xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 4b4f3acc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/module.h>
11 #include <linux/platform_data/tda9950.h>
12 #include <linux/irq.h>
13 #include <sound/asoundef.h>
14 #include <sound/hdmi-codec.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_edid.h>
19 #include <drm/drm_of.h>
20 #include <drm/drm_probe_helper.h>
21 #include <drm/i2c/tda998x.h>
22 
23 #include <media/cec-notifier.h>
24 
25 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
26 
27 struct tda998x_audio_port {
28 	u8 format;		/* AFMT_xxx */
29 	u8 config;		/* AP value */
30 };
31 
32 struct tda998x_priv {
33 	struct i2c_client *cec;
34 	struct i2c_client *hdmi;
35 	struct mutex mutex;
36 	u16 rev;
37 	u8 cec_addr;
38 	u8 current_page;
39 	bool is_on;
40 	bool supports_infoframes;
41 	bool sink_has_audio;
42 	u8 vip_cntrl_0;
43 	u8 vip_cntrl_1;
44 	u8 vip_cntrl_2;
45 	unsigned long tmds_clock;
46 	struct tda998x_audio_params audio_params;
47 
48 	struct platform_device *audio_pdev;
49 	struct mutex audio_mutex;
50 
51 	struct mutex edid_mutex;
52 	wait_queue_head_t wq_edid;
53 	volatile int wq_edid_wait;
54 
55 	struct work_struct detect_work;
56 	struct timer_list edid_delay_timer;
57 	wait_queue_head_t edid_delay_waitq;
58 	bool edid_delay_active;
59 
60 	struct drm_encoder encoder;
61 	struct drm_bridge bridge;
62 	struct drm_connector connector;
63 
64 	struct tda998x_audio_port audio_port[2];
65 	struct tda9950_glue cec_glue;
66 	struct gpio_desc *calib;
67 	struct cec_notifier *cec_notify;
68 };
69 
70 #define conn_to_tda998x_priv(x) \
71 	container_of(x, struct tda998x_priv, connector)
72 #define enc_to_tda998x_priv(x) \
73 	container_of(x, struct tda998x_priv, encoder)
74 #define bridge_to_tda998x_priv(x) \
75 	container_of(x, struct tda998x_priv, bridge)
76 
77 /* The TDA9988 series of devices use a paged register scheme.. to simplify
78  * things we encode the page # in upper bits of the register #.  To read/
79  * write a given register, we need to make sure CURPAGE register is set
80  * appropriately.  Which implies reads/writes are not atomic.  Fun!
81  */
82 
83 #define REG(page, addr) (((page) << 8) | (addr))
84 #define REG2ADDR(reg)   ((reg) & 0xff)
85 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
86 
87 #define REG_CURPAGE               0xff                /* write */
88 
89 
90 /* Page 00h: General Control */
91 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
92 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
93 # define MAIN_CNTRL0_SR           (1 << 0)
94 # define MAIN_CNTRL0_DECS         (1 << 1)
95 # define MAIN_CNTRL0_DEHS         (1 << 2)
96 # define MAIN_CNTRL0_CECS         (1 << 3)
97 # define MAIN_CNTRL0_CEHS         (1 << 4)
98 # define MAIN_CNTRL0_SCALER       (1 << 7)
99 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
100 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
101 # define SOFTRESET_AUDIO          (1 << 0)
102 # define SOFTRESET_I2C_MASTER     (1 << 1)
103 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
104 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
105 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
106 # define I2C_MASTER_DIS_MM        (1 << 0)
107 # define I2C_MASTER_DIS_FILT      (1 << 1)
108 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
109 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
110 # define FEAT_POWERDOWN_PREFILT   BIT(0)
111 # define FEAT_POWERDOWN_CSC       BIT(1)
112 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
113 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
114 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
115 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
116 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
117 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
118 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
119 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
120 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
121 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
122 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
123 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
124 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
125 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
126 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
127 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
128 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
129 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
130 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
131 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
132 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
133 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
134 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
135 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
136 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
137 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
138 # define VIP_CNTRL_3_X_TGL        (1 << 0)
139 # define VIP_CNTRL_3_H_TGL        (1 << 1)
140 # define VIP_CNTRL_3_V_TGL        (1 << 2)
141 # define VIP_CNTRL_3_EMB          (1 << 3)
142 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
143 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
144 # define VIP_CNTRL_3_DE_INT       (1 << 6)
145 # define VIP_CNTRL_3_EDGE         (1 << 7)
146 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
147 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
148 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
149 # define VIP_CNTRL_4_CCIR656      (1 << 4)
150 # define VIP_CNTRL_4_656_ALT      (1 << 5)
151 # define VIP_CNTRL_4_TST_656      (1 << 6)
152 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
153 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
154 # define VIP_CNTRL_5_CKCASE       (1 << 0)
155 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
156 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
157 # define MUX_AP_SELECT_I2S	  0x64
158 # define MUX_AP_SELECT_SPDIF	  0x40
159 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
160 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
161 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
162 # define MAT_CONTRL_MAT_BP        (1 << 2)
163 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
164 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
165 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
