xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 9da8320b)
1 /*
2  * Copyright (C) 2012 Texas Instruments
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/component.h>
19 #include <linux/hdmi.h>
20 #include <linux/module.h>
21 #include <linux/irq.h>
22 #include <sound/asoundef.h>
23 
24 #include <drm/drmP.h>
25 #include <drm/drm_crtc_helper.h>
26 #include <drm/drm_edid.h>
27 #include <drm/drm_of.h>
28 #include <drm/i2c/tda998x.h>
29 
30 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
31 
32 struct tda998x_priv {
33 	struct i2c_client *cec;
34 	struct i2c_client *hdmi;
35 	struct mutex mutex;
36 	u16 rev;
37 	u8 current_page;
38 	int dpms;
39 	bool is_hdmi_sink;
40 	u8 vip_cntrl_0;
41 	u8 vip_cntrl_1;
42 	u8 vip_cntrl_2;
43 	struct tda998x_encoder_params params;
44 
45 	wait_queue_head_t wq_edid;
46 	volatile int wq_edid_wait;
47 
48 	struct work_struct detect_work;
49 	struct timer_list edid_delay_timer;
50 	wait_queue_head_t edid_delay_waitq;
51 	bool edid_delay_active;
52 
53 	struct drm_encoder encoder;
54 	struct drm_connector connector;
55 };
56 
57 #define conn_to_tda998x_priv(x) \
58 	container_of(x, struct tda998x_priv, connector)
59 
60 #define enc_to_tda998x_priv(x) \
61 	container_of(x, struct tda998x_priv, encoder)
62 
63 /* The TDA9988 series of devices use a paged register scheme.. to simplify
64  * things we encode the page # in upper bits of the register #.  To read/
65  * write a given register, we need to make sure CURPAGE register is set
66  * appropriately.  Which implies reads/writes are not atomic.  Fun!
67  */
68 
69 #define REG(page, addr) (((page) << 8) | (addr))
70 #define REG2ADDR(reg)   ((reg) & 0xff)
71 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
72 
73 #define REG_CURPAGE               0xff                /* write */
74 
75 
76 /* Page 00h: General Control */
77 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
78 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
79 # define MAIN_CNTRL0_SR           (1 << 0)
80 # define MAIN_CNTRL0_DECS         (1 << 1)
81 # define MAIN_CNTRL0_DEHS         (1 << 2)
82 # define MAIN_CNTRL0_CECS         (1 << 3)
83 # define MAIN_CNTRL0_CEHS         (1 << 4)
84 # define MAIN_CNTRL0_SCALER       (1 << 7)
85 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
86 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
87 # define SOFTRESET_AUDIO          (1 << 0)
88 # define SOFTRESET_I2C_MASTER     (1 << 1)
89 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
90 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
91 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
92 # define I2C_MASTER_DIS_MM        (1 << 0)
93 # define I2C_MASTER_DIS_FILT      (1 << 1)
94 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
95 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
96 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
97 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
98 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
99 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
100 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
101 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
102 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
103 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
104 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
105 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
106 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
107 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
108 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
109 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
110 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
111 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
112 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
113 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
114 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
115 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
116 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
117 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
118 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
119 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
120 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
121 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
122 # define VIP_CNTRL_3_X_TGL        (1 << 0)
123 # define VIP_CNTRL_3_H_TGL        (1 << 1)
124 # define VIP_CNTRL_3_V_TGL        (1 << 2)
125 # define VIP_CNTRL_3_EMB          (1 << 3)
126 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
127 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
128 # define VIP_CNTRL_3_DE_INT       (1 << 6)
129 # define VIP_CNTRL_3_EDGE         (1 << 7)
130 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
131 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
132 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
133 # define VIP_CNTRL_4_CCIR656      (1 << 4)
134 # define VIP_CNTRL_4_656_ALT      (1 << 5)
135 # define VIP_CNTRL_4_TST_656      (1 << 6)
136 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
137 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
138 # define VIP_CNTRL_5_CKCASE       (1 << 0)
139 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
140 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
141 # define MUX_AP_SELECT_I2S	  0x64
142 # define MUX_AP_SELECT_SPDIF	  0x40
143 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
144 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
145 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
146 # define MAT_CONTRL_MAT_BP        (1 << 2)
147 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
148 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
149 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
150 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
151 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
152 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
153 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
154 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
155 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
156 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
157 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
158 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
159 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
160 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
161 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
162 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
163 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
164 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
165 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
166 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
167 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
168 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
169 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
170 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
171 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
172 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
173 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
174 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
175 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
176 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
177 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
178 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
179 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
180 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
