1 /* 2 * Copyright (C) 2012 Texas Instruments 3 * Author: Rob Clark <robdclark@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published by 7 * the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/component.h> 19 #include <linux/gpio/consumer.h> 20 #include <linux/hdmi.h> 21 #include <linux/module.h> 22 #include <linux/platform_data/tda9950.h> 23 #include <linux/irq.h> 24 #include <sound/asoundef.h> 25 #include <sound/hdmi-codec.h> 26 27 #include <drm/drmP.h> 28 #include <drm/drm_atomic_helper.h> 29 #include <drm/drm_edid.h> 30 #include <drm/drm_of.h> 31 #include <drm/drm_probe_helper.h> 32 #include <drm/i2c/tda998x.h> 33 34 #include <media/cec-notifier.h> 35 36 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) 37 38 enum { 39 AUDIO_ROUTE_I2S, 40 AUDIO_ROUTE_SPDIF, 41 AUDIO_ROUTE_NUM 42 }; 43 44 struct tda998x_audio_route { 45 u8 ena_aclk; 46 u8 mux_ap; 47 u8 aip_clksel; 48 }; 49 50 struct tda998x_audio_settings { 51 const struct tda998x_audio_route *route; 52 struct hdmi_audio_infoframe cea; 53 unsigned int sample_rate; 54 u8 status[5]; 55 u8 ena_ap; 56 u8 i2s_format; 57 u8 cts_n; 58 }; 59 60 struct tda998x_priv { 61 struct i2c_client *cec; 62 struct i2c_client *hdmi; 63 struct mutex mutex; 64 u16 rev; 65 u8 cec_addr; 66 u8 current_page; 67 bool is_on; 68 bool supports_infoframes; 69 bool sink_has_audio; 70 enum hdmi_quantization_range rgb_quant_range; 71 u8 vip_cntrl_0; 72 u8 vip_cntrl_1; 73 u8 vip_cntrl_2; 74 unsigned long tmds_clock; 75 struct tda998x_audio_settings audio; 76 77 struct platform_device *audio_pdev; 78 struct mutex audio_mutex; 79 80 struct mutex edid_mutex; 81 wait_queue_head_t wq_edid; 82 volatile int wq_edid_wait; 83 84 struct work_struct detect_work; 85 struct timer_list edid_delay_timer; 86 wait_queue_head_t edid_delay_waitq; 87 bool edid_delay_active; 88 89 struct drm_encoder encoder; 90 struct drm_bridge bridge; 91 struct drm_connector connector; 92 93 u8 audio_port_enable[AUDIO_ROUTE_NUM]; 94 struct tda9950_glue cec_glue; 95 struct gpio_desc *calib; 96 struct cec_notifier *cec_notify; 97 }; 98 99 #define conn_to_tda998x_priv(x) \ 100 container_of(x, struct tda998x_priv, connector) 101 #define enc_to_tda998x_priv(x) \ 102 container_of(x, struct tda998x_priv, encoder) 103 #define bridge_to_tda998x_priv(x) \ 104 container_of(x, struct tda998x_priv, bridge) 105 106 /* The TDA9988 series of devices use a paged register scheme.. to simplify 107 * things we encode the page # in upper bits of the register #. To read/ 108 * write a given register, we need to make sure CURPAGE register is set 109 * appropriately. Which implies reads/writes are not atomic. Fun! 110 */ 111 112 #define REG(page, addr) (((page) << 8) | (addr)) 113 #define REG2ADDR(reg) ((reg) & 0xff) 114 #define REG2PAGE(reg) (((reg) >> 8) & 0xff) 115 116 #define REG_CURPAGE 0xff /* write */ 117 118 119 /* Page 00h: General Control */ 120 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ 121 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ 122 # define MAIN_CNTRL0_SR (1 << 0) 123 # define MAIN_CNTRL0_DECS (1 << 1) 124 # define MAIN_CNTRL0_DEHS (1 << 2) 125 # define MAIN_CNTRL0_CECS (1 << 3) 126 # define MAIN_CNTRL0_CEHS (1 << 4) 127 # define MAIN_CNTRL0_SCALER (1 << 7) 128 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ 129 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ 130 # define SOFTRESET_AUDIO (1 << 0) 131 # define SOFTRESET_I2C_MASTER (1 << 1) 132 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ 133 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ 134 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ 135 # define I2C_MASTER_DIS_MM (1 << 0) 136 # define I2C_MASTER_DIS_FILT (1 << 1) 137 # define I2C_MASTER_APP_STRT_LAT (1 << 2) 138 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ 139 # define FEAT_POWERDOWN_PREFILT BIT(0) 140 # define FEAT_POWERDOWN_CSC BIT(1) 141 # define FEAT_POWERDOWN_SPDIF (1 << 3) 142 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ 143 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ 144 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ 145 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) 146 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ 147 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ 148 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ 149 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ 150 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ 151 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ 152 # define VIP_CNTRL_0_MIRR_A (1 << 7) 153 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) 154 # define VIP_CNTRL_0_MIRR_B (1 << 3) 155 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) 156 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ 157 # define VIP_CNTRL_1_MIRR_C (1 << 7) 158 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) 159 # define VIP_CNTRL_1_MIRR_D (1 << 3) 160 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) 161 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ 162 # define VIP_CNTRL_2_MIRR_E (1 << 7) 163 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) 164 # define VIP_CNTRL_2_MIRR_F (1 << 3) 165 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) 166 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ 167 # define VIP_CNTRL_3_X_TGL (1 << 0) 168 # define VIP_CNTRL_3_H_TGL (1 << 1) 169 # define VIP_CNTRL_3_V_TGL (1 << 2) 170 # define VIP_CNTRL_3_EMB (1 << 3) 171 # define VIP_CNTRL_3_SYNC_DE (1 << 4) 172 # define VIP_CNTRL_3_SYNC_HS (1 << 5) 173 # define VIP_CNTRL_3_DE_INT (1 << 6) 174 # define VIP_CNTRL_3_EDGE (1 << 7) 175 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ 176 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) 177 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) 178 # define VIP_CNTRL_4_CCIR656 (1 << 4) 179 # define VIP_CNTRL_4_656_ALT (1 << 5) 180 # define VIP_CNTRL_4_TST_656 (1 << 6) 181 # define VIP_CNTRL_4_TST_PAT (1 << 7) 182 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ 183 # define VIP_CNTRL_5_CKCASE (1 << 0) 184 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) 185 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ 186 # define MUX_AP_SELECT_I2S 0x64 187 # define MUX_AP_SELECT_SPDIF 0x40 188 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ 189 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ 190 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) 191 # define MAT_CONTRL_MAT_BP (1 << 2) 192 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ 193 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ 194 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ 195 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ 196 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ 197 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ 198 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ 199 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ 200 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ 201 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ 202 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ 203 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ 204 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ 205 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ 206 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ 207 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ 208 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ 209 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ 210 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ 211 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ 212 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ 213 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ 214 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ 215 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ 216 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ 217 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ 218 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ 219 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ 220 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ 221 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ 222 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ 223 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ 224 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ 225 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ 226 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ 