xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 86edee97)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/module.h>
11 #include <linux/platform_data/tda9950.h>
12 #include <linux/irq.h>
13 #include <sound/asoundef.h>
14 #include <sound/hdmi-codec.h>
15 
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_edid.h>
19 #include <drm/drm_of.h>
20 #include <drm/drm_print.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/i2c/tda998x.h>
23 
24 #include <media/cec-notifier.h>
25 
26 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
27 
28 enum {
29 	AUDIO_ROUTE_I2S,
30 	AUDIO_ROUTE_SPDIF,
31 	AUDIO_ROUTE_NUM
32 };
33 
34 struct tda998x_audio_route {
35 	u8 ena_aclk;
36 	u8 mux_ap;
37 	u8 aip_clksel;
38 };
39 
40 struct tda998x_audio_settings {
41 	const struct tda998x_audio_route *route;
42 	struct hdmi_audio_infoframe cea;
43 	unsigned int sample_rate;
44 	u8 status[5];
45 	u8 ena_ap;
46 	u8 i2s_format;
47 	u8 cts_n;
48 };
49 
50 struct tda998x_priv {
51 	struct i2c_client *cec;
52 	struct i2c_client *hdmi;
53 	struct mutex mutex;
54 	u16 rev;
55 	u8 cec_addr;
56 	u8 current_page;
57 	bool is_on;
58 	bool supports_infoframes;
59 	bool sink_has_audio;
60 	enum hdmi_quantization_range rgb_quant_range;
61 	u8 vip_cntrl_0;
62 	u8 vip_cntrl_1;
63 	u8 vip_cntrl_2;
64 	unsigned long tmds_clock;
65 	struct tda998x_audio_settings audio;
66 
67 	struct platform_device *audio_pdev;
68 	struct mutex audio_mutex;
69 
70 	struct mutex edid_mutex;
71 	wait_queue_head_t wq_edid;
72 	volatile int wq_edid_wait;
73 
74 	struct work_struct detect_work;
75 	struct timer_list edid_delay_timer;
76 	wait_queue_head_t edid_delay_waitq;
77 	bool edid_delay_active;
78 
79 	struct drm_encoder encoder;
80 	struct drm_bridge bridge;
81 	struct drm_connector connector;
82 
83 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
84 	struct tda9950_glue cec_glue;
85 	struct gpio_desc *calib;
86 	struct cec_notifier *cec_notify;
87 };
88 
89 #define conn_to_tda998x_priv(x) \
90 	container_of(x, struct tda998x_priv, connector)
91 #define enc_to_tda998x_priv(x) \
92 	container_of(x, struct tda998x_priv, encoder)
93 #define bridge_to_tda998x_priv(x) \
94 	container_of(x, struct tda998x_priv, bridge)
95 
96 /* The TDA9988 series of devices use a paged register scheme.. to simplify
97  * things we encode the page # in upper bits of the register #.  To read/
98  * write a given register, we need to make sure CURPAGE register is set
99  * appropriately.  Which implies reads/writes are not atomic.  Fun!
100  */
101 
102 #define REG(page, addr) (((page) << 8) | (addr))
103 #define REG2ADDR(reg)   ((reg) & 0xff)
104 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
105 
106 #define REG_CURPAGE               0xff                /* write */
107 
108 
109 /* Page 00h: General Control */
110 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
111 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
112 # define MAIN_CNTRL0_SR           (1 << 0)
113 # define MAIN_CNTRL0_DECS         (1 << 1)
114 # define MAIN_CNTRL0_DEHS         (1 << 2)
115 # define MAIN_CNTRL0_CECS         (1 << 3)
116 # define MAIN_CNTRL0_CEHS         (1 << 4)
117 # define MAIN_CNTRL0_SCALER       (1 << 7)
118 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
119 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
120 # define SOFTRESET_AUDIO          (1 << 0)
121 # define SOFTRESET_I2C_MASTER     (1 << 1)
122 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
123 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
124 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
125 # define I2C_MASTER_DIS_MM        (1 << 0)
126 # define I2C_MASTER_DIS_FILT      (1 << 1)
127 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
128 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
129 # define FEAT_POWERDOWN_PREFILT   BIT(0)
130 # define FEAT_POWERDOWN_CSC       BIT(1)
131 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
132 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
133 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
134 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
135 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
136 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
137 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
138 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
139 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
140 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
141 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
142 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
143 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
144 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
145 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
146 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
147 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
148 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
149 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
150 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
151 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
152 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
153 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
154 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
155 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
156 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
157 # define VIP_CNTRL_3_X_TGL        (1 << 0)
158 # define VIP_CNTRL_3_H_TGL        (1 << 1)
159 # define VIP_CNTRL_3_V_TGL        (1 << 2)
160 # define VIP_CNTRL_3_EMB          (1 << 3)
161 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
162 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
163 # define VIP_CNTRL_3_DE_INT       (1 << 6)
164 # define VIP_CNTRL_3_EDGE         (1 << 7)
165 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
166 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
167 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
168 # define VIP_CNTRL_4_CCIR656      (1 << 4)
169 # define VIP_CNTRL_4_656_ALT      (1 << 5)
170 # define VIP_CNTRL_4_TST_656      (1 << 6)
171 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
172 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
173 # define VIP_CNTRL_5_CKCASE       (1 << 0)
174 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
175 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
176 # define MUX_AP_SELECT_I2S	  0x64
177 # define MUX_AP_SELECT_SPDIF	  0x40
178 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
179 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
180 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
181 # define MAT_CONTRL_MAT_BP        (1 << 2)
182 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
183 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
184 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
185 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
186 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
187 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
188 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
189 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
190 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
191 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
192 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
193 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
194 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
195 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
196 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
197 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
198 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
199 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
200 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
201 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
202 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
203 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
204 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
205 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
206 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
207 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
208 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
209 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
210 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
211 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
212 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
213 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
214 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
215 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
216 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
217 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
218 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
219 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
220 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
221 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
222 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
223 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
224 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
225 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
226 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
227 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
228 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
229 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
230 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
231 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
232 # define TBG_CNTRL_1_H_TGL        (1 << 0)
233 # define TBG_CNTRL_1_V_TGL        (1 << 1)
234 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
235 # define TBG_CNTRL_1_X_EXT        (1 << 3)
236 # define TBG_CNTRL_1_H_EXT        (1 << 4)
237 # define TBG_CNTRL_1_V_EXT        (1 << 5)
238 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
