xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/module.h>
11 #include <linux/platform_data/tda9950.h>
12 #include <linux/irq.h>
13 #include <sound/asoundef.h>
14 #include <sound/hdmi-codec.h>
15 
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_edid.h>
18 #include <drm/drm_of.h>
19 #include <drm/drm_print.h>
20 #include <drm/drm_probe_helper.h>
21 #include <drm/i2c/tda998x.h>
22 
23 #include <media/cec-notifier.h>
24 
25 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
26 
27 enum {
28 	AUDIO_ROUTE_I2S,
29 	AUDIO_ROUTE_SPDIF,
30 	AUDIO_ROUTE_NUM
31 };
32 
33 struct tda998x_audio_route {
34 	u8 ena_aclk;
35 	u8 mux_ap;
36 	u8 aip_clksel;
37 };
38 
39 struct tda998x_audio_settings {
40 	const struct tda998x_audio_route *route;
41 	struct hdmi_audio_infoframe cea;
42 	unsigned int sample_rate;
43 	u8 status[5];
44 	u8 ena_ap;
45 	u8 i2s_format;
46 	u8 cts_n;
47 };
48 
49 struct tda998x_priv {
50 	struct i2c_client *cec;
51 	struct i2c_client *hdmi;
52 	struct mutex mutex;
53 	u16 rev;
54 	u8 cec_addr;
55 	u8 current_page;
56 	bool is_on;
57 	bool supports_infoframes;
58 	bool sink_has_audio;
59 	enum hdmi_quantization_range rgb_quant_range;
60 	u8 vip_cntrl_0;
61 	u8 vip_cntrl_1;
62 	u8 vip_cntrl_2;
63 	unsigned long tmds_clock;
64 	struct tda998x_audio_settings audio;
65 
66 	struct platform_device *audio_pdev;
67 	struct mutex audio_mutex;
68 
69 	struct mutex edid_mutex;
70 	wait_queue_head_t wq_edid;
71 	volatile int wq_edid_wait;
72 
73 	struct work_struct detect_work;
74 	struct timer_list edid_delay_timer;
75 	wait_queue_head_t edid_delay_waitq;
76 	bool edid_delay_active;
77 
78 	struct drm_encoder encoder;
79 	struct drm_bridge bridge;
80 	struct drm_connector connector;
81 
82 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
83 	struct tda9950_glue cec_glue;
84 	struct gpio_desc *calib;
85 	struct cec_notifier *cec_notify;
86 };
87 
88 #define conn_to_tda998x_priv(x) \
89 	container_of(x, struct tda998x_priv, connector)
90 #define enc_to_tda998x_priv(x) \
91 	container_of(x, struct tda998x_priv, encoder)
92 #define bridge_to_tda998x_priv(x) \
93 	container_of(x, struct tda998x_priv, bridge)
94 
95 /* The TDA9988 series of devices use a paged register scheme.. to simplify
96  * things we encode the page # in upper bits of the register #.  To read/
97  * write a given register, we need to make sure CURPAGE register is set
98  * appropriately.  Which implies reads/writes are not atomic.  Fun!
99  */
100 
101 #define REG(page, addr) (((page) << 8) | (addr))
102 #define REG2ADDR(reg)   ((reg) & 0xff)
103 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
104 
105 #define REG_CURPAGE               0xff                /* write */
106 
107 
108 /* Page 00h: General Control */
109 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
110 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
111 # define MAIN_CNTRL0_SR           (1 << 0)
112 # define MAIN_CNTRL0_DECS         (1 << 1)
113 # define MAIN_CNTRL0_DEHS         (1 << 2)
114 # define MAIN_CNTRL0_CECS         (1 << 3)
115 # define MAIN_CNTRL0_CEHS         (1 << 4)
116 # define MAIN_CNTRL0_SCALER       (1 << 7)
117 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
118 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
119 # define SOFTRESET_AUDIO          (1 << 0)
120 # define SOFTRESET_I2C_MASTER     (1 << 1)
121 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
122 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
123 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
124 # define I2C_MASTER_DIS_MM        (1 << 0)
125 # define I2C_MASTER_DIS_FILT      (1 << 1)
126 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
127 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
128 # define FEAT_POWERDOWN_PREFILT   BIT(0)
129 # define FEAT_POWERDOWN_CSC       BIT(1)
130 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
131 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
132 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
133 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
134 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
135 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
136 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
137 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
138 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
139 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
140 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
141 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
142 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
143 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
144 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
145 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
146 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
147 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
148 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
149 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
150 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
151 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
152 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
153 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
154 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
155 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
156 # define VIP_CNTRL_3_X_TGL        (1 << 0)
157 # define VIP_CNTRL_3_H_TGL        (1 << 1)
158 # define VIP_CNTRL_3_V_TGL        (1 << 2)
159 # define VIP_CNTRL_3_EMB          (1 << 3)
160 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
161 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
162 # define VIP_CNTRL_3_DE_INT       (1 << 6)
163 # define VIP_CNTRL_3_EDGE         (1 << 7)
164 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
165 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
166 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
167 # define VIP_CNTRL_4_CCIR656      (1 << 4)
168 # define VIP_CNTRL_4_656_ALT      (1 << 5)
169 # define VIP_CNTRL_4_TST_656      (1 << 6)
170 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
171 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
172 # define VIP_CNTRL_5_CKCASE       (1 << 0)
173 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
174 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
175 # define MUX_AP_SELECT_I2S	  0x64
176 # define MUX_AP_SELECT_SPDIF	  0x40
177 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
178 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
179 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
180 # define MAT_CONTRL_MAT_BP        (1 << 2)
181 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
182 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
183 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
184 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
185 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
186 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
187 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
188 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
189 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
190 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
191 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
192 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
193 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
194 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
195 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
196 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
197 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
198 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
199 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
200 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
201 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
202 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
203 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
204 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
205 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
206 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
207 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
208 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
209 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
210 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
211 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
212 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
213 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
214 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
215 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
216 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
217 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
218 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
219 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
220 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
221 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
222 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
223 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
224 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
225 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
226 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
227 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
228 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
229 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
230 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
231 # define TBG_CNTRL_1_H_TGL        (1 << 0)
232 # define TBG_CNTRL_1_V_TGL        (1 << 1)
233 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
234 # define TBG_CNTRL_1_X_EXT        (1 << 3)
235 # define TBG_CNTRL_1_H_EXT        (1 << 4)
236 # define TBG_CNTRL_1_V_EXT        (1 << 5)
237 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
238 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
