xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright (C) 2012 Texas Instruments
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/component.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/module.h>
22 #include <linux/platform_data/tda9950.h>
23 #include <linux/irq.h>
24 #include <sound/asoundef.h>
25 #include <sound/hdmi-codec.h>
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_atomic_helper.h>
29 #include <drm/drm_edid.h>
30 #include <drm/drm_of.h>
31 #include <drm/drm_probe_helper.h>
32 #include <drm/i2c/tda998x.h>
33 
34 #include <media/cec-notifier.h>
35 
36 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
37 
38 enum {
39 	AUDIO_ROUTE_I2S,
40 	AUDIO_ROUTE_SPDIF,
41 	AUDIO_ROUTE_NUM
42 };
43 
44 struct tda998x_audio_route {
45 	u8 ena_aclk;
46 	u8 mux_ap;
47 	u8 aip_clksel;
48 };
49 
50 struct tda998x_audio_settings {
51 	const struct tda998x_audio_route *route;
52 	struct hdmi_audio_infoframe cea;
53 	unsigned int sample_rate;
54 	u8 status[5];
55 	u8 ena_ap;
56 	u8 i2s_format;
57 	u8 cts_n;
58 };
59 
60 struct tda998x_priv {
61 	struct i2c_client *cec;
62 	struct i2c_client *hdmi;
63 	struct mutex mutex;
64 	u16 rev;
65 	u8 cec_addr;
66 	u8 current_page;
67 	bool is_on;
68 	bool supports_infoframes;
69 	bool sink_has_audio;
70 	enum hdmi_quantization_range rgb_quant_range;
71 	u8 vip_cntrl_0;
72 	u8 vip_cntrl_1;
73 	u8 vip_cntrl_2;
74 	unsigned long tmds_clock;
75 	struct tda998x_audio_settings audio;
76 
77 	struct platform_device *audio_pdev;
78 	struct mutex audio_mutex;
79 
80 	struct mutex edid_mutex;
81 	wait_queue_head_t wq_edid;
82 	volatile int wq_edid_wait;
83 
84 	struct work_struct detect_work;
85 	struct timer_list edid_delay_timer;
86 	wait_queue_head_t edid_delay_waitq;
87 	bool edid_delay_active;
88 
89 	struct drm_encoder encoder;
90 	struct drm_bridge bridge;
91 	struct drm_connector connector;
92 
93 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
94 	struct tda9950_glue cec_glue;
95 	struct gpio_desc *calib;
96 	struct cec_notifier *cec_notify;
97 };
98 
99 #define conn_to_tda998x_priv(x) \
100 	container_of(x, struct tda998x_priv, connector)
101 #define enc_to_tda998x_priv(x) \
102 	container_of(x, struct tda998x_priv, encoder)
103 #define bridge_to_tda998x_priv(x) \
104 	container_of(x, struct tda998x_priv, bridge)
105 
106 /* The TDA9988 series of devices use a paged register scheme.. to simplify
107  * things we encode the page # in upper bits of the register #.  To read/
108  * write a given register, we need to make sure CURPAGE register is set
109  * appropriately.  Which implies reads/writes are not atomic.  Fun!
110  */
111 
112 #define REG(page, addr) (((page) << 8) | (addr))
113 #define REG2ADDR(reg)   ((reg) & 0xff)
114 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
115 
116 #define REG_CURPAGE               0xff                /* write */
117 
118 
119 /* Page 00h: General Control */
120 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
121 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
122 # define MAIN_CNTRL0_SR           (1 << 0)
123 # define MAIN_CNTRL0_DECS         (1 << 1)
124 # define MAIN_CNTRL0_DEHS         (1 << 2)
125 # define MAIN_CNTRL0_CECS         (1 << 3)
126 # define MAIN_CNTRL0_CEHS         (1 << 4)
127 # define MAIN_CNTRL0_SCALER       (1 << 7)
128 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
129 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
130 # define SOFTRESET_AUDIO          (1 << 0)
131 # define SOFTRESET_I2C_MASTER     (1 << 1)
132 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
133 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
134 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
135 # define I2C_MASTER_DIS_MM        (1 << 0)
136 # define I2C_MASTER_DIS_FILT      (1 << 1)
137 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
138 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
139 # define FEAT_POWERDOWN_PREFILT   BIT(0)
140 # define FEAT_POWERDOWN_CSC       BIT(1)
141 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
142 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
143 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
144 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
145 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
146 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
147 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
148 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
149 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
150 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
151 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
152 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
153 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
154 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
155 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
156 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
157 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
158 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
159 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
160 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
161 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
162 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
163 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
164 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
165 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
166 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
167 # define VIP_CNTRL_3_X_TGL        (1 << 0)
168 # define VIP_CNTRL_3_H_TGL        (1 << 1)
169 # define VIP_CNTRL_3_V_TGL        (1 << 2)
170 # define VIP_CNTRL_3_EMB          (1 << 3)
171 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
172 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
173 # define VIP_CNTRL_3_DE_INT       (1 << 6)
174 # define VIP_CNTRL_3_EDGE         (1 << 7)
175 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
176 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
177 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
178 # define VIP_CNTRL_4_CCIR656      (1 << 4)
179 # define VIP_CNTRL_4_656_ALT      (1 << 5)
180 # define VIP_CNTRL_4_TST_656      (1 << 6)
181 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
182 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
183 # define VIP_CNTRL_5_CKCASE       (1 << 0)
184 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
185 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
186 # define MUX_AP_SELECT_I2S	  0x64
187 # define MUX_AP_SELECT_SPDIF	  0x40
188 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
189 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
190 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
191 # define MAT_CONTRL_MAT_BP        (1 << 2)
192 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
193 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
194 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
195 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
196 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
197 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
198 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
199 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
200 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
201 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
202 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
203 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
204 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
205 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
206 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
207 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
208 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
209 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
210 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
211 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
212 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
213 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
214 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
215 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
216 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
217 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
218 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
219 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
220 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
221 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
222 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
223 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
224 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
225 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
226 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
227 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
228 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
229 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
230 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
231 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
232 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
233 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
234 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
235 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
236 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
237 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
238 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
239 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
240 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
241 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
242 # define TBG_CNTRL_1_H_TGL        (1 << 0)
243 # define TBG_CNTRL_1_V_TGL        (1 << 1)
244 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
245 # define TBG_CNTRL_1_X_EXT        (1 << 3)
246 # define TBG_CNTRL_1_H_EXT        (1 << 4)
247 # define TBG_CNTRL_1_V_EXT        (1 << 5)