181 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
182 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
183 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
184 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
185 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
186 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
187 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
188 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
189 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
190 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
191 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
192 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
193 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
194 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
195 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
196 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
197 # define TBG_CNTRL_1_H_TGL        (1 << 0)
198 # define TBG_CNTRL_1_V_TGL        (1 << 1)
199 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
200 # define TBG_CNTRL_1_X_EXT        (1 << 3)
201 # define TBG_CNTRL_1_H_EXT        (1 << 4)
202 # define TBG_CNTRL_1_V_EXT        (1 << 5)
203 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
204 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
205 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
206 # define HVF_CNTRL_0_SM           (1 << 7)
207 # define HVF_CNTRL_0_RWB          (1 << 6)
208 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
209 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
210 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
211 # define HVF_CNTRL_1_FOR          (1 << 0)
212 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
213 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
214 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
215 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
216 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
217 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
218 # define I2S_FORMAT(x)            (((x) & 3) << 0)
219 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
220 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
221 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
222 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
223 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
224 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
225 
226 /* Page 02h: PLL settings */
227 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
228 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
229 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
230 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
231 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
232 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
233 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
234 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
235 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
236 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
237 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
238 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
239 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
240 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
241 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
242 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
243 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
244 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
245 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
246 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
247 # define AUDIO_DIV_SERCLK_1       0
248 # define AUDIO_DIV_SERCLK_2       1
249 # define AUDIO_DIV_SERCLK_4       2
250 # define AUDIO_DIV_SERCLK_8       3
251 # define AUDIO_DIV_SERCLK_16      4
252 # define AUDIO_DIV_SERCLK_32      5
253 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
254 # define SEL_CLK_SEL_CLK1         (1 << 0)
255 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
256 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
257 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
258 
259 
260 /* Page 09h: EDID Control */
261 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
262 /* next 127 successive registers are the EDID block */
263 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
264 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
265 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
266 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
267 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
268 
269 
270 /* Page 10h: information frames and packets */
271 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
272 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
273 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
274 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
275 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
276 
277 
278 /* Page 11h: audio settings and content info packets */
279 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
280 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
281 # define AIP_CNTRL_0_SWAP         (1 << 1)
282 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
283 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
284 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
285 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
286 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
287 # define CA_I2S_HBR_CHSTAT        (1 << 6)
288 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
289 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
290 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
291 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
292 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
293 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
294 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
295 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
296 # define CTS_N_K(x)               (((x) & 7) << 0)
297 # define CTS_N_M(x)               (((x) & 3) << 4)
298 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
299 # define ENC_CNTRL_RST_ENC        (1 << 0)
300 # define ENC_CNTRL_RST_SEL        (1 << 1)
301 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
302 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
303 # define DIP_FLAGS_ACR            (1 << 0)
304 # define DIP_FLAGS_GC             (1 << 1)
305 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
306 # define DIP_IF_FLAGS_IF1         (1 << 1)
307 # define DIP_IF_FLAGS_IF2         (1 << 2)
308 # define DIP_IF_FLAGS_IF3         (1 << 3)
309 # define DIP_IF_FLAGS_IF4         (1 << 4)
310 # define DIP_IF_FLAGS_IF5         (1 << 5)
311 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
312 
313 
314 /* Page 12h: HDCP and OTP */
315 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
316 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
317 # define TX4_PD_RAM               (1 << 1)
318 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
319 # define TX33_HDMI                (1 << 1)
320 
321 
322 /* Page 13h: Gamut related metadata packets */
323 
324 
325 
326 /* CEC registers: (not paged)
327  */
328 #define REG_CEC_INTSTATUS	  0xee		      /* read */
329 # define CEC_INTSTATUS_CEC	  (1 << 0)
330 # define CEC_INTSTATUS_HDMI	  (1 << 1)
331 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
332 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
333 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