166 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
167 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
168 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
169 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
170 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
171 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
172 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
173 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
174 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
175 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
176 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
177 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
178 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
179 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
180 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
181 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
182 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
183 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
184 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
185 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
186 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
187 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
188 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
189 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
190 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
191 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
192 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
193 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
194 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
195 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
196 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
197 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
198 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
199 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
200 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
201 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
202 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
203 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
204 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
205 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
206 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
207 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
208 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
209 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
210 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
211 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
212 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
213 # define TBG_CNTRL_1_H_TGL        (1 << 0)
214 # define TBG_CNTRL_1_V_TGL        (1 << 1)
215 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
216 # define TBG_CNTRL_1_X_EXT        (1 << 3)
217 # define TBG_CNTRL_1_H_EXT        (1 << 4)
218 # define TBG_CNTRL_1_V_EXT        (1 << 5)
219 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
220 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
221 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
222 # define HVF_CNTRL_0_SM           (1 << 7)
223 # define HVF_CNTRL_0_RWB          (1 << 6)
224 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
225 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
226 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
227 # define HVF_CNTRL_1_FOR          (1 << 0)
228 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
229 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
230 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
231 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
232 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
233 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
234 # define I2S_FORMAT(x)            (((x) & 3) << 0)
235 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
236 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
237 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
238 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
239 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
240 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
241 
242 /* Page 02h: PLL settings */
243 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
244 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
245 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
246 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
247 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
248 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
249 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
250 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
251 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
252 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
253 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
254 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
255 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
256 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
257 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
258 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
259 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
260 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
261 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
262 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
263 # define AUDIO_DIV_SERCLK_1       0
264 # define AUDIO_DIV_SERCLK_2       1
265 # define AUDIO_DIV_SERCLK_4       2
266 # define AUDIO_DIV_SERCLK_8       3
267 # define AUDIO_DIV_SERCLK_16      4
268 # define AUDIO_DIV_SERCLK_32      5
269 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
270 # define SEL_CLK_SEL_CLK1         (1 << 0)
271 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
272 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
273 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
274 
275 
276 /* Page 09h: EDID Control */
277 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
278 /* next 127 successive registers are the EDID block */
279 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
280 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
281 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
282 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
283 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
284 
285 