239 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
240 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
241 # define HVF_CNTRL_0_SM           (1 << 7)
242 # define HVF_CNTRL_0_RWB          (1 << 6)
243 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
244 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
245 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
246 # define HVF_CNTRL_1_FOR          (1 << 0)
247 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
248 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
249 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
250 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
251 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
252 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
253 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
254 # define I2S_FORMAT_PHILIPS       (0 << 0)
255 # define I2S_FORMAT_LEFT_J        (2 << 0)
256 # define I2S_FORMAT_RIGHT_J       (3 << 0)
257 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
258 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
259 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
260 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
261 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
262 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
263 
264 /* Page 02h: PLL settings */
265 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
266 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
267 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
268 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
269 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
270 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
271 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
272 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
273 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
274 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
275 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
276 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
277 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
278 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
279 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
280 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
281 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
282 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
283 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
284 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
285 # define AUDIO_DIV_SERCLK_1       0
286 # define AUDIO_DIV_SERCLK_2       1
287 # define AUDIO_DIV_SERCLK_4       2
288 # define AUDIO_DIV_SERCLK_8       3
289 # define AUDIO_DIV_SERCLK_16      4
290 # define AUDIO_DIV_SERCLK_32      5
291 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
292 # define SEL_CLK_SEL_CLK1         (1 << 0)
293 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
294 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
295 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
296 
297 
298 /* Page 09h: EDID Control */
299 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
300 /* next 127 successive registers are the EDID block */
301 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
302 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
303 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
304 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
305 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
306 
307 
308 /* Page 10h: information frames and packets */
309 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
310 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
311 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
312 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
313 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
314 
315 
316 /* Page 11h: audio settings and content info packets */
317 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
318 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
319 # define AIP_CNTRL_0_SWAP         (1 << 1)
320 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
321 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
322 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
323 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
324 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
325 # define CA_I2S_HBR_CHSTAT        (1 << 6)
326 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
327 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
328 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
329 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
330 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
331 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
332 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
333 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
334 # define CTS_N_K(x)               (((x) & 7) << 0)
335 # define CTS_N_M(x)               (((x) & 3) << 4)
336 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
337 # define ENC_CNTRL_RST_ENC        (1 << 0)
338 # define ENC_CNTRL_RST_SEL        (1 << 1)
339 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
340 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
341 # define DIP_FLAGS_ACR            (1 << 0)
342 # define DIP_FLAGS_GC             (1 << 1)
343 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
344 # define DIP_IF_FLAGS_IF1         (1 << 1)
345 # define DIP_IF_FLAGS_IF2         (1 << 2)
346 # define DIP_IF_FLAGS_IF3         (1 << 3)
347 # define DIP_IF_FLAGS_IF4         (1 << 4)
348 # define DIP_IF_FLAGS_IF5         (1 << 5)
349 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
350 
351 
352 /* Page 12h: HDCP and OTP */
353 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
354 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
355 # define TX4_PD_RAM               (1 << 1)
356 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
357 # define TX33_HDMI                (1 << 1)
358 
359 
360 /* Page 13h: Gamut related metadata packets */
361 
362 
363 
364 /* CEC registers: (not paged)
365  */
366 #define REG_CEC_INTSTATUS	  0xee		      /* read */
367 # define CEC_INTSTATUS_CEC	  (1 << 0)
368 # define CEC_INTSTATUS_HDMI	  (1 << 1)
369 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
370 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
371 #define REG_CEC_DES_FREQ2         0xf5
372 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
373 #define REG_CEC_CLK               0xf6
374 # define CEC_CLK_FRO              0x11
375 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
376 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
377 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
378 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
379 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
380 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
381 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
382 # define CEC_RXSHPDINT_RXSENS     BIT(0)
383 # define CEC_RXSHPDINT_HPD        BIT(1)
384 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
385 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
386 # define CEC_RXSHPDLEV_HPD        (1 << 1)
387 
388 #define REG_CEC_ENAMODS           0xff                /* read/write */
389 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
390 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
391 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
392 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
393 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
394 # define CEC_ENAMODS_EN_CEC       (1 << 0)
395 
396 
397 /* Device versions: */
398 #define TDA9989N2                 0x0101
399 #define TDA19989                  0x0201
400 #define TDA19989N2                0x0202
401 #define TDA19988                  0x0301
402 
403 static void
404 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
405 {
406 	u8 buf[] = {addr, val};
407 	struct i2c_msg msg = {
408 		.addr = priv->cec_addr,
409 		.len = 2,
410 		.buf = buf,
411 	};
412 	int ret;
413 
414 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
415 	if (ret < 0)
416 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
417 			ret, addr);
418 }
419 
420 static u8
421 cec_read(struct tda998x_priv *priv, u8 addr)
422 {
423 	u8 val;
424 	struct i2c_msg msg[2] = {
425 		{
426 			.addr = priv->cec_addr,
427 			.len = 1,
428 			.buf = &addr,
429 		}, {
430 			.addr = priv->cec_addr,
431 			.flags = I2C_M_RD,
432 			.len = 1,
433 			.buf = &val,
434 		},
435 	};
436 	int ret;
437 
438 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
439 	if (ret < 0) {
440 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
441 			ret, addr);
442 		val = 0;
443 	}
444 
445 	return val;
446 }
447 
448 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
449 {
450 	int val = cec_read(priv, REG_CEC_ENAMODS);
451 
452 	if (val < 0)
453 		return;
454 
455 	if (enable)
456 		val |= mods;
457 	else
458 		val &= ~mods;
459 
460 	cec_write(priv, REG_CEC_ENAMODS, val);
461 }
462 
463 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
464 {
465 	if (enable) {
466 		u8 val;
467 
468 		cec_write(priv, 0xf3, 0xc0);
469 		cec_write(priv, 0xf4, 0xd4);
470 
471 		/* Enable automatic calibration mode */
472 		val = cec_read(priv, REG_CEC_DES_FREQ2);
473 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
474 		cec_write(priv, REG_CEC_DES_FREQ2, val);
475 
476 		/* Enable free running oscillator */
477 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
478 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
479 
480 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
481 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
482 	} else {
483 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
484 	}
485 }
486 
487 /*
488  * Calibration for the internal oscillator: we need to set calibration mode,
489  * and then pulse the IRQ line low for a 10ms ± 1% period.
