if (priv->sink_has_audio) 1662 tda998x_configure_audio(priv); 1663 } 1664 1665 mutex_unlock(&priv->audio_mutex); 1666 } 1667 1668 static const struct drm_bridge_funcs tda998x_bridge_funcs = { 1669 .attach = tda998x_bridge_attach, 1670 .detach = tda998x_bridge_detach, 1671 .mode_valid = tda998x_bridge_mode_valid, 1672 .disable = tda998x_bridge_disable, 1673 .mode_set = tda998x_bridge_mode_set, 1674 .enable = tda998x_bridge_enable, 1675 }; 1676 1677 /* I2C driver functions */ 1678 1679 static int tda998x_get_audio_ports(struct tda998x_priv *priv, 1680 struct device_node *np) 1681 { 1682 const u32 *port_data; 1683 u32 size; 1684 int i; 1685 1686 port_data = of_get_property(np, "audio-ports", &size); 1687 if (!port_data) 1688 return 0; 1689 1690 size /= sizeof(u32); 1691 if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) { 1692 dev_err(&priv->hdmi->dev, 1693 "Bad number of elements in audio-ports dt-property\n"); 1694 return -EINVAL; 1695 } 1696 1697 size /= 2; 1698 1699 for (i = 0; i < size; i++) { 1700 unsigned int route; 1701 u8 afmt = be32_to_cpup(&port_data[2*i]); 1702 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]); 1703 1704 switch (afmt) { 1705 case AFMT_I2S: 1706 route = AUDIO_ROUTE_I2S; 1707 break; 1708 case AFMT_SPDIF: 1709 route = AUDIO_ROUTE_SPDIF; 1710 break; 1711 default: 1712 dev_err(&priv->hdmi->dev, 1713 "Bad audio format %u\n", afmt); 1714 return -EINVAL; 1715 } 1716 1717 if (!ena_ap) { 1718 dev_err(&priv->hdmi->dev, "invalid zero port config\n"); 1719 continue; 1720 } 1721 1722 if (priv->audio_port_enable[route]) { 1723 dev_err(&priv->hdmi->dev, 1724 "%s format already configured\n", 1725 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S"); 1726 return -EINVAL; 1727 } 1728 1729 priv->audio_port_enable[route] = ena_ap; 1730 } 1731 return 0; 1732 } 1733 1734 static int tda998x_set_config(struct tda998x_priv *priv, 1735 const struct tda998x_encoder_params *p) 1736 { 1737 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | 1738 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | 1739 VIP_CNTRL_0_SWAP_B(p->swap_b) | 1740 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); 1741 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | 1742 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | 1743 VIP_CNTRL_1_SWAP_D(p->swap_d) | 1744 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); 1745 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | 1746 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | 1747 VIP_CNTRL_2_SWAP_F(p->swap_f) | 1748 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); 1749 1750 if (p->audio_params.format != AFMT_UNUSED) { 1751 unsigned int ratio, route; 1752 bool spdif = p->audio_params.format == AFMT_SPDIF; 1753 1754 route = AUDIO_ROUTE_I2S + spdif; 1755 1756 priv->audio.route = &tda998x_audio_route[route]; 1757 priv->audio.cea = p->audio_params.cea; 1758 priv->audio.sample_rate = p->audio_params.sample_rate; 1759 memcpy(priv->audio.status, p->audio_params.status, 1760 min(sizeof(priv->audio.status), 1761 sizeof(p->audio_params.status))); 1762 priv->audio.ena_ap = p->audio_params.config; 1763 priv->audio.i2s_format = I2S_FORMAT_PHILIPS; 1764 1765 ratio = spdif ? 64 : p->audio_params.sample_width * 2; 1766 return tda998x_derive_cts_n(priv, &priv->audio, ratio); 1767 } 1768 1769 return 0; 1770 } 1771 1772 static void tda998x_destroy(struct device *dev) 1773 { 1774 struct tda998x_priv *priv = dev_get_drvdata(dev); 1775 1776 drm_bridge_remove(&priv->bridge); 1777 1778 /* disable all IRQs and free the IRQ handler */ 1779 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1780 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1781 1782 if (priv->audio_pdev) 1783 platform_device_unregister(priv->audio_pdev); 1784 1785 if (priv->hdmi->irq) 1786 free_irq(priv->hdmi->irq, priv); 1787 1788 del_timer_sync(&priv->edid_delay_timer); 1789 cancel_work_sync(&priv->detect_work); 1790 1791 i2c_unregister_device(priv->cec); 1792 1793 if (priv->cec_notify) 1794 cec_notifier_put(priv->cec_notify); 1795 } 1796 1797 static int tda998x_create(struct device *dev) 1798 { 1799 struct i2c_client *client = to_i2c_client(dev); 1800 struct device_node *np = client->dev.of_node; 1801 struct i2c_board_info cec_info; 1802 struct tda998x_priv *priv; 1803 u32 video; 1804 int rev_lo, rev_hi, ret; 1805 1806 