248 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
249 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
250 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
251 # define HVF_CNTRL_0_SM           (1 << 7)
252 # define HVF_CNTRL_0_RWB          (1 << 6)
253 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
254 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
255 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
256 # define HVF_CNTRL_1_FOR          (1 << 0)
257 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
258 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
259 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
260 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
261 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
262 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
263 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
264 # define I2S_FORMAT_PHILIPS       (0 << 0)
265 # define I2S_FORMAT_LEFT_J        (2 << 0)
266 # define I2S_FORMAT_RIGHT_J       (3 << 0)
267 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
268 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
269 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
270 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
271 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
272 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
273 
274 /* Page 02h: PLL settings */
275 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
276 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
277 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
278 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
279 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
280 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
281 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
282 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
283 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
284 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
285 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
286 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
287 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
288 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
289 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
290 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
291 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
292 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
293 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
294 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
295 # define AUDIO_DIV_SERCLK_1       0
296 # define AUDIO_DIV_SERCLK_2       1
297 # define AUDIO_DIV_SERCLK_4       2
298 # define AUDIO_DIV_SERCLK_8       3
299 # define AUDIO_DIV_SERCLK_16      4
300 # define AUDIO_DIV_SERCLK_32      5
301 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
302 # define SEL_CLK_SEL_CLK1         (1 << 0)
303 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
304 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
305 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
306 
307 
308 /* Page 09h: EDID Control */
309 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
310 /* next 127 successive registers are the EDID block */
311 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
312 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
313 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
314 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
315 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
316 
317 
318 /* Page 10h: information frames and packets */
319 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
320 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
321 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
322 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
323 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
324 
325 
326 /* Page 11h: audio settings and content info packets */
327 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
328 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
329 # define AIP_CNTRL_0_SWAP         (1 << 1)
330 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
331 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
332 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
333 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
334 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
335 # define CA_I2S_HBR_CHSTAT        (1 << 6)
336 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
337 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
338 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
339 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
340 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
341 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
342 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
343 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
344 # define CTS_N_K(x)               (((x) & 7) << 0)
345 # define CTS_N_M(x)               (((x) & 3) << 4)
346 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
347 # define ENC_CNTRL_RST_ENC        (1 << 0)
348 # define ENC_CNTRL_RST_SEL        (1 << 1)
349 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
350 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
351 # define DIP_FLAGS_ACR            (1 << 0)
352 # define DIP_FLAGS_GC             (1 << 1)
353 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
354 # define DIP_IF_FLAGS_IF1         (1 << 1)
355 # define DIP_IF_FLAGS_IF2         (1 << 2)
356 # define DIP_IF_FLAGS_IF3         (1 << 3)
357 # define DIP_IF_FLAGS_IF4         (1 << 4)
358 # define DIP_IF_FLAGS_IF5         (1 << 5)
359 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
360 
361 
362 /* Page 12h: HDCP and OTP */
363 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
364 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
365 # define TX4_PD_RAM               (1 << 1)
366 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
367 # define TX33_HDMI                (1 << 1)
368 
369 
370 /* Page 13h: Gamut related metadata packets */
371 
372 
373 
374 /* CEC registers: (not paged)
375  */
376 #define REG_CEC_INTSTATUS	  0xee		      /* read */
377 # define CEC_INTSTATUS_CEC	  (1 << 0)
378 # define CEC_INTSTATUS_HDMI	  (1 << 1)
379 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
380 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
381 #define REG_CEC_DES_FREQ2         0xf5
382 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
383 #define REG_CEC_CLK               0xf6
384 # define CEC_CLK_FRO              0x11
385 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
386 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
387 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
388 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
389 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
390 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
391 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
392 # define CEC_RXSHPDINT_RXSENS     BIT(0)
393 # define CEC_RXSHPDINT_HPD        BIT(1)
394 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
395 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
396 # define CEC_RXSHPDLEV_HPD        (1 << 1)
397 
398 #define REG_CEC_ENAMODS           0xff                /* read/write */
399 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
400 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
401 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
402 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
403 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
404 # define CEC_ENAMODS_EN_CEC       (1 << 0)
405 
406 
407 /* Device versions: */
408 #define TDA9989N2                 0x0101
409 #define TDA19989                  0x0201
410 #define TDA19989N2                0x0202
411 #define TDA19988                  0x0301
412 
413 static void
414 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
415 {
416 	u8 buf[] = {addr, val};
417 	struct i2c_msg msg = {
418 		.addr = priv->cec_addr,
419 		.len = 2,
420 		.buf = buf,
421 	};
422 	int ret;
423 
424 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
425 	if (ret < 0)
426 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
427 			ret, addr);
428 }
429 
430 static u8
431 cec_read(struct tda998x_priv *priv, u8 addr)
432 {
433 	u8 val;
434 	struct i2c_msg msg[2] = {
435 		{
436 			.addr = priv->cec_addr,
437 			.len = 1,
438 			.buf = &addr,
439 		}, {
440 			.addr = priv->cec_addr,
441 			.flags = I2C_M_RD,
442 			.len = 1,
443 			.buf = &val,
444 		},
445 	};
446 	int ret;
447 
448 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
449 	if (ret < 0) {
450 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
451 			ret, addr);
452 		val = 0;
453 	}
454 
455 	return val;
456 }
457 
458 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
459 {
460 	int val = cec_read(priv, REG_CEC_ENAMODS);
461 
462 	if (val < 0)
463 		return;
464 
465 	if (enable)
466 		val |= mods;
467 	else
468 		val &= ~mods;
469 
470 	cec_write(priv, REG_CEC_ENAMODS, val);
471 }
472 
473 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
474 {
475 	if (enable) {
476 		u8 val;
477 
478 		cec_write(priv, 0xf3, 0xc0);
479 		cec_write(priv, 0xf4, 0xd4);
480 
481 		/* Enable automatic calibration mode */
482 		val = cec_read(priv, REG_CEC_DES_FREQ2);
483 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
484 		cec_write(priv, REG_CEC_DES_FREQ2, val);
485 
486 		/* Enable free running oscillator */
487 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
488 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
489 
490 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
491 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
492 	} else {
493 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
494 	}
495 }
496 
497 /*
498  * Calibration for the internal oscillator: we need to set calibration mode,
499  * and then pulse the IRQ line low for a 10ms ± 1% period.