490  */
491 static void tda998x_cec_calibration(struct tda998x_priv *priv)
492 {
493 	struct gpio_desc *calib = priv->calib;
494 
495 	mutex_lock(&priv->edid_mutex);
496 	if (priv->hdmi->irq > 0)
497 		disable_irq(priv->hdmi->irq);
498 	gpiod_direction_output(calib, 1);
499 	tda998x_cec_set_calibration(priv, true);
500 
501 	local_irq_disable();
502 	gpiod_set_value(calib, 0);
503 	mdelay(10);
504 	gpiod_set_value(calib, 1);
505 	local_irq_enable();
506 
507 	tda998x_cec_set_calibration(priv, false);
508 	gpiod_direction_input(calib);
509 	if (priv->hdmi->irq > 0)
510 		enable_irq(priv->hdmi->irq);
511 	mutex_unlock(&priv->edid_mutex);
512 }
513 
514 static int tda998x_cec_hook_init(void *data)
515 {
516 	struct tda998x_priv *priv = data;
517 	struct gpio_desc *calib;
518 
519 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
520 	if (IS_ERR(calib)) {
521 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
522 			 PTR_ERR(calib));
523 		return PTR_ERR(calib);
524 	}
525 
526 	priv->calib = calib;
527 
528 	return 0;
529 }
530 
531 static void tda998x_cec_hook_exit(void *data)
532 {
533 	struct tda998x_priv *priv = data;
534 
535 	gpiod_put(priv->calib);
536 	priv->calib = NULL;
537 }
538 
539 static int tda998x_cec_hook_open(void *data)
540 {
541 	struct tda998x_priv *priv = data;
542 
543 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
544 	tda998x_cec_calibration(priv);
545 
546 	return 0;
547 }
548 
549 static void tda998x_cec_hook_release(void *data)
550 {
551 	struct tda998x_priv *priv = data;
552 
553 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
554 }
555 
556 static int
557 set_page(struct tda998x_priv *priv, u16 reg)
558 {
559 	if (REG2PAGE(reg) != priv->current_page) {
560 		struct i2c_client *client = priv->hdmi;
561 		u8 buf[] = {
562 				REG_CURPAGE, REG2PAGE(reg)
563 		};
564 		int ret = i2c_master_send(client, buf, sizeof(buf));
565 		if (ret < 0) {
566 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
567 					reg, ret);
568 			return ret;
569 		}
570 
571 		priv->current_page = REG2PAGE(reg);
572 	}
573 	return 0;
574 }
575 
576 static int
577 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
578 {
579 	struct i2c_client *client = priv->hdmi;
580 	u8 addr = REG2ADDR(reg);
581 	int ret;
582 
583 	mutex_lock(&priv->mutex);
584 	ret = set_page(priv, reg);
585 	if (ret < 0)
586 		goto out;
587 
588 	ret = i2c_master_send(client, &addr, sizeof(addr));
589 	if (ret < 0)
590 		goto fail;
591 
592 	ret = i2c_master_recv(client, buf, cnt);
593 	if (ret < 0)
594 		goto fail;
595 
596 	goto out;
597 
598 fail:
599 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
600 out:
601 	mutex_unlock(&priv->mutex);
602 	return ret;
603 }
604 
605 #define MAX_WRITE_RANGE_BUF 32
606 
607 static void
608 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
609 {
610 	struct i2c_client *client = priv->hdmi;
611 	/* This is the maximum size of the buffer passed in */
612 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
613 	int ret;
614 
615 	if (cnt > MAX_WRITE_RANGE_BUF) {
616 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
617 				MAX_WRITE_RANGE_BUF);
618 		return;
619 	}
620 
621 	buf[0] = REG2ADDR(reg);
622 	memcpy(&buf[1], p, cnt);
623 
624 	mutex_lock(&priv->mutex);
625 	ret = set_page(priv, reg);
626 	if (ret < 0)
627 		goto out;
628 
629 	ret = i2c_master_send(client, buf, cnt + 1);
630 	if (ret < 0)
631 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
632 out:
633 	mutex_unlock(&priv->mutex);
634 }
635 
636 static int
637 reg_read(struct tda998x_priv *priv, u16 reg)
638 {
639 	u8 val = 0;
640 	int ret;
641 
642 	ret = reg_read_range(priv, reg, &val, sizeof(val));
643 	if (ret < 0)
644 		return ret;
645 	return val;
646 }
647 
648 static void
649 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
650 {
651 	struct i2c_client *client = priv->hdmi;
652 	u8 buf[] = {REG2ADDR(reg), val};
653 	int ret;
654 
655 	mutex_lock(&priv->mutex);
656 	ret = set_page(priv, reg);
657 	if (ret < 0)
658 		goto out;
659 
660 	ret = i2c_master_send(client, buf, sizeof(buf));
661 	if (ret < 0)
662 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
663 out:
664 	mutex_unlock(&priv->mutex);
665 }
666 
667 static void
668 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
669 {
670 	struct i2c_client *client = priv->hdmi;
671 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
672 	int ret;
673 
674 	mutex_lock(&priv->mutex);
675 	ret = set_page(priv, reg);
676 	if (ret < 0)
677 		goto out;
678 
679 	ret = i2c_master_send(client, buf, sizeof(buf));
680 	if (ret < 0)
681 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
682 out:
683 	mutex_unlock(&priv->mutex);
684 }
685 
686 static void
687 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
688 {
689 	int old_val;
690 
691 	old_val = reg_read(priv, reg);
692 	if (old_val >= 0)
693 		reg_write(priv, reg, old_val | val);
694 }
695 
696 static void
697 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
698 {
699 	int old_val;
700 
701 	old_val = reg_read(priv, reg);
702 	if (old_val >= 0)
703 		reg_write(priv, reg, old_val & ~val);
704 }
705 
706 static void
707 tda998x_reset(struct tda998x_priv *priv)
708 {
709 	/* reset audio and i2c master: */
710 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
711 	msleep(50);
712 	reg_write(priv, REG_SOFTRESET, 0);
713 	msleep(50);
714 
715 	/* reset transmitter: */
716 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
717 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
718 
719 	/* PLL registers common configuration */
720 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
721 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
722 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
723 	reg_write(priv, REG_SERIALIZER,   0x00);
724 	reg_write(priv, REG_BUFFER_OUT,   0x00);
725 	reg_write(priv, REG_PLL_SCG1,     0x00);
726 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
727 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
728 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
729 	reg_write(priv, REG_PLL_SCGN2,    0x00);
730 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
731 	reg_write(priv, REG_PLL_SCGR2,    0x00);
732 	reg_write(priv, REG_PLL_SCG2,     0x10);
733 
734 	/* Write the default value MUX register */
735 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
736 }
737 
738 /*
739  * The TDA998x has a problem when trying to read the EDID close to a
740  * HPD assertion: it needs a delay of 100ms to avoid timing out while
741  * trying to read EDID data.
742  *
743  * However, tda998x_connector_get_modes() may be called at any moment
744  * after tda998x_connector_detect() indicates that we are connected, so
745  * we need to delay probing modes in tda998x_connector_get_modes() after
746  * we have seen a HPD inactive->active transition.  This code implements
747  * that delay.
748  */
749 static void tda998x_edid_delay_done(struct timer_list *t)
750 {
751 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
752 
753 	priv->edid_delay_active = false;
754 	wake_up(&priv->edid_delay_waitq);
755 	schedule_work(&priv->detect_work);
756 }
757 
758 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
759 {
760 	priv->edid_delay_active = true;
761 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
762 }
763 
764 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
765 {
766 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
767 }
768 
769 /*
770  * We need to run the KMS hotplug event helper outside of our threaded
771  * interrupt routine as this can call back into our get_modes method,
772  * which will want to make use of interrupts.