334 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
335 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
336 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
337 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
338 # define CEC_RXSHPDINT_RXSENS     BIT(0)
339 # define CEC_RXSHPDINT_HPD        BIT(1)
340 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
341 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
342 # define CEC_RXSHPDLEV_HPD        (1 << 1)
343 
344 #define REG_CEC_ENAMODS           0xff                /* read/write */
345 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
346 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
347 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
348 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
349 # define CEC_ENAMODS_EN_CEC       (1 << 0)
350 
351 
352 /* Device versions: */
353 #define TDA9989N2                 0x0101
354 #define TDA19989                  0x0201
355 #define TDA19989N2                0x0202
356 #define TDA19988                  0x0301
357 
358 static void
359 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
360 {
361 	struct i2c_client *client = priv->cec;
362 	u8 buf[] = {addr, val};
363 	int ret;
364 
365 	ret = i2c_master_send(client, buf, sizeof(buf));
366 	if (ret < 0)
367 		dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
368 }
369 
370 static u8
371 cec_read(struct tda998x_priv *priv, u8 addr)
372 {
373 	struct i2c_client *client = priv->cec;
374 	u8 val;
375 	int ret;
376 
377 	ret = i2c_master_send(client, &addr, sizeof(addr));
378 	if (ret < 0)
379 		goto fail;
380 
381 	ret = i2c_master_recv(client, &val, sizeof(val));
382 	if (ret < 0)
383 		goto fail;
384 
385 	return val;
386 
387 fail:
388 	dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
389 	return 0;
390 }
391 
392 static int
393 set_page(struct tda998x_priv *priv, u16 reg)
394 {
395 	if (REG2PAGE(reg) != priv->current_page) {
396 		struct i2c_client *client = priv->hdmi;
397 		u8 buf[] = {
398 				REG_CURPAGE, REG2PAGE(reg)
399 		};
400 		int ret = i2c_master_send(client, buf, sizeof(buf));
401 		if (ret < 0) {
402 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
403 					reg, ret);
404 			return ret;
405 		}
406 
407 		priv->current_page = REG2PAGE(reg);
408 	}
409 	return 0;
410 }
411 
412 static int
413 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
414 {
415 	struct i2c_client *client = priv->hdmi;
416 	u8 addr = REG2ADDR(reg);
417 	int ret;
418 
419 	mutex_lock(&priv->mutex);
420 	ret = set_page(priv, reg);
421 	if (ret < 0)
422 		goto out;
423 
424 	ret = i2c_master_send(client, &addr, sizeof(addr));
425 	if (ret < 0)
426 		goto fail;
427 
428 	ret = i2c_master_recv(client, buf, cnt);
429 	if (ret < 0)
430 		goto fail;
431 
432 	goto out;
433 
434 fail:
435 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
436 out:
437 	mutex_unlock(&priv->mutex);
438 	return ret;
439 }
440 
441 static void
442 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
443 {
444 	struct i2c_client *client = priv->hdmi;
445 	u8 buf[cnt+1];
446 	int ret;
447 
448 	buf[0] = REG2ADDR(reg);
449 	memcpy(&buf[1], p, cnt);
450 
451 	mutex_lock(&priv->mutex);
452 	ret = set_page(priv, reg);
453 	if (ret < 0)
454 		goto out;
455 
456 	ret = i2c_master_send(client, buf, cnt + 1);
457 	if (ret < 0)
458 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
459 out:
460 	mutex_unlock(&priv->mutex);
461 }
462 
463 static int
464 reg_read(struct tda998x_priv *priv, u16 reg)
465 {
466 	u8 val = 0;
467 	int ret;
468 
469 	ret = reg_read_range(priv, reg, &val, sizeof(val));
470 	if (ret < 0)
471 		return ret;
472 	return val;
473 }
474 
475 static void
476 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
477 {
478 	struct i2c_client *client = priv->hdmi;
479 	u8 buf[] = {REG2ADDR(reg), val};
480 	int ret;
481 
482 	mutex_lock(&priv->mutex);
483 	ret = set_page(priv, reg);
484 	if (ret < 0)
485 		goto out;
486 
487 	ret = i2c_master_send(client, buf, sizeof(buf));
488 	if (ret < 0)
489 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
490 out:
491 	mutex_unlock(&priv->mutex);
492 }
493 
494 static void
495 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
496 {
497 	struct i2c_client *client = priv->hdmi;
498 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
499 	int ret;
500 
501 	mutex_lock(&priv->mutex);
502 	ret = set_page(priv, reg);
503 	if (ret < 0)
504 		goto out;
505 
506 	ret = i2c_master_send(client, buf, sizeof(buf));
507 	if (ret < 0)
508 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
509 out:
510 	mutex_unlock(&priv->mutex);
511 }
512 
513 static void
514 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
515 {
516 	int old_val;
517 
518 	old_val = reg_read(priv, reg);
519 	if (old_val >= 0)
520 		reg_write(priv, reg, old_val | val);
521 }
522 
523 static void
524 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
525 {
526 	int old_val;
527 
528 	old_val = reg_read(priv, reg);
529 	if (old_val >= 0)
530 		reg_write(priv, reg, old_val & ~val);
531 }
532 
533 static void
534 tda998x_reset(struct tda998x_priv *priv)
535 {
536 	/* reset audio and i2c master: */
537 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
538 	msleep(50);
539 	reg_write(priv, REG_SOFTRESET, 0);
540 	msleep(50);
541 
542 	/* reset transmitter: */
543 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
544 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
545 
546 	/* PLL registers common configuration */
547 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
548 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
549 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
550 	reg_write(priv, REG_SERIALIZER,   0x00);
551 	reg_write(priv, REG_BUFFER_OUT,   0x00);
552 	reg_write(priv, REG_PLL_SCG1,     0x00);
553 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
554 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
555 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
556 	reg_write(priv, REG_PLL_SCGN2,    0x00);
557 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
558 	reg_write(priv, REG_PLL_SCGR2,    0x00);
559 	reg_write(priv, REG_PLL_SCG2,     0x10);
560 
561 	/* Write the default value MUX register */
562 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
563 }
564 
565 /*
566  * The TDA998x has a problem when trying to read the EDID close to a
567  * HPD assertion: it needs a delay of 100ms to avoid timing out while
568  * trying to read EDID data.
569  *
570  * However, tda998x_encoder_get_modes() may be called at any moment
571  * after tda998x_connector_detect() indicates that we are connected, so
572  * we need to delay probing modes in tda998x_encoder_get_modes() after
573  * we have seen a HPD inactive->active transition.  This code implements
574  * that delay.
575  */
576 static void tda998x_edid_delay_done(unsigned long data)
577 {
578 	struct tda998x_priv *priv = (struct tda998x_priv *)data;
579 
580 	priv->edid_delay_active = false;
581 	wake_up(&priv->edid_delay_waitq);
582 	schedule_work(&priv->detect_work);
583 }
584 
585 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
586 {
587 	priv->edid_delay_active = true;
588 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
589 }
590 
591 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
592 {
593 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
594 }
595 
596 /*
597  * We need to run the KMS hotplug event helper outside of our threaded
598  * interrupt routine as this can call back into our get_modes method,
599  * which will want to make use of interrupts.