239 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
240 # define HVF_CNTRL_0_SM           (1 << 7)
241 # define HVF_CNTRL_0_RWB          (1 << 6)
242 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
243 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
244 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
245 # define HVF_CNTRL_1_FOR          (1 << 0)
246 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
247 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
248 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
249 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
250 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
251 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
252 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
253 # define I2S_FORMAT_PHILIPS       (0 << 0)
254 # define I2S_FORMAT_LEFT_J        (2 << 0)
255 # define I2S_FORMAT_RIGHT_J       (3 << 0)
256 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
257 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
258 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
259 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
260 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
261 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
262 
263 /* Page 02h: PLL settings */
264 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
265 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
266 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
267 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
268 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
269 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
270 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
271 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
272 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
273 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
274 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
275 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
276 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
277 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
278 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
279 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
280 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
281 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
282 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
283 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
284 # define AUDIO_DIV_SERCLK_1       0
285 # define AUDIO_DIV_SERCLK_2       1
286 # define AUDIO_DIV_SERCLK_4       2
287 # define AUDIO_DIV_SERCLK_8       3
288 # define AUDIO_DIV_SERCLK_16      4
289 # define AUDIO_DIV_SERCLK_32      5
290 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
291 # define SEL_CLK_SEL_CLK1         (1 << 0)
292 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
293 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
294 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
295 
296 
297 /* Page 09h: EDID Control */
298 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
299 /* next 127 successive registers are the EDID block */
300 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
301 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
302 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
303 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
304 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
305 
306 
307 /* Page 10h: information frames and packets */
308 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
309 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
310 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
311 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
312 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
313 
314 
315 /* Page 11h: audio settings and content info packets */
316 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
317 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
318 # define AIP_CNTRL_0_SWAP         (1 << 1)
319 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
320 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
321 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
322 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
323 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
324 # define CA_I2S_HBR_CHSTAT        (1 << 6)
325 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
326 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
327 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
328 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
329 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
330 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
331 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
332 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
333 # define CTS_N_K(x)               (((x) & 7) << 0)
334 # define CTS_N_M(x)               (((x) & 3) << 4)
335 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
336 # define ENC_CNTRL_RST_ENC        (1 << 0)
337 # define ENC_CNTRL_RST_SEL        (1 << 1)
338 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
339 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
340 # define DIP_FLAGS_ACR            (1 << 0)
341 # define DIP_FLAGS_GC             (1 << 1)
342 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
343 # define DIP_IF_FLAGS_IF1         (1 << 1)
344 # define DIP_IF_FLAGS_IF2         (1 << 2)
345 # define DIP_IF_FLAGS_IF3         (1 << 3)
346 # define DIP_IF_FLAGS_IF4         (1 << 4)
347 # define DIP_IF_FLAGS_IF5         (1 << 5)
348 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
349 
350 
351 /* Page 12h: HDCP and OTP */
352 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
353 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
354 # define TX4_PD_RAM               (1 << 1)
355 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
356 # define TX33_HDMI                (1 << 1)
357 
358 
359 /* Page 13h: Gamut related metadata packets */
360 
361 
362 
363 /* CEC registers: (not paged)
364  */
365 #define REG_CEC_INTSTATUS	  0xee		      /* read */
366 # define CEC_INTSTATUS_CEC	  (1 << 0)
367 # define CEC_INTSTATUS_HDMI	  (1 << 1)
368 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
369 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
370 #define REG_CEC_DES_FREQ2         0xf5
371 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
372 #define REG_CEC_CLK               0xf6
373 # define CEC_CLK_FRO              0x11
374 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
375 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
376 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
377 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
378 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
379 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
380 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
381 # define CEC_RXSHPDINT_RXSENS     BIT(0)
382 # define CEC_RXSHPDINT_HPD        BIT(1)
383 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
384 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
385 # define CEC_RXSHPDLEV_HPD        (1 << 1)
386 
387 #define REG_CEC_ENAMODS           0xff                /* read/write */
388 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
389 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
390 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
391 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
392 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
393 # define CEC_ENAMODS_EN_CEC       (1 << 0)
394 
395 
396 /* Device versions: */
397 #define TDA9989N2                 0x0101
398 #define TDA19989                  0x0201
399 #define TDA19989N2                0x0202
400 #define TDA19988                  0x0301
401 
402 static void
403 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
404 {
405 	u8 buf[] = {addr, val};
406 	struct i2c_msg msg = {
407 		.addr = priv->cec_addr,
408 		.len = 2,
409 		.buf = buf,
410 	};
411 	int ret;
412 
413 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
414 	if (ret < 0)
415 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
416 			ret, addr);
417 }
418 
419 static u8
420 cec_read(struct tda998x_priv *priv, u8 addr)
421 {
422 	u8 val;
423 	struct i2c_msg msg[2] = {
424 		{
425 			.addr = priv->cec_addr,
426 			.len = 1,
427 			.buf = &addr,
428 		}, {
429 			.addr = priv->cec_addr,
430 			.flags = I2C_M_RD,
431 			.len = 1,
432 			.buf = &val,
433 		},
434 	};
435 	int ret;
436 
437 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
438 	if (ret < 0) {
439 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
440 			ret, addr);
441 		val = 0;
442 	}
443 
444 	return val;
445 }
446 
447 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
448 {
449 	int val = cec_read(priv, REG_CEC_ENAMODS);
450 
451 	if (val < 0)
452 		return;
453 
454 	if (enable)
455 		val |= mods;
456 	else
457 		val &= ~mods;
458 
459 	cec_write(priv, REG_CEC_ENAMODS, val);
460 }
461 
462 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
463 {
464 	if (enable) {
465 		u8 val;
466 
467 		cec_write(priv, 0xf3, 0xc0);
468 		cec_write(priv, 0xf4, 0xd4);
469 
470 		/* Enable automatic calibration mode */
471 		val = cec_read(priv, REG_CEC_DES_FREQ2);
472 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
473 		cec_write(priv, REG_CEC_DES_FREQ2, val);
474 
475 		/* Enable free running oscillator */
476 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
477 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
478 
479 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
480 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
481 	} else {
482 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
483 	}
484 }
485 
486 /*
487  * Calibration for the internal oscillator: we need to set calibration mode,
488  * and then pulse the IRQ line low for a 10ms ± 1% period.