773  */
774 static void tda998x_detect_work(struct work_struct *work)
775 {
776 	struct tda998x_priv *priv =
777 		container_of(work, struct tda998x_priv, detect_work);
778 	struct drm_device *dev = priv->connector.dev;
779 
780 	if (dev)
781 		drm_kms_helper_hotplug_event(dev);
782 }
783 
784 /*
785  * only 2 interrupts may occur: screen plug/unplug and EDID read
786  */
787 static irqreturn_t tda998x_irq_thread(int irq, void *data)
788 {
789 	struct tda998x_priv *priv = data;
790 	u8 sta, cec, lvl, flag0, flag1, flag2;
791 	bool handled = false;
792 
793 	sta = cec_read(priv, REG_CEC_INTSTATUS);
794 	if (sta & CEC_INTSTATUS_HDMI) {
795 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
796 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
797 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
798 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
799 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
800 		DRM_DEBUG_DRIVER(
801 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
802 			sta, cec, lvl, flag0, flag1, flag2);
803 
804 		if (cec & CEC_RXSHPDINT_HPD) {
805 			if (lvl & CEC_RXSHPDLEV_HPD) {
806 				tda998x_edid_delay_start(priv);
807 			} else {
808 				schedule_work(&priv->detect_work);
809 				cec_notifier_phys_addr_invalidate(
810 						priv->cec_notify);
811 			}
812 
813 			handled = true;
814 		}
815 
816 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
817 			priv->wq_edid_wait = 0;
818 			wake_up(&priv->wq_edid);
819 			handled = true;
820 		}
821 	}
822 
823 	return IRQ_RETVAL(handled);
824 }
825 
826 static void
827 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
828 		 union hdmi_infoframe *frame)
829 {
830 	u8 buf[MAX_WRITE_RANGE_BUF];
831 	ssize_t len;
832 
833 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
834 	if (len < 0) {
835 		dev_err(&priv->hdmi->dev,
836 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
837 			frame->any.type, len);
838 		return;
839 	}
840 
841 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
842 	reg_write_range(priv, addr, buf, len);
843 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
844 }
845 
846 static void tda998x_write_aif(struct tda998x_priv *priv,
847 			      const struct hdmi_audio_infoframe *cea)
848 {
849 	union hdmi_infoframe frame;
850 
851 	frame.audio = *cea;
852 
853 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
854 }
855 
856 static void
857 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
858 {
859 	union hdmi_infoframe frame;
860 
861 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
862 						 &priv->connector, mode);
863 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
864 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
865 					   priv->rgb_quant_range);
866 
867 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
868 }
869 
870 static void tda998x_write_vsi(struct tda998x_priv *priv,
871 			      const struct drm_display_mode *mode)
872 {
873 	union hdmi_infoframe frame;
874 
875 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
876 							&priv->connector,
877 							mode))
878 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
879 	else
880 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
881 }
882 
883 /* Audio support */
884 
885 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
886 	[AUDIO_ROUTE_I2S] = {
887 		.ena_aclk = 1,
888 		.mux_ap = MUX_AP_SELECT_I2S,
889 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
890 	},
891 	[AUDIO_ROUTE_SPDIF] = {
892 		.ena_aclk = 0,
893 		.mux_ap = MUX_AP_SELECT_SPDIF,
894 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
895 	},
896 };
897 
898 /* Configure the TDA998x audio data and clock routing. */
899 static int tda998x_derive_routing(struct tda998x_priv *priv,
900 				  struct tda998x_audio_settings *s,
901 				  unsigned int route)
902 {
903 	s->route = &tda998x_audio_route[route];
904 	s->ena_ap = priv->audio_port_enable[route];
905 	if (s->ena_ap == 0) {
906 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
907 		return -EINVAL;
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * The audio clock divisor register controls a divider producing Audio_Clk_Out
915  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
916  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
917  *
918  * It seems that Audio_Clk_Out must be the smallest value that is greater
919  * than 128*fs, otherwise audio does not function. There is some suggestion
920  * that 126*fs is a better value.
921  */
922 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
923 {
924 	unsigned long min_audio_clk = fs * 128;
925 	unsigned long ser_clk = priv->tmds_clock * 1000;
926 	u8 adiv;
927 
928 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
929 		if (ser_clk > min_audio_clk << adiv)
930 			break;
931 
932 	dev_dbg(&priv->hdmi->dev,
933 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
934 		ser_clk, fs, min_audio_clk, adiv);
935 
936 	return adiv;
937 }
938 
939 /*
940  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
941  * generate the CTS value.  It appears that the "measured time stamp" is
942  * the number of TDMS clock cycles within a number of audio input clock
943  * cycles defined by the k and N parameters defined below, in a similar
944  * way to that which is set out in the CTS generation in the HDMI spec.
945  *
946  *  tmdsclk ----> mts -> /m ---> CTS
947  *                 ^
948  *  sclk -> /k -> /N
949  *
950  * CTS = mts / m, where m is 2^M.
951  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
952  * /N is a divider based on the HDMI specified N value.
953  *
954  * This produces the following equation:
955  *  CTS = tmds_clock * k * N / (sclk * m)
956  *
957  * When combined with the sink-side equation, and realising that sclk is
958  * bclk_ratio * fs, we end up with:
959  *  k = m * bclk_ratio / 128.
960  *
961  * Note: S/PDIF always uses a bclk_ratio of 64.
962  */
963 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
964 				struct tda998x_audio_settings *settings,
965 				unsigned int ratio)
966 {
967 	switch (ratio) {
968 	case 16:
969 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
970 		break;
971 	case 32:
972 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
973 		break;
974 	case 48:
975 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
976 		break;
977 	case 64:
978 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
979 		break;
980 	case 128:
981 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
982 		break;
983 	default:
984 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
985 			ratio);
986 		return -EINVAL;
987 	}
988 	return 0;
989 }
990 
991 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
992 {
993 	if (on) {
994 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
995 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
996 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
997 	} else {
998 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
999 	}
1000 }
1001 
1002 static void tda998x_configure_audio(struct tda998x_priv *priv)
1003 {
1004 	const struct tda998x_audio_settings *settings = &priv->audio;
1005 	u8 buf[6], adiv;
1006 	u32 n;
1007 
1008 	/* If audio is not configured, there is nothing to do. */
1009 	if (settings->ena_ap == 0)
1010 		return;
1011 
1012 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1013 
1014 	/* Enable audio ports */
1015 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1016 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1017 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1018 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1019 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1020 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1021 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1022 	reg_write(priv, REG_CTS_N, settings->cts_n);
1023 	reg_write(priv, REG_AUDIO_DIV, adiv);
1024 
1025 	/*
1026 	 * This is the approximate value of N, which happens to be
1027 	 * the recommended values for non-coherent clocks.
1028 	 */
1029 	n = 128 * settings->sample_rate / 1000;
1030 
1031 	/* Write the CTS and N values */
1032 	buf[0] = 0x44;
1033 	buf[1] = 0x42;
1034 	buf[2] = 0x01;
1035 	buf[3] = n;
1036 	buf[4] = n >> 8;
1037 	buf[5] = n >> 16;
1038 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1039 
1040 	/* Reset CTS generator */
1041 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1042 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1043 
1044 	/* Write the channel status
1045 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1046 	 * there is a separate register for each I2S wire.