227 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ 228 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ 229 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ 230 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ 231 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ 232 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ 233 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ 234 # define TBG_CNTRL_0_TOP_TGL (1 << 0) 235 # define TBG_CNTRL_0_TOP_SEL (1 << 1) 236 # define TBG_CNTRL_0_DE_EXT (1 << 2) 237 # define TBG_CNTRL_0_TOP_EXT (1 << 3) 238 # define TBG_CNTRL_0_FRAME_DIS (1 << 5) 239 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) 240 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) 241 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ 242 # define TBG_CNTRL_1_H_TGL (1 << 0) 243 # define TBG_CNTRL_1_V_TGL (1 << 1) 244 # define TBG_CNTRL_1_TGL_EN (1 << 2) 245 # define TBG_CNTRL_1_X_EXT (1 << 3) 246 # define TBG_CNTRL_1_H_EXT (1 << 4) 247 # define TBG_CNTRL_1_V_EXT (1 << 5) 248 # define TBG_CNTRL_1_DWIN_DIS (1 << 6) 249 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ 250 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ 251 # define HVF_CNTRL_0_SM (1 << 7) 252 # define HVF_CNTRL_0_RWB (1 << 6) 253 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) 254 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) 255 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ 256 # define HVF_CNTRL_1_FOR (1 << 0) 257 # define HVF_CNTRL_1_YUVBLK (1 << 1) 258 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) 259 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) 260 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) 261 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ 262 # define RPT_CNTRL_REPEAT(x) ((x) & 15) 263 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ 264 # define I2S_FORMAT_PHILIPS (0 << 0) 265 # define I2S_FORMAT_LEFT_J (2 << 0) 266 # define I2S_FORMAT_RIGHT_J (3 << 0) 267 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ 268 # define AIP_CLKSEL_AIP_SPDIF (0 << 3) 269 # define AIP_CLKSEL_AIP_I2S (1 << 3) 270 # define AIP_CLKSEL_FS_ACLK (0 << 0) 271 # define AIP_CLKSEL_FS_MCLK (1 << 0) 272 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0) 273 274 /* Page 02h: PLL settings */ 275 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ 276 # define PLL_SERIAL_1_SRL_FDN (1 << 0) 277 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) 278 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) 279 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ 280 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0) 281 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) 282 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ 283 # define PLL_SERIAL_3_SRL_CCIR (1 << 0) 284 # define PLL_SERIAL_3_SRL_DE (1 << 2) 285 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) 286 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ 287 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ 288 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ 289 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ 290 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ 291 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ 292 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ 293 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ 294 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ 295 # define AUDIO_DIV_SERCLK_1 0 296 # define AUDIO_DIV_SERCLK_2 1 297 # define AUDIO_DIV_SERCLK_4 2 298 # define AUDIO_DIV_SERCLK_8 3 299 # define AUDIO_DIV_SERCLK_16 4 300 # define AUDIO_DIV_SERCLK_32 5 301 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ 302 # define SEL_CLK_SEL_CLK1 (1 << 0) 303 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) 304 # define SEL_CLK_ENA_SC_CLK (1 << 3) 305 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ 306 307 308 /* Page 09h: EDID Control */ 309 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ 310 /* next 127 successive registers are the EDID block */ 311 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ 312 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ 313 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ 314 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ 315 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ 316 317 318 /* Page 10h: information frames and packets */ 319 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ 320 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ 321 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ 322 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ 323 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ 324 325 326 /* Page 11h: audio settings and content info packets */ 327 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ 328 # define AIP_CNTRL_0_RST_FIFO (1 << 0) 329 # define AIP_CNTRL_0_SWAP (1 << 1) 330 # define AIP_CNTRL_0_LAYOUT (1 << 2) 331 # define AIP_CNTRL_0_ACR_MAN (1 << 5) 332 # define AIP_CNTRL_0_RST_CTS (1 << 6) 333 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ 334 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) 335 # define CA_I2S_HBR_CHSTAT (1 << 6) 336 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ 337 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ 338 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ 339 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ 340 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ 341 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ 342 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ 343 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ 344 # define CTS_N_K(x) (((x) & 7) << 0) 345 # define CTS_N_M(x) (((x) & 3) << 4) 346 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ 347 # define ENC_CNTRL_RST_ENC (1 << 0) 348 # define ENC_CNTRL_RST_SEL (1 << 1) 349 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) 350 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ 351 # define DIP_FLAGS_ACR (1 << 0) 352 # define DIP_FLAGS_GC (1 << 1) 353 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ 354 # define DIP_IF_FLAGS_IF1 (1 << 1) 355 # define DIP_IF_FLAGS_IF2 (1 << 2) 356 # define DIP_IF_FLAGS_IF3 (1 << 3) 357 # define DIP_IF_FLAGS_IF4 (1 << 4) 358 # define DIP_IF_FLAGS_IF5 (1 << 5) 359 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ 360 361 362 /* Page 12h: HDCP and OTP */ 363 #define REG_TX3 REG(0x12, 0x9a) /* read/write */ 364 #define REG_TX4 REG(0x12, 0x9b) /* read/write */ 365 # define TX4_PD_RAM (1 << 1) 366 #define REG_TX33 REG(0x12, 0xb8) /* read/write */ 367 # define TX33_HDMI (1 << 1) 368 369 370 /* Page 13h: Gamut related metadata packets */ 371 372 373 374 /* CEC registers: (not paged) 375 */ 376 #define REG_CEC_INTSTATUS 0xee /* read */ 377 # define CEC_INTSTATUS_CEC (1 << 0) 378 # define CEC_INTSTATUS_HDMI (1 << 1) 379 #define REG_CEC_CAL_XOSC_CTRL1 0xf2 380 # define CEC_CAL_XOSC_CTRL1_ENA_CAL BIT(0) 381 #define REG_CEC_DES_FREQ2 0xf5 382 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7) 383 #define REG_CEC_CLK 0xf6 384 # define CEC_CLK_FRO 0x11 385 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ 386 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) 387 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) 388 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) 389 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) 390 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */ 391 #define REG_CEC_RXSHPDINT 0xfd /* read */ 392 # define CEC_RXSHPDINT_RXSENS BIT(0) 393 # define CEC_RXSHPDINT_HPD BIT(1) 394 #define REG_CEC_RXSHPDLEV 0xfe /* read */ 395 # define CEC_RXSHPDLEV_RXSENS (1 << 0) 396 # define CEC_RXSHPDLEV_HPD (1 << 1) 397 398 #define REG_CEC_ENAMODS 0xff /* read/write */ 399 # define CEC_ENAMODS_EN_CEC_CLK (1 << 7) 400 # define CEC_ENAMODS_DIS_FRO (1 << 6) 401 # define CEC_ENAMODS_DIS_CCLK (1 << 5) 402 # define CEC_ENAMODS_EN_RXSENS (1 << 2) 403 # define CEC_ENAMODS_EN_HDMI (1 << 1) 404 # define CEC_ENAMODS_EN_CEC (1 << 0) 405 406 407 /* Device versions: */ 408 #define TDA9989N2 0x0101 409 #define TDA19989 0x0201 410 #define TDA19989N2 0x0202 411 #define TDA19988 0x0301 412 413 static void 414 cec_write(struct tda998x_priv *priv, u16 addr, u8 val) 415 { 416 u8 buf[] = {addr, val}; 417 struct i2c_msg msg = { 418 .addr = priv->cec_addr, 419 .len = 2, 420 .buf = buf, 421 }; 422 int ret; 423 424 ret = i2c_transfer(priv->hdmi->adapter, &msg, 1); 425 if (ret < 0) 426 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n", 427 ret, addr); 428 } 429 430 static u8 431 cec_read(struct tda998x_priv *priv, u8 addr) 432 { 433 u8 val; 434 struct i2c_msg msg[2] = { 435 { 436 .addr = priv->cec_addr, 437 .len = 1, 438 .buf = &addr, 439 }, { 440 .addr = priv->cec_addr, 441 .flags = I2C_M_RD, 442 .len = 1, 443 .buf = &val, 444 }, 445 }; 446 int ret; 447 448 ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg)); 449 if (ret < 0) { 450 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n", 451 ret, addr); 452 val = 0; 453 } 454 455 return val; 456 } 457 458 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable) 459 { 460 int val = cec_read(priv, REG_CEC_ENAMODS); 461 462 if (val < 0) 463 return; 464 465 if (enable) 466 val |= mods; 467 else 468 val &= ~mods; 469 470 cec_write(priv, REG_CEC_ENAMODS, val); 471 } 472 473 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable) 474 { 475 if (enable) { 476 u8 val; 477 478 cec_write(priv, 0xf3, 0xc0); 479 cec_write(priv, 0xf4, 0xd4); 480 481 /* Enable automatic calibration mode */ 482 val = cec_read(priv, REG_CEC_DES_FREQ2); 483 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL; 484 cec_write(priv, REG_CEC_DES_FREQ2, val); 485 486 /* Enable free running oscillator */ 487 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO); 488 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false); 489 490 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 491 CEC_CAL_XOSC_CTRL1_ENA_CAL); 492 } else { 493 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0); 494 } 495 } 496 497 /* 498 * Calibration for the internal oscillator: we need to set calibration mode, 499 * and then pulse the IRQ line low for a 10ms ± 1% period. 500 */ 501 static void tda998x_cec_calibration(struct tda998x_priv *priv) 502 { 503 struct gpio_desc *calib = priv->calib; 504 505 mutex_lock(&priv->edid_mutex); 506 if (priv->hdmi->irq > 0) 507 disable_irq(priv->hdmi->irq); 508 gpiod_direction_output(calib, 1); 509 tda998x_cec_set_calibration(priv, true); 510 511 local_irq_disable(); 512 gpiod_set_value(calib, 0); 513 mdelay(10); 514 gpiod_set_value(calib, 1); 515 local_irq_enable(); 516 517 tda998x_cec_set_calibration(priv, false); 518 gpiod_direction_input(calib); 519 if (priv->hdmi->irq > 0) 520 enable_irq(priv->hdmi->irq); 521 mutex_unlock(&priv->edid_mutex); 522 } 523 524 static int tda998x_cec_hook_init(void *data) 525 { 526 struct tda998x_priv *priv = data; 527 struct gpio_desc *calib; 528 529 calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS); 530 if (IS_ERR(calib)) { 531 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n", 532 PTR_ERR(calib)); 533 return PTR_ERR(calib); 534 } 535 536 priv->calib = calib; 537 538 return 0; 539 } 540 541 static void tda998x_cec_hook_exit(void *data) 542 { 543 struct tda998x_priv *priv = data; 544 545 gpiod_put(priv->calib); 546 priv->calib = NULL; 547 } 548 549 static int tda998x_cec_hook_open(void *data) 550 { 551 struct tda998x_priv *priv = data; 552 553 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true); 554 tda998x_cec_calibration(priv); 555 556 return 0; 557 } 558 559 static void tda998x_cec_hook_release(void *data) 560 { 561 struct tda998x_priv *priv = data; 562 563 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false); 564 } 565 566 static int 567 set_page(struct tda998x_priv *priv, u16 reg) 568 { 569 if (REG2PAGE(reg) != priv->current_page) { 570 struct i2c_client *client = priv->hdmi; 571 u8 buf[] = { 572 REG_CURPAGE, REG2PAGE(reg) 573 }; 574 int ret = i2c_master_send(client, buf, sizeof(buf)); 575 if (ret < 0) { 576 dev_err(&client->dev, "%s %04x err %d\n", __func__, 577 reg, ret); 578 return ret; 579 } 580 581 priv->current_page = REG2PAGE(reg); 582 } 583 return 0; 584 } 585 586 static int 587 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt) 588 { 589 struct i2c_client *client = priv->hdmi; 590 u8 addr = REG2ADDR(reg); 591 int ret; 592 593 mutex_lock(&priv->mutex); 594 ret = set_page(priv, reg); 595 if (ret < 0) 596 goto out; 597 598 ret = i2c_master_send(client, &addr, sizeof(addr)); 599 if (ret < 0) 600 goto fail; 601 602 ret = i2c_master_recv(client, buf, cnt); 603 if (ret < 0) 604 goto fail; 605 606 goto out; 607 608 fail: 609 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); 610 out: 611 mutex_unlock(&priv->mutex); 612 return ret; 613 } 614 615 #define MAX_WRITE_RANGE_BUF 32 616 617 static void 618 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt) 619 { 620 struct i2c_client *client = priv->hdmi; 621 /* This is the maximum size of the buffer passed in */ 622 u8 buf[MAX_WRITE_RANGE_BUF + 1]; 623 int ret; 624 625 if (cnt > MAX_WRITE_RANGE_BUF) { 626 dev_err(&client->dev, "Fixed write buffer too small (%d)\n", 627 MAX_WRITE_RANGE_BUF); 628 return; 629 } 630 631 buf[0] = REG2ADDR(reg); 632 memcpy(&buf[1], p, cnt); 633 634 mutex_lock(&priv->mutex); 635 ret = set_page(priv, reg); 636 if (ret < 0) 637 goto out; 638 639 ret = i2c_master_send(client, buf, cnt + 1); 640 if (ret < 0) 641 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 642 out: 643 mutex_unlock(&priv->mutex); 644 } 645 646 static int 647 reg_read(struct tda998x_priv *priv, u16 reg) 648 { 649 u8 val = 0; 650 int ret; 651 652 ret = reg_read_range(priv, reg, &val, sizeof(val)); 653 if (ret < 0) 654 return ret; 655 return val; 656 } 657 658 static void 659 reg_write(struct tda998x_priv *priv, u16 reg, u8 val) 660 { 661 struct i2c_client *client = priv->hdmi; 662 u8 buf[] = {REG2ADDR(reg), val}; 663 int ret; 664 665 mutex_lock(&priv->mutex); 666 ret = set_page(priv, reg); 667 if (ret < 0) 668 goto out; 669 670 ret = i2c_master_send(client, buf, sizeof(buf)); 671 if (ret < 0) 672 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 673 out: 674 mutex_unlock(&priv->mutex); 675 } 676 677 static void 678 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val) 679 { 680 struct i2c_client *client = priv->hdmi; 681 u8 buf[] = {REG2ADDR(reg), val >> 8, val}; 682 int ret; 683 684 mutex_lock(&priv->mutex); 685 ret = set_page(priv, reg); 686 if (ret < 0) 687 goto out; 688 689 ret = i2c_master_send(client, buf, sizeof(buf)); 690 if (ret < 0) 691 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 692 out: 693 mutex_unlock(&priv->mutex); 694 } 695 696 static void 697 reg_set(struct tda998x_priv *priv, u16 reg, u8 val) 698 { 699 int old_val; 700 701 old_val = reg_read(priv, reg); 702 if (old_val >= 0) 703 reg_write(priv, reg, old_val | val); 704 } 705 706 static void 707 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val) 708 { 709 int old_val; 710 711 old_val = reg_read(priv, reg); 712 if (old_val >= 0) 713 reg_write(priv, reg, old_val & ~val); 714 } 715 716 static void 717 tda998x_reset(struct tda998x_priv *priv) 718 { 719 /* reset audio and i2c master: */ 720 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); 721 msleep(50); 722 reg_write(priv, REG_SOFTRESET, 0); 723 msleep(50); 724 725 /* reset transmitter: */ 726 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 727 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 728 729 /* PLL registers common configuration */ 730 reg_write(priv, REG_PLL_SERIAL_1, 0x00); 731 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); 732 reg_write(priv, REG_PLL_SERIAL_3, 0x00); 733 reg_write(priv, REG_SERIALIZER, 0x00); 734 reg_write(priv, REG_BUFFER_OUT, 0x00); 735 reg_write(priv, REG_PLL_SCG1, 0x00); 736 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); 737 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); 738 reg_write(priv, REG_PLL_SCGN1, 0xfa); 739 reg_write(priv, REG_PLL_SCGN2, 0x00); 740 reg_write(priv, REG_PLL_SCGR1, 0x5b); 741 reg_write(priv, REG_PLL_SCGR2, 0x00); 742 reg_write(priv, REG_PLL_SCG2, 0x10); 743 744 /* Write the default value MUX register */ 745 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24); 746 } 747 748 /* 749 * The TDA998x has a problem when trying to read the EDID close to a 750 * HPD assertion: it needs a delay of 100ms to avoid timing out while 751 * trying to read EDID data. 752 * 753 * However, tda998x_connector_get_modes() may be called at any moment 754 * after tda998x_connector_detect() indicates that we are connected, so 755 * we need to delay probing modes in tda998x_connector_get_modes() after 756 * we have seen a HPD inactive->active transition. This code implements 757 * that delay. 