500  */
501 static void tda998x_cec_calibration(struct tda998x_priv *priv)
502 {
503 	struct gpio_desc *calib = priv->calib;
504 
505 	mutex_lock(&priv->edid_mutex);
506 	if (priv->hdmi->irq > 0)
507 		disable_irq(priv->hdmi->irq);
508 	gpiod_direction_output(calib, 1);
509 	tda998x_cec_set_calibration(priv, true);
510 
511 	local_irq_disable();
512 	gpiod_set_value(calib, 0);
513 	mdelay(10);
514 	gpiod_set_value(calib, 1);
515 	local_irq_enable();
516 
517 	tda998x_cec_set_calibration(priv, false);
518 	gpiod_direction_input(calib);
519 	if (priv->hdmi->irq > 0)
520 		enable_irq(priv->hdmi->irq);
521 	mutex_unlock(&priv->edid_mutex);
522 }
523 
524 static int tda998x_cec_hook_init(void *data)
525 {
526 	struct tda998x_priv *priv = data;
527 	struct gpio_desc *calib;
528 
529 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
530 	if (IS_ERR(calib)) {
531 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
532 			 PTR_ERR(calib));
533 		return PTR_ERR(calib);
534 	}
535 
536 	priv->calib = calib;
537 
538 	return 0;
539 }
540 
541 static void tda998x_cec_hook_exit(void *data)
542 {
543 	struct tda998x_priv *priv = data;
544 
545 	gpiod_put(priv->calib);
546 	priv->calib = NULL;
547 }
548 
549 static int tda998x_cec_hook_open(void *data)
550 {
551 	struct tda998x_priv *priv = data;
552 
553 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
554 	tda998x_cec_calibration(priv);
555 
556 	return 0;
557 }
558 
559 static void tda998x_cec_hook_release(void *data)
560 {
561 	struct tda998x_priv *priv = data;
562 
563 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
564 }
565 
566 static int
567 set_page(struct tda998x_priv *priv, u16 reg)
568 {
569 	if (REG2PAGE(reg) != priv->current_page) {
570 		struct i2c_client *client = priv->hdmi;
571 		u8 buf[] = {
572 				REG_CURPAGE, REG2PAGE(reg)
573 		};
574 		int ret = i2c_master_send(client, buf, sizeof(buf));
575 		if (ret < 0) {
576 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
577 					reg, ret);
578 			return ret;
579 		}
580 
581 		priv->current_page = REG2PAGE(reg);
582 	}
583 	return 0;
584 }
585 
586 static int
587 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
588 {
589 	struct i2c_client *client = priv->hdmi;
590 	u8 addr = REG2ADDR(reg);
591 	int ret;
592 
593 	mutex_lock(&priv->mutex);
594 	ret = set_page(priv, reg);
595 	if (ret < 0)
596 		goto out;
597 
598 	ret = i2c_master_send(client, &addr, sizeof(addr));
599 	if (ret < 0)
600 		goto fail;
601 
602 	ret = i2c_master_recv(client, buf, cnt);
603 	if (ret < 0)
604 		goto fail;
605 
606 	goto out;
607 
608 fail:
609 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
610 out:
611 	mutex_unlock(&priv->mutex);
612 	return ret;
613 }
614 
615 #define MAX_WRITE_RANGE_BUF 32
616 
617 static void
618 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
619 {
620 	struct i2c_client *client = priv->hdmi;
621 	/* This is the maximum size of the buffer passed in */
622 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
623 	int ret;
624 
625 	if (cnt > MAX_WRITE_RANGE_BUF) {
626 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
627 				MAX_WRITE_RANGE_BUF);
628 		return;
629 	}
630 
631 	buf[0] = REG2ADDR(reg);
632 	memcpy(&buf[1], p, cnt);
633 
634 	mutex_lock(&priv->mutex);
635 	ret = set_page(priv, reg);
636 	if (ret < 0)
637 		goto out;
638 
639 	ret = i2c_master_send(client, buf, cnt + 1);
640 	if (ret < 0)
641 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
642 out:
643 	mutex_unlock(&priv->mutex);
644 }
645 
646 static int
647 reg_read(struct tda998x_priv *priv, u16 reg)
648 {
649 	u8 val = 0;
650 	int ret;
651 
652 	ret = reg_read_range(priv, reg, &val, sizeof(val));
653 	if (ret < 0)
654 		return ret;
655 	return val;
656 }
657 
658 static void
659 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
660 {
661 	struct i2c_client *client = priv->hdmi;
662 	u8 buf[] = {REG2ADDR(reg), val};
663 	int ret;
664 
665 	mutex_lock(&priv->mutex);
666 	ret = set_page(priv, reg);
667 	if (ret < 0)
668 		goto out;
669 
670 	ret = i2c_master_send(client, buf, sizeof(buf));
671 	if (ret < 0)
672 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
673 out:
674 	mutex_unlock(&priv->mutex);
675 }
676 
677 static void
678 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
679 {
680 	struct i2c_client *client = priv->hdmi;
681 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
682 	int ret;
683 
684 	mutex_lock(&priv->mutex);
685 	ret = set_page(priv, reg);
686 	if (ret < 0)
687 		goto out;
688 
689 	ret = i2c_master_send(client, buf, sizeof(buf));
690 	if (ret < 0)
691 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
692 out:
693 	mutex_unlock(&priv->mutex);
694 }
695 
696 static void
697 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
698 {
699 	int old_val;
700 
701 	old_val = reg_read(priv, reg);
702 	if (old_val >= 0)
703 		reg_write(priv, reg, old_val | val);
704 }
705 
706 static void
707 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
708 {
709 	int old_val;
710 
711 	old_val = reg_read(priv, reg);
712 	if (old_val >= 0)
713 		reg_write(priv, reg, old_val & ~val);
714 }
715 
716 static void
717 tda998x_reset(struct tda998x_priv *priv)
718 {
719 	/* reset audio and i2c master: */
720 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
721 	msleep(50);
722 	reg_write(priv, REG_SOFTRESET, 0);
723 	msleep(50);
724 
725 	/* reset transmitter: */
726 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
727 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
728 
729 	/* PLL registers common configuration */
730 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
731 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
732 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
733 	reg_write(priv, REG_SERIALIZER,   0x00);
734 	reg_write(priv, REG_BUFFER_OUT,   0x00);
735 	reg_write(priv, REG_PLL_SCG1,     0x00);
736 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
737 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
738 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
739 	reg_write(priv, REG_PLL_SCGN2,    0x00);
740 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
741 	reg_write(priv, REG_PLL_SCGR2,    0x00);
742 	reg_write(priv, REG_PLL_SCG2,     0x10);
743 
744 	/* Write the default value MUX register */
745 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
746 }
747 
748 /*
749  * The TDA998x has a problem when trying to read the EDID close to a
750  * HPD assertion: it needs a delay of 100ms to avoid timing out while
751  * trying to read EDID data.
752  *
753  * However, tda998x_connector_get_modes() may be called at any moment
754  * after tda998x_connector_detect() indicates that we are connected, so
755  * we need to delay probing modes in tda998x_connector_get_modes() after
756  * we have seen a HPD inactive->active transition.  This code implements
757  * that delay.
758  */
759 static void tda998x_edid_delay_done(struct timer_list *t)
760 {
761 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
762 
763 	priv->edid_delay_active = false;
764 	wake_up(&priv->edid_delay_waitq);
765 	schedule_work(&priv->detect_work);
766 }
767 
768 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
769 {
770 	priv->edid_delay_active = true;
771 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
772 }
773 
774 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
775 {
776 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
777 }
778 
779 /*
780  * We need to run the KMS hotplug event helper outside of our threaded
781  * interrupt routine as this can call back into our get_modes method,
782  * which will want to make use of interrupts.