489  */
490 static void tda998x_cec_calibration(struct tda998x_priv *priv)
491 {
492 	struct gpio_desc *calib = priv->calib;
493 
494 	mutex_lock(&priv->edid_mutex);
495 	if (priv->hdmi->irq > 0)
496 		disable_irq(priv->hdmi->irq);
497 	gpiod_direction_output(calib, 1);
498 	tda998x_cec_set_calibration(priv, true);
499 
500 	local_irq_disable();
501 	gpiod_set_value(calib, 0);
502 	mdelay(10);
503 	gpiod_set_value(calib, 1);
504 	local_irq_enable();
505 
506 	tda998x_cec_set_calibration(priv, false);
507 	gpiod_direction_input(calib);
508 	if (priv->hdmi->irq > 0)
509 		enable_irq(priv->hdmi->irq);
510 	mutex_unlock(&priv->edid_mutex);
511 }
512 
513 static int tda998x_cec_hook_init(void *data)
514 {
515 	struct tda998x_priv *priv = data;
516 	struct gpio_desc *calib;
517 
518 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
519 	if (IS_ERR(calib)) {
520 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
521 			 PTR_ERR(calib));
522 		return PTR_ERR(calib);
523 	}
524 
525 	priv->calib = calib;
526 
527 	return 0;
528 }
529 
530 static void tda998x_cec_hook_exit(void *data)
531 {
532 	struct tda998x_priv *priv = data;
533 
534 	gpiod_put(priv->calib);
535 	priv->calib = NULL;
536 }
537 
538 static int tda998x_cec_hook_open(void *data)
539 {
540 	struct tda998x_priv *priv = data;
541 
542 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
543 	tda998x_cec_calibration(priv);
544 
545 	return 0;
546 }
547 
548 static void tda998x_cec_hook_release(void *data)
549 {
550 	struct tda998x_priv *priv = data;
551 
552 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
553 }
554 
555 static int
556 set_page(struct tda998x_priv *priv, u16 reg)
557 {
558 	if (REG2PAGE(reg) != priv->current_page) {
559 		struct i2c_client *client = priv->hdmi;
560 		u8 buf[] = {
561 				REG_CURPAGE, REG2PAGE(reg)
562 		};
563 		int ret = i2c_master_send(client, buf, sizeof(buf));
564 		if (ret < 0) {
565 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
566 					reg, ret);
567 			return ret;
568 		}
569 
570 		priv->current_page = REG2PAGE(reg);
571 	}
572 	return 0;
573 }
574 
575 static int
576 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
577 {
578 	struct i2c_client *client = priv->hdmi;
579 	u8 addr = REG2ADDR(reg);
580 	int ret;
581 
582 	mutex_lock(&priv->mutex);
583 	ret = set_page(priv, reg);
584 	if (ret < 0)
585 		goto out;
586 
587 	ret = i2c_master_send(client, &addr, sizeof(addr));
588 	if (ret < 0)
589 		goto fail;
590 
591 	ret = i2c_master_recv(client, buf, cnt);
592 	if (ret < 0)
593 		goto fail;
594 
595 	goto out;
596 
597 fail:
598 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
599 out:
600 	mutex_unlock(&priv->mutex);
601 	return ret;
602 }
603 
604 #define MAX_WRITE_RANGE_BUF 32
605 
606 static void
607 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
608 {
609 	struct i2c_client *client = priv->hdmi;
610 	/* This is the maximum size of the buffer passed in */
611 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
612 	int ret;
613 
614 	if (cnt > MAX_WRITE_RANGE_BUF) {
615 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
616 				MAX_WRITE_RANGE_BUF);
617 		return;
618 	}
619 
620 	buf[0] = REG2ADDR(reg);
621 	memcpy(&buf[1], p, cnt);
622 
623 	mutex_lock(&priv->mutex);
624 	ret = set_page(priv, reg);
625 	if (ret < 0)
626 		goto out;
627 
628 	ret = i2c_master_send(client, buf, cnt + 1);
629 	if (ret < 0)
630 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
631 out:
632 	mutex_unlock(&priv->mutex);
633 }
634 
635 static int
636 reg_read(struct tda998x_priv *priv, u16 reg)
637 {
638 	u8 val = 0;
639 	int ret;
640 
641 	ret = reg_read_range(priv, reg, &val, sizeof(val));
642 	if (ret < 0)
643 		return ret;
644 	return val;
645 }
646 
647 static void
648 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
649 {
650 	struct i2c_client *client = priv->hdmi;
651 	u8 buf[] = {REG2ADDR(reg), val};
652 	int ret;
653 
654 	mutex_lock(&priv->mutex);
655 	ret = set_page(priv, reg);
656 	if (ret < 0)
657 		goto out;
658 
659 	ret = i2c_master_send(client, buf, sizeof(buf));
660 	if (ret < 0)
661 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
662 out:
663 	mutex_unlock(&priv->mutex);
664 }
665 
666 static void
667 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
668 {
669 	struct i2c_client *client = priv->hdmi;
670 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
671 	int ret;
672 
673 	mutex_lock(&priv->mutex);
674 	ret = set_page(priv, reg);
675 	if (ret < 0)
676 		goto out;
677 
678 	ret = i2c_master_send(client, buf, sizeof(buf));
679 	if (ret < 0)
680 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
681 out:
682 	mutex_unlock(&priv->mutex);
683 }
684 
685 static void
686 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
687 {
688 	int old_val;
689 
690 	old_val = reg_read(priv, reg);
691 	if (old_val >= 0)
692 		reg_write(priv, reg, old_val | val);
693 }
694 
695 static void
696 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
697 {
698 	int old_val;
699 
700 	old_val = reg_read(priv, reg);
701 	if (old_val >= 0)
702 		reg_write(priv, reg, old_val & ~val);
703 }
704 
705 static void
706 tda998x_reset(struct tda998x_priv *priv)
707 {
708 	/* reset audio and i2c master: */
709 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
710 	msleep(50);
711 	reg_write(priv, REG_SOFTRESET, 0);
712 	msleep(50);
713 
714 	/* reset transmitter: */
715 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
716 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
717 
718 	/* PLL registers common configuration */
719 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
720 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
721 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
722 	reg_write(priv, REG_SERIALIZER,   0x00);
723 	reg_write(priv, REG_BUFFER_OUT,   0x00);
724 	reg_write(priv, REG_PLL_SCG1,     0x00);
725 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
726 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
727 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
728 	reg_write(priv, REG_PLL_SCGN2,    0x00);
729 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
730 	reg_write(priv, REG_PLL_SCGR2,    0x00);
731 	reg_write(priv, REG_PLL_SCG2,     0x10);
732 
733 	/* Write the default value MUX register */
734 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
735 }
736 
737 /*
738  * The TDA998x has a problem when trying to read the EDID close to a
739  * HPD assertion: it needs a delay of 100ms to avoid timing out while
740  * trying to read EDID data.
741  *
742  * However, tda998x_connector_get_modes() may be called at any moment
743  * after tda998x_connector_detect() indicates that we are connected, so
744  * we need to delay probing modes in tda998x_connector_get_modes() after
745  * we have seen a HPD inactive->active transition.  This code implements
746  * that delay.
747  */
748 static void tda998x_edid_delay_done(struct timer_list *t)
749 {
750 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
751 
752 	priv->edid_delay_active = false;
753 	wake_up(&priv->edid_delay_waitq);
754 	schedule_work(&priv->detect_work);
755 }
756 
757 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
758 {
759 	priv->edid_delay_active = true;
760 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
761 }
762 
763 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
764 {
765 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
766 }
767 
768 /*
769  * We need to run the KMS hotplug event helper outside of our threaded
770  * interrupt routine as this can call back into our get_modes method,
771  * which will want to make use of interrupts.