286 /* Page 10h: information frames and packets */
287 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
288 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
289 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
290 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
291 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
292 
293 
294 /* Page 11h: audio settings and content info packets */
295 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
296 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
297 # define AIP_CNTRL_0_SWAP         (1 << 1)
298 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
299 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
300 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
301 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
302 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
303 # define CA_I2S_HBR_CHSTAT        (1 << 6)
304 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
305 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
306 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
307 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
308 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
309 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
310 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
311 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
312 # define CTS_N_K(x)               (((x) & 7) << 0)
313 # define CTS_N_M(x)               (((x) & 3) << 4)
314 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
315 # define ENC_CNTRL_RST_ENC        (1 << 0)
316 # define ENC_CNTRL_RST_SEL        (1 << 1)
317 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
318 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
319 # define DIP_FLAGS_ACR            (1 << 0)
320 # define DIP_FLAGS_GC             (1 << 1)
321 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
322 # define DIP_IF_FLAGS_IF1         (1 << 1)
323 # define DIP_IF_FLAGS_IF2         (1 << 2)
324 # define DIP_IF_FLAGS_IF3         (1 << 3)
325 # define DIP_IF_FLAGS_IF4         (1 << 4)
326 # define DIP_IF_FLAGS_IF5         (1 << 5)
327 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
328 
329 
330 /* Page 12h: HDCP and OTP */
331 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
332 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
333 # define TX4_PD_RAM               (1 << 1)
334 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
335 # define TX33_HDMI                (1 << 1)
336 
337 
338 /* Page 13h: Gamut related metadata packets */
339 
340 
341 
342 /* CEC registers: (not paged)
343  */
344 #define REG_CEC_INTSTATUS	  0xee		      /* read */
345 # define CEC_INTSTATUS_CEC	  (1 << 0)
346 # define CEC_INTSTATUS_HDMI	  (1 << 1)
347 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
348 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
349 #define REG_CEC_DES_FREQ2         0xf5
350 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
351 #define REG_CEC_CLK               0xf6
352 # define CEC_CLK_FRO              0x11
353 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
354 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
355 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
356 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
357 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
358 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
359 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
360 # define CEC_RXSHPDINT_RXSENS     BIT(0)
361 # define CEC_RXSHPDINT_HPD        BIT(1)
362 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
363 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
364 # define CEC_RXSHPDLEV_HPD        (1 << 1)
365 
366 #define REG_CEC_ENAMODS           0xff                /* read/write */
367 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
368 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
369 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
370 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
371 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
372 # define CEC_ENAMODS_EN_CEC       (1 << 0)
373 
374 
375 /* Device versions: */
376 #define TDA9989N2                 0x0101
377 #define TDA19989                  0x0201
378 #define TDA19989N2                0x0202
379 #define TDA19988                  0x0301
380 
381 static void
382 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
383 {
384 	u8 buf[] = {addr, val};
385 	struct i2c_msg msg = {
386 		.addr = priv->cec_addr,
387 		.len = 2,
388 		.buf = buf,
389 	};
390 	int ret;
391 
392 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
393 	if (ret < 0)
394 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
395 			ret, addr);
396 }
397 
398 static u8
399 cec_read(struct tda998x_priv *priv, u8 addr)
400 {
401 	u8 val;
402 	struct i2c_msg msg[2] = {
403 		{
404 			.addr = priv->cec_addr,
405 			.len = 1,
406 			.buf = &addr,
407 		}, {
408 			.addr = priv->cec_addr,
409 			.flags = I2C_M_RD,
410 			.len = 1,
411 			.buf = &val,
412 		},
413 	};
414 	int ret;
415 
416 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
417 	if (ret < 0) {
418 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
419 			ret, addr);
420 		val = 0;
421 	}
422 
423 	return val;
424 }
425 
426 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
427 {
428 	int val = cec_read(priv, REG_CEC_ENAMODS);
429 
430 	if (val < 0)
431 		return;
432 
433 	if (enable)
434 		val |= mods;
435 	else
436 		val &= ~mods;
437 
438 	cec_write(priv, REG_CEC_ENAMODS, val);
439 }
440 
441 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
442 {
443 	if (enable) {
444 		u8 val;
445 
446 		cec_write(priv, 0xf3, 0xc0);
447 		cec_write(priv, 0xf4, 0xd4);
448 
449 		/* Enable automatic calibration mode */
450 		val = cec_read(priv, REG_CEC_DES_FREQ2);
451 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
452 		cec_write(priv, REG_CEC_DES_FREQ2, val);
453 
454 		/* Enable free running oscillator */
455 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
456 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
457 
458 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
459 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
460 	} else {
461 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
462 	}
463 }
464 
465 /*
466  * Calibration for the internal oscillator: we need to set calibration mode,
467  * and then pulse the IRQ line low for a 10ms ± 1% period.