1047 	 */
1048 	buf[0] = settings->status[0];
1049 	buf[1] = settings->status[1];
1050 	buf[2] = settings->status[3];
1051 	buf[3] = settings->status[4];
1052 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1053 
1054 	tda998x_audio_mute(priv, true);
1055 	msleep(20);
1056 	tda998x_audio_mute(priv, false);
1057 
1058 	tda998x_write_aif(priv, &settings->cea);
1059 }
1060 
1061 static int tda998x_audio_hw_params(struct device *dev, void *data,
1062 				   struct hdmi_codec_daifmt *daifmt,
1063 				   struct hdmi_codec_params *params)
1064 {
1065 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1066 	unsigned int bclk_ratio;
1067 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1068 	int ret;
1069 	struct tda998x_audio_settings audio = {
1070 		.sample_rate = params->sample_rate,
1071 		.cea = params->cea,
1072 	};
1073 
1074 	memcpy(audio.status, params->iec.status,
1075 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1076 
1077 	switch (daifmt->fmt) {
1078 	case HDMI_I2S:
1079 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1080 		break;
1081 	case HDMI_LEFT_J:
1082 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1083 		break;
1084 	case HDMI_RIGHT_J:
1085 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1086 		break;
1087 	case HDMI_SPDIF:
1088 		audio.i2s_format = 0;
1089 		break;
1090 	default:
1091 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (!spdif &&
1096 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1097 	     daifmt->bit_clk_master || daifmt->frame_clk_master)) {
1098 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1099 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1100 			daifmt->bit_clk_master,
1101 			daifmt->frame_clk_master);
1102 		return -EINVAL;
1103 	}
1104 
1105 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1106 	if (ret < 0)
1107 		return ret;
1108 
1109 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1110 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1111 	if (ret < 0)
1112 		return ret;
1113 
1114 	mutex_lock(&priv->audio_mutex);
1115 	priv->audio = audio;
1116 	if (priv->supports_infoframes && priv->sink_has_audio)
1117 		tda998x_configure_audio(priv);
1118 	mutex_unlock(&priv->audio_mutex);
1119 
1120 	return 0;
1121 }
1122 
1123 static void tda998x_audio_shutdown(struct device *dev, void *data)
1124 {
1125 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1126 
1127 	mutex_lock(&priv->audio_mutex);
1128 
1129 	reg_write(priv, REG_ENA_AP, 0);
1130 	priv->audio.ena_ap = 0;
1131 
1132 	mutex_unlock(&priv->audio_mutex);
1133 }
1134 
1135 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1136 {
1137 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1138 
1139 	mutex_lock(&priv->audio_mutex);
1140 
1141 	tda998x_audio_mute(priv, enable);
1142 
1143 	mutex_unlock(&priv->audio_mutex);
1144 	return 0;
1145 }
1146 
1147 static int tda998x_audio_get_eld(struct device *dev, void *data,
1148 				 uint8_t *buf, size_t len)
1149 {
1150 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1151 
1152 	mutex_lock(&priv->audio_mutex);
1153 	memcpy(buf, priv->connector.eld,
1154 	       min(sizeof(priv->connector.eld), len));
1155 	mutex_unlock(&priv->audio_mutex);
1156 
1157 	return 0;
1158 }
1159 
1160 static const struct hdmi_codec_ops audio_codec_ops = {
1161 	.hw_params = tda998x_audio_hw_params,
1162 	.audio_shutdown = tda998x_audio_shutdown,
1163 	.digital_mute = tda998x_audio_digital_mute,
1164 	.get_eld = tda998x_audio_get_eld,
1165 };
1166 
1167 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1168 				    struct device *dev)
1169 {
1170 	struct hdmi_codec_pdata codec_data = {
1171 		.ops = &audio_codec_ops,
1172 		.max_i2s_channels = 2,
1173 	};
1174 
1175 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1176 		codec_data.i2s = 1;
1177 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1178 		codec_data.spdif = 1;
1179 
1180 	priv->audio_pdev = platform_device_register_data(
1181 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1182 		&codec_data, sizeof(codec_data));
1183 
1184 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1185 }
1186 
1187 /* DRM connector functions */
1188 
1189 static enum drm_connector_status
1190 tda998x_connector_detect(struct drm_connector *connector, bool force)
1191 {
1192 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1193 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1194 
1195 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1196 			connector_status_disconnected;
1197 }
1198 
1199 static void tda998x_connector_destroy(struct drm_connector *connector)
1200 {
1201 	drm_connector_cleanup(connector);
1202 }
1203 
1204 static const struct drm_connector_funcs tda998x_connector_funcs = {
1205 	.reset = drm_atomic_helper_connector_reset,
1206 	.fill_modes = drm_helper_probe_single_connector_modes,
1207 	.detect = tda998x_connector_detect,
1208 	.destroy = tda998x_connector_destroy,
1209 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1210 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1211 };
1212 
1213 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1214 {
1215 	struct tda998x_priv *priv = data;
1216 	u8 offset, segptr;
1217 	int ret, i;
1218 
1219 	offset = (blk & 1) ? 128 : 0;
1220 	segptr = blk / 2;
1221 
1222 	mutex_lock(&priv->edid_mutex);
1223 
1224 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1225 	reg_write(priv, REG_DDC_OFFS, offset);
1226 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1227 	reg_write(priv, REG_DDC_SEGM, segptr);
1228 
1229 	/* enable reading EDID: */
1230 	priv->wq_edid_wait = 1;
1231 	reg_write(priv, REG_EDID_CTRL, 0x1);
1232 
1233 	/* flag must be cleared by sw: */
1234 	reg_write(priv, REG_EDID_CTRL, 0x0);
1235 
1236 	/* wait for block read to complete: */
1237 	if (priv->hdmi->irq) {
1238 		i = wait_event_timeout(priv->wq_edid,
1239 					!priv->wq_edid_wait,
1240 					msecs_to_jiffies(100));
1241 		if (i < 0) {
1242 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1243 			ret = i;
1244 			goto failed;
1245 		}
1246 	} else {
1247 		for (i = 100; i > 0; i--) {
1248 			msleep(1);
1249 			ret = reg_read(priv, REG_INT_FLAGS_2);
1250 			if (ret < 0)
1251 				goto failed;
1252 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1253 				break;
1254 		}
1255 	}
1256 
1257 	if (i == 0) {
1258 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1259 		ret = -ETIMEDOUT;
1260 		goto failed;
1261 	}
1262 
1263 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1264 	if (ret != length) {
1265 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1266 			blk, ret);
1267 		goto failed;
1268 	}
1269 
1270 	ret = 0;
1271 
1272  failed:
1273 	mutex_unlock(&priv->edid_mutex);
1274 	return ret;
1275 }
1276 
1277 static int tda998x_connector_get_modes(struct drm_connector *connector)
1278 {
1279 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1280 	struct edid *edid;
1281 	int n;
1282 
1283 	/*
1284 	 * If we get killed while waiting for the HPD timeout, return
1285 	 * no modes found: we are not in a restartable path, so we
1286 	 * can't handle signals gracefully.