772  */
773 static void tda998x_detect_work(struct work_struct *work)
774 {
775 	struct tda998x_priv *priv =
776 		container_of(work, struct tda998x_priv, detect_work);
777 	struct drm_device *dev = priv->connector.dev;
778 
779 	if (dev)
780 		drm_kms_helper_hotplug_event(dev);
781 }
782 
783 /*
784  * only 2 interrupts may occur: screen plug/unplug and EDID read
785  */
786 static irqreturn_t tda998x_irq_thread(int irq, void *data)
787 {
788 	struct tda998x_priv *priv = data;
789 	u8 sta, cec, lvl, flag0, flag1, flag2;
790 	bool handled = false;
791 
792 	sta = cec_read(priv, REG_CEC_INTSTATUS);
793 	if (sta & CEC_INTSTATUS_HDMI) {
794 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
795 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
796 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
797 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
798 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
799 		DRM_DEBUG_DRIVER(
800 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
801 			sta, cec, lvl, flag0, flag1, flag2);
802 
803 		if (cec & CEC_RXSHPDINT_HPD) {
804 			if (lvl & CEC_RXSHPDLEV_HPD) {
805 				tda998x_edid_delay_start(priv);
806 			} else {
807 				schedule_work(&priv->detect_work);
808 				cec_notifier_set_phys_addr(priv->cec_notify,
809 						   CEC_PHYS_ADDR_INVALID);
810 			}
811 
812 			handled = true;
813 		}
814 
815 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
816 			priv->wq_edid_wait = 0;
817 			wake_up(&priv->wq_edid);
818 			handled = true;
819 		}
820 	}
821 
822 	return IRQ_RETVAL(handled);
823 }
824 
825 static void
826 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
827 		 union hdmi_infoframe *frame)
828 {
829 	u8 buf[MAX_WRITE_RANGE_BUF];
830 	ssize_t len;
831 
832 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
833 	if (len < 0) {
834 		dev_err(&priv->hdmi->dev,
835 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
836 			frame->any.type, len);
837 		return;
838 	}
839 
840 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
841 	reg_write_range(priv, addr, buf, len);
842 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
843 }
844 
845 static void tda998x_write_aif(struct tda998x_priv *priv,
846 			      const struct hdmi_audio_infoframe *cea)
847 {
848 	union hdmi_infoframe frame;
849 
850 	frame.audio = *cea;
851 
852 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
853 }
854 
855 static void
856 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
857 {
858 	union hdmi_infoframe frame;
859 
860 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
861 						 &priv->connector, mode);
862 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
863 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
864 					   priv->rgb_quant_range);
865 
866 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
867 }
868 
869 static void tda998x_write_vsi(struct tda998x_priv *priv,
870 			      const struct drm_display_mode *mode)
871 {
872 	union hdmi_infoframe frame;
873 
874 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
875 							&priv->connector,
876 							mode))
877 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
878 	else
879 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
880 }
881 
882 /* Audio support */
883 
884 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
885 	[AUDIO_ROUTE_I2S] = {
886 		.ena_aclk = 1,
887 		.mux_ap = MUX_AP_SELECT_I2S,
888 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
889 	},
890 	[AUDIO_ROUTE_SPDIF] = {
891 		.ena_aclk = 0,
892 		.mux_ap = MUX_AP_SELECT_SPDIF,
893 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
894 	},
895 };
896 
897 /* Configure the TDA998x audio data and clock routing. */
898 static int tda998x_derive_routing(struct tda998x_priv *priv,
899 				  struct tda998x_audio_settings *s,
900 				  unsigned int route)
901 {
902 	s->route = &tda998x_audio_route[route];
903 	s->ena_ap = priv->audio_port_enable[route];
904 	if (s->ena_ap == 0) {
905 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
906 		return -EINVAL;
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * The audio clock divisor register controls a divider producing Audio_Clk_Out
914  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
915  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
916  *
917  * It seems that Audio_Clk_Out must be the smallest value that is greater
918  * than 128*fs, otherwise audio does not function. There is some suggestion
919  * that 126*fs is a better value.
920  */
921 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
922 {
923 	unsigned long min_audio_clk = fs * 128;
924 	unsigned long ser_clk = priv->tmds_clock * 1000;
925 	u8 adiv;
926 
927 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
928 		if (ser_clk > min_audio_clk << adiv)
929 			break;
930 
931 	dev_dbg(&priv->hdmi->dev,
932 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
933 		ser_clk, fs, min_audio_clk, adiv);
934 
935 	return adiv;
936 }
937 
938 /*
939  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
940  * generate the CTS value.  It appears that the "measured time stamp" is
941  * the number of TDMS clock cycles within a number of audio input clock
942  * cycles defined by the k and N parameters defined below, in a similar
943  * way to that which is set out in the CTS generation in the HDMI spec.
944  *
945  *  tmdsclk ----> mts -> /m ---> CTS
946  *                 ^
947  *  sclk -> /k -> /N
948  *
949  * CTS = mts / m, where m is 2^M.
950  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
951  * /N is a divider based on the HDMI specified N value.
952  *
953  * This produces the following equation:
954  *  CTS = tmds_clock * k * N / (sclk * m)
955  *
956  * When combined with the sink-side equation, and realising that sclk is
957  * bclk_ratio * fs, we end up with:
958  *  k = m * bclk_ratio / 128.
959  *
960  * Note: S/PDIF always uses a bclk_ratio of 64.
961  */
962 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
963 				struct tda998x_audio_settings *settings,
964 				unsigned int ratio)
965 {
966 	switch (ratio) {
967 	case 16:
968 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
969 		break;
970 	case 32:
971 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
972 		break;
973 	case 48:
974 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
975 		break;
976 	case 64:
977 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
978 		break;
979 	case 128:
980 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
981 		break;
982 	default:
983 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
984 			ratio);
985 		return -EINVAL;
986 	}
987 	return 0;
988 }
989 
990 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
991 {
992 	if (on) {
993 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
994 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
995 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
996 	} else {
997 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
998 	}
999 }
1000 
1001 static void tda998x_configure_audio(struct tda998x_priv *priv)
1002 {
1003 	const struct tda998x_audio_settings *settings = &priv->audio;
1004 	u8 buf[6], adiv;
1005 	u32 n;
1006 
1007 	/* If audio is not configured, there is nothing to do. */
1008 	if (settings->ena_ap == 0)
1009 		return;
1010 
1011 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1012 
1013 	/* Enable audio ports */
1014 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1015 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1016 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1017 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1018 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1019 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1020 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1021 	reg_write(priv, REG_CTS_N, settings->cts_n);
1022 	reg_write(priv, REG_AUDIO_DIV, adiv);
1023 
1024 	/*
1025 	 * This is the approximate value of N, which happens to be
1026 	 * the recommended values for non-coherent clocks.
1027 	 */
1028 	n = 128 * settings->sample_rate / 1000;
1029 
1030 	/* Write the CTS and N values */
1031 	buf[0] = 0x44;
1032 	buf[1] = 0x42;
1033 	buf[2] = 0x01;
1034 	buf[3] = n;
1035 	buf[4] = n >> 8;
1036 	buf[5] = n >> 16;
1037 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1038 
1039 	/* Reset CTS generator */
1040 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1041 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1042 
1043 	/* Write the channel status
1044 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1045 	 * there is a separate register for each I2S wire.