600  */
601 static void tda998x_detect_work(struct work_struct *work)
602 {
603 	struct tda998x_priv *priv =
604 		container_of(work, struct tda998x_priv, detect_work);
605 	struct drm_device *dev = priv->encoder.dev;
606 
607 	if (dev)
608 		drm_kms_helper_hotplug_event(dev);
609 }
610 
611 /*
612  * only 2 interrupts may occur: screen plug/unplug and EDID read
613  */
614 static irqreturn_t tda998x_irq_thread(int irq, void *data)
615 {
616 	struct tda998x_priv *priv = data;
617 	u8 sta, cec, lvl, flag0, flag1, flag2;
618 	bool handled = false;
619 
620 	sta = cec_read(priv, REG_CEC_INTSTATUS);
621 	cec = cec_read(priv, REG_CEC_RXSHPDINT);
622 	lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
623 	flag0 = reg_read(priv, REG_INT_FLAGS_0);
624 	flag1 = reg_read(priv, REG_INT_FLAGS_1);
625 	flag2 = reg_read(priv, REG_INT_FLAGS_2);
626 	DRM_DEBUG_DRIVER(
627 		"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
628 		sta, cec, lvl, flag0, flag1, flag2);
629 
630 	if (cec & CEC_RXSHPDINT_HPD) {
631 		if (lvl & CEC_RXSHPDLEV_HPD)
632 			tda998x_edid_delay_start(priv);
633 		else
634 			schedule_work(&priv->detect_work);
635 
636 		handled = true;
637 	}
638 
639 	if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
640 		priv->wq_edid_wait = 0;
641 		wake_up(&priv->wq_edid);
642 		handled = true;
643 	}
644 
645 	return IRQ_RETVAL(handled);
646 }
647 
648 static void
649 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
650 		 union hdmi_infoframe *frame)
651 {
652 	u8 buf[32];
653 	ssize_t len;
654 
655 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
656 	if (len < 0) {
657 		dev_err(&priv->hdmi->dev,
658 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
659 			frame->any.type, len);
660 		return;
661 	}
662 
663 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
664 	reg_write_range(priv, addr, buf, len);
665 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
666 }
667 
668 static void
669 tda998x_write_aif(struct tda998x_priv *priv, struct tda998x_encoder_params *p)
670 {
671 	union hdmi_infoframe frame;
672 
673 	hdmi_audio_infoframe_init(&frame.audio);
674 
675 	frame.audio.channels = p->audio_frame[1] & 0x07;
676 	frame.audio.channel_allocation = p->audio_frame[4];
677 	frame.audio.level_shift_value = (p->audio_frame[5] & 0x78) >> 3;
678 	frame.audio.downmix_inhibit = (p->audio_frame[5] & 0x80) >> 7;
679 
680 	/*
681 	 * L-PCM and IEC61937 compressed audio shall always set sample
682 	 * frequency to "refer to stream".  For others, see the HDMI
683 	 * specification.
684 	 */
685 	frame.audio.sample_frequency = (p->audio_frame[2] & 0x1c) >> 2;
686 
687 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
688 }
689 
690 static void
691 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
692 {
693 	union hdmi_infoframe frame;
694 
695 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode);
696 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
697 
698 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
699 }
700 
701 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
702 {
703 	if (on) {
704 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
705 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
706 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
707 	} else {
708 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
709 	}
710 }
711 
712 static void
713 tda998x_configure_audio(struct tda998x_priv *priv,
714 		struct drm_display_mode *mode, struct tda998x_encoder_params *p)
715 {
716 	u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
717 	u32 n;
718 
719 	/* Enable audio ports */
720 	reg_write(priv, REG_ENA_AP, p->audio_cfg);
721 	reg_write(priv, REG_ENA_ACLK, p->audio_clk_cfg);
722 
723 	/* Set audio input source */
724 	switch (p->audio_format) {
725 	case AFMT_SPDIF:
726 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
727 		clksel_aip = AIP_CLKSEL_AIP_SPDIF;
728 		clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
729 		cts_n = CTS_N_M(3) | CTS_N_K(3);
730 		break;
731 
732 	case AFMT_I2S:
733 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
734 		clksel_aip = AIP_CLKSEL_AIP_I2S;
735 		clksel_fs = AIP_CLKSEL_FS_ACLK;
736 		cts_n = CTS_N_M(3) | CTS_N_K(3);
737 		break;
738 
739 	default:
740 		BUG();
741 		return;
742 	}
743 
744 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
745 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
746 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
747 	reg_write(priv, REG_CTS_N, cts_n);
748 
749 	/*
750 	 * Audio input somehow depends on HDMI line rate which is
751 	 * related to pixclk. Testing showed that modes with pixclk
752 	 * >100MHz need a larger divider while <40MHz need the default.
753 	 * There is no detailed info in the datasheet, so we just
754 	 * assume 100MHz requires larger divider.
755 	 */
756 	adiv = AUDIO_DIV_SERCLK_8;
757 	if (mode->clock > 100000)
758 		adiv++;			/* AUDIO_DIV_SERCLK_16 */
759 
760 	/* S/PDIF asks for a larger divider */
761 	if (p->audio_format == AFMT_SPDIF)
762 		adiv++;			/* AUDIO_DIV_SERCLK_16 or _32 */
763 
764 	reg_write(priv, REG_AUDIO_DIV, adiv);
765 
766 	/*
767 	 * This is the approximate value of N, which happens to be
768 	 * the recommended values for non-coherent clocks.