1287 	 */
1288 	if (tda998x_edid_delay_wait(priv))
1289 		return 0;
1290 
1291 	if (priv->rev == TDA19988)
1292 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1293 
1294 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1295 
1296 	if (priv->rev == TDA19988)
1297 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1298 
1299 	if (!edid) {
1300 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1301 		return 0;
1302 	}
1303 
1304 	drm_connector_update_edid_property(connector, edid);
1305 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1306 
1307 	mutex_lock(&priv->audio_mutex);
1308 	n = drm_add_edid_modes(connector, edid);
1309 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1310 	mutex_unlock(&priv->audio_mutex);
1311 
1312 	kfree(edid);
1313 
1314 	return n;
1315 }
1316 
1317 static struct drm_encoder *
1318 tda998x_connector_best_encoder(struct drm_connector *connector)
1319 {
1320 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1321 
1322 	return priv->bridge.encoder;
1323 }
1324 
1325 static
1326 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1327 	.get_modes = tda998x_connector_get_modes,
1328 	.best_encoder = tda998x_connector_best_encoder,
1329 };
1330 
1331 static int tda998x_connector_init(struct tda998x_priv *priv,
1332 				  struct drm_device *drm)
1333 {
1334 	struct drm_connector *connector = &priv->connector;
1335 	int ret;
1336 
1337 	connector->interlace_allowed = 1;
1338 
1339 	if (priv->hdmi->irq)
1340 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1341 	else
1342 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1343 			DRM_CONNECTOR_POLL_DISCONNECT;
1344 
1345 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1346 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1347 				 DRM_MODE_CONNECTOR_HDMIA);
1348 	if (ret)
1349 		return ret;
1350 
1351 	drm_connector_attach_encoder(&priv->connector,
1352 				     priv->bridge.encoder);
1353 
1354 	return 0;
1355 }
1356 
1357 /* DRM bridge functions */
1358 
1359 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1360 				 enum drm_bridge_attach_flags flags)
1361 {
1362 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1363 
1364 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1365 		DRM_ERROR("Fix bridge driver to make connector optional!");
1366 		return -EINVAL;
1367 	}
1368 
1369 	return tda998x_connector_init(priv, bridge->dev);
1370 }
1371 
1372 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1373 {
1374 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1375 
1376 	drm_connector_cleanup(&priv->connector);
1377 }
1378 
1379 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1380 				     const struct drm_display_mode *mode)
1381 {
1382 	/* TDA19988 dotclock can go up to 165MHz */
1383 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1384 
1385 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1386 		return MODE_CLOCK_HIGH;
1387 	if (mode->htotal >= BIT(13))
1388 		return MODE_BAD_HVALUE;
1389 	if (mode->vtotal >= BIT(11))
1390 		return MODE_BAD_VVALUE;
1391 	return MODE_OK;
1392 }
1393 
1394 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1395 {
1396 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1397 
1398 	if (!priv->is_on) {
1399 		/* enable video ports, audio will be enabled later */
1400 		reg_write(priv, REG_ENA_VP_0, 0xff);
1401 		reg_write(priv, REG_ENA_VP_1, 0xff);
1402 		reg_write(priv, REG_ENA_VP_2, 0xff);
1403 		/* set muxing after enabling ports: */
1404 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1405 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1406 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1407 
1408 		priv->is_on = true;
1409 	}
1410 }
1411 
1412 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1413 {
1414 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1415 
1416 	if (priv->is_on) {
1417 		/* disable video ports */
1418 		reg_write(priv, REG_ENA_VP_0, 0x00);
1419 		reg_write(priv, REG_ENA_VP_1, 0x00);
1420 		reg_write(priv, REG_ENA_VP_2, 0x00);
1421 
1422 		priv->is_on = false;
1423 	}
1424 }
1425 
1426 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1427 				    const struct drm_display_mode *mode,
1428 				    const struct drm_display_mode *adjusted_mode)
1429 {
1430 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1431 	unsigned long tmds_clock;
1432 	u16 ref_pix, ref_line, n_pix, n_line;
1433 	u16 hs_pix_s, hs_pix_e;
1434 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1435 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1436 	u16 vwin1_line_s, vwin1_line_e;
1437 	u16 vwin2_line_s, vwin2_line_e;
1438 	u16 de_pix_s, de_pix_e;
1439 	u8 reg, div, rep, sel_clk;
1440 
1441 	/*
1442 	 * Since we are "computer" like, our source invariably produces
1443 	 * full-range RGB.  If the monitor supports full-range, then use
1444 	 * it, otherwise reduce to limited-range.
1445 	 */
1446 	priv->rgb_quant_range =
1447 		priv->connector.display_info.rgb_quant_range_selectable ?
1448 		HDMI_QUANTIZATION_RANGE_FULL :
1449 		drm_default_rgb_quant_range(adjusted_mode);
1450 
1451 	/*
1452 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1453 	 * we get VESA style sync. TDA998x is using a reference pixel
1454 	 * relative to ITU to sync to the input frame and for output
1455 	 * sync generation. Currently, we are using reference detection
1456 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1457 	 * which is position of rising VS with coincident rising HS.
1458 	 *
1459 	 * Now there is some issues to take care of:
1460 	 * - HDMI data islands require sync-before-active
1461 	 * - TDA998x register values must be > 0 to be enabled
1462 	 * - REFLINE needs an additional offset of +1
1463 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1464 	 *
1465 	 * So we add +1 to all horizontal and vertical register values,
1466 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1467 	 */
1468 	n_pix        = mode->htotal;
1469 	n_line       = mode->vtotal;
1470 
1471 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1472 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1473 	de_pix_e     = mode->htotal;
1474 	de_pix_s     = mode->htotal - mode->hdisplay;
1475 	ref_pix      = 3 + hs_pix_s;
1476 
1477 	/*
1478 	 * Attached LCD controllers may generate broken sync. Allow
1479 	 * those to adjust the position of the rising VS edge by adding
1480 	 * HSKEW to ref_pix.
1481 	 */
1482 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1483 		ref_pix += adjusted_mode->hskew;
1484 
1485 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1486 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1487 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1488 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1489 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1490 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1491 		vs1_line_e   = vs1_line_s +
1492 			       mode->vsync_end - mode->vsync_start;
1493 		vwin2_line_s = vwin2_line_e = 0;
1494 		vs2_pix_s    = vs2_pix_e  = 0;
1495 		vs2_line_s   = vs2_line_e = 0;
1496 	} else {
1497 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1498 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1499 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1500 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1501 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1502 		vs1_line_e   = vs1_line_s +
1503 			       (mode->vsync_end - mode->vsync_start)/2;
1504 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1505 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1506 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1507 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1508 		vs2_line_e   = vs2_line_s +
1509 			       (mode->vsync_end - mode->vsync_start)/2;
1510 	}
1511 
1512 	/*
1513 	 * Select pixel repeat depending on the double-clock flag
1514 	 * (which means we have to repeat each pixel once.)
1515 	 */
1516 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1517 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1518 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1519 
1520 	/* the TMDS clock is scaled up by the pixel repeat */
1521 	tmds_clock = mode->clock * (1 + rep);
1522 
1523 	/*
1524 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1525 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1526 	 *   0 - 800 to 1500 Msample/s
1527 	 *   1 - 400 to 800 Msample/s
1528 	 *   2 - 200 to 400 Msample/s
1529 	 *   3 - as 2 above
1530 	 */
1531 	for (div = 0; div < 3; div++)
1532 		if (80000 >> div <= tmds_clock)
1533 			break;
1534 
1535 	mutex_lock(&priv->audio_mutex);
1536 
1537 	priv->tmds_clock = tmds_clock;
1538 
1539 	/* mute the audio FIFO: */
1540 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1541 
1542 	/* set HDMI HDCP mode off: */
1543 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1544 	reg_clear(priv, REG_TX33, TX33_HDMI);
1545 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1546 
1547 	/* no pre-filter or interpolator: */
1548 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1549 			HVF_CNTRL_0_INTPOL(0));
1550 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1551 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1552 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1553 			VIP_CNTRL_4_BLC(0));
1554 
1555 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1556 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1557 					  PLL_SERIAL_3_SRL_DE);
1558 	reg_write(priv, REG_SERIALIZER, 0);
1559 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1560 
1561 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1562 	reg_write(priv, REG_SEL_CLK, sel_clk);
1563 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1564 			PLL_SERIAL_2_SRL_PR(rep));
1565 
1566 	/* set color matrix according to output rgb quant range */
1567 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1568 		static u8 tda998x_full_to_limited_range[] = {
1569 			MAT_CONTRL_MAT_SC(2),
1570 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1571 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1572 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1573 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1574 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1575 		};
1576 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1577 		reg_write_range(priv, REG_MAT_CONTRL,
1578 				tda998x_full_to_limited_range,
1579 				sizeof(tda998x_full_to_limited_range));
1580 	} else {
1581 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1582 					MAT_CONTRL_MAT_SC(1));
1583 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1584 	}
1585 
1586 	/* set BIAS tmds value: */
1587 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1588 
1589 	/*
1590 	 * Sync on rising HSYNC/VSYNC
1591 	 */
1592 	reg = VIP_CNTRL_3_SYNC_HS;
1593 
1594 	/*
1595 	 * TDA19988 requires high-active sync at input stage,
1596 	 * so invert low-active sync provided by master encoder here
1597 	 */
1598 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1599 		reg |= VIP_CNTRL_3_H_TGL;
1600 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1601 		reg |= VIP_CNTRL_3_V_TGL;
1602 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1603 
1604 	reg_write(priv, REG_VIDFORMAT, 0x00);
1605 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1606 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1607 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1608 	reg_write16(priv, REG_NLINE_MSB, n_line);
1609 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1610 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1611 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1612 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1613 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1614 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1615 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1616 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1617 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1618 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1619 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1620 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1621 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1622 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1623 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1624 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1625 
1626 	if (priv->rev == TDA19988) {
1627 		/* let incoming pixels fill the active space (if any) */
1628 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1629 	}
1630 
1631 	/*
1632 	 * Always generate sync polarity relative to input sync and
1633 	 * revert input stage toggled sync at output stage
1634 	 */
1635 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1636 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1637 		reg |= TBG_CNTRL_1_H_TGL;
1638 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1639 		reg |= TBG_CNTRL_1_V_TGL;
1640 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1641 
1642 	/* must be last register set: */
1643 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1644 
1645 	/* CEA-861B section 6 says that:
1646 	 * CEA version 1 (CEA-861) has no support for infoframes.