758 */ 759 static void tda998x_edid_delay_done(struct timer_list *t) 760 { 761 struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer); 762 763 priv->edid_delay_active = false; 764 wake_up(&priv->edid_delay_waitq); 765 schedule_work(&priv->detect_work); 766 } 767 768 static void tda998x_edid_delay_start(struct tda998x_priv *priv) 769 { 770 priv->edid_delay_active = true; 771 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10); 772 } 773 774 static int tda998x_edid_delay_wait(struct tda998x_priv *priv) 775 { 776 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active); 777 } 778 779 /* 780 * We need to run the KMS hotplug event helper outside of our threaded 781 * interrupt routine as this can call back into our get_modes method, 782 * which will want to make use of interrupts. 783 */ 784 static void tda998x_detect_work(struct work_struct *work) 785 { 786 struct tda998x_priv *priv = 787 container_of(work, struct tda998x_priv, detect_work); 788 struct drm_device *dev = priv->connector.dev; 789 790 if (dev) 791 drm_kms_helper_hotplug_event(dev); 792 } 793 794 /* 795 * only 2 interrupts may occur: screen plug/unplug and EDID read 796 */ 797 static irqreturn_t tda998x_irq_thread(int irq, void *data) 798 { 799 struct tda998x_priv *priv = data; 800 u8 sta, cec, lvl, flag0, flag1, flag2; 801 bool handled = false; 802 803 sta = cec_read(priv, REG_CEC_INTSTATUS); 804 if (sta & CEC_INTSTATUS_HDMI) { 805 cec = cec_read(priv, REG_CEC_RXSHPDINT); 806 lvl = cec_read(priv, REG_CEC_RXSHPDLEV); 807 flag0 = reg_read(priv, REG_INT_FLAGS_0); 808 flag1 = reg_read(priv, REG_INT_FLAGS_1); 809 flag2 = reg_read(priv, REG_INT_FLAGS_2); 810 DRM_DEBUG_DRIVER( 811 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n", 812 sta, cec, lvl, flag0, flag1, flag2); 813 814 if (cec & CEC_RXSHPDINT_HPD) { 815 if (lvl & CEC_RXSHPDLEV_HPD) { 816 tda998x_edid_delay_start(priv); 817 } else { 818 schedule_work(&priv->detect_work); 819 cec_notifier_set_phys_addr(priv->cec_notify, 820 CEC_PHYS_ADDR_INVALID); 821 } 822 823 handled = true; 824 } 825 826 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) { 827 priv->wq_edid_wait = 0; 828 wake_up(&priv->wq_edid); 829 handled = true; 830 } 831 } 832 833 return IRQ_RETVAL(handled); 834 } 835 836 static void 837 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr, 838 union hdmi_infoframe *frame) 839 { 840 u8 buf[MAX_WRITE_RANGE_BUF]; 841 ssize_t len; 842 843 len = hdmi_infoframe_pack(frame, buf, sizeof(buf)); 844 if (len < 0) { 845 dev_err(&priv->hdmi->dev, 846 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n", 847 frame->any.type, len); 848 return; 849 } 850 851 reg_clear(priv, REG_DIP_IF_FLAGS, bit); 852 reg_write_range(priv, addr, buf, len); 853 reg_set(priv, REG_DIP_IF_FLAGS, bit); 854 } 855 856 static void tda998x_write_aif(struct tda998x_priv *priv, 857 const struct hdmi_audio_infoframe *cea) 858 { 859 union hdmi_infoframe frame; 860 861 frame.audio = *cea; 862 863 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame); 864 } 865 866 static void 867 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode) 868 { 869 union hdmi_infoframe frame; 870 871 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, 872 &priv->connector, mode); 873 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; 874 drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode, 875 priv->rgb_quant_range); 876 877 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame); 878 } 879 880 static void tda998x_write_vsi(struct tda998x_priv *priv, 881 const struct drm_display_mode *mode) 882 { 883 union hdmi_infoframe frame; 884 885 if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, 886 &priv->connector, 887 mode)) 888 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1); 889 else 890 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame); 891 } 892 893 /* Audio support */ 894 895 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = { 896 [AUDIO_ROUTE_I2S] = { 897 .ena_aclk = 1, 898 .mux_ap = MUX_AP_SELECT_I2S, 899 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK, 900 }, 901 [AUDIO_ROUTE_SPDIF] = { 902 .ena_aclk = 0, 903 .mux_ap = MUX_AP_SELECT_SPDIF, 904 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF, 905 }, 906 }; 907 908 /* Configure the TDA998x audio data and clock routing. */ 909 static int tda998x_derive_routing(struct tda998x_priv *priv, 910 struct tda998x_audio_settings *s, 911 unsigned int route) 912 { 913 s->route = &tda998x_audio_route[route]; 914 s->ena_ap = priv->audio_port_enable[route]; 915 if (s->ena_ap == 0) { 916 dev_err(&priv->hdmi->dev, "no audio configuration found\n"); 917 return -EINVAL; 918 } 919 920 return 0; 921 } 922 923 /* 924 * The audio clock divisor register controls a divider producing Audio_Clk_Out 925 * from SERclk by dividing it by 2^n where 0 <= n <= 5. We don't know what 926 * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock. 927 * 928 * It seems that Audio_Clk_Out must be the smallest value that is greater 929 * than 128*fs, otherwise audio does not function. There is some suggestion 930 * that 126*fs is a better value. 931 */ 932 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs) 933 { 934 unsigned long min_audio_clk = fs * 128; 935 unsigned long ser_clk = priv->tmds_clock * 1000; 936 u8 adiv; 937 938 for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--) 939 if (ser_clk > min_audio_clk << adiv) 940 break; 941 942 dev_dbg(&priv->hdmi->dev, 943 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n", 944 ser_clk, fs, min_audio_clk, adiv); 945 946 return adiv; 947 } 948 949 /* 950 * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to 951 * generate the CTS value. It appears that the "measured time stamp" is 952 * the number of TDMS clock cycles within a number of audio input clock 953 * cycles defined by the k and N parameters defined below, in a similar 954 * way to that which is set out in the CTS generation in the HDMI spec. 955 * 956 * tmdsclk ----> mts -> /m ---> CTS 957 * ^ 958 * sclk -> /k -> /N 959 * 960 * CTS = mts / m, where m is 2^M. 961 * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4 962 * /N is a divider based on the HDMI specified N value. 963 * 964 * This produces the following equation: 965 * CTS = tmds_clock * k * N / (sclk * m) 966 * 967 * When combined with the sink-side equation, and realising that sclk is 968 * bclk_ratio * fs, we end up with: 969 * k = m * bclk_ratio / 128. 970 * 971 * Note: S/PDIF always uses a bclk_ratio of 64. 972 */ 973 static int tda998x_derive_cts_n(struct tda998x_priv *priv, 974 struct tda998x_audio_settings *settings, 975 unsigned int ratio) 976 { 977 switch (ratio) { 978 case 16: 979 settings->cts_n = CTS_N_M(3) | CTS_N_K(0); 980 break; 981 case 32: 982 settings->cts_n = CTS_N_M(3) | CTS_N_K(1); 983 break; 984 case 48: 985 settings->cts_n = CTS_N_M(3) | CTS_N_K(2); 986 break; 987 case 64: 988 settings->cts_n = CTS_N_M(3) | CTS_N_K(3); 989 break; 990 case 128: 991 settings->cts_n = CTS_N_M(0) | CTS_N_K(0); 992 break; 993 default: 994 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n", 995 ratio); 996 return -EINVAL; 997 } 998 return 0; 999 } 1000 1001 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on) 1002 { 1003 if (on) { 1004 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 1005 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 1006 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 1007 } else { 1008 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 1009 } 1010 } 1011 1012 static void tda998x_configure_audio(struct tda998x_priv *priv) 1013 { 1014 const struct tda998x_audio_settings *settings = &priv->audio; 1015 u8 buf[6], adiv; 1016 u32 n; 1017 1018 /* If audio is not configured, there is nothing to do. */ 1019 if (settings->ena_ap == 0) 1020 return; 1021 1022 adiv = tda998x_get_adiv(priv, settings->sample_rate); 1023 1024 /* Enable audio ports */ 1025 reg_write(priv, REG_ENA_AP, settings->ena_ap); 1026 reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk); 1027 reg_write(priv, REG_MUX_AP, settings->route->mux_ap); 1028 reg_write(priv, REG_I2S_FORMAT, settings->i2s_format); 1029 reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel); 1030 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT | 1031 AIP_CNTRL_0_ACR_MAN); /* auto CTS */ 1032 reg_write(priv, REG_CTS_N, settings->cts_n); 1033 reg_write(priv, REG_AUDIO_DIV, adiv); 1034 1035 /* 1036 * This is the approximate value of N, which happens to be 1037 * the recommended values for non-coherent clocks. 