769 	 */
770 	n = 128 * p->audio_sample_rate / 1000;
771 
772 	/* Write the CTS and N values */
773 	buf[0] = 0x44;
774 	buf[1] = 0x42;
775 	buf[2] = 0x01;
776 	buf[3] = n;
777 	buf[4] = n >> 8;
778 	buf[5] = n >> 16;
779 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
780 
781 	/* Set CTS clock reference */
782 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
783 
784 	/* Reset CTS generator */
785 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
786 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
787 
788 	/* Write the channel status */
789 	buf[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
790 	buf[1] = 0x00;
791 	buf[2] = IEC958_AES3_CON_FS_NOTID;
792 	buf[3] = IEC958_AES4_CON_ORIGFS_NOTID |
793 			IEC958_AES4_CON_MAX_WORDLEN_24;
794 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
795 
796 	tda998x_audio_mute(priv, true);
797 	msleep(20);
798 	tda998x_audio_mute(priv, false);
799 
800 	/* Write the audio information packet */
801 	tda998x_write_aif(priv, p);
802 }
803 
804 /* DRM encoder functions */
805 
806 static void tda998x_encoder_set_config(struct tda998x_priv *priv,
807 				       const struct tda998x_encoder_params *p)
808 {
809 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
810 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
811 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
812 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
813 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
814 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
815 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
816 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
817 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
818 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
819 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
820 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
821 
822 	priv->params = *p;
823 }
824 
825 static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
826 {
827 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
828 
829 	/* we only care about on or off: */
830 	if (mode != DRM_MODE_DPMS_ON)
831 		mode = DRM_MODE_DPMS_OFF;
832 
833 	if (mode == priv->dpms)
834 		return;
835 
836 	switch (mode) {
837 	case DRM_MODE_DPMS_ON:
838 		/* enable video ports, audio will be enabled later */
839 		reg_write(priv, REG_ENA_VP_0, 0xff);
840 		reg_write(priv, REG_ENA_VP_1, 0xff);
841 		reg_write(priv, REG_ENA_VP_2, 0xff);
842 		/* set muxing after enabling ports: */
843 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
844 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
845 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
846 		break;
847 	case DRM_MODE_DPMS_OFF:
848 		/* disable video ports */
849 		reg_write(priv, REG_ENA_VP_0, 0x00);
850 		reg_write(priv, REG_ENA_VP_1, 0x00);
851 		reg_write(priv, REG_ENA_VP_2, 0x00);
852 		break;
853 	}
854 
855 	priv->dpms = mode;
856 }
857 
858 static void
859 tda998x_encoder_save(struct drm_encoder *encoder)
860 {
861 	DBG("");
862 }
863 
864 static void
865 tda998x_encoder_restore(struct drm_encoder *encoder)
866 {
867 	DBG("");
868 }
869 
870 static bool
871 tda998x_encoder_mode_fixup(struct drm_encoder *encoder,
872 			  const struct drm_display_mode *mode,
873 			  struct drm_display_mode *adjusted_mode)
874 {
875 	return true;
876 }
877 
878 static int tda998x_connector_mode_valid(struct drm_connector *connector,
879 					struct drm_display_mode *mode)
880 {
881 	if (mode->clock > 150000)
882 		return MODE_CLOCK_HIGH;
883 	if (mode->htotal >= BIT(13))
884 		return MODE_BAD_HVALUE;
885 	if (mode->vtotal >= BIT(11))
886 		return MODE_BAD_VVALUE;
887 	return MODE_OK;
888 }
889 
890 static void
891 tda998x_encoder_mode_set(struct drm_encoder *encoder,
892 			 struct drm_display_mode *mode,
893 			 struct drm_display_mode *adjusted_mode)
894 {
895 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
896 	u16 ref_pix, ref_line, n_pix, n_line;
897 	u16 hs_pix_s, hs_pix_e;
898 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
899 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
900 	u16 vwin1_line_s, vwin1_line_e;
901 	u16 vwin2_line_s, vwin2_line_e;
902 	u16 de_pix_s, de_pix_e;
903 	u8 reg, div, rep;
904 
905 	/*
906 	 * Internally TDA998x is using ITU-R BT.656 style sync but
907 	 * we get VESA style sync. TDA998x is using a reference pixel
908 	 * relative to ITU to sync to the input frame and for output
909 	 * sync generation. Currently, we are using reference detection
910 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
911 	 * which is position of rising VS with coincident rising HS.
912 	 *
913 	 * Now there is some issues to take care of:
914 	 * - HDMI data islands require sync-before-active
915 	 * - TDA998x register values must be > 0 to be enabled
916 	 * - REFLINE needs an additional offset of +1
917 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
918 	 *
919 	 * So we add +1 to all horizontal and vertical register values,
920 	 * plus an additional +3 for REFPIX as we are using RGB input only.
921 	 */
922 	n_pix        = mode->htotal;
923 	n_line       = mode->vtotal;
924 
925 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
926 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
927 	de_pix_e     = mode->htotal;
928 	de_pix_s     = mode->htotal - mode->hdisplay;
929 	ref_pix      = 3 + hs_pix_s;
930 
931 	/*
932 	 * Attached LCD controllers may generate broken sync. Allow
933 	 * those to adjust the position of the rising VS edge by adding
934 	 * HSKEW to ref_pix.