783  */
784 static void tda998x_detect_work(struct work_struct *work)
785 {
786 	struct tda998x_priv *priv =
787 		container_of(work, struct tda998x_priv, detect_work);
788 	struct drm_device *dev = priv->connector.dev;
789 
790 	if (dev)
791 		drm_kms_helper_hotplug_event(dev);
792 }
793 
794 /*
795  * only 2 interrupts may occur: screen plug/unplug and EDID read
796  */
797 static irqreturn_t tda998x_irq_thread(int irq, void *data)
798 {
799 	struct tda998x_priv *priv = data;
800 	u8 sta, cec, lvl, flag0, flag1, flag2;
801 	bool handled = false;
802 
803 	sta = cec_read(priv, REG_CEC_INTSTATUS);
804 	if (sta & CEC_INTSTATUS_HDMI) {
805 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
806 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
807 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
808 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
809 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
810 		DRM_DEBUG_DRIVER(
811 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
812 			sta, cec, lvl, flag0, flag1, flag2);
813 
814 		if (cec & CEC_RXSHPDINT_HPD) {
815 			if (lvl & CEC_RXSHPDLEV_HPD) {
816 				tda998x_edid_delay_start(priv);
817 			} else {
818 				schedule_work(&priv->detect_work);
819 				cec_notifier_set_phys_addr(priv->cec_notify,
820 						   CEC_PHYS_ADDR_INVALID);
821 			}
822 
823 			handled = true;
824 		}
825 
826 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
827 			priv->wq_edid_wait = 0;
828 			wake_up(&priv->wq_edid);
829 			handled = true;
830 		}
831 	}
832 
833 	return IRQ_RETVAL(handled);
834 }
835 
836 static void
837 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
838 		 union hdmi_infoframe *frame)
839 {
840 	u8 buf[MAX_WRITE_RANGE_BUF];
841 	ssize_t len;
842 
843 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
844 	if (len < 0) {
845 		dev_err(&priv->hdmi->dev,
846 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
847 			frame->any.type, len);
848 		return;
849 	}
850 
851 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
852 	reg_write_range(priv, addr, buf, len);
853 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
854 }
855 
856 static void tda998x_write_aif(struct tda998x_priv *priv,
857 			      const struct hdmi_audio_infoframe *cea)
858 {
859 	union hdmi_infoframe frame;
860 
861 	frame.audio = *cea;
862 
863 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
864 }
865 
866 static void
867 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
868 {
869 	union hdmi_infoframe frame;
870 
871 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
872 						 &priv->connector, mode);
873 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
874 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
875 					   priv->rgb_quant_range);
876 
877 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
878 }
879 
880 static void tda998x_write_vsi(struct tda998x_priv *priv,
881 			      const struct drm_display_mode *mode)
882 {
883 	union hdmi_infoframe frame;
884 
885 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
886 							&priv->connector,
887 							mode))
888 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
889 	else
890 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
891 }
892 
893 /* Audio support */
894 
895 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
896 	[AUDIO_ROUTE_I2S] = {
897 		.ena_aclk = 1,
898 		.mux_ap = MUX_AP_SELECT_I2S,
899 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
900 	},
901 	[AUDIO_ROUTE_SPDIF] = {
902 		.ena_aclk = 0,
903 		.mux_ap = MUX_AP_SELECT_SPDIF,
904 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
905 	},
906 };
907 
908 /* Configure the TDA998x audio data and clock routing. */
909 static int tda998x_derive_routing(struct tda998x_priv *priv,
910 				  struct tda998x_audio_settings *s,
911 				  unsigned int route)
912 {
913 	s->route = &tda998x_audio_route[route];
914 	s->ena_ap = priv->audio_port_enable[route];
915 	if (s->ena_ap == 0) {
916 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
917 		return -EINVAL;
918 	}
919 
920 	return 0;
921 }
922 
923 /*
924  * The audio clock divisor register controls a divider producing Audio_Clk_Out
925  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
926  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
927  *
928  * It seems that Audio_Clk_Out must be the smallest value that is greater
929  * than 128*fs, otherwise audio does not function. There is some suggestion
930  * that 126*fs is a better value.
931  */
932 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
933 {
934 	unsigned long min_audio_clk = fs * 128;
935 	unsigned long ser_clk = priv->tmds_clock * 1000;
936 	u8 adiv;
937 
938 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
939 		if (ser_clk > min_audio_clk << adiv)
940 			break;
941 
942 	dev_dbg(&priv->hdmi->dev,
943 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
944 		ser_clk, fs, min_audio_clk, adiv);
945 
946 	return adiv;
947 }
948 
949 /*
950  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
951  * generate the CTS value.  It appears that the "measured time stamp" is
952  * the number of TDMS clock cycles within a number of audio input clock
953  * cycles defined by the k and N parameters defined below, in a similar
954  * way to that which is set out in the CTS generation in the HDMI spec.
955  *
956  *  tmdsclk ----> mts -> /m ---> CTS
957  *                 ^
958  *  sclk -> /k -> /N
959  *
960  * CTS = mts / m, where m is 2^M.
961  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
962  * /N is a divider based on the HDMI specified N value.
963  *
964  * This produces the following equation:
965  *  CTS = tmds_clock * k * N / (sclk * m)
966  *
967  * When combined with the sink-side equation, and realising that sclk is
968  * bclk_ratio * fs, we end up with:
969  *  k = m * bclk_ratio / 128.
970  *
971  * Note: S/PDIF always uses a bclk_ratio of 64.
972  */
973 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
974 				struct tda998x_audio_settings *settings,
975 				unsigned int ratio)
976 {
977 	switch (ratio) {
978 	case 16:
979 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
980 		break;
981 	case 32:
982 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
983 		break;
984 	case 48:
985 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
986 		break;
987 	case 64:
988 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
989 		break;
990 	case 128:
991 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
992 		break;
993 	default:
994 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
995 			ratio);
996 		return -EINVAL;
997 	}
998 	return 0;
999 }
1000 
1001 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
1002 {
1003 	if (on) {
1004 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
1005 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
1006 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1007 	} else {
1008 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1009 	}
1010 }
1011 
1012 static void tda998x_configure_audio(struct tda998x_priv *priv)
1013 {
1014 	const struct tda998x_audio_settings *settings = &priv->audio;
1015 	u8 buf[6], adiv;
1016 	u32 n;
1017 
1018 	/* If audio is not configured, there is nothing to do. */
1019 	if (settings->ena_ap == 0)
1020 		return;
1021 
1022 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1023 
1024 	/* Enable audio ports */
1025 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1026 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1027 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1028 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1029 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1030 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1031 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1032 	reg_write(priv, REG_CTS_N, settings->cts_n);
1033 	reg_write(priv, REG_AUDIO_DIV, adiv);
1034 
1035 	/*
1036 	 * This is the approximate value of N, which happens to be
1037 	 * the recommended values for non-coherent clocks.
1038 	 */
1039 	n = 128 * settings->sample_rate / 1000;
1040 
1041 	/* Write the CTS and N values */
1042 	buf[0] = 0x44;
1043 	buf[1] = 0x42;
1044 	buf[2] = 0x01;
1045 	buf[3] = n;
1046 	buf[4] = n >> 8;
1047 	buf[5] = n >> 16;
1048 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1049 
1050 	/* Reset CTS generator */
1051 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1052 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1053 
1054 	/* Write the channel status
1055 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1056 	 * there is a separate register for each I2S wire.