1038 */ 1039 n = 128 * settings->sample_rate / 1000; 1040 1041 /* Write the CTS and N values */ 1042 buf[0] = 0x44; 1043 buf[1] = 0x42; 1044 buf[2] = 0x01; 1045 buf[3] = n; 1046 buf[4] = n >> 8; 1047 buf[5] = n >> 16; 1048 reg_write_range(priv, REG_ACR_CTS_0, buf, 6); 1049 1050 /* Reset CTS generator */ 1051 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 1052 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 1053 1054 /* Write the channel status 1055 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because 1056 * there is a separate register for each I2S wire. 1057 */ 1058 buf[0] = settings->status[0]; 1059 buf[1] = settings->status[1]; 1060 buf[2] = settings->status[3]; 1061 buf[3] = settings->status[4]; 1062 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4); 1063 1064 tda998x_audio_mute(priv, true); 1065 msleep(20); 1066 tda998x_audio_mute(priv, false); 1067 1068 tda998x_write_aif(priv, &settings->cea); 1069 } 1070 1071 static int tda998x_audio_hw_params(struct device *dev, void *data, 1072 struct hdmi_codec_daifmt *daifmt, 1073 struct hdmi_codec_params *params) 1074 { 1075 struct tda998x_priv *priv = dev_get_drvdata(dev); 1076 unsigned int bclk_ratio; 1077 bool spdif = daifmt->fmt == HDMI_SPDIF; 1078 int ret; 1079 struct tda998x_audio_settings audio = { 1080 .sample_rate = params->sample_rate, 1081 .cea = params->cea, 1082 }; 1083 1084 memcpy(audio.status, params->iec.status, 1085 min(sizeof(audio.status), sizeof(params->iec.status))); 1086 1087 switch (daifmt->fmt) { 1088 case HDMI_I2S: 1089 audio.i2s_format = I2S_FORMAT_PHILIPS; 1090 break; 1091 case HDMI_LEFT_J: 1092 audio.i2s_format = I2S_FORMAT_LEFT_J; 1093 break; 1094 case HDMI_RIGHT_J: 1095 audio.i2s_format = I2S_FORMAT_RIGHT_J; 1096 break; 1097 case HDMI_SPDIF: 1098 audio.i2s_format = 0; 1099 break; 1100 default: 1101 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt); 1102 return -EINVAL; 1103 } 1104 1105 if (!spdif && 1106 (daifmt->bit_clk_inv || daifmt->frame_clk_inv || 1107 daifmt->bit_clk_master || daifmt->frame_clk_master)) { 1108 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, 1109 daifmt->bit_clk_inv, daifmt->frame_clk_inv, 1110 daifmt->bit_clk_master, 1111 daifmt->frame_clk_master); 1112 return -EINVAL; 1113 } 1114 1115 ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif); 1116 if (ret < 0) 1117 return ret; 1118 1119 bclk_ratio = spdif ? 64 : params->sample_width * 2; 1120 ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio); 1121 if (ret < 0) 1122 return ret; 1123 1124 mutex_lock(&priv->audio_mutex); 1125 priv->audio = audio; 1126 if (priv->supports_infoframes && priv->sink_has_audio) 1127 tda998x_configure_audio(priv); 1128 mutex_unlock(&priv->audio_mutex); 1129 1130 return 0; 1131 } 1132 1133 static void tda998x_audio_shutdown(struct device *dev, void *data) 1134 { 1135 struct tda998x_priv *priv = dev_get_drvdata(dev); 1136 1137 mutex_lock(&priv->audio_mutex); 1138 1139 reg_write(priv, REG_ENA_AP, 0); 1140 priv->audio.ena_ap = 0; 1141 1142 mutex_unlock(&priv->audio_mutex); 1143 } 1144 1145 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable) 1146 { 1147 struct tda998x_priv *priv = dev_get_drvdata(dev); 1148 1149 mutex_lock(&priv->audio_mutex); 1150 1151 tda998x_audio_mute(priv, enable); 1152 1153 mutex_unlock(&priv->audio_mutex); 1154 return 0; 1155 } 1156 1157 static int tda998x_audio_get_eld(struct device *dev, void *data, 1158 uint8_t *buf, size_t len) 1159 { 1160 struct tda998x_priv *priv = dev_get_drvdata(dev); 1161 1162 mutex_lock(&priv->audio_mutex); 1163 memcpy(buf, priv->connector.eld, 1164 min(sizeof(priv->connector.eld), len)); 1165 mutex_unlock(&priv->audio_mutex); 1166 1167 return 0; 1168 } 1169 1170 static const struct hdmi_codec_ops audio_codec_ops = { 1171 .hw_params = tda998x_audio_hw_params, 1172 .audio_shutdown = tda998x_audio_shutdown, 1173 .digital_mute = tda998x_audio_digital_mute, 1174 .get_eld = tda998x_audio_get_eld, 1175 }; 1176 1177 static int tda998x_audio_codec_init(struct tda998x_priv *priv, 1178 struct device *dev) 1179 { 1180 struct hdmi_codec_pdata codec_data = { 1181 .ops = &audio_codec_ops, 1182 .max_i2s_channels = 2, 1183 }; 1184 1185 if (priv->audio_port_enable[AUDIO_ROUTE_I2S]) 1186 codec_data.i2s = 1; 1187 if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) 1188 codec_data.spdif = 1; 1189 1190 priv->audio_pdev = platform_device_register_data( 1191 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, 1192 &codec_data, sizeof(codec_data)); 1193 1194 return PTR_ERR_OR_ZERO(priv->audio_pdev); 1195 } 1196 1197 /* DRM connector functions */ 1198 1199 static enum drm_connector_status 1200 tda998x_connector_detect(struct drm_connector *connector, bool force) 1201 { 1202 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1203 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV); 1204 1205 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : 1206 connector_status_disconnected; 1207 } 1208 1209 static void tda998x_connector_destroy(struct drm_connector *connector) 1210 { 1211 drm_connector_cleanup(connector); 1212 } 1213 1214 static const struct drm_connector_funcs tda998x_connector_funcs = { 1215 .reset = drm_atomic_helper_connector_reset, 1216 .fill_modes = drm_helper_probe_single_connector_modes, 1217 .detect = tda998x_connector_detect, 1218 .destroy = tda998x_connector_destroy, 1219 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 1220 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1221 }; 1222 1223 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length) 1224 { 1225 struct tda998x_priv *priv = data; 1226 u8 offset, segptr; 1227 int ret, i; 1228 1229 offset = (blk & 1) ? 128 : 0; 1230 segptr = blk / 2; 1231 1232 mutex_lock(&priv->edid_mutex); 1233 1234 reg_write(priv, REG_DDC_ADDR, 0xa0); 1235 reg_write(priv, REG_DDC_OFFS, offset); 1236 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60); 1237 reg_write(priv, REG_DDC_SEGM, segptr); 1238 1239 /* enable reading EDID: */ 1240 priv->wq_edid_wait = 1; 1241 reg_write(priv, REG_EDID_CTRL, 0x1); 1242 1243 /* flag must be cleared by sw: */ 1244 reg_write(priv, REG_EDID_CTRL, 0x0); 1245 1246 /* wait for block read to complete: */ 1247 if (priv->hdmi->irq) { 1248 i = wait_event_timeout(priv->wq_edid, 1249 !priv->wq_edid_wait, 1250 msecs_to_jiffies(100)); 1251 if (i < 0) { 1252 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i); 1253 ret = i; 1254 goto failed; 1255 } 1256 } else { 1257 for (i = 100; i > 0; i--) { 1258 msleep(1); 1259 ret = reg_read(priv, REG_INT_FLAGS_2); 1260 if (ret < 0) 1261 goto failed; 1262 if (ret & INT_FLAGS_2_EDID_BLK_RD) 1263 break; 1264 } 1265 } 1266 1267 if (i == 0) { 1268 dev_err(&priv->hdmi->dev, "read edid timeout\n"); 1269 ret = -ETIMEDOUT; 1270 goto failed; 1271 } 1272 1273 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length); 1274 if (ret != length) { 1275 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n", 1276 blk, ret); 1277 goto failed; 1278 } 1279 1280 ret = 0; 1281 1282 failed: 1283 mutex_unlock(&priv->edid_mutex); 1284 return ret; 1285 } 1286 1287 static int tda998x_connector_get_modes(struct drm_connector *connector) 1288 { 1289 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1290 struct edid *edid; 1291 int n; 1292 1293 /* 1294 * If we get killed while waiting for the HPD timeout, return 1295 * no modes found: we are not in a restartable path, so we 1296 * can't handle signals gracefully. 