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1807 if (!priv) 1808 return -ENOMEM; 1809 1810 dev_set_drvdata(dev, priv); 1811 1812 mutex_init(&priv->mutex); /* protect the page access */ 1813 mutex_init(&priv->audio_mutex); /* protect access from audio thread */ 1814 mutex_init(&priv->edid_mutex); 1815 INIT_LIST_HEAD(&priv->bridge.list); 1816 init_waitqueue_head(&priv->edid_delay_waitq); 1817 timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0); 1818 INIT_WORK(&priv->detect_work, tda998x_detect_work); 1819 1820 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); 1821 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); 1822 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); 1823 1824 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */ 1825 priv->cec_addr = 0x34 + (client->addr & 0x03); 1826 priv->current_page = 0xff; 1827 priv->hdmi = client; 1828 1829 /* wake up the device: */ 1830 cec_write(priv, REG_CEC_ENAMODS, 1831 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); 1832 1833 tda998x_reset(priv); 1834 1835 /* read version: */ 1836 rev_lo = reg_read(priv, REG_VERSION_LSB); 1837 if (rev_lo < 0) { 1838 dev_err(dev, "failed to read version: %d\n", rev_lo); 1839 return rev_lo; 1840 } 1841 1842 rev_hi = reg_read(priv, REG_VERSION_MSB); 1843 if (rev_hi < 0) { 1844 dev_err(dev, "failed to read version: %d\n", rev_hi); 1845 return rev_hi; 1846 } 1847 1848 priv->rev = rev_lo | rev_hi << 8; 1849 1850 /* mask off feature bits: */ 1851 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ 1852 1853 switch (priv->rev) { 1854 case TDA9989N2: 1855 dev_info(dev, "found TDA9989 n2"); 1856 break; 1857 case TDA19989: 1858 dev_info(dev, "found TDA19989"); 1859 break; 1860 case TDA19989N2: 1861 dev_info(dev, "found TDA19989 n2"); 1862 break; 1863 case TDA19988: 1864 dev_info(dev, "found TDA19988"); 1865 break; 1866 default: 1867 dev_err(dev, "found unsupported device: %04x\n", priv->rev); 1868 return -ENXIO; 1869 } 1870 1871 /* after reset, enable DDC: */ 1872 reg_write(priv, REG_DDC_DISABLE, 0x00); 1873 1874 /* set clock on DDC channel: */ 1875 reg_write(priv, REG_TX3, 39); 1876 1877 /* if necessary, disable multi-master: */ 1878 if (priv->rev == TDA19989) 1879 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM); 1880 1881 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL, 1882 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); 1883 1884 /* ensure interrupts are disabled */ 1885 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1886 1887 /* clear pending interrupts */ 1888 cec_read(priv, REG_CEC_RXSHPDINT); 1889 reg_read(priv, REG_INT_FLAGS_0); 1890 reg_read(priv, REG_INT_FLAGS_1); 1891 reg_read(priv, REG_INT_FLAGS_2); 1892 1893 /* initialize the optional IRQ */ 1894 if (client->irq) { 1895 unsigned long irq_flags; 1896 1897 /* init read EDID waitqueue and HDP work */ 1898 init_waitqueue_head(&priv->wq_edid); 1899 1900 irq_flags = 1901 irqd_get_trigger_type(irq_get_irq_data(client->irq)); 1902 1903 priv->cec_glue.irq_flags = irq_flags; 1904 1905 irq_flags |= IRQF_SHARED | IRQF_ONESHOT; 1906 ret = request_threaded_irq(client->irq, NULL, 1907 tda998x_irq_thread, irq_flags, 1908 "tda998x", priv); 1909 if (ret) { 1910 dev_err(dev, "failed to request IRQ#%u: %d\n", 1911 client->irq, ret); 1912 goto err_irq; 1913 } 1914 1915 /* enable HPD irq */ 1916 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD); 1917 } 1918 1919 priv->cec_notify = cec_notifier_get(dev); 1920 if (!priv->cec_notify) { 1921 ret = -ENOMEM; 1922 goto fail; 1923 } 1924 1925 priv->cec_glue.parent = dev; 1926 priv->cec_glue.data = priv; 1927 priv->cec_glue.init = tda998x_cec_hook_init; 1928 priv->cec_glue.exit = tda998x_cec_hook_exit; 1929 priv->cec_glue.open = tda998x_cec_hook_open; 1930 priv->cec_glue.release = tda998x_cec_hook_release; 1931 1932 /* 1933 * Some TDA998x are actually two I2C devices merged onto one piece 1934 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter 1935 * with a slightly modified TDA9950 CEC device. The CEC device 1936 * is at the TDA9950 address, with the address pins strapped across 1937 * to the TDA998x address pins. Hence, it always has the same 1938 * offset. 