935 	 */
936 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
937 		ref_pix += adjusted_mode->hskew;
938 
939 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
940 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
941 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
942 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
943 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
944 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
945 		vs1_line_e   = vs1_line_s +
946 			       mode->vsync_end - mode->vsync_start;
947 		vwin2_line_s = vwin2_line_e = 0;
948 		vs2_pix_s    = vs2_pix_e  = 0;
949 		vs2_line_s   = vs2_line_e = 0;
950 	} else {
951 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
952 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
953 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
954 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
955 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
956 		vs1_line_e   = vs1_line_s +
957 			       (mode->vsync_end - mode->vsync_start)/2;
958 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
959 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
960 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
961 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
962 		vs2_line_e   = vs2_line_s +
963 			       (mode->vsync_end - mode->vsync_start)/2;
964 	}
965 
966 	div = 148500 / mode->clock;
967 	if (div != 0) {
968 		div--;
969 		if (div > 3)
970 			div = 3;
971 	}
972 
973 	/* mute the audio FIFO: */
974 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
975 
976 	/* set HDMI HDCP mode off: */
977 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
978 	reg_clear(priv, REG_TX33, TX33_HDMI);
979 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
980 
981 	/* no pre-filter or interpolator: */
982 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
983 			HVF_CNTRL_0_INTPOL(0));
984 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
985 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
986 			VIP_CNTRL_4_BLC(0));
987 
988 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
989 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
990 					  PLL_SERIAL_3_SRL_DE);
991 	reg_write(priv, REG_SERIALIZER, 0);
992 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
993 
994 	/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
995 	rep = 0;
996 	reg_write(priv, REG_RPT_CNTRL, 0);
997 	reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
998 			SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
999 
1000 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1001 			PLL_SERIAL_2_SRL_PR(rep));
1002 
1003 	/* set color matrix bypass flag: */
1004 	reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1005 				MAT_CONTRL_MAT_SC(1));
1006 
1007 	/* set BIAS tmds value: */
1008 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1009 
1010 	/*
1011 	 * Sync on rising HSYNC/VSYNC
1012 	 */
1013 	reg = VIP_CNTRL_3_SYNC_HS;
1014 
1015 	/*
1016 	 * TDA19988 requires high-active sync at input stage,
1017 	 * so invert low-active sync provided by master encoder here
1018 	 */
1019 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1020 		reg |= VIP_CNTRL_3_H_TGL;
1021 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1022 		reg |= VIP_CNTRL_3_V_TGL;
1023 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1024 
1025 	reg_write(priv, REG_VIDFORMAT, 0x00);
1026 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1027 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1028 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1029 	reg_write16(priv, REG_NLINE_MSB, n_line);
1030 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1031 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1032 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1033 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1034 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1035 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1036 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1037 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1038 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1039 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1040 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1041 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1042 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1043 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1044 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1045 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1046 
1047 	if (priv->rev == TDA19988) {
1048 		/* let incoming pixels fill the active space (if any) */
1049 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1050 	}
1051 
1052 	/*
1053 	 * Always generate sync polarity relative to input sync and
1054 	 * revert input stage toggled sync at output stage
1055 	 */
1056 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1057 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1058 		reg |= TBG_CNTRL_1_H_TGL;
1059 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1060 		reg |= TBG_CNTRL_1_V_TGL;
1061 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1062 
1063 	/* must be last register set: */
1064 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1065 
1066 	/* Only setup the info frames if the sink is HDMI */
1067 	if (priv->is_hdmi_sink) {
1068 		/* We need to turn HDMI HDCP stuff on to get audio through */
1069 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1070 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1071 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1072 		reg_set(priv, REG_TX33, TX33_HDMI);
1073 
1074 		tda998x_write_avi(priv, adjusted_mode);
1075 
1076 		if (priv->params.audio_cfg)
1077 			tda998x_configure_audio(priv, adjusted_mode,
1078 						&priv->params);
1079 	}
1080 }
1081 
1082 static enum drm_connector_status
1083 tda998x_connector_detect(struct drm_connector *connector, bool force)
1084 {
1085 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1086 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1087 
1088 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1089 			connector_status_disconnected;
1090 }
1091 
1092 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1093 {
1094 	struct tda998x_priv *priv = data;
1095 	u8 offset, segptr;
1096 	int ret, i;
1097 
1098 	offset = (blk & 1) ? 128 : 0;
1099 	segptr = blk / 2;
1100 
1101 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1102 	reg_write(priv, REG_DDC_OFFS, offset);
1103 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1104 	reg_write(priv, REG_DDC_SEGM, segptr);
1105 
1106 	/* enable reading EDID: */
1107 	priv->wq_edid_wait = 1;
1108 	reg_write(priv, REG_EDID_CTRL, 0x1);
1109 
1110 	/* flag must be cleared by sw: */
1111 	reg_write(priv, REG_EDID_CTRL, 0x0);
1112 
1113 	/* wait for block read to complete: */
1114 	if (priv->hdmi->irq) {
1115 		i = wait_event_timeout(priv->wq_edid,
1116 					!priv->wq_edid_wait,
1117 					msecs_to_jiffies(100));
1118 		if (i < 0) {
1119 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1120 			return i;
1121 		}
1122 	} else {
1123 		for (i = 100; i > 0; i--) {
1124 			msleep(1);
1125 			ret = reg_read(priv, REG_INT_FLAGS_2);
1126 			if (ret < 0)
1127 				return ret;
1128 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1129 				break;
1130 		}
1131 	}
1132 
1133 	if (i == 0) {
1134 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1135 		return -ETIMEDOUT;
1136 	}
1137 
1138 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1139 	if (ret != length) {
1140 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1141 			blk, ret);
1142 		return ret;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int tda998x_connector_get_modes(struct drm_connector *connector)
1149 {
1150 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1151 	struct edid *edid;
1152 	int n;
1153 
1154 	/*
1155 	 * If we get killed while waiting for the HPD timeout, return
1156 	 * no modes found: we are not in a restartable path, so we
1157 	 * can't handle signals gracefully.