1046 	 */
1047 	buf[0] = settings->status[0];
1048 	buf[1] = settings->status[1];
1049 	buf[2] = settings->status[3];
1050 	buf[3] = settings->status[4];
1051 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1052 
1053 	tda998x_audio_mute(priv, true);
1054 	msleep(20);
1055 	tda998x_audio_mute(priv, false);
1056 
1057 	tda998x_write_aif(priv, &settings->cea);
1058 }
1059 
1060 static int tda998x_audio_hw_params(struct device *dev, void *data,
1061 				   struct hdmi_codec_daifmt *daifmt,
1062 				   struct hdmi_codec_params *params)
1063 {
1064 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1065 	unsigned int bclk_ratio;
1066 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1067 	int ret;
1068 	struct tda998x_audio_settings audio = {
1069 		.sample_rate = params->sample_rate,
1070 		.cea = params->cea,
1071 	};
1072 
1073 	memcpy(audio.status, params->iec.status,
1074 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1075 
1076 	switch (daifmt->fmt) {
1077 	case HDMI_I2S:
1078 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1079 		break;
1080 	case HDMI_LEFT_J:
1081 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1082 		break;
1083 	case HDMI_RIGHT_J:
1084 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1085 		break;
1086 	case HDMI_SPDIF:
1087 		audio.i2s_format = 0;
1088 		break;
1089 	default:
1090 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1091 		return -EINVAL;
1092 	}
1093 
1094 	if (!spdif &&
1095 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1096 	     daifmt->bit_clk_master || daifmt->frame_clk_master)) {
1097 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1098 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1099 			daifmt->bit_clk_master,
1100 			daifmt->frame_clk_master);
1101 		return -EINVAL;
1102 	}
1103 
1104 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1105 	if (ret < 0)
1106 		return ret;
1107 
1108 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1109 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	mutex_lock(&priv->audio_mutex);
1114 	priv->audio = audio;
1115 	if (priv->supports_infoframes && priv->sink_has_audio)
1116 		tda998x_configure_audio(priv);
1117 	mutex_unlock(&priv->audio_mutex);
1118 
1119 	return 0;
1120 }
1121 
1122 static void tda998x_audio_shutdown(struct device *dev, void *data)
1123 {
1124 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1125 
1126 	mutex_lock(&priv->audio_mutex);
1127 
1128 	reg_write(priv, REG_ENA_AP, 0);
1129 	priv->audio.ena_ap = 0;
1130 
1131 	mutex_unlock(&priv->audio_mutex);
1132 }
1133 
1134 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1135 {
1136 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1137 
1138 	mutex_lock(&priv->audio_mutex);
1139 
1140 	tda998x_audio_mute(priv, enable);
1141 
1142 	mutex_unlock(&priv->audio_mutex);
1143 	return 0;
1144 }
1145 
1146 static int tda998x_audio_get_eld(struct device *dev, void *data,
1147 				 uint8_t *buf, size_t len)
1148 {
1149 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1150 
1151 	mutex_lock(&priv->audio_mutex);
1152 	memcpy(buf, priv->connector.eld,
1153 	       min(sizeof(priv->connector.eld), len));
1154 	mutex_unlock(&priv->audio_mutex);
1155 
1156 	return 0;
1157 }
1158 
1159 static const struct hdmi_codec_ops audio_codec_ops = {
1160 	.hw_params = tda998x_audio_hw_params,
1161 	.audio_shutdown = tda998x_audio_shutdown,
1162 	.digital_mute = tda998x_audio_digital_mute,
1163 	.get_eld = tda998x_audio_get_eld,
1164 };
1165 
1166 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1167 				    struct device *dev)
1168 {
1169 	struct hdmi_codec_pdata codec_data = {
1170 		.ops = &audio_codec_ops,
1171 		.max_i2s_channels = 2,
1172 	};
1173 
1174 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1175 		codec_data.i2s = 1;
1176 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1177 		codec_data.spdif = 1;
1178 
1179 	priv->audio_pdev = platform_device_register_data(
1180 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1181 		&codec_data, sizeof(codec_data));
1182 
1183 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1184 }
1185 
1186 /* DRM connector functions */
1187 
1188 static enum drm_connector_status
1189 tda998x_connector_detect(struct drm_connector *connector, bool force)
1190 {
1191 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1192 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1193 
1194 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1195 			connector_status_disconnected;
1196 }
1197 
1198 static void tda998x_connector_destroy(struct drm_connector *connector)
1199 {
1200 	drm_connector_cleanup(connector);
1201 }
1202 
1203 static const struct drm_connector_funcs tda998x_connector_funcs = {
1204 	.reset = drm_atomic_helper_connector_reset,
1205 	.fill_modes = drm_helper_probe_single_connector_modes,
1206 	.detect = tda998x_connector_detect,
1207 	.destroy = tda998x_connector_destroy,
1208 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1209 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1210 };
1211 
1212 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1213 {
1214 	struct tda998x_priv *priv = data;
1215 	u8 offset, segptr;
1216 	int ret, i;
1217 
1218 	offset = (blk & 1) ? 128 : 0;
1219 	segptr = blk / 2;
1220 
1221 	mutex_lock(&priv->edid_mutex);
1222 
1223 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1224 	reg_write(priv, REG_DDC_OFFS, offset);
1225 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1226 	reg_write(priv, REG_DDC_SEGM, segptr);
1227 
1228 	/* enable reading EDID: */
1229 	priv->wq_edid_wait = 1;
1230 	reg_write(priv, REG_EDID_CTRL, 0x1);
1231 
1232 	/* flag must be cleared by sw: */
1233 	reg_write(priv, REG_EDID_CTRL, 0x0);
1234 
1235 	/* wait for block read to complete: */
1236 	if (priv->hdmi->irq) {
1237 		i = wait_event_timeout(priv->wq_edid,
1238 					!priv->wq_edid_wait,
1239 					msecs_to_jiffies(100));
1240 		if (i < 0) {
1241 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1242 			ret = i;
1243 			goto failed;
1244 		}
1245 	} else {
1246 		for (i = 100; i > 0; i--) {
1247 			msleep(1);
1248 			ret = reg_read(priv, REG_INT_FLAGS_2);
1249 			if (ret < 0)
1250 				goto failed;
1251 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1252 				break;
1253 		}
1254 	}
1255 
1256 	if (i == 0) {
1257 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1258 		ret = -ETIMEDOUT;
1259 		goto failed;
1260 	}
1261 
1262 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1263 	if (ret != length) {
1264 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1265 			blk, ret);
1266 		goto failed;
1267 	}
1268 
1269 	ret = 0;
1270 
1271  failed:
1272 	mutex_unlock(&priv->edid_mutex);
1273 	return ret;
1274 }
1275 
1276 static int tda998x_connector_get_modes(struct drm_connector *connector)
1277 {
1278 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1279 	struct edid *edid;
1280 	int n;
1281 
1282 	/*
1283 	 * If we get killed while waiting for the HPD timeout, return
1284 	 * no modes found: we are not in a restartable path, so we
1285 	 * can't handle signals gracefully.