468  */
469 static void tda998x_cec_calibration(struct tda998x_priv *priv)
470 {
471 	struct gpio_desc *calib = priv->calib;
472 
473 	mutex_lock(&priv->edid_mutex);
474 	if (priv->hdmi->irq > 0)
475 		disable_irq(priv->hdmi->irq);
476 	gpiod_direction_output(calib, 1);
477 	tda998x_cec_set_calibration(priv, true);
478 
479 	local_irq_disable();
480 	gpiod_set_value(calib, 0);
481 	mdelay(10);
482 	gpiod_set_value(calib, 1);
483 	local_irq_enable();
484 
485 	tda998x_cec_set_calibration(priv, false);
486 	gpiod_direction_input(calib);
487 	if (priv->hdmi->irq > 0)
488 		enable_irq(priv->hdmi->irq);
489 	mutex_unlock(&priv->edid_mutex);
490 }
491 
492 static int tda998x_cec_hook_init(void *data)
493 {
494 	struct tda998x_priv *priv = data;
495 	struct gpio_desc *calib;
496 
497 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
498 	if (IS_ERR(calib)) {
499 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
500 			 PTR_ERR(calib));
501 		return PTR_ERR(calib);
502 	}
503 
504 	priv->calib = calib;
505 
506 	return 0;
507 }
508 
509 static void tda998x_cec_hook_exit(void *data)
510 {
511 	struct tda998x_priv *priv = data;
512 
513 	gpiod_put(priv->calib);
514 	priv->calib = NULL;
515 }
516 
517 static int tda998x_cec_hook_open(void *data)
518 {
519 	struct tda998x_priv *priv = data;
520 
521 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
522 	tda998x_cec_calibration(priv);
523 
524 	return 0;
525 }
526 
527 static void tda998x_cec_hook_release(void *data)
528 {
529 	struct tda998x_priv *priv = data;
530 
531 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
532 }
533 
534 static int
535 set_page(struct tda998x_priv *priv, u16 reg)
536 {
537 	if (REG2PAGE(reg) != priv->current_page) {
538 		struct i2c_client *client = priv->hdmi;
539 		u8 buf[] = {
540 				REG_CURPAGE, REG2PAGE(reg)
541 		};
542 		int ret = i2c_master_send(client, buf, sizeof(buf));
543 		if (ret < 0) {
544 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
545 					reg, ret);
546 			return ret;
547 		}
548 
549 		priv->current_page = REG2PAGE(reg);
550 	}
551 	return 0;
552 }
553 
554 static int
555 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
556 {
557 	struct i2c_client *client = priv->hdmi;
558 	u8 addr = REG2ADDR(reg);
559 	int ret;
560 
561 	mutex_lock(&priv->mutex);
562 	ret = set_page(priv, reg);
563 	if (ret < 0)
564 		goto out;
565 
566 	ret = i2c_master_send(client, &addr, sizeof(addr));
567 	if (ret < 0)
568 		goto fail;
569 
570 	ret = i2c_master_recv(client, buf, cnt);
571 	if (ret < 0)
572 		goto fail;
573 
574 	goto out;
575 
576 fail:
577 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
578 out:
579 	mutex_unlock(&priv->mutex);
580 	return ret;
581 }
582 
583 #define MAX_WRITE_RANGE_BUF 32
584 
585 static void
586 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
587 {
588 	struct i2c_client *client = priv->hdmi;
589 	/* This is the maximum size of the buffer passed in */
590 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
591 	int ret;
592 
593 	if (cnt > MAX_WRITE_RANGE_BUF) {
594 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
595 				MAX_WRITE_RANGE_BUF);
596 		return;
597 	}
598 
599 	buf[0] = REG2ADDR(reg);
600 	memcpy(&buf[1], p, cnt);
601 
602 	mutex_lock(&priv->mutex);
603 	ret = set_page(priv, reg);
604 	if (ret < 0)
605 		goto out;
606 
607 	ret = i2c_master_send(client, buf, cnt + 1);