1297 */ 1298 if (tda998x_edid_delay_wait(priv)) 1299 return 0; 1300 1301 if (priv->rev == TDA19988) 1302 reg_clear(priv, REG_TX4, TX4_PD_RAM); 1303 1304 edid = drm_do_get_edid(connector, read_edid_block, priv); 1305 1306 if (priv->rev == TDA19988) 1307 reg_set(priv, REG_TX4, TX4_PD_RAM); 1308 1309 if (!edid) { 1310 dev_warn(&priv->hdmi->dev, "failed to read EDID\n"); 1311 return 0; 1312 } 1313 1314 drm_connector_update_edid_property(connector, edid); 1315 cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid); 1316 1317 mutex_lock(&priv->audio_mutex); 1318 n = drm_add_edid_modes(connector, edid); 1319 priv->sink_has_audio = drm_detect_monitor_audio(edid); 1320 mutex_unlock(&priv->audio_mutex); 1321 1322 kfree(edid); 1323 1324 return n; 1325 } 1326 1327 static struct drm_encoder * 1328 tda998x_connector_best_encoder(struct drm_connector *connector) 1329 { 1330 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1331 1332 return priv->bridge.encoder; 1333 } 1334 1335 static 1336 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = { 1337 .get_modes = tda998x_connector_get_modes, 1338 .best_encoder = tda998x_connector_best_encoder, 1339 }; 1340 1341 static int tda998x_connector_init(struct tda998x_priv *priv, 1342 struct drm_device *drm) 1343 { 1344 struct drm_connector *connector = &priv->connector; 1345 int ret; 1346 1347 connector->interlace_allowed = 1; 1348 1349 if (priv->hdmi->irq) 1350 connector->polled = DRM_CONNECTOR_POLL_HPD; 1351 else 1352 connector->polled = DRM_CONNECTOR_POLL_CONNECT | 1353 DRM_CONNECTOR_POLL_DISCONNECT; 1354 1355 drm_connector_helper_add(connector, &tda998x_connector_helper_funcs); 1356 ret = drm_connector_init(drm, connector, &tda998x_connector_funcs, 1357 DRM_MODE_CONNECTOR_HDMIA); 1358 if (ret) 1359 return ret; 1360 1361 drm_connector_attach_encoder(&priv->connector, 1362 priv->bridge.encoder); 1363 1364 return 0; 1365 } 1366 1367 /* DRM bridge functions */ 1368 1369 static int tda998x_bridge_attach(struct drm_bridge *bridge) 1370 { 1371 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1372 1373 return tda998x_connector_init(priv, bridge->dev); 1374 } 1375 1376 static void tda998x_bridge_detach(struct drm_bridge *bridge) 1377 { 1378 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1379 1380 drm_connector_cleanup(&priv->connector); 1381 } 1382 1383 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge, 1384 const struct drm_display_mode *mode) 1385 { 1386 /* TDA19988 dotclock can go up to 165MHz */ 1387 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1388 1389 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000)) 1390 return MODE_CLOCK_HIGH; 1391 if (mode->htotal >= BIT(13)) 1392 return MODE_BAD_HVALUE; 1393 if (mode->vtotal >= BIT(11)) 1394 return MODE_BAD_VVALUE; 1395 return MODE_OK; 1396 } 1397 1398 static void tda998x_bridge_enable(struct drm_bridge *bridge) 1399 { 1400 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1401 1402 if (!priv->is_on) { 1403 /* enable video ports, audio will be enabled later */ 1404 reg_write(priv, REG_ENA_VP_0, 0xff); 1405 reg_write(priv, REG_ENA_VP_1, 0xff); 1406 reg_write(priv, REG_ENA_VP_2, 0xff); 1407 /* set muxing after enabling ports: */ 1408 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0); 1409 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1); 1410 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2); 1411 1412 priv->is_on = true; 1413 } 1414 } 1415 1416 static void tda998x_bridge_disable(struct drm_bridge *bridge) 1417 { 1418 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1419 1420 if (priv->is_on) { 1421 /* disable video ports */ 1422 reg_write(priv, REG_ENA_VP_0, 0x00); 1423 reg_write(priv, REG_ENA_VP_1, 0x00); 1424 reg_write(priv, REG_ENA_VP_2, 0x00); 1425 1426 priv->is_on = false; 1427 } 1428 } 1429 1430 static void tda998x_bridge_mode_set(struct drm_bridge *bridge, 1431 const struct drm_display_mode *mode, 1432 const struct drm_display_mode *adjusted_mode) 1433 { 1434 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); 1435 unsigned long tmds_clock; 1436 u16 ref_pix, ref_line, n_pix, n_line; 1437 u16 hs_pix_s, hs_pix_e; 1438 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; 1439 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; 1440 u16 vwin1_line_s, vwin1_line_e; 1441 u16 vwin2_line_s, vwin2_line_e; 1442 u16 de_pix_s, de_pix_e; 1443 u8 reg, div, rep, sel_clk; 1444 1445 /* 1446 * Since we are "computer" like, our source invariably produces 1447 * full-range RGB. If the monitor supports full-range, then use 1448 * it, otherwise reduce to limited-range. 1449 */ 1450 priv->rgb_quant_range = 1451 priv->connector.display_info.rgb_quant_range_selectable ? 1452 HDMI_QUANTIZATION_RANGE_FULL : 1453 drm_default_rgb_quant_range(adjusted_mode); 1454 1455 /* 1456 * Internally TDA998x is using ITU-R BT.656 style sync but 1457 * we get VESA style sync. TDA998x is using a reference pixel 1458 * relative to ITU to sync to the input frame and for output 1459 * sync generation. Currently, we are using reference detection 1460 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point 1461 * which is position of rising VS with coincident rising HS. 1462 * 1463 * Now there is some issues to take care of: 1464 * - HDMI data islands require sync-before-active 1465 * - TDA998x register values must be > 0 to be enabled 1466 * - REFLINE needs an additional offset of +1 1467 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB 1468 * 1469 * So we add +1 to all horizontal and vertical register values, 1470 * plus an additional +3 for REFPIX as we are using RGB input only. 1471 */ 1472 n_pix = mode->htotal; 1473 n_line = mode->vtotal; 1474 1475 hs_pix_e = mode->hsync_end - mode->hdisplay; 1476 hs_pix_s = mode->hsync_start - mode->hdisplay; 1477 de_pix_e = mode->htotal; 1478 de_pix_s = mode->htotal - mode->hdisplay; 1479 ref_pix = 3 + hs_pix_s; 1480 1481 /* 1482 * Attached LCD controllers may generate broken sync. Allow 1483 * those to adjust the position of the rising VS edge by adding 1484 * HSKEW to ref_pix. 1485 */ 1486 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) 1487 ref_pix += adjusted_mode->hskew; 1488 1489 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { 1490 ref_line = 1 + mode->vsync_start - mode->vdisplay; 1491 vwin1_line_s = mode->vtotal - mode->vdisplay - 1; 1492 vwin1_line_e = vwin1_line_s + mode->vdisplay; 1493 vs1_pix_s = vs1_pix_e = hs_pix_s; 1494 vs1_line_s = mode->vsync_start - mode->vdisplay; 1495 vs1_line_e = vs1_line_s + 1496 mode->vsync_end - mode->vsync_start; 1497 vwin2_line_s = vwin2_line_e = 0; 1498 vs2_pix_s = vs2_pix_e = 0; 1499 vs2_line_s = vs2_line_e = 0; 1500 } else { 1501 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; 1502 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; 1503 vwin1_line_e = vwin1_line_s + mode->vdisplay/2; 1504 vs1_pix_s = vs1_pix_e = hs_pix_s; 1505 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; 1506 vs1_line_e = vs1_line_s + 1507 (mode->vsync_end - mode->vsync_start)/2; 1508 vwin2_line_s = vwin1_line_s + mode->vtotal/2; 1509 vwin2_line_e = vwin2_line_s + mode->vdisplay/2; 1510 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; 1511 vs2_line_s = vs1_line_s + mode->vtotal/2 ; 1512 vs2_line_e = vs2_line_s + 1513 (mode->vsync_end - mode->vsync_start)/2; 1514 } 1515 1516 /* 1517 * Select pixel repeat depending on the double-clock flag 1518 * (which means we have to repeat each pixel once.) 1519 */ 1520 rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0; 1521 sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 | 1522 SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0); 1523 1524 /* the TMDS clock is scaled up by the pixel repeat */ 1525 tmds_clock = mode->clock * (1 + rep); 1526 1527 /* 1528 * The divisor is power-of-2. The TDA9983B datasheet gives 1529 * this as ranges of Msample/s, which is 10x the TMDS clock: 1530 * 0 - 800 to 1500 Msample/s 1531 * 1 - 400 to 800 Msample/s 1532 * 2 - 200 to 400 Msample/s 1533 * 3 - as 2 above 1534 */ 1535 for (div = 0; div < 3; div++) 1536 if (80000 >> div <= tmds_clock) 1537 break; 1538 1539 mutex_lock(&priv->audio_mutex); 1540 1541 priv->tmds_clock = tmds_clock; 1542 1543 /* mute the audio FIFO: */ 1544 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 1545 1546 /* set HDMI HDCP mode off: */ 1547 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); 1548 reg_clear(priv, REG_TX33, TX33_HDMI); 1549 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); 1550 1551 /* no pre-filter or interpolator: */ 1552 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | 1553 HVF_CNTRL_0_INTPOL(0)); 1554 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT); 1555 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); 1556 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | 1557 VIP_CNTRL_4_BLC(0)); 1558 1559 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); 1560 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR | 1561 PLL_SERIAL_3_SRL_DE); 1562 reg_write(priv, REG_SERIALIZER, 0); 1563 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); 1564 1565 reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep)); 1566 reg_write(priv, REG_SEL_CLK, sel_clk); 1567 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | 1568 PLL_SERIAL_2_SRL_PR(rep)); 1569 1570 /* set color matrix according to output rgb quant range */ 1571 if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) { 1572 static u8 tda998x_full_to_limited_range[] = { 1573 MAT_CONTRL_MAT_SC(2), 1574 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 1575 