1286 	 */
1287 	if (tda998x_edid_delay_wait(priv))
1288 		return 0;
1289 
1290 	if (priv->rev == TDA19988)
1291 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1292 
1293 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1294 
1295 	if (priv->rev == TDA19988)
1296 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1297 
1298 	if (!edid) {
1299 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1300 		return 0;
1301 	}
1302 
1303 	drm_connector_update_edid_property(connector, edid);
1304 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1305 
1306 	mutex_lock(&priv->audio_mutex);
1307 	n = drm_add_edid_modes(connector, edid);
1308 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1309 	mutex_unlock(&priv->audio_mutex);
1310 
1311 	kfree(edid);
1312 
1313 	return n;
1314 }
1315 
1316 static struct drm_encoder *
1317 tda998x_connector_best_encoder(struct drm_connector *connector)
1318 {
1319 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1320 
1321 	return priv->bridge.encoder;
1322 }
1323 
1324 static
1325 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1326 	.get_modes = tda998x_connector_get_modes,
1327 	.best_encoder = tda998x_connector_best_encoder,
1328 };
1329 
1330 static int tda998x_connector_init(struct tda998x_priv *priv,
1331 				  struct drm_device *drm)
1332 {
1333 	struct drm_connector *connector = &priv->connector;
1334 	int ret;
1335 
1336 	connector->interlace_allowed = 1;
1337 
1338 	if (priv->hdmi->irq)
1339 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1340 	else
1341 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1342 			DRM_CONNECTOR_POLL_DISCONNECT;
1343 
1344 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1345 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1346 				 DRM_MODE_CONNECTOR_HDMIA);
1347 	if (ret)
1348 		return ret;
1349 
1350 	drm_connector_attach_encoder(&priv->connector,
1351 				     priv->bridge.encoder);
1352 
1353 	return 0;
1354 }
1355 
1356 /* DRM bridge functions */
1357 
1358 static int tda998x_bridge_attach(struct drm_bridge *bridge)
1359 {
1360 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1361 
1362 	return tda998x_connector_init(priv, bridge->dev);
1363 }
1364 
1365 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1366 {
1367 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1368 
1369 	drm_connector_cleanup(&priv->connector);
1370 }
1371 
1372 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1373 				     const struct drm_display_mode *mode)
1374 {
1375 	/* TDA19988 dotclock can go up to 165MHz */
1376 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1377 
1378 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1379 		return MODE_CLOCK_HIGH;
1380 	if (mode->htotal >= BIT(13))
1381 		return MODE_BAD_HVALUE;
1382 	if (mode->vtotal >= BIT(11))
1383 		return MODE_BAD_VVALUE;
1384 	return MODE_OK;
1385 }
1386 
1387 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1388 {
1389 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1390 
1391 	if (!priv->is_on) {
1392 		/* enable video ports, audio will be enabled later */
1393 		reg_write(priv, REG_ENA_VP_0, 0xff);
1394 		reg_write(priv, REG_ENA_VP_1, 0xff);
1395 		reg_write(priv, REG_ENA_VP_2, 0xff);
1396 		/* set muxing after enabling ports: */
1397 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1398 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1399 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1400 
1401 		priv->is_on = true;
1402 	}
1403 }
1404 
1405 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1406 {
1407 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1408 
1409 	if (priv->is_on) {
1410 		/* disable video ports */
1411 		reg_write(priv, REG_ENA_VP_0, 0x00);
1412 		reg_write(priv, REG_ENA_VP_1, 0x00);
1413 		reg_write(priv, REG_ENA_VP_2, 0x00);
1414 
1415 		priv->is_on = false;
1416 	}
1417 }
1418 
1419 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1420 				    const struct drm_display_mode *mode,
1421 				    const struct drm_display_mode *adjusted_mode)
1422 {
1423 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1424 	unsigned long tmds_clock;
1425 	u16 ref_pix, ref_line, n_pix, n_line;
1426 	u16 hs_pix_s, hs_pix_e;
1427 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1428 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1429 	u16 vwin1_line_s, vwin1_line_e;
1430 	u16 vwin2_line_s, vwin2_line_e;
1431 	u16 de_pix_s, de_pix_e;
1432 	u8 reg, div, rep, sel_clk;
1433 
1434 	/*
1435 	 * Since we are "computer" like, our source invariably produces
1436 	 * full-range RGB.  If the monitor supports full-range, then use
1437 	 * it, otherwise reduce to limited-range.
1438 	 */
1439 	priv->rgb_quant_range =
1440 		priv->connector.display_info.rgb_quant_range_selectable ?
1441 		HDMI_QUANTIZATION_RANGE_FULL :
1442 		drm_default_rgb_quant_range(adjusted_mode);
1443 
1444 	/*
1445 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1446 	 * we get VESA style sync. TDA998x is using a reference pixel
1447 	 * relative to ITU to sync to the input frame and for output
1448 	 * sync generation. Currently, we are using reference detection
1449 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1450 	 * which is position of rising VS with coincident rising HS.
1451 	 *
1452 	 * Now there is some issues to take care of:
1453 	 * - HDMI data islands require sync-before-active
1454 	 * - TDA998x register values must be > 0 to be enabled
1455 	 * - REFLINE needs an additional offset of +1
1456 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1457 	 *
1458 	 * So we add +1 to all horizontal and vertical register values,
1459 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1460 	 */
1461 	n_pix        = mode->htotal;
1462 	n_line       = mode->vtotal;
1463 
1464 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1465 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1466 	de_pix_e     = mode->htotal;
1467 	de_pix_s     = mode->htotal - mode->hdisplay;
1468 	ref_pix      = 3 + hs_pix_s;
1469 
1470 	/*
1471 	 * Attached LCD controllers may generate broken sync. Allow
1472 	 * those to adjust the position of the rising VS edge by adding
1473 	 * HSKEW to ref_pix.
1474 	 */
1475 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1476 		ref_pix += adjusted_mode->hskew;
1477 
1478 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1479 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1480 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1481 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1482 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1483 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1484 		vs1_line_e   = vs1_line_s +
1485 			       mode->vsync_end - mode->vsync_start;
1486 		vwin2_line_s = vwin2_line_e = 0;
1487 		vs2_pix_s    = vs2_pix_e  = 0;
1488 		vs2_line_s   = vs2_line_e = 0;
1489 	} else {
1490 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1491 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1492 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1493 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1494 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1495 		vs1_line_e   = vs1_line_s +
1496 			       (mode->vsync_end - mode->vsync_start)/2;
1497 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1498 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1499 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1500 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1501 		vs2_line_e   = vs2_line_s +
1502 			       (mode->vsync_end - mode->vsync_start)/2;
1503 	}
1504 
1505 	/*
1506 	 * Select pixel repeat depending on the double-clock flag
1507 	 * (which means we have to repeat each pixel once.)
1508 	 */
1509 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1510 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1511 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1512 
1513 	/* the TMDS clock is scaled up by the pixel repeat */
1514 	tmds_clock = mode->clock * (1 + rep);
1515 
1516 	/*
1517 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1518 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1519 	 *   0 - 800 to 1500 Msample/s
1520 	 *   1 - 400 to 800 Msample/s
1521 	 *   2 - 200 to 400 Msample/s
1522 	 *   3 - as 2 above
1523 	 */
1524 	for (div = 0; div < 3; div++)
1525 		if (80000 >> div <= tmds_clock)
1526 			break;
1527 
1528 	mutex_lock(&priv->audio_mutex);
1529 
1530 	priv->tmds_clock = tmds_clock;
1531 
1532 	/* mute the audio FIFO: */
1533 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1534 
1535 	/* set HDMI HDCP mode off: */
1536 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1537 	reg_clear(priv, REG_TX33, TX33_HDMI);
1538 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1539 
1540 	/* no pre-filter or interpolator: */
1541 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1542 			HVF_CNTRL_0_INTPOL(0));
1543 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1544 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1545 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1546 			VIP_CNTRL_4_BLC(0));
1547 
1548 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1549 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1550 					  PLL_SERIAL_3_SRL_DE);
1551 	reg_write(priv, REG_SERIALIZER, 0);
1552 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1553 
1554 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1555 	reg_write(priv, REG_SEL_CLK, sel_clk);
1556 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1557 			PLL_SERIAL_2_SRL_PR(rep));
1558 
1559 	/* set color matrix according to output rgb quant range */
1560 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1561 		static u8 tda998x_full_to_limited_range[] = {
1562 			MAT_CONTRL_MAT_SC(2),
1563 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1564 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1565 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1566 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1567 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1568 		};
1569 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1570 		reg_write_range(priv, REG_MAT_CONTRL,
1571 				tda998x_full_to_limited_range,
1572 				sizeof(tda998x_full_to_limited_range));
1573 	} else {
1574 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1575 					MAT_CONTRL_MAT_SC(1));
1576 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1577 	}
1578 
1579 	/* set BIAS tmds value: */
1580 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1581 
1582 	/*
1583 	 * Sync on rising HSYNC/VSYNC
1584 	 */
1585 	reg = VIP_CNTRL_3_SYNC_HS;
1586 
1587 	/*
1588 	 * TDA19988 requires high-active sync at input stage,
1589 	 * so invert low-active sync provided by master encoder here
1590 	 */
1591 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1592 		reg |= VIP_CNTRL_3_H_TGL;
1593 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1594 		reg |= VIP_CNTRL_3_V_TGL;
1595 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1596 
1597 	reg_write(priv, REG_VIDFORMAT, 0x00);
1598 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1599 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1600 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1601 	reg_write16(priv, REG_NLINE_MSB, n_line);
1602 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1603 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1604 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1605 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1606 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1607 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1608 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1609 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1610 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1611 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1612 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1613 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1614 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1615 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1616 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1617 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1618 
1619 	if (priv->rev == TDA19988) {
1620 		/* let incoming pixels fill the active space (if any) */
1621 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1622 	}
1623 
1624 	/*
1625 	 * Always generate sync polarity relative to input sync and
1626 	 * revert input stage toggled sync at output stage
1627 	 */
1628 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1629 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1630 		reg |= TBG_CNTRL_1_H_TGL;
1631 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1632 		reg |= TBG_CNTRL_1_V_TGL;
1633 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1634 
1635 	/* must be last register set: */
1636 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1637 
1638 	/* CEA-861B section 6 says that:
1639 	 * CEA version 1 (CEA-861) has no support for infoframes.