1158 	 */
1159 	if (tda998x_edid_delay_wait(priv))
1160 		return 0;
1161 
1162 	if (priv->rev == TDA19988)
1163 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1164 
1165 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1166 
1167 	if (priv->rev == TDA19988)
1168 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1169 
1170 	if (!edid) {
1171 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1172 		return 0;
1173 	}
1174 
1175 	drm_mode_connector_update_edid_property(connector, edid);
1176 	n = drm_add_edid_modes(connector, edid);
1177 	priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1178 	kfree(edid);
1179 
1180 	return n;
1181 }
1182 
1183 static void tda998x_encoder_set_polling(struct tda998x_priv *priv,
1184 					struct drm_connector *connector)
1185 {
1186 	if (priv->hdmi->irq)
1187 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1188 	else
1189 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1190 			DRM_CONNECTOR_POLL_DISCONNECT;
1191 }
1192 
1193 static void tda998x_destroy(struct tda998x_priv *priv)
1194 {
1195 	/* disable all IRQs and free the IRQ handler */
1196 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1197 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1198 
1199 	if (priv->hdmi->irq)
1200 		free_irq(priv->hdmi->irq, priv);
1201 
1202 	del_timer_sync(&priv->edid_delay_timer);
1203 	cancel_work_sync(&priv->detect_work);
1204 
1205 	i2c_unregister_device(priv->cec);
1206 }
1207 
1208 /* I2C driver functions */
1209 
1210 static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
1211 {
1212 	struct device_node *np = client->dev.of_node;
1213 	u32 video;
1214 	int rev_lo, rev_hi, ret;
1215 	unsigned short cec_addr;
1216 
1217 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1218 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1219 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1220 
1221 	priv->current_page = 0xff;
1222 	priv->hdmi = client;
1223 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1224 	cec_addr = 0x34 + (client->addr & 0x03);
1225 	priv->cec = i2c_new_dummy(client->adapter, cec_addr);
1226 	if (!priv->cec)
1227 		return -ENODEV;
1228 
1229 	priv->dpms = DRM_MODE_DPMS_OFF;
1230 
1231 	mutex_init(&priv->mutex);	/* protect the page access */
1232 	init_waitqueue_head(&priv->edid_delay_waitq);
1233 	setup_timer(&priv->edid_delay_timer, tda998x_edid_delay_done,
1234 		    (unsigned long)priv);
1235 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1236 
1237 	/* wake up the device: */
1238 	cec_write(priv, REG_CEC_ENAMODS,
1239 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1240 
1241 	tda998x_reset(priv);
1242 
1243 	/* read version: */
1244 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1245 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1246 	if (rev_lo < 0 || rev_hi < 0) {
1247 		ret = rev_lo < 0 ? rev_lo : rev_hi;
1248 		goto fail;
1249 	}
1250 
1251 	priv->rev = rev_lo | rev_hi << 8;
1252 
1253 	/* mask off feature bits: */
1254 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1255 
1256 	switch (priv->rev) {
1257 	case TDA9989N2:
1258 		dev_info(&client->dev, "found TDA9989 n2");
1259 		break;
1260 	case TDA19989:
1261 		dev_info(&client->dev, "found TDA19989");
1262 		break;
1263 	case TDA19989N2:
1264 		dev_info(&client->dev, "found TDA19989 n2");
1265 		break;
1266 	case TDA19988:
1267 		dev_info(&client->dev, "found TDA19988");
1268 		break;
1269 	default:
1270 		dev_err(&client->dev, "found unsupported device: %04x\n",
1271 			priv->rev);
1272 		goto fail;
1273 	}
1274 
1275 	/* after reset, enable DDC: */
1276 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1277 
1278 	/* set clock on DDC channel: */
1279 	reg_write(priv, REG_TX3, 39);
1280 
1281 	/* if necessary, disable multi-master: */
1282 	if (priv->rev == TDA19989)
1283 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1284 
1285 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1286 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1287 
1288 	/* initialize the optional IRQ */
1289 	if (client->irq) {
1290 		int irqf_trigger;
1291 
1292 		/* init read EDID waitqueue and HDP work */
1293 		init_waitqueue_head(&priv->wq_edid);
1294 
1295 		/* clear pending interrupts */
1296 		reg_read(priv, REG_INT_FLAGS_0);
1297 		reg_read(priv, REG_INT_FLAGS_1);
1298 		reg_read(priv, REG_INT_FLAGS_2);
1299 
1300 		irqf_trigger =
1301 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1302 		ret = request_threaded_irq(client->irq, NULL,
1303 					   tda998x_irq_thread,
1304 					   irqf_trigger | IRQF_ONESHOT,
1305 					   "tda998x", priv);
1306 		if (ret) {
1307 			dev_err(&client->dev,
1308 				"failed to request IRQ#%u: %d\n",
1309 				client->irq, ret);
1310 			goto fail;
1311 		}
1312 
1313 		/* enable HPD irq */
1314 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1315 	}
1316 
1317 	/* enable EDID read irq: */
1318 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1319 
1320 	if (!np)
1321 		return 0;		/* non-DT */
1322 
1323 	/* get the optional video properties */
1324 	ret = of_property_read_u32(np, "video-ports", &video);
1325 	if (ret == 0) {
1326 		priv->vip_cntrl_0 = video >> 16;
1327 		priv->vip_cntrl_1 = video >> 8;
1328 		priv->vip_cntrl_2 = video;
1329 	}
1330 
1331 	return 0;
1332 
1333 fail:
1334 	/* if encoder_init fails, the encoder slave is never registered,
1335 	 * so cleanup here:
1336 	 */
1337 	if (priv->cec)
1338 		i2c_unregister_device(priv->cec);