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00, 1576 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00, 1577 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f, 1578 0x00, 0x40, 0x00, 0x40, 0x00, 0x40 1579 }; 1580 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1581 reg_write_range(priv, REG_MAT_CONTRL, 1582 tda998x_full_to_limited_range, 1583 sizeof(tda998x_full_to_limited_range)); 1584 } else { 1585 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP | 1586 MAT_CONTRL_MAT_SC(1)); 1587 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1588 } 1589 1590 /* set BIAS tmds value: */ 1591 reg_write(priv, REG_ANA_GENERAL, 0x09); 1592 1593 /* 1594 * Sync on rising HSYNC/VSYNC 1595 */ 1596 reg = VIP_CNTRL_3_SYNC_HS; 1597 1598 /* 1599 * TDA19988 requires high-active sync at input stage, 1600 * so invert low-active sync provided by master encoder here 1601 */ 1602 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1603 reg |= VIP_CNTRL_3_H_TGL; 1604 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1605 reg |= VIP_CNTRL_3_V_TGL; 1606 reg_write(priv, REG_VIP_CNTRL_3, reg); 1607 1608 reg_write(priv, REG_VIDFORMAT, 0x00); 1609 reg_write16(priv, REG_REFPIX_MSB, ref_pix); 1610 reg_write16(priv, REG_REFLINE_MSB, ref_line); 1611 reg_write16(priv, REG_NPIX_MSB, n_pix); 1612 reg_write16(priv, REG_NLINE_MSB, n_line); 1613 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s); 1614 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); 1615 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e); 1616 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e); 1617 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s); 1618 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); 1619 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e); 1620 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e); 1621 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s); 1622 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e); 1623 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s); 1624 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e); 1625 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s); 1626 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e); 1627 reg_write16(priv, REG_DE_START_MSB, de_pix_s); 1628 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e); 1629 1630 if (priv->rev == TDA19988) { 1631 /* let incoming pixels fill the active space (if any) */ 1632 reg_write(priv, REG_ENABLE_SPACE, 0x00); 1633 } 1634 1635 /* 1636 * Always generate sync polarity relative to input sync and 1637 * revert input stage toggled sync at output stage 1638 */ 1639 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN; 1640 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1641 reg |= TBG_CNTRL_1_H_TGL; 1642 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1643 reg |= TBG_CNTRL_1_V_TGL; 1644 reg_write(priv, REG_TBG_CNTRL_1, reg); 1645 1646 /* must be last register set: */ 1647 reg_write(priv, REG_TBG_CNTRL_0, 0); 1648 1649 /* CEA-861B section 6 says that: 1650 * CEA version 1 (CEA-861) has no support for infoframes. 1651 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes, 1652 * and optional basic audio. 1653 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes, 1654 * and optional digital audio, with audio infoframes. 1655 * 1656 * Since we only support generation of version 2 AVI infoframes, 1657 * ignore CEA version 2 and below (iow, behave as if we're a 1658 * CEA-861 source.) 1659 */ 1660 priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3; 1661 1662 if (priv->supports_infoframes) { 1663 /* We need to turn HDMI HDCP stuff on to get audio through */ 1664 reg &= ~TBG_CNTRL_1_DWIN_DIS; 1665 reg_write(priv, REG_TBG_CNTRL_1, reg); 1666 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); 1667 reg_set(priv, REG_TX33, TX33_HDMI); 1668 1669 tda998x_write_avi(priv, adjusted_mode); 1670 tda998x_write_vsi(priv, adjusted_mode); 1671 1672 if (priv->sink_has_audio) 1673 tda998x_configure_audio(priv); 1674 } 1675 1676 mutex_unlock(&priv->audio_mutex); 1677 } 1678 1679 static const struct drm_bridge_funcs tda998x_bridge_funcs = { 1680 .attach = tda998x_bridge_attach, 1681 .detach = tda998x_bridge_detach, 1682 .mode_valid = tda998x_bridge_mode_valid, 1683 .disable = tda998x_bridge_disable, 1684 .mode_set = tda998x_bridge_mode_set, 1685 .enable = tda998x_bridge_enable, 1686 }; 1687 1688 /* I2C driver functions */ 1689 1690 static int tda998x_get_audio_ports(struct tda998x_priv *priv, 1691 struct device_node *np) 1692 { 1693 const u32 *port_data; 1694 u32 size; 1695 int i; 1696 1697 port_data = of_get_property(np, "audio-ports", &size); 1698 if (!port_data) 1699 return 0; 1700 1701 size /= sizeof(u32); 1702 if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) { 1703 dev_err(&priv->hdmi->dev, 1704 "Bad number of elements in audio-ports dt-property\n"); 1705 return -EINVAL; 1706 } 1707 1708 size /= 2; 1709 1710 for (i = 0; i < size; i++) { 1711 unsigned int route; 1712 u8 afmt = be32_to_cpup(&port_data[2*i]); 1713 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]); 1714 1715 switch (afmt) { 1716 case AFMT_I2S: 1717 route = AUDIO_ROUTE_I2S; 1718 break; 1719 case AFMT_SPDIF: 1720 route = AUDIO_ROUTE_SPDIF; 1721 break; 1722 default: 1723 dev_err(&priv->hdmi->dev, 1724 "Bad audio format %u\n", afmt); 1725 return -EINVAL; 1726 } 1727 1728 if (!ena_ap) { 1729 dev_err(&priv->hdmi->dev, "invalid zero port config\n"); 1730 continue; 1731 } 1732 1733 if (priv->audio_port_enable[route]) { 1734 dev_err(&priv->hdmi->dev, 1735 "%s format already configured\n", 1736 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S"); 1737 return -EINVAL; 1738 } 1739 1740 priv->audio_port_enable[route] = ena_ap; 1741 } 1742 return 0; 1743 } 1744 1745 static int tda998x_set_config(struct tda998x_priv *priv, 1746 const struct tda998x_encoder_params *p) 1747 { 1748 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | 1749 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | 1750 VIP_CNTRL_0_SWAP_B(p->swap_b) | 1751 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); 1752 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | 1753 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | 1754 VIP_CNTRL_1_SWAP_D(p->swap_d) | 1755 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); 1756 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | 1757 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | 1758 VIP_CNTRL_2_SWAP_F(p->swap_f) | 1759 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); 1760 1761 if (p->audio_params.format != AFMT_UNUSED) { 1762 unsigned int ratio, route; 1763 bool spdif = p->audio_params.format == AFMT_SPDIF; 1764 1765 route = AUDIO_ROUTE_I2S + spdif; 1766 1767 priv->audio.route = &tda998x_audio_route[route]; 1768 priv->audio.cea = p->audio_params.cea; 1769 priv->audio.sample_rate = p->audio_params.sample_rate; 1770 memcpy(priv->audio.status, p->audio_params.status, 1771 min(sizeof(priv->audio.status), 1772 sizeof(p->audio_params.status))); 1773 priv->audio.ena_ap = p->audio_params.config; 1774 priv->audio.i2s_format = I2S_FORMAT_PHILIPS; 1775 1776 ratio = spdif ? 64 : p->audio_params.sample_width * 2; 1777 return tda998x_derive_cts_n(priv, &priv->audio, ratio); 1778 } 1779 1780 return 0; 1781 } 1782 1783 static void tda998x_destroy(struct device *dev) 1784 { 1785 struct tda998x_priv *priv = dev_get_drvdata(dev); 1786 1787 drm_bridge_remove(&priv->bridge); 1788 1789 /* disable all IRQs and free the IRQ handler */ 1790 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1791 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1792 1793 if (priv->audio_pdev) 1794 platform_device_unregister(priv->audio_pdev); 1795 1796 if (priv->hdmi->irq) 1797 free_irq(priv->hdmi->irq, priv); 1798 1799 del_timer_sync(&priv->edid_delay_timer); 1800 cancel_work_sync(&priv->detect_work); 1801 1802 i2c_unregister_device(priv->cec); 1803 1804 if (priv->cec_notify) 1805 cec_notifier_put(priv->cec_notify); 1806 } 1807 1808 static int tda998x_create(struct device *dev) 1809 { 1810 struct i2c_client *client = to_i2c_client(dev); 1811 struct device_node *np = client->dev.of_node; 1812 struct i2c_board_info cec_info; 1813 struct tda998x_priv *priv; 1814 u32 video; 1815 int rev_lo, rev_hi, ret; 1816 1817 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1818 if (!priv) 1819 return -ENOMEM; 1820 1821 dev_set_drvdata(dev, priv); 1822 1823 mutex_init(&priv->mutex); /* protect the page access */ 1824 