1057 	 */
1058 	buf[0] = settings->status[0];
1059 	buf[1] = settings->status[1];
1060 	buf[2] = settings->status[3];
1061 	buf[3] = settings->status[4];
1062 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1063 
1064 	tda998x_audio_mute(priv, true);
1065 	msleep(20);
1066 	tda998x_audio_mute(priv, false);
1067 
1068 	tda998x_write_aif(priv, &settings->cea);
1069 }
1070 
1071 static int tda998x_audio_hw_params(struct device *dev, void *data,
1072 				   struct hdmi_codec_daifmt *daifmt,
1073 				   struct hdmi_codec_params *params)
1074 {
1075 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1076 	unsigned int bclk_ratio;
1077 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1078 	int ret;
1079 	struct tda998x_audio_settings audio = {
1080 		.sample_rate = params->sample_rate,
1081 		.cea = params->cea,
1082 	};
1083 
1084 	memcpy(audio.status, params->iec.status,
1085 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1086 
1087 	switch (daifmt->fmt) {
1088 	case HDMI_I2S:
1089 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1090 		break;
1091 	case HDMI_LEFT_J:
1092 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1093 		break;
1094 	case HDMI_RIGHT_J:
1095 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1096 		break;
1097 	case HDMI_SPDIF:
1098 		audio.i2s_format = 0;
1099 		break;
1100 	default:
1101 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1102 		return -EINVAL;
1103 	}
1104 
1105 	if (!spdif &&
1106 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1107 	     daifmt->bit_clk_master || daifmt->frame_clk_master)) {
1108 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1109 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1110 			daifmt->bit_clk_master,
1111 			daifmt->frame_clk_master);
1112 		return -EINVAL;
1113 	}
1114 
1115 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1116 	if (ret < 0)
1117 		return ret;
1118 
1119 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1120 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	mutex_lock(&priv->audio_mutex);
1125 	priv->audio = audio;
1126 	if (priv->supports_infoframes && priv->sink_has_audio)
1127 		tda998x_configure_audio(priv);
1128 	mutex_unlock(&priv->audio_mutex);
1129 
1130 	return 0;
1131 }
1132 
1133 static void tda998x_audio_shutdown(struct device *dev, void *data)
1134 {
1135 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1136 
1137 	mutex_lock(&priv->audio_mutex);
1138 
1139 	reg_write(priv, REG_ENA_AP, 0);
1140 	priv->audio.ena_ap = 0;
1141 
1142 	mutex_unlock(&priv->audio_mutex);
1143 }
1144 
1145 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1146 {
1147 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1148 
1149 	mutex_lock(&priv->audio_mutex);
1150 
1151 	tda998x_audio_mute(priv, enable);
1152 
1153 	mutex_unlock(&priv->audio_mutex);
1154 	return 0;
1155 }
1156 
1157 static int tda998x_audio_get_eld(struct device *dev, void *data,
1158 				 uint8_t *buf, size_t len)
1159 {
1160 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1161 
1162 	mutex_lock(&priv->audio_mutex);
1163 	memcpy(buf, priv->connector.eld,
1164 	       min(sizeof(priv->connector.eld), len));
1165 	mutex_unlock(&priv->audio_mutex);
1166 
1167 	return 0;
1168 }
1169 
1170 static const struct hdmi_codec_ops audio_codec_ops = {
1171 	.hw_params = tda998x_audio_hw_params,
1172 	.audio_shutdown = tda998x_audio_shutdown,
1173 	.digital_mute = tda998x_audio_digital_mute,
1174 	.get_eld = tda998x_audio_get_eld,
1175 };
1176 
1177 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1178 				    struct device *dev)
1179 {
1180 	struct hdmi_codec_pdata codec_data = {
1181 		.ops = &audio_codec_ops,
1182 		.max_i2s_channels = 2,
1183 	};
1184 
1185 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1186 		codec_data.i2s = 1;
1187 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1188 		codec_data.spdif = 1;
1189 
1190 	priv->audio_pdev = platform_device_register_data(
1191 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1192 		&codec_data, sizeof(codec_data));
1193 
1194 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1195 }
1196 
1197 /* DRM connector functions */
1198 
1199 static enum drm_connector_status
1200 tda998x_connector_detect(struct drm_connector *connector, bool force)
1201 {
1202 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1203 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1204 
1205 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1206 			connector_status_disconnected;
1207 }
1208 
1209 static void tda998x_connector_destroy(struct drm_connector *connector)
1210 {
1211 	drm_connector_cleanup(connector);
1212 }
1213 
1214 static const struct drm_connector_funcs tda998x_connector_funcs = {
1215 	.reset = drm_atomic_helper_connector_reset,
1216 	.fill_modes = drm_helper_probe_single_connector_modes,
1217 	.detect = tda998x_connector_detect,
1218 	.destroy = tda998x_connector_destroy,
1219 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1220 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1221 };
1222 
1223 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1224 {
1225 	struct tda998x_priv *priv = data;
1226 	u8 offset, segptr;
1227 	int ret, i;
1228 
1229 	offset = (blk & 1) ? 128 : 0;
1230 	segptr = blk / 2;
1231 
1232 	mutex_lock(&priv->edid_mutex);
1233 
1234 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1235 	reg_write(priv, REG_DDC_OFFS, offset);
1236 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1237 	reg_write(priv, REG_DDC_SEGM, segptr);
1238 
1239 	/* enable reading EDID: */
1240 	priv->wq_edid_wait = 1;
1241 	reg_write(priv, REG_EDID_CTRL, 0x1);
1242 
1243 	/* flag must be cleared by sw: */
1244 	reg_write(priv, REG_EDID_CTRL, 0x0);
1245 
1246 	/* wait for block read to complete: */
1247 	if (priv->hdmi->irq) {
1248 		i = wait_event_timeout(priv->wq_edid,
1249 					!priv->wq_edid_wait,
1250 					msecs_to_jiffies(100));
1251 		if (i < 0) {
1252 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1253 			ret = i;
1254 			goto failed;
1255 		}
1256 	} else {
1257 		for (i = 100; i > 0; i--) {
1258 			msleep(1);
1259 			ret = reg_read(priv, REG_INT_FLAGS_2);
1260 			if (ret < 0)
1261 				goto failed;
1262 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1263 				break;
1264 		}
1265 	}
1266 
1267 	if (i == 0) {
1268 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1269 		ret = -ETIMEDOUT;
1270 		goto failed;
1271 	}
1272 
1273 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1274 	if (ret != length) {
1275 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1276 			blk, ret);
1277 		goto failed;
1278 	}
1279 
1280 	ret = 0;
1281 
1282  failed:
1283 	mutex_unlock(&priv->edid_mutex);
1284 	return ret;
1285 }
1286 
1287 static int tda998x_connector_get_modes(struct drm_connector *connector)
1288 {
1289 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1290 	struct edid *edid;
1291 	int n;
1292 
1293 	/*
1294 	 * If we get killed while waiting for the HPD timeout, return
1295 	 * no modes found: we are not in a restartable path, so we
1296 	 * can't handle signals gracefully.