1640 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1641 	 * and optional basic audio.
1642 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1643 	 * and optional digital audio, with audio infoframes.
1644 	 *
1645 	 * Since we only support generation of version 2 AVI infoframes,
1646 	 * ignore CEA version 2 and below (iow, behave as if we're a
1647 	 * CEA-861 source.)
1648 	 */
1649 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1650 
1651 	if (priv->supports_infoframes) {
1652 		/* We need to turn HDMI HDCP stuff on to get audio through */
1653 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1654 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1655 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1656 		reg_set(priv, REG_TX33, TX33_HDMI);
1657 
1658 		tda998x_write_avi(priv, adjusted_mode);
1659 		tda998x_write_vsi(priv, adjusted_mode);
1660 
1661 		if (priv->sink_has_audio)
1662 			tda998x_configure_audio(priv);
1663 	}
1664 
1665 	mutex_unlock(&priv->audio_mutex);
1666 }
1667 
1668 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1669 	.attach = tda998x_bridge_attach,
1670 	.detach = tda998x_bridge_detach,
1671 	.mode_valid = tda998x_bridge_mode_valid,
1672 	.disable = tda998x_bridge_disable,
1673 	.mode_set = tda998x_bridge_mode_set,
1674 	.enable = tda998x_bridge_enable,
1675 };
1676 
1677 /* I2C driver functions */
1678 
1679 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1680 				   struct device_node *np)
1681 {
1682 	const u32 *port_data;
1683 	u32 size;
1684 	int i;
1685 
1686 	port_data = of_get_property(np, "audio-ports", &size);
1687 	if (!port_data)
1688 		return 0;
1689 
1690 	size /= sizeof(u32);
1691 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1692 		dev_err(&priv->hdmi->dev,
1693 			"Bad number of elements in audio-ports dt-property\n");
1694 		return -EINVAL;
1695 	}
1696 
1697 	size /= 2;
1698 
1699 	for (i = 0; i < size; i++) {
1700 		unsigned int route;
1701 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1702 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1703 
1704 		switch (afmt) {
1705 		case AFMT_I2S:
1706 			route = AUDIO_ROUTE_I2S;
1707 			break;
1708 		case AFMT_SPDIF:
1709 			route = AUDIO_ROUTE_SPDIF;
1710 			break;
1711 		default:
1712 			dev_err(&priv->hdmi->dev,
1713 				"Bad audio format %u\n", afmt);
1714 			return -EINVAL;
1715 		}
1716 
1717 		if (!ena_ap) {
1718 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1719 			continue;
1720 		}
1721 
1722 		if (priv->audio_port_enable[route]) {
1723 			dev_err(&priv->hdmi->dev,
1724 				"%s format already configured\n",
1725 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1726 			return -EINVAL;
1727 		}
1728 
1729 		priv->audio_port_enable[route] = ena_ap;
1730 	}
1731 	return 0;
1732 }
1733 
1734 static int tda998x_set_config(struct tda998x_priv *priv,
1735 			      const struct tda998x_encoder_params *p)
1736 {
1737 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1738 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1739 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1740 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1741 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1742 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1743 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1744 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1745 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1746 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1747 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1748 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1749 
1750 	if (p->audio_params.format != AFMT_UNUSED) {
1751 		unsigned int ratio, route;
1752 		bool spdif = p->audio_params.format == AFMT_SPDIF;
1753 
1754 		route = AUDIO_ROUTE_I2S + spdif;
1755 
1756 		priv->audio.route = &tda998x_audio_route[route];
1757 		priv->audio.cea = p->audio_params.cea;
1758 		priv->audio.sample_rate = p->audio_params.sample_rate;
1759 		memcpy(priv->audio.status, p->audio_params.status,
1760 		       min(sizeof(priv->audio.status),
1761 			   sizeof(p->audio_params.status)));
1762 		priv->audio.ena_ap = p->audio_params.config;
1763 		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1764 
1765 		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1766 		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 static void tda998x_destroy(struct device *dev)
1773 {
1774 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1775 
1776 	drm_bridge_remove(&priv->bridge);
1777 
1778 	/* disable all IRQs and free the IRQ handler */
1779 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1780 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1781 
1782 	if (priv->audio_pdev)
1783 		platform_device_unregister(priv->audio_pdev);
1784 
1785 	if (priv->hdmi->irq)
1786 		free_irq(priv->hdmi->irq, priv);
1787 
1788 	del_timer_sync(&priv->edid_delay_timer);
1789 	cancel_work_sync(&priv->detect_work);
1790 
1791 	i2c_unregister_device(priv->cec);
1792 
1793 	if (priv->cec_notify)
1794 		cec_notifier_put(priv->cec_notify);
1795 }
1796 
1797 static int tda998x_create(struct device *dev)
1798 {
1799 	struct i2c_client *client = to_i2c_client(dev);
1800 	struct device_node *np = client->dev.of_node;
1801 	struct i2c_board_info cec_info;
1802 	struct tda998x_priv *priv;
1803 	u32 video;
1804 	int rev_lo, rev_hi, ret;
1805 
1806 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1807 	if (!priv)
1808 		return -ENOMEM;
1809 
1810 	dev_set_drvdata(dev, priv);
1811 
1812 	mutex_init(&priv->mutex);	/* protect the page access */
1813 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1814 	mutex_init(&priv->edid_mutex);
1815 	INIT_LIST_HEAD(&priv->bridge.list);
1816 	init_waitqueue_head(&priv->edid_delay_waitq);
1817 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1818 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1819 
1820 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1821 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1822 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1823 
1824 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1825 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1826 	priv->current_page = 0xff;
1827 	priv->hdmi = client;
1828 
1829 	/* wake up the device: */
1830 	cec_write(priv, REG_CEC_ENAMODS,
1831 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1832 
1833 	tda998x_reset(priv);
1834 
1835 	/* read version: */
1836 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1837 	if (rev_lo < 0) {
1838 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1839 		return rev_lo;
1840 	}
1841 
1842 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1843 	if (rev_hi < 0) {
1844 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1845 		return rev_hi;
1846 	}
1847 
1848 	priv->rev = rev_lo | rev_hi << 8;
1849 
1850 	/* mask off feature bits: */
1851 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1852 
1853 	switch (priv->rev) {
1854 	case TDA9989N2:
1855 		dev_info(dev, "found TDA9989 n2");
1856 		break;
1857 	case TDA19989:
1858 		dev_info(dev, "found TDA19989");
1859 		break;
1860 	case TDA19989N2:
1861 		dev_info(dev, "found TDA19989 n2");
1862 		break;
1863 	case TDA19988:
1864 		dev_info(dev, "found TDA19988");
1865 		break;
1866 	default:
1867 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1868 		return -ENXIO;
1869 	}
1870 
1871 	/* after reset, enable DDC: */
1872 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1873 
1874 	/* set clock on DDC channel: */
1875 	reg_write(priv, REG_TX3, 39);
1876 
1877 	/* if necessary, disable multi-master: */
1878 	if (priv->rev == TDA19989)
1879 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1880 
1881 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1882 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1883 
1884 	/* ensure interrupts are disabled */
1885 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1886 
1887 	/* clear pending interrupts */
1888 	cec_read(priv, REG_CEC_RXSHPDINT);
1889 	reg_read(priv, REG_INT_FLAGS_0);
1890 	reg_read(priv, REG_INT_FLAGS_1);
1891 	reg_read(priv, REG_INT_FLAGS_2);
1892 
1893 	/* initialize the optional IRQ */
1894 	if (client->irq) {
1895 		unsigned long irq_flags;
1896 
1897 		/* init read EDID waitqueue and HDP work */
1898 		init_waitqueue_head(&priv->wq_edid);
1899 
1900 		irq_flags =
1901 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1902 
1903 		priv->cec_glue.irq_flags = irq_flags;
1904 
1905 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1906 		ret = request_threaded_irq(client->irq, NULL,
1907 					   tda998x_irq_thread, irq_flags,
1908 					   "tda998x", priv);
1909 		if (ret) {
1910 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1911 				client->irq, ret);
1912 			goto err_irq;
1913 		}
1914 
1915 		/* enable HPD irq */
1916 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1917 	}
1918 
1919 	priv->cec_notify = cec_notifier_get(dev);
1920 	if (!priv->cec_notify) {
1921 		ret = -ENOMEM;
1922 		goto fail;
1923 	}
1924 
1925 	priv->cec_glue.parent = dev;
1926 	priv->cec_glue.data = priv;
1927 	priv->cec_glue.init = tda998x_cec_hook_init;
1928 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1929 	priv->cec_glue.open = tda998x_cec_hook_open;
1930 	priv->cec_glue.release = tda998x_cec_hook_release;
1931 
1932 	/*
1933 	 * Some TDA998x are actually two I2C devices merged onto one piece
1934 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1935 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1936 	 * is at the TDA9950 address, with the address pins strapped across
1937 	 * to the TDA998x address pins.  Hence, it always has the same
1938 	 * offset.
1939 	 */
1940 	memset(&cec_info, 0, sizeof(cec_info));
1941 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1942 	cec_info.addr = priv->cec_addr;
1943 	cec_info.platform_data = &priv->cec_glue;
1944 	cec_info.irq = client->irq;
1945 
1946 	priv->cec = i2c_new_device(client->adapter, &cec_info);
1947 	if (!priv->cec) {
1948 		ret = -ENODEV;
1949 		goto fail;
1950 	}
1951 
1952 	/* enable EDID read irq: */
1953 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1954 
1955 	if (np) {
1956 		/* get the device tree parameters */
1957 		ret = of_property_read_u32(np, "video-ports", &video);
1958 		if (ret == 0) {
1959 			priv->vip_cntrl_0 = video >> 16;
1960 			priv->vip_cntrl_1 = video >> 8;
1961 			priv->vip_cntrl_2 = video;
1962 		}
1963 
1964 		ret = tda998x_get_audio_ports(priv, np);
1965 		if (ret)
1966 			goto fail;
1967 
1968 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1969 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1970 			tda998x_audio_codec_init(priv, &client->dev);
1971 	} else if (dev->platform_data) {
1972 		ret = tda998x_set_config(priv, dev->platform_data);
1973 		if (ret)
1974 			goto fail;
1975 	}
1976 
1977 	priv->bridge.funcs = &tda998x_bridge_funcs;
1978 #ifdef CONFIG_OF
1979 	priv->bridge.of_node = dev->of_node;
1980 #endif
1981 
1982 	drm_bridge_add(&priv->bridge);
1983 
1984 	return 0;
1985 
1986 fail:
1987 	tda998x_destroy(dev);
1988 err_irq:
1989 	return ret;
1990 }
1991 
1992 /* DRM encoder functions */
1993 
1994 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1995 {
1996 	drm_encoder_cleanup(encoder);
1997 }
1998 
1999 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
2000 	.destroy = tda998x_encoder_destroy,
2001 };
2002 
2003 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2004 {
2005 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2006 	u32 crtcs = 0;
2007 	int ret;
2008 
2009 	if (dev->of_node)
2010 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2011 
2012 	/* If no CRTCs were found, fall back to our old behaviour */
2013 	if (crtcs == 0) {
2014 		dev_warn(dev, "Falling back to first CRTC\n");
2015 		crtcs = 1 << 0;
2016 	}
2017 
2018 	priv->encoder.possible_crtcs = crtcs;
2019 
2020 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
2021 			       DRM_MODE_ENCODER_TMDS, NULL);
2022 	if (ret)
2023 		goto err_encoder;
2024 
2025 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL);
2026 	if (ret)
2027 		goto err_bridge;
2028 
2029 	return 0;
2030 
2031 err_bridge:
2032 	drm_encoder_cleanup(&priv->encoder);
2033 err_encoder:
2034 	return ret;
2035 }
2036 
2037 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2038 {
2039 	struct drm_device *drm = data;
2040 
2041 	return tda998x_encoder_init(dev, drm);
2042 }
2043 
2044 static void tda998x_unbind(struct device *dev, struct device *master,
2045 			   void *data)
2046 {
2047 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2048 
2049 	drm_encoder_cleanup(&priv->encoder);
2050 }
2051 
2052 static const struct component_ops tda998x_ops = {
2053 	.bind = tda998x_bind,
2054 	.unbind = tda998x_unbind,
2055 };
2056 
2057 static int
2058 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2059 {
2060 	int ret;
2061 
2062 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2063 		dev_warn(&client->dev, "adapter does not support I2C\n");
2064 		return -EIO;
2065 	}
2066 
2067 	ret = tda998x_create(&client->dev);
2068 	if (ret)
2069 		return ret;
2070 
2071 	ret = component_add(&client->dev, &tda998x_ops);
2072 	if (ret)
2073 		tda998x_destroy(&client->dev);
2074 	return ret;
2075 }
2076 
2077 static int tda998x_remove(struct i2c_client *client)
2078 {
2079 	component_del(&client->dev, &tda998x_ops);
2080 	tda998x_destroy(&client->dev);
2081 	return 0;
2082 }
2083 
2084 #ifdef CONFIG_OF
2085 static const struct of_device_id tda998x_dt_ids[] = {
2086 	{ .compatible = "nxp,tda998x", },
2087 	{ }
2088 };
2089 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2090 #endif
2091 
2092 static const struct i2c_device_id tda998x_ids[] = {
2093 	{ "tda998x", 0 },
2094 	{ }
2095 };
2096 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2097 
2098 static struct i2c_driver tda998x_driver = {
2099 	.probe = tda998x_probe,
2100 	.remove = tda998x_remove,
2101 	.driver = {
2102 		.name = "tda998x",
2103 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2104 	},
2105 	.id_table = tda998x_ids,
2106 };
2107 
2108 module_i2c_driver(tda998x_driver);
2109 
2110 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2111 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2112 MODULE_LICENSE("GPL");
2113