mutex_init(&priv->audio_mutex); /* protect access from audio thread */ 1825 mutex_init(&priv->edid_mutex); 1826 INIT_LIST_HEAD(&priv->bridge.list); 1827 init_waitqueue_head(&priv->edid_delay_waitq); 1828 timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0); 1829 INIT_WORK(&priv->detect_work, tda998x_detect_work); 1830 1831 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); 1832 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); 1833 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); 1834 1835 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */ 1836 priv->cec_addr = 0x34 + (client->addr & 0x03); 1837 priv->current_page = 0xff; 1838 priv->hdmi = client; 1839 1840 /* wake up the device: */ 1841 cec_write(priv, REG_CEC_ENAMODS, 1842 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); 1843 1844 tda998x_reset(priv); 1845 1846 /* read version: */ 1847 rev_lo = reg_read(priv, REG_VERSION_LSB); 1848 if (rev_lo < 0) { 1849 dev_err(dev, "failed to read version: %d\n", rev_lo); 1850 return rev_lo; 1851 } 1852 1853 rev_hi = reg_read(priv, REG_VERSION_MSB); 1854 if (rev_hi < 0) { 1855 dev_err(dev, "failed to read version: %d\n", rev_hi); 1856 return rev_hi; 1857 } 1858 1859 priv->rev = rev_lo | rev_hi << 8; 1860 1861 /* mask off feature bits: */ 1862 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ 1863 1864 switch (priv->rev) { 1865 case TDA9989N2: 1866 dev_info(dev, "found TDA9989 n2"); 1867 break; 1868 case TDA19989: 1869 dev_info(dev, "found TDA19989"); 1870 break; 1871 case TDA19989N2: 1872 dev_info(dev, "found TDA19989 n2"); 1873 break; 1874 case TDA19988: 1875 dev_info(dev, "found TDA19988"); 1876 break; 1877 default: 1878 dev_err(dev, "found unsupported device: %04x\n", priv->rev); 1879 return -ENXIO; 1880 } 1881 1882 /* after reset, enable DDC: */ 1883 reg_write(priv, REG_DDC_DISABLE, 0x00); 1884 1885 /* set clock on DDC channel: */ 1886 reg_write(priv, REG_TX3, 39); 1887 1888 /* if necessary, disable multi-master: */ 1889 if (priv->rev == TDA19989) 1890 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM); 1891 1892 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL, 1893 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); 1894 1895 /* ensure interrupts are disabled */ 1896 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1897 1898 /* clear pending interrupts */ 1899 cec_read(priv, REG_CEC_RXSHPDINT); 1900 reg_read(priv, REG_INT_FLAGS_0); 1901 reg_read(priv, REG_INT_FLAGS_1); 1902 reg_read(priv, REG_INT_FLAGS_2); 1903 1904 /* initialize the optional IRQ */ 1905 if (client->irq) { 1906 unsigned long irq_flags; 1907 1908 /* init read EDID waitqueue and HDP work */ 1909 init_waitqueue_head(&priv->wq_edid); 1910 1911 irq_flags = 1912 irqd_get_trigger_type(irq_get_irq_data(client->irq)); 1913 1914 priv->cec_glue.irq_flags = irq_flags; 1915 1916 irq_flags |= IRQF_SHARED | IRQF_ONESHOT; 1917 ret = request_threaded_irq(client->irq, NULL, 1918 tda998x_irq_thread, irq_flags, 1919 "tda998x", priv); 1920 if (ret) { 1921 dev_err(dev, "failed to request IRQ#%u: %d\n", 1922 client->irq, ret); 1923 goto err_irq; 1924 } 1925 1926 /* enable HPD irq */ 1927 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD); 1928 } 1929 1930 priv->cec_notify = cec_notifier_get(dev); 1931 if (!priv->cec_notify) { 1932 ret = -ENOMEM; 1933 goto fail; 1934 } 1935 1936 priv->cec_glue.parent = dev; 1937 priv->cec_glue.data = priv; 1938 priv->cec_glue.init = tda998x_cec_hook_init; 1939 priv->cec_glue.exit = tda998x_cec_hook_exit; 1940 priv->cec_glue.open = tda998x_cec_hook_open; 1941 priv->cec_glue.release = tda998x_cec_hook_release; 1942 1943 /* 1944 * Some TDA998x are actually two I2C devices merged onto one piece 1945 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter 1946 * with a slightly modified TDA9950 CEC device. The CEC device 1947 * is at the TDA9950 address, with the address pins strapped across 1948 * to the TDA998x address pins. Hence, it always has the same 1949 * offset. 1950 */ 1951 memset(&cec_info, 0, sizeof(cec_info)); 1952 strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type)); 1953 cec_info.addr = priv->cec_addr; 1954 cec_info.platform_data = &priv->cec_glue; 1955 cec_info.irq = client->irq; 1956 1957 priv->cec = i2c_new_device(client->adapter, &cec_info); 1958 if (!priv->cec) { 1959 ret = -ENODEV; 1960 goto fail; 1961 } 1962 1963 /* enable EDID read irq: */ 1964 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1965 1966 if (np) { 1967 /* get the device tree parameters */ 1968 ret = of_property_read_u32(np, "video-ports", &video); 1969 if (ret == 0) { 1970 priv->vip_cntrl_0 = video >> 16; 1971 priv->vip_cntrl_1 = video >> 8; 1972 priv->vip_cntrl_2 = video; 1973 } 1974 1975 ret = tda998x_get_audio_ports(priv, np); 1976 if (ret) 1977 goto fail; 1978 1979 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] || 1980 priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) 1981 tda998x_audio_codec_init(priv, &client->dev); 1982 } else if (dev->platform_data) { 1983 ret = tda998x_set_config(priv, dev->platform_data); 1984 if (ret) 1985 goto fail; 1986 } 1987 1988 priv->bridge.funcs = &tda998x_bridge_funcs; 1989 #ifdef CONFIG_OF 1990 priv->bridge.of_node = dev->of_node; 1991 #endif 1992 1993 drm_bridge_add(&priv->bridge); 1994 1995 return 0; 1996 1997 fail: 1998 tda998x_destroy(dev); 1999 err_irq: 2000 return ret; 2001 } 2002 2003 /* DRM encoder functions */ 2004 2005 static void tda998x_encoder_destroy(struct drm_encoder *encoder) 2006 { 2007 drm_encoder_cleanup(encoder); 2008 } 2009 2010 static const struct drm_encoder_funcs tda998x_encoder_funcs = { 2011 .destroy = tda998x_encoder_destroy, 2012 }; 2013 2014 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm) 2015 { 2016 struct tda998x_priv *priv = dev_get_drvdata(dev); 2017 u32 crtcs = 0; 2018 int ret; 2019 2020 if (dev->of_node) 2021 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); 2022 2023 /* If no CRTCs were found, fall back to our old behaviour */ 2024 if (crtcs == 0) { 2025 dev_warn(dev, "Falling back to first CRTC\n"); 2026 crtcs = 1 << 0; 2027 } 2028 2029 priv->encoder.possible_crtcs = crtcs; 2030 2031 ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs, 2032 DRM_MODE_ENCODER_TMDS, NULL); 2033 if (ret) 2034 goto err_encoder; 2035 2036 ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL); 2037 if (ret) 2038 goto err_bridge; 2039 2040 return 0; 2041 2042 err_bridge: 2043 drm_encoder_cleanup(&priv->encoder); 2044 err_encoder: 2045 return ret; 2046 } 2047 2048 static int tda998x_bind(struct device *dev, struct device *master, void *data) 2049 { 2050 struct drm_device *drm = data; 2051 2052 return tda998x_encoder_init(dev, drm); 2053 } 2054 2055 static void tda998x_unbind(struct device *dev, struct device *master, 2056 void *data) 2057 { 2058 struct tda998x_priv *priv = dev_get_drvdata(dev); 2059 2060 drm_encoder_cleanup(&priv->encoder); 2061 } 2062 2063 static const struct component_ops tda998x_ops = { 2064 .bind = tda998x_bind, 2065 .unbind = tda998x_unbind, 2066 }; 2067 2068 static int 2069 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) 2070 { 2071 int ret; 2072 2073 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 2074 dev_warn(&client->dev, "adapter does not support I2C\n"); 2075 return -EIO; 2076 } 2077 2078 ret = tda998x_create(&client->dev); 2079 if (ret) 2080 return ret; 2081 2082 ret = component_add(&client->dev, &tda998x_ops); 2083 if (ret) 2084 tda998x_destroy(&client->dev); 2085 return ret; 2086 } 2087 2088 static int tda998x_remove(struct i2c_client *client) 2089 { 2090 component_del(&client->dev, &tda998x_ops); 2091 tda998x_destroy(&client->dev); 2092 return 0; 2093 } 2094 2095 #ifdef CONFIG_OF 2096 static const struct of_device_id tda998x_dt_ids[] = { 2097 { .compatible = "nxp,tda998x", }, 2098 { } 2099 }; 2100 MODULE_DEVICE_TABLE(of, tda998x_dt_ids); 2101 #endif 2102 2103 static const struct i2c_device_id tda998x_ids[] = { 2104 { "tda998x", 0 }, 2105 { } 2106 }; 2107 MODULE_DEVICE_TABLE(i2c, tda998x_ids); 2108 2109 static struct i2c_driver tda998x_driver = { 2110 .probe = tda998x_probe, 2111 .remove = tda998x_remove, 2112 .driver = { 2113 .name = "tda998x", 2114 .of_match_table = of_match_ptr(tda998x_dt_ids), 2115 }, 2116 .id_table = tda998x_ids, 2117 }; 2118 2119 module_i2c_driver(tda998x_driver); 2120 2121 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com"); 2122 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder"); 2123 MODULE_LICENSE("GPL"); 2124