1297 	 */
1298 	if (tda998x_edid_delay_wait(priv))
1299 		return 0;
1300 
1301 	if (priv->rev == TDA19988)
1302 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1303 
1304 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1305 
1306 	if (priv->rev == TDA19988)
1307 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1308 
1309 	if (!edid) {
1310 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1311 		return 0;
1312 	}
1313 
1314 	drm_connector_update_edid_property(connector, edid);
1315 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1316 
1317 	mutex_lock(&priv->audio_mutex);
1318 	n = drm_add_edid_modes(connector, edid);
1319 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1320 	mutex_unlock(&priv->audio_mutex);
1321 
1322 	kfree(edid);
1323 
1324 	return n;
1325 }
1326 
1327 static struct drm_encoder *
1328 tda998x_connector_best_encoder(struct drm_connector *connector)
1329 {
1330 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1331 
1332 	return priv->bridge.encoder;
1333 }
1334 
1335 static
1336 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1337 	.get_modes = tda998x_connector_get_modes,
1338 	.best_encoder = tda998x_connector_best_encoder,
1339 };
1340 
1341 static int tda998x_connector_init(struct tda998x_priv *priv,
1342 				  struct drm_device *drm)
1343 {
1344 	struct drm_connector *connector = &priv->connector;
1345 	int ret;
1346 
1347 	connector->interlace_allowed = 1;
1348 
1349 	if (priv->hdmi->irq)
1350 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1351 	else
1352 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1353 			DRM_CONNECTOR_POLL_DISCONNECT;
1354 
1355 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1356 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1357 				 DRM_MODE_CONNECTOR_HDMIA);
1358 	if (ret)
1359 		return ret;
1360 
1361 	drm_connector_attach_encoder(&priv->connector,
1362 				     priv->bridge.encoder);
1363 
1364 	return 0;
1365 }
1366 
1367 /* DRM bridge functions */
1368 
1369 static int tda998x_bridge_attach(struct drm_bridge *bridge)
1370 {
1371 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1372 
1373 	return tda998x_connector_init(priv, bridge->dev);
1374 }
1375 
1376 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1377 {
1378 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1379 
1380 	drm_connector_cleanup(&priv->connector);
1381 }
1382 
1383 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1384 				     const struct drm_display_mode *mode)
1385 {
1386 	/* TDA19988 dotclock can go up to 165MHz */
1387 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1388 
1389 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1390 		return MODE_CLOCK_HIGH;
1391 	if (mode->htotal >= BIT(13))
1392 		return MODE_BAD_HVALUE;
1393 	if (mode->vtotal >= BIT(11))
1394 		return MODE_BAD_VVALUE;
1395 	return MODE_OK;
1396 }
1397 
1398 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1399 {
1400 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1401 
1402 	if (!priv->is_on) {
1403 		/* enable video ports, audio will be enabled later */
1404 		reg_write(priv, REG_ENA_VP_0, 0xff);
1405 		reg_write(priv, REG_ENA_VP_1, 0xff);
1406 		reg_write(priv, REG_ENA_VP_2, 0xff);
1407 		/* set muxing after enabling ports: */
1408 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1409 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1410 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1411 
1412 		priv->is_on = true;
1413 	}
1414 }
1415 
1416 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1417 {
1418 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1419 
1420 	if (priv->is_on) {
1421 		/* disable video ports */
1422 		reg_write(priv, REG_ENA_VP_0, 0x00);
1423 		reg_write(priv, REG_ENA_VP_1, 0x00);
1424 		reg_write(priv, REG_ENA_VP_2, 0x00);
1425 
1426 		priv->is_on = false;
1427 	}
1428 }
1429 
1430 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1431 				    const struct drm_display_mode *mode,
1432 				    const struct drm_display_mode *adjusted_mode)
1433 {
1434 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1435 	unsigned long tmds_clock;
1436 	u16 ref_pix, ref_line, n_pix, n_line;
1437 	u16 hs_pix_s, hs_pix_e;
1438 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1439 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1440 	u16 vwin1_line_s, vwin1_line_e;
1441 	u16 vwin2_line_s, vwin2_line_e;
1442 	u16 de_pix_s, de_pix_e;
1443 	u8 reg, div, rep, sel_clk;
1444 
1445 	/*
1446 	 * Since we are "computer" like, our source invariably produces
1447 	 * full-range RGB.  If the monitor supports full-range, then use
1448 	 * it, otherwise reduce to limited-range.
1449 	 */
1450 	priv->rgb_quant_range =
1451 		priv->connector.display_info.rgb_quant_range_selectable ?
1452 		HDMI_QUANTIZATION_RANGE_FULL :
1453 		drm_default_rgb_quant_range(adjusted_mode);
1454 
1455 	/*
1456 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1457 	 * we get VESA style sync. TDA998x is using a reference pixel
1458 	 * relative to ITU to sync to the input frame and for output
1459 	 * sync generation. Currently, we are using reference detection
1460 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1461 	 * which is position of rising VS with coincident rising HS.
1462 	 *
1463 	 * Now there is some issues to take care of:
1464 	 * - HDMI data islands require sync-before-active
1465 	 * - TDA998x register values must be > 0 to be enabled
1466 	 * - REFLINE needs an additional offset of +1
1467 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1468 	 *
1469 	 * So we add +1 to all horizontal and vertical register values,
1470 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1471 	 */
1472 	n_pix        = mode->htotal;
1473 	n_line       = mode->vtotal;
1474 
1475 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1476 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1477 	de_pix_e     = mode->htotal;
1478 	de_pix_s     = mode->htotal - mode->hdisplay;
1479 	ref_pix      = 3 + hs_pix_s;
1480 
1481 	/*
1482 	 * Attached LCD controllers may generate broken sync. Allow
1483 	 * those to adjust the position of the rising VS edge by adding
1484 	 * HSKEW to ref_pix.
1485 	 */
1486 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1487 		ref_pix += adjusted_mode->hskew;
1488 
1489 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1490 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1491 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1492 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1493 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1494 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1495 		vs1_line_e   = vs1_line_s +
1496 			       mode->vsync_end - mode->vsync_start;
1497 		vwin2_line_s = vwin2_line_e = 0;
1498 		vs2_pix_s    = vs2_pix_e  = 0;
1499 		vs2_line_s   = vs2_line_e = 0;
1500 	} else {
1501 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1502 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1503 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1504 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1505 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1506 		vs1_line_e   = vs1_line_s +
1507 			       (mode->vsync_end - mode->vsync_start)/2;
1508 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1509 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1510 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1511 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1512 		vs2_line_e   = vs2_line_s +
1513 			       (mode->vsync_end - mode->vsync_start)/2;
1514 	}
1515 
1516 	/*
1517 	 * Select pixel repeat depending on the double-clock flag
1518 	 * (which means we have to repeat each pixel once.)
1519 	 */
1520 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1521 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1522 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1523 
1524 	/* the TMDS clock is scaled up by the pixel repeat */
1525 	tmds_clock = mode->clock * (1 + rep);
1526 
1527 	/*
1528 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1529 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1530 	 *   0 - 800 to 1500 Msample/s
1531 	 *   1 - 400 to 800 Msample/s
1532 	 *   2 - 200 to 400 Msample/s
1533 	 *   3 - as 2 above
1534 	 */
1535 	for (div = 0; div < 3; div++)
1536 		if (80000 >> div <= tmds_clock)
1537 			break;
1538 
1539 	mutex_lock(&priv->audio_mutex);
1540 
1541 	priv->tmds_clock = tmds_clock;
1542 
1543 	/* mute the audio FIFO: */
1544 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1545 
1546 	/* set HDMI HDCP mode off: */
1547 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1548 	reg_clear(priv, REG_TX33, TX33_HDMI);
1549 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1550 
1551 	/* no pre-filter or interpolator: */
1552 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1553 			HVF_CNTRL_0_INTPOL(0));
1554 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1555 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1556 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1557 			VIP_CNTRL_4_BLC(0));
1558 
1559 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1560 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1561 					  PLL_SERIAL_3_SRL_DE);
1562 	reg_write(priv, REG_SERIALIZER, 0);
1563 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1564 
1565 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1566 	reg_write(priv, REG_SEL_CLK, sel_clk);
1567 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1568 			PLL_SERIAL_2_SRL_PR(rep));
1569 
1570 	/* set color matrix according to output rgb quant range */
1571 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1572 		static u8 tda998x_full_to_limited_range[] = {
1573 			MAT_CONTRL_MAT_SC(2),
1574 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1575 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1576 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1577 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1578 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1579 		};
1580 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1581 		reg_write_range(priv, REG_MAT_CONTRL,
1582 				tda998x_full_to_limited_range,
1583 				sizeof(tda998x_full_to_limited_range));
1584 	} else {
1585 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1586 					MAT_CONTRL_MAT_SC(1));
1587 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1588 	}
1589 
1590 	/* set BIAS tmds value: */
1591 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1592 
1593 	/*
1594 	 * Sync on rising HSYNC/VSYNC
1595 	 */
1596 	reg = VIP_CNTRL_3_SYNC_HS;
1597 
1598 	/*
1599 	 * TDA19988 requires high-active sync at input stage,
1600 	 * so invert low-active sync provided by master encoder here
1601 	 */
1602 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1603 		reg |= VIP_CNTRL_3_H_TGL;
1604 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1605 		reg |= VIP_CNTRL_3_V_TGL;
1606 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1607 
1608 	reg_write(priv, REG_VIDFORMAT, 0x00);
1609 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1610 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1611 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1612 	reg_write16(priv, REG_NLINE_MSB, n_line);
1613 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1614 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1615 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1616 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1617 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1618 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1619 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1620 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1621 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1622 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1623 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1624 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1625 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1626 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1627 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1628 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1629 
1630 	if (priv->rev == TDA19988) {
1631 		/* let incoming pixels fill the active space (if any) */
1632 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1633 	}
1634 
1635 	/*
1636 	 * Always generate sync polarity relative to input sync and
1637 	 * revert input stage toggled sync at output stage
1638 	 */
1639 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1640 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1641 		reg |= TBG_CNTRL_1_H_TGL;
1642 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1643 		reg |= TBG_CNTRL_1_V_TGL;
1644 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1645 
1646 	/* must be last register set: */
1647 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1648 
1649 	/* CEA-861B section 6 says that:
1650 	 * CEA version 1 (CEA-861) has no support for infoframes.