1647 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1648 	 * and optional basic audio.
1649 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1650 	 * and optional digital audio, with audio infoframes.
1651 	 *
1652 	 * Since we only support generation of version 2 AVI infoframes,
1653 	 * ignore CEA version 2 and below (iow, behave as if we're a
1654 	 * CEA-861 source.)
1655 	 */
1656 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1657 
1658 	if (priv->supports_infoframes) {
1659 		/* We need to turn HDMI HDCP stuff on to get audio through */
1660 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1661 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1662 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1663 		reg_set(priv, REG_TX33, TX33_HDMI);
1664 
1665 		tda998x_write_avi(priv, adjusted_mode);
1666 		tda998x_write_vsi(priv, adjusted_mode);
1667 
1668 		if (priv->sink_has_audio)
1669 			tda998x_configure_audio(priv);
1670 	}
1671 
1672 	mutex_unlock(&priv->audio_mutex);
1673 }
1674 
1675 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1676 	.attach = tda998x_bridge_attach,
1677 	.detach = tda998x_bridge_detach,
1678 	.mode_valid = tda998x_bridge_mode_valid,
1679 	.disable = tda998x_bridge_disable,
1680 	.mode_set = tda998x_bridge_mode_set,
1681 	.enable = tda998x_bridge_enable,
1682 };
1683 
1684 /* I2C driver functions */
1685 
1686 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1687 				   struct device_node *np)
1688 {
1689 	const u32 *port_data;
1690 	u32 size;
1691 	int i;
1692 
1693 	port_data = of_get_property(np, "audio-ports", &size);
1694 	if (!port_data)
1695 		return 0;
1696 
1697 	size /= sizeof(u32);
1698 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1699 		dev_err(&priv->hdmi->dev,
1700 			"Bad number of elements in audio-ports dt-property\n");
1701 		return -EINVAL;
1702 	}
1703 
1704 	size /= 2;
1705 
1706 	for (i = 0; i < size; i++) {
1707 		unsigned int route;
1708 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1709 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1710 
1711 		switch (afmt) {
1712 		case AFMT_I2S:
1713 			route = AUDIO_ROUTE_I2S;
1714 			break;
1715 		case AFMT_SPDIF:
1716 			route = AUDIO_ROUTE_SPDIF;
1717 			break;
1718 		default:
1719 			dev_err(&priv->hdmi->dev,
1720 				"Bad audio format %u\n", afmt);
1721 			return -EINVAL;
1722 		}
1723 
1724 		if (!ena_ap) {
1725 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1726 			continue;
1727 		}
1728 
1729 		if (priv->audio_port_enable[route]) {
1730 			dev_err(&priv->hdmi->dev,
1731 				"%s format already configured\n",
1732 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1733 			return -EINVAL;
1734 		}
1735 
1736 		priv->audio_port_enable[route] = ena_ap;
1737 	}
1738 	return 0;
1739 }
1740 
1741 static int tda998x_set_config(struct tda998x_priv *priv,
1742 			      const struct tda998x_encoder_params *p)
1743 {
1744 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1745 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1746 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1747 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1748 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1749 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1750 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1751 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1752 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1753 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1754 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1755 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1756 
1757 	if (p->audio_params.format != AFMT_UNUSED) {
1758 		unsigned int ratio, route;
1759 		bool spdif = p->audio_params.format == AFMT_SPDIF;
1760 
1761 		route = AUDIO_ROUTE_I2S + spdif;
1762 
1763 		priv->audio.route = &tda998x_audio_route[route];
1764 		priv->audio.cea = p->audio_params.cea;
1765 		priv->audio.sample_rate = p->audio_params.sample_rate;
1766 		memcpy(priv->audio.status, p->audio_params.status,
1767 		       min(sizeof(priv->audio.status),
1768 			   sizeof(p->audio_params.status)));
1769 		priv->audio.ena_ap = p->audio_params.config;
1770 		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1771 
1772 		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1773 		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static void tda998x_destroy(struct device *dev)
1780 {
1781 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1782 
1783 	drm_bridge_remove(&priv->bridge);
1784 
1785 	/* disable all IRQs and free the IRQ handler */
1786 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1787 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1788 
1789 	if (priv->audio_pdev)
1790 		platform_device_unregister(priv->audio_pdev);
1791 
1792 	if (priv->hdmi->irq)
1793 		free_irq(priv->hdmi->irq, priv);
1794 
1795 	del_timer_sync(&priv->edid_delay_timer);
1796 	cancel_work_sync(&priv->detect_work);
1797 
1798 	i2c_unregister_device(priv->cec);
1799 
1800 	cec_notifier_conn_unregister(priv->cec_notify);
1801 }
1802 
1803 static int tda998x_create(struct device *dev)
1804 {
1805 	struct i2c_client *client = to_i2c_client(dev);
1806 	struct device_node *np = client->dev.of_node;
1807 	struct i2c_board_info cec_info;
1808 	struct tda998x_priv *priv;
1809 	u32 video;
1810 	int rev_lo, rev_hi, ret;
1811 
1812 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1813 	if (!priv)
1814 		return -ENOMEM;
1815 
1816 	dev_set_drvdata(dev, priv);
1817 
1818 	mutex_init(&priv->mutex);	/* protect the page access */
1819 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1820 	mutex_init(&priv->edid_mutex);
1821 	INIT_LIST_HEAD(&priv->bridge.list);
1822 	init_waitqueue_head(&priv->edid_delay_waitq);
1823 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1824 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1825 
1826 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1827 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1828 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1829 
1830 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1831 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1832 	priv->current_page = 0xff;
1833 	priv->hdmi = client;
1834 
1835 	/* wake up the device: */
1836 	cec_write(priv, REG_CEC_ENAMODS,
1837 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1838 
1839 	tda998x_reset(priv);
1840 
1841 	/* read version: */
1842 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1843 	if (rev_lo < 0) {
1844 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1845 		return rev_lo;
1846 	}
1847 
1848 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1849 	if (rev_hi < 0) {
1850 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1851 		return rev_hi;
1852 	}
1853 
1854 	priv->rev = rev_lo | rev_hi << 8;
1855 
1856 	/* mask off feature bits: */
1857 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1858 
1859 	switch (priv->rev) {
1860 	case TDA9989N2:
1861 		dev_info(dev, "found TDA9989 n2");
1862 		break;
1863 	case TDA19989:
1864 		dev_info(dev, "found TDA19989");
1865 		break;
1866 	case TDA19989N2:
1867 		dev_info(dev, "found TDA19989 n2");
1868 		break;
1869 	case TDA19988:
1870 		dev_info(dev, "found TDA19988");
1871 		break;
1872 	default:
1873 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1874 		return -ENXIO;
1875 	}
1876 
1877 	/* after reset, enable DDC: */
1878 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1879 
1880 	/* set clock on DDC channel: */
1881 	reg_write(priv, REG_TX3, 39);
1882 
1883 	/* if necessary, disable multi-master: */
1884 	if (priv->rev == TDA19989)
1885 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1886 
1887 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1888 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1889 
1890 	/* ensure interrupts are disabled */
1891 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1892 
1893 	/* clear pending interrupts */
1894 	cec_read(priv, REG_CEC_RXSHPDINT);
1895 	reg_read(priv, REG_INT_FLAGS_0);
1896 	reg_read(priv, REG_INT_FLAGS_1);
1897 	reg_read(priv, REG_INT_FLAGS_2);
1898 
1899 	/* initialize the optional IRQ */
1900 	if (client->irq) {
1901 		unsigned long irq_flags;
1902 
1903 		/* init read EDID waitqueue and HDP work */
1904 		init_waitqueue_head(&priv->wq_edid);
1905 
1906 		irq_flags =
1907 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1908 
1909 		priv->cec_glue.irq_flags = irq_flags;
1910 
1911 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1912 		ret = request_threaded_irq(client->irq, NULL,
1913 					   tda998x_irq_thread, irq_flags,
1914 					   "tda998x", priv);
1915 		if (ret) {
1916 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1917 				client->irq, ret);
1918 			goto err_irq;
1919 		}
1920 
1921 		/* enable HPD irq */
1922 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1923 	}
1924 
1925 	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1926 	if (!priv->cec_notify) {
1927 		ret = -ENOMEM;
1928 		goto fail;
1929 	}
1930 
1931 	priv->cec_glue.parent = dev;
1932 	priv->cec_glue.data = priv;
1933 	priv->cec_glue.init = tda998x_cec_hook_init;
1934 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1935 	priv->cec_glue.open = tda998x_cec_hook_open;
1936 	priv->cec_glue.release = tda998x_cec_hook_release;
1937 
1938 	/*
1939 	 * Some TDA998x are actually two I2C devices merged onto one piece
1940 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1941 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1942 	 * is at the TDA9950 address, with the address pins strapped across
1943 	 * to the TDA998x address pins.  Hence, it always has the same
1944 	 * offset.
1945 	 */
1946 	memset(&cec_info, 0, sizeof(cec_info));
1947 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1948 	cec_info.addr = priv->cec_addr;
1949 	cec_info.platform_data = &priv->cec_glue;
1950 	cec_info.irq = client->irq;
1951 
1952 	priv->cec = i2c_new_device(client->adapter, &cec_info);
1953 	if (!priv->cec) {
1954 		ret = -ENODEV;
1955 		goto fail;
1956 	}
1957 
1958 	/* enable EDID read irq: */
1959 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1960 
1961 	if (np) {
1962 		/* get the device tree parameters */
1963 		ret = of_property_read_u32(np, "video-ports", &video);
1964 		if (ret == 0) {
1965 			priv->vip_cntrl_0 = video >> 16;
1966 			priv->vip_cntrl_1 = video >> 8;
1967 			priv->vip_cntrl_2 = video;
1968 		}
1969 
1970 		ret = tda998x_get_audio_ports(priv, np);
1971 		if (ret)
1972 			goto fail;
1973 
1974 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1975 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1976 			tda998x_audio_codec_init(priv, &client->dev);
1977 	} else if (dev->platform_data) {
1978 		ret = tda998x_set_config(priv, dev->platform_data);
1979 		if (ret)
1980 			goto fail;
1981 	}
1982 
1983 	priv->bridge.funcs = &tda998x_bridge_funcs;
1984 #ifdef CONFIG_OF
1985 	priv->bridge.of_node = dev->of_node;
1986 #endif
1987 
1988 	drm_bridge_add(&priv->bridge);
1989 
1990 	return 0;
1991 
1992 fail:
1993 	tda998x_destroy(dev);
1994 err_irq:
1995 	return ret;
1996 }
1997 
1998 /* DRM encoder functions */
1999 
2000 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
2001 {
2002 	drm_encoder_cleanup(encoder);
2003 }
2004 
2005 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
2006 	.destroy = tda998x_encoder_destroy,
2007 };
2008 
2009 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2010 {
2011 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2012 	u32 crtcs = 0;
2013 	int ret;
2014 
2015 	if (dev->of_node)
2016 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2017 
2018 	/* If no CRTCs were found, fall back to our old behaviour */
2019 	if (crtcs == 0) {
2020 		dev_warn(dev, "Falling back to first CRTC\n");
2021 		crtcs = 1 << 0;
2022 	}
2023 
2024 	priv->encoder.possible_crtcs = crtcs;
2025 
2026 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
2027 			       DRM_MODE_ENCODER_TMDS, NULL);
2028 	if (ret)
2029 		goto err_encoder;
2030 
2031 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2032 	if (ret)
2033 		goto err_bridge;
2034 
2035 	return 0;
2036 
2037 err_bridge:
2038 	drm_encoder_cleanup(&priv->encoder);
2039 err_encoder:
2040 	return ret;
2041 }
2042 
2043 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2044 {
2045 	struct drm_device *drm = data;
2046 
2047 	return tda998x_encoder_init(dev, drm);
2048 }
2049 
2050 static void tda998x_unbind(struct device *dev, struct device *master,
2051 			   void *data)
2052 {
2053 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2054 
2055 	drm_encoder_cleanup(&priv->encoder);
2056 }
2057 
2058 static const struct component_ops tda998x_ops = {
2059 	.bind = tda998x_bind,
2060 	.unbind = tda998x_unbind,
2061 };
2062 
2063 static int
2064 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2065 {
2066 	int ret;
2067 
2068 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2069 		dev_warn(&client->dev, "adapter does not support I2C\n");
2070 		return -EIO;
2071 	}
2072 
2073 	ret = tda998x_create(&client->dev);
2074 	if (ret)
2075 		return ret;
2076 
2077 	ret = component_add(&client->dev, &tda998x_ops);
2078 	if (ret)
2079 		tda998x_destroy(&client->dev);
2080 	return ret;
2081 }
2082 
2083 static int tda998x_remove(struct i2c_client *client)
2084 {
2085 	component_del(&client->dev, &tda998x_ops);
2086 	tda998x_destroy(&client->dev);
2087 	return 0;
2088 }
2089 
2090 #ifdef CONFIG_OF
2091 static const struct of_device_id tda998x_dt_ids[] = {
2092 	{ .compatible = "nxp,tda998x", },
2093 	{ }
2094 };
2095 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2096 #endif
2097 
2098 static const struct i2c_device_id tda998x_ids[] = {
2099 	{ "tda998x", 0 },
2100 	{ }
2101 };
2102 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2103 
2104 static struct i2c_driver tda998x_driver = {
2105 	.probe = tda998x_probe,
2106 	.remove = tda998x_remove,
2107 	.driver = {
2108 		.name = "tda998x",
2109 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2110 	},
2111 	.id_table = tda998x_ids,
2112 };
2113 
2114 module_i2c_driver(tda998x_driver);
2115 
2116 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2117 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2118 MODULE_LICENSE("GPL");
2119