1339 	return -ENXIO;
1340 }
1341 
1342 static void tda998x_encoder_prepare(struct drm_encoder *encoder)
1343 {
1344 	tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
1345 }
1346 
1347 static void tda998x_encoder_commit(struct drm_encoder *encoder)
1348 {
1349 	tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
1350 }
1351 
1352 static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
1353 	.dpms = tda998x_encoder_dpms,
1354 	.save = tda998x_encoder_save,
1355 	.restore = tda998x_encoder_restore,
1356 	.mode_fixup = tda998x_encoder_mode_fixup,
1357 	.prepare = tda998x_encoder_prepare,
1358 	.commit = tda998x_encoder_commit,
1359 	.mode_set = tda998x_encoder_mode_set,
1360 };
1361 
1362 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1363 {
1364 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
1365 
1366 	tda998x_destroy(priv);
1367 	drm_encoder_cleanup(encoder);
1368 }
1369 
1370 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1371 	.destroy = tda998x_encoder_destroy,
1372 };
1373 
1374 static struct drm_encoder *
1375 tda998x_connector_best_encoder(struct drm_connector *connector)
1376 {
1377 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1378 
1379 	return &priv->encoder;
1380 }
1381 
1382 static
1383 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1384 	.get_modes = tda998x_connector_get_modes,
1385 	.mode_valid = tda998x_connector_mode_valid,
1386 	.best_encoder = tda998x_connector_best_encoder,
1387 };
1388 
1389 static void tda998x_connector_destroy(struct drm_connector *connector)
1390 {
1391 	drm_connector_unregister(connector);
1392 	drm_connector_cleanup(connector);
1393 }
1394 
1395 static const struct drm_connector_funcs tda998x_connector_funcs = {
1396 	.dpms = drm_helper_connector_dpms,
1397 	.fill_modes = drm_helper_probe_single_connector_modes,
1398 	.detect = tda998x_connector_detect,
1399 	.destroy = tda998x_connector_destroy,
1400 };
1401 
1402 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1403 {
1404 	struct tda998x_encoder_params *params = dev->platform_data;
1405 	struct i2c_client *client = to_i2c_client(dev);
1406 	struct drm_device *drm = data;
1407 	struct tda998x_priv *priv;
1408 	u32 crtcs = 0;
1409 	int ret;
1410 
1411 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1412 	if (!priv)
1413 		return -ENOMEM;
1414 
1415 	dev_set_drvdata(dev, priv);
1416 
1417 	if (dev->of_node)
1418 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1419 
1420 	/* If no CRTCs were found, fall back to our old behaviour */
1421 	if (crtcs == 0) {
1422 		dev_warn(dev, "Falling back to first CRTC\n");
1423 		crtcs = 1 << 0;
1424 	}
1425 
1426 	priv->connector.interlace_allowed = 1;
1427 	priv->encoder.possible_crtcs = crtcs;
1428 
1429 	ret = tda998x_create(client, priv);
1430 	if (ret)
1431 		return ret;
1432 
1433 	if (!dev->of_node && params)
1434 		tda998x_encoder_set_config(priv, params);
1435 
1436 	tda998x_encoder_set_polling(priv, &priv->connector);
1437 
1438 	drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
1439 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1440 			       DRM_MODE_ENCODER_TMDS);
1441 	if (ret)
1442 		goto err_encoder;
1443 
1444 	drm_connector_helper_add(&priv->connector,
1445 				 &tda998x_connector_helper_funcs);
1446 	ret = drm_connector_init(drm, &priv->connector,
1447 				 &tda998x_connector_funcs,
1448 				 DRM_MODE_CONNECTOR_HDMIA);
1449 	if (ret)
1450 		goto err_connector;
1451 
1452 	ret = drm_connector_register(&priv->connector);
1453 	if (ret)
1454 		goto err_sysfs;
1455 
1456 	priv->connector.encoder = &priv->encoder;
1457 	drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
1458 
1459 	return 0;
1460 
1461 err_sysfs:
1462 	drm_connector_cleanup(&priv->connector);
1463 err_connector:
1464 	drm_encoder_cleanup(&priv->encoder);
1465 err_encoder:
1466 	tda998x_destroy(priv);
1467 	return ret;
1468 }
1469 
1470 static void tda998x_unbind(struct device *dev, struct device *master,
1471 			   void *data)
1472 {
1473 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1474 
1475 	drm_connector_cleanup(&priv->connector);
1476 	drm_encoder_cleanup(&priv->encoder);
1477 	tda998x_destroy(priv);
1478 }
1479 
1480 static const struct component_ops tda998x_ops = {
1481 	.bind = tda998x_bind,
1482 	.unbind = tda998x_unbind,
1483 };
1484 
1485 static int
1486 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1487 {
1488 	return component_add(&client->dev, &tda998x_ops);
1489 }
1490 
1491 static int tda998x_remove(struct i2c_client *client)
1492 {
1493 	component_del(&client->dev, &tda998x_ops);
1494 	return 0;
1495 }
1496 
1497 #ifdef CONFIG_OF
1498 static const struct of_device_id tda998x_dt_ids[] = {
1499 	{ .compatible = "nxp,tda998x", },
1500 	{ }
1501 };
1502 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1503 #endif
1504 
1505 static struct i2c_device_id tda998x_ids[] = {
1506 	{ "tda998x", 0 },
1507 	{ }
1508 };
1509 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1510 
1511 static struct i2c_driver tda998x_driver = {
1512 	.probe = tda998x_probe,
1513 	.remove = tda998x_remove,
1514 	.driver = {
1515 		.name = "tda998x",
1516 		.of_match_table = of_match_ptr(tda998x_dt_ids),
1517 	},
1518 	.id_table = tda998x_ids,
1519 };
1520 
1521 module_i2c_driver(tda998x_driver);
1522 
1523 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1524 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1525 MODULE_LICENSE("GPL");
1526