1939 */ 1940 memset(&cec_info, 0, sizeof(cec_info)); 1941 strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type)); 1942 cec_info.addr = priv->cec_addr; 1943 cec_info.platform_data = &priv->cec_glue; 1944 cec_info.irq = client->irq; 1945 1946 priv->cec = i2c_new_device(client->adapter, &cec_info); 1947 if (!priv->cec) { 1948 ret = -ENODEV; 1949 goto fail; 1950 } 1951 1952 /* enable EDID read irq: */ 1953 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1954 1955 if (np) { 1956 /* get the device tree parameters */ 1957 ret = of_property_read_u32(np, "video-ports", &video); 1958 if (ret == 0) { 1959 priv->vip_cntrl_0 = video >> 16; 1960 priv->vip_cntrl_1 = video >> 8; 1961 priv->vip_cntrl_2 = video; 1962 } 1963 1964 ret = tda998x_get_audio_ports(priv, np); 1965 if (ret) 1966 goto fail; 1967 1968 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] || 1969 priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) 1970 tda998x_audio_codec_init(priv, &client->dev); 1971 } else if (dev->platform_data) { 1972 ret = tda998x_set_config(priv, dev->platform_data); 1973 if (ret) 1974 goto fail; 1975 } 1976 1977 priv->bridge.funcs = &tda998x_bridge_funcs; 1978 #ifdef CONFIG_OF 1979 priv->bridge.of_node = dev->of_node; 1980 #endif 1981 1982 drm_bridge_add(&priv->bridge); 1983 1984 return 0; 1985 1986 fail: 1987 tda998x_destroy(dev); 1988 err_irq: 1989 return ret; 1990 } 1991 1992 /* DRM encoder functions */ 1993 1994 static void tda998x_encoder_destroy(struct drm_encoder *encoder) 1995 { 1996 drm_encoder_cleanup(encoder); 1997 } 1998 1999 static const struct drm_encoder_funcs tda998x_encoder_funcs = { 2000 .destroy = tda998x_encoder_destroy, 2001 }; 2002 2003 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm) 2004 { 2005 struct tda998x_priv *priv = dev_get_drvdata(dev); 2006 u32 crtcs = 0; 2007 int ret; 2008 2009 if (dev->of_node) 2010 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); 2011 2012 /* If no CRTCs were found, fall back to our old behaviour */ 2013 if (crtcs == 0) { 2014 dev_warn(dev, "Falling back to first CRTC\n"); 2015 crtcs = 1 << 0; 2016 } 2017 2018 priv->encoder.possible_crtcs = crtcs; 2019 2020 ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs, 2021 DRM_MODE_ENCODER_TMDS, NULL); 2022 if (ret) 2023 goto err_encoder; 2024 2025 ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL); 2026 if (ret) 2027 goto err_bridge; 2028 2029 return 0; 2030 2031 err_bridge: 2032 drm_encoder_cleanup(&priv->encoder); 2033 err_encoder: 2034 return ret; 2035 } 2036 2037 static int tda998x_bind(struct device *dev, struct device *master, void *data) 2038 { 2039 struct drm_device *drm = data; 2040 2041 return tda998x_encoder_init(dev, drm); 2042 } 2043 2044 static void tda998x_unbind(struct device *dev, struct device *master, 2045 void *data) 2046 { 2047 struct tda998x_priv *priv = dev_get_drvdata(dev); 2048 2049 drm_encoder_cleanup(&priv->encoder); 2050 } 2051 2052 static const struct component_ops tda998x_ops = { 2053 .bind = tda998x_bind, 2054 .unbind = tda998x_unbind, 2055 }; 2056 2057 static int 2058 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) 2059 { 2060 int ret; 2061 2062 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 2063 dev_warn(&client->dev, "adapter does not support I2C\n"); 2064 return -EIO; 2065 } 2066 2067 ret = tda998x_create(&client->dev); 2068 if (ret) 2069 return ret; 2070 2071 ret = component_add(&client->dev, &tda998x_ops); 2072 if (ret) 2073 tda998x_destroy(&client->dev); 2074 return ret; 2075 } 2076 2077 static int tda998x_remove(struct i2c_client *client) 2078 { 2079 component_del(&client->dev, &tda998x_ops); 2080 tda998x_destroy(&client->dev); 2081 return 0; 2082 } 2083 2084 #ifdef CONFIG_OF 2085 static const struct of_device_id tda998x_dt_ids[] = { 2086 { .compatible = "nxp,tda998x", }, 2087 { } 2088 }; 2089 MODULE_DEVICE_TABLE(of, tda998x_dt_ids); 2090 #endif 2091 2092 static const struct i2c_device_id tda998x_ids[] = { 2093 { "tda998x", 0 }, 2094 { } 2095 }; 2096 MODULE_DEVICE_TABLE(i2c, tda998x_ids); 2097 2098 static struct i2c_driver tda998x_driver = { 2099 .probe = tda998x_probe, 2100 .remove = tda998x_remove, 2101 .driver = { 2102 .name = "tda998x", 2103 .of_match_table = of_match_ptr(tda998x_dt_ids), 2104 }, 2105 .id_table = tda998x_ids, 2106 }; 2107 2108 module_i2c_driver(tda998x_driver); 2109 2110 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com"); 2111 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder"); 2112 MODULE_LICENSE("GPL"); 2113