1651 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1652 	 * and optional basic audio.
1653 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1654 	 * and optional digital audio, with audio infoframes.
1655 	 *
1656 	 * Since we only support generation of version 2 AVI infoframes,
1657 	 * ignore CEA version 2 and below (iow, behave as if we're a
1658 	 * CEA-861 source.)
1659 	 */
1660 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1661 
1662 	if (priv->supports_infoframes) {
1663 		/* We need to turn HDMI HDCP stuff on to get audio through */
1664 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1665 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1666 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1667 		reg_set(priv, REG_TX33, TX33_HDMI);
1668 
1669 		tda998x_write_avi(priv, adjusted_mode);
1670 		tda998x_write_vsi(priv, adjusted_mode);
1671 
1672 		if (priv->sink_has_audio)
1673 			tda998x_configure_audio(priv);
1674 	}
1675 
1676 	mutex_unlock(&priv->audio_mutex);
1677 }
1678 
1679 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1680 	.attach = tda998x_bridge_attach,
1681 	.detach = tda998x_bridge_detach,
1682 	.mode_valid = tda998x_bridge_mode_valid,
1683 	.disable = tda998x_bridge_disable,
1684 	.mode_set = tda998x_bridge_mode_set,
1685 	.enable = tda998x_bridge_enable,
1686 };
1687 
1688 /* I2C driver functions */
1689 
1690 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1691 				   struct device_node *np)
1692 {
1693 	const u32 *port_data;
1694 	u32 size;
1695 	int i;
1696 
1697 	port_data = of_get_property(np, "audio-ports", &size);
1698 	if (!port_data)
1699 		return 0;
1700 
1701 	size /= sizeof(u32);
1702 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1703 		dev_err(&priv->hdmi->dev,
1704 			"Bad number of elements in audio-ports dt-property\n");
1705 		return -EINVAL;
1706 	}
1707 
1708 	size /= 2;
1709 
1710 	for (i = 0; i < size; i++) {
1711 		unsigned int route;
1712 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1713 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1714 
1715 		switch (afmt) {
1716 		case AFMT_I2S:
1717 			route = AUDIO_ROUTE_I2S;
1718 			break;
1719 		case AFMT_SPDIF:
1720 			route = AUDIO_ROUTE_SPDIF;
1721 			break;
1722 		default:
1723 			dev_err(&priv->hdmi->dev,
1724 				"Bad audio format %u\n", afmt);
1725 			return -EINVAL;
1726 		}
1727 
1728 		if (!ena_ap) {
1729 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1730 			continue;
1731 		}
1732 
1733 		if (priv->audio_port_enable[route]) {
1734 			dev_err(&priv->hdmi->dev,
1735 				"%s format already configured\n",
1736 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1737 			return -EINVAL;
1738 		}
1739 
1740 		priv->audio_port_enable[route] = ena_ap;
1741 	}
1742 	return 0;
1743 }
1744 
1745 static int tda998x_set_config(struct tda998x_priv *priv,
1746 			      const struct tda998x_encoder_params *p)
1747 {
1748 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1749 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1750 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1751 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1752 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1753 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1754 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1755 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1756 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1757 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1758 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1759 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1760 
1761 	if (p->audio_params.format != AFMT_UNUSED) {
1762 		unsigned int ratio, route;
1763 		bool spdif = p->audio_params.format == AFMT_SPDIF;
1764 
1765 		route = AUDIO_ROUTE_I2S + spdif;
1766 
1767 		priv->audio.route = &tda998x_audio_route[route];
1768 		priv->audio.cea = p->audio_params.cea;
1769 		priv->audio.sample_rate = p->audio_params.sample_rate;
1770 		memcpy(priv->audio.status, p->audio_params.status,
1771 		       min(sizeof(priv->audio.status),
1772 			   sizeof(p->audio_params.status)));
1773 		priv->audio.ena_ap = p->audio_params.config;
1774 		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1775 
1776 		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1777 		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 static void tda998x_destroy(struct device *dev)
1784 {
1785 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1786 
1787 	drm_bridge_remove(&priv->bridge);
1788 
1789 	/* disable all IRQs and free the IRQ handler */
1790 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1791 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1792 
1793 	if (priv->audio_pdev)
1794 		platform_device_unregister(priv->audio_pdev);
1795 
1796 	if (priv->hdmi->irq)
1797 		free_irq(priv->hdmi->irq, priv);
1798 
1799 	del_timer_sync(&priv->edid_delay_timer);
1800 	cancel_work_sync(&priv->detect_work);
1801 
1802 	i2c_unregister_device(priv->cec);
1803 
1804 	if (priv->cec_notify)
1805 		cec_notifier_put(priv->cec_notify);
1806 }
1807 
1808 static int tda998x_create(struct device *dev)
1809 {
1810 	struct i2c_client *client = to_i2c_client(dev);
1811 	struct device_node *np = client->dev.of_node;
1812 	struct i2c_board_info cec_info;
1813 	struct tda998x_priv *priv;
1814 	u32 video;
1815 	int rev_lo, rev_hi, ret;
1816 
1817 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1818 	if (!priv)
1819 		return -ENOMEM;
1820 
1821 	dev_set_drvdata(dev, priv);
1822 
1823 	mutex_init(&priv->mutex);	/* protect the page access */
1824 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1825 	mutex_init(&priv->edid_mutex);
1826 	INIT_LIST_HEAD(&priv->bridge.list);
1827 	init_waitqueue_head(&priv->edid_delay_waitq);
1828 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1829 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1830 
1831 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1832 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1833 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1834 
1835 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1836 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1837 	priv->current_page = 0xff;
1838 	priv->hdmi = client;
1839 
1840 	/* wake up the device: */
1841 	cec_write(priv, REG_CEC_ENAMODS,
1842 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1843 
1844 	tda998x_reset(priv);
1845 
1846 	/* read version: */
1847 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1848 	if (rev_lo < 0) {
1849 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1850 		return rev_lo;
1851 	}
1852 
1853 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1854 	if (rev_hi < 0) {
1855 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1856 		return rev_hi;
1857 	}
1858 
1859 	priv->rev = rev_lo | rev_hi << 8;
1860 
1861 	/* mask off feature bits: */
1862 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1863 
1864 	switch (priv->rev) {
1865 	case TDA9989N2:
1866 		dev_info(dev, "found TDA9989 n2");
1867 		break;
1868 	case TDA19989:
1869 		dev_info(dev, "found TDA19989");
1870 		break;
1871 	case TDA19989N2:
1872 		dev_info(dev, "found TDA19989 n2");
1873 		break;
1874 	case TDA19988:
1875 		dev_info(dev, "found TDA19988");
1876 		break;
1877 	default:
1878 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1879 		return -ENXIO;
1880 	}
1881 
1882 	/* after reset, enable DDC: */
1883 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1884 
1885 	/* set clock on DDC channel: */
1886 	reg_write(priv, REG_TX3, 39);
1887 
1888 	/* if necessary, disable multi-master: */
1889 	if (priv->rev == TDA19989)
1890 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1891 
1892 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1893 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1894 
1895 	/* ensure interrupts are disabled */
1896 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1897 
1898 	/* clear pending interrupts */
1899 	cec_read(priv, REG_CEC_RXSHPDINT);
1900 	reg_read(priv, REG_INT_FLAGS_0);
1901 	reg_read(priv, REG_INT_FLAGS_1);
1902 	reg_read(priv, REG_INT_FLAGS_2);
1903 
1904 	/* initialize the optional IRQ */
1905 	if (client->irq) {
1906 		unsigned long irq_flags;
1907 
1908 		/* init read EDID waitqueue and HDP work */
1909 		init_waitqueue_head(&priv->wq_edid);
1910 
1911 		irq_flags =
1912 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1913 
1914 		priv->cec_glue.irq_flags = irq_flags;
1915 
1916 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1917 		ret = request_threaded_irq(client->irq, NULL,
1918 					   tda998x_irq_thread, irq_flags,
1919 					   "tda998x", priv);
1920 		if (ret) {
1921 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1922 				client->irq, ret);
1923 			goto err_irq;
1924 		}
1925 
1926 		/* enable HPD irq */
1927 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1928 	}
1929 
1930 	priv->cec_notify = cec_notifier_get(dev);
1931 	if (!priv->cec_notify) {
1932 		ret = -ENOMEM;
1933 		goto fail;
1934 	}
1935 
1936 	priv->cec_glue.parent = dev;
1937 	priv->cec_glue.data = priv;
1938 	priv->cec_glue.init = tda998x_cec_hook_init;
1939 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1940 	priv->cec_glue.open = tda998x_cec_hook_open;
1941 	priv->cec_glue.release = tda998x_cec_hook_release;
1942 
1943 	/*
1944 	 * Some TDA998x are actually two I2C devices merged onto one piece
1945 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1946 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1947 	 * is at the TDA9950 address, with the address pins strapped across
1948 	 * to the TDA998x address pins.  Hence, it always has the same
1949 	 * offset.
1950 	 */
1951 	memset(&cec_info, 0, sizeof(cec_info));
1952 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1953 	cec_info.addr = priv->cec_addr;
1954 	cec_info.platform_data = &priv->cec_glue;
1955 	cec_info.irq = client->irq;
1956 
1957 	priv->cec = i2c_new_device(client->adapter, &cec_info);
1958 	if (!priv->cec) {
1959 		ret = -ENODEV;
1960 		goto fail;
1961 	}
1962 
1963 	/* enable EDID read irq: */
1964 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1965 
1966 	if (np) {
1967 		/* get the device tree parameters */
1968 		ret = of_property_read_u32(np, "video-ports", &video);
1969 		if (ret == 0) {
1970 			priv->vip_cntrl_0 = video >> 16;
1971 			priv->vip_cntrl_1 = video >> 8;
1972 			priv->vip_cntrl_2 = video;
1973 		}
1974 
1975 		ret = tda998x_get_audio_ports(priv, np);
1976 		if (ret)
1977 			goto fail;
1978 
1979 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1980 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1981 			tda998x_audio_codec_init(priv, &client->dev);
1982 	} else if (dev->platform_data) {
1983 		ret = tda998x_set_config(priv, dev->platform_data);
1984 		if (ret)
1985 			goto fail;
1986 	}
1987 
1988 	priv->bridge.funcs = &tda998x_bridge_funcs;
1989 #ifdef CONFIG_OF
1990 	priv->bridge.of_node = dev->of_node;
1991 #endif
1992 
1993 	drm_bridge_add(&priv->bridge);
1994 
1995 	return 0;
1996 
1997 fail:
1998 	tda998x_destroy(dev);
1999 err_irq:
2000 	return ret;
2001 }
2002 
2003 /* DRM encoder functions */
2004 
2005 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
2006 {
2007 	drm_encoder_cleanup(encoder);
2008 }
2009 
2010 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
2011 	.destroy = tda998x_encoder_destroy,
2012 };
2013 
2014 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2015 {
2016 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2017 	u32 crtcs = 0;
2018 	int ret;
2019 
2020 	if (dev->of_node)
2021 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2022 
2023 	/* If no CRTCs were found, fall back to our old behaviour */
2024 	if (crtcs == 0) {
2025 		dev_warn(dev, "Falling back to first CRTC\n");
2026 		crtcs = 1 << 0;
2027 	}
2028 
2029 	priv->encoder.possible_crtcs = crtcs;
2030 
2031 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
2032 			       DRM_MODE_ENCODER_TMDS, NULL);
2033 	if (ret)
2034 		goto err_encoder;
2035 
2036 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL);
2037 	if (ret)
2038 		goto err_bridge;
2039 
2040 	return 0;
2041 
2042 err_bridge:
2043 	drm_encoder_cleanup(&priv->encoder);
2044 err_encoder:
2045 	return ret;
2046 }
2047 
2048 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2049 {
2050 	struct drm_device *drm = data;
2051 
2052 	return tda998x_encoder_init(dev, drm);
2053 }
2054 
2055 static void tda998x_unbind(struct device *dev, struct device *master,
2056 			   void *data)
2057 {
2058 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2059 
2060 	drm_encoder_cleanup(&priv->encoder);
2061 }
2062 
2063 static const struct component_ops tda998x_ops = {
2064 	.bind = tda998x_bind,
2065 	.unbind = tda998x_unbind,
2066 };
2067 
2068 static int
2069 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2070 {
2071 	int ret;
2072 
2073 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2074 		dev_warn(&client->dev, "adapter does not support I2C\n");
2075 		return -EIO;
2076 	}
2077 
2078 	ret = tda998x_create(&client->dev);
2079 	if (ret)
2080 		return ret;
2081 
2082 	ret = component_add(&client->dev, &tda998x_ops);
2083 	if (ret)
2084 		tda998x_destroy(&client->dev);
2085 	return ret;
2086 }
2087 
2088 static int tda998x_remove(struct i2c_client *client)
2089 {
2090 	component_del(&client->dev, &tda998x_ops);
2091 	tda998x_destroy(&client->dev);
2092 	return 0;
2093 }
2094 
2095 #ifdef CONFIG_OF
2096 static const struct of_device_id tda998x_dt_ids[] = {
2097 	{ .compatible = "nxp,tda998x", },
2098 	{ }
2099 };
2100 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2101 #endif
2102 
2103 static const struct i2c_device_id tda998x_ids[] = {
2104 	{ "tda998x", 0 },
2105 	{ }
2106 };
2107 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2108 
2109 static struct i2c_driver tda998x_driver = {
2110 	.probe = tda998x_probe,
2111 	.remove = tda998x_remove,
2112 	.driver = {
2113 		.name = "tda998x",
2114 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2115 	},
2116 	.id_table = tda998x_ids,
2117 };
2118 
2119 module_i2c_driver(tda998x_driver);
2120 
2121 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2122 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2123 MODULE_LICENSE("GPL");
2124