608 	if (ret < 0)
609 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
610 out:
611 	mutex_unlock(&priv->mutex);
612 }
613 
614 static int
615 reg_read(struct tda998x_priv *priv, u16 reg)
616 {
617 	u8 val = 0;
618 	int ret;
619 
620 	ret = reg_read_range(priv, reg, &val, sizeof(val));
621 	if (ret < 0)
622 		return ret;
623 	return val;
624 }
625 
626 static void
627 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
628 {
629 	struct i2c_client *client = priv->hdmi;
630 	u8 buf[] = {REG2ADDR(reg), val};
631 	int ret;
632 
633 	mutex_lock(&priv->mutex);
634 	ret = set_page(priv, reg);
635 	if (ret < 0)
636 		goto out;
637 
638 	ret = i2c_master_send(client, buf, sizeof(buf));
639 	if (ret < 0)
640 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
641 out:
642 	mutex_unlock(&priv->mutex);
643 }
644 
645 static void
646 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
647 {
648 	struct i2c_client *client = priv->hdmi;
649 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
650 	int ret;
651 
652 	mutex_lock(&priv->mutex);
653 	ret = set_page(priv, reg);
654 	if (ret < 0)
655 		goto out;
656 
657 	ret = i2c_master_send(client, buf, sizeof(buf));
658 	if (ret < 0)
659 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
660 out:
661 	mutex_unlock(&priv->mutex);
662 }
663 
664 static void
665 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
666 {
667 	int old_val;
668 
669 	old_val = reg_read(priv, reg);
670 	if (old_val >= 0)
671 		reg_write(priv, reg, old_val | val);
672 }
673 
674 static void
675 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
676 {
677 	int old_val;
678 
679 	old_val = reg_read(priv, reg);
680 	if (old_val >= 0)
681 		reg_write(priv, reg, old_val & ~val);
682 }
683 
684 static void
685 tda998x_reset(struct tda998x_priv *priv)
686 {
687 	/* reset audio and i2c master: */
688 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
689 	msleep(50);
690 	reg_write(priv, REG_SOFTRESET, 0);
691 	msleep(50);
692 
693 	/* reset transmitter: */
694 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
695 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
696 
697 	/* PLL registers common configuration */
698 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
699 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
700 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
701 	reg_write(priv, REG_SERIALIZER,   0x00);
702 	reg_write(priv, REG_BUFFER_OUT,   0x00);
703 	reg_write(priv, REG_PLL_SCG1,     0x00);
704 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
705 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
706 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
707 	reg_write(priv, REG_PLL_SCGN2,    0x00);
708 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
709 	reg_write(priv, REG_PLL_SCGR2,    0x00);
710 	reg_write(priv, REG_PLL_SCG2,     0x10);
711 
712 	/* Write the default value MUX register */
713 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
714 }
715 
716 /*
717  * The TDA998x has a problem when trying to read the EDID close to a
718  * HPD assertion: it needs a delay of 100ms to avoid timing out while
719  * trying to read EDID data.
720  *
721  * However, tda998x_connector_get_modes() may be called at any moment
722  * after tda998x_connector_detect() indicates that we are connected, so
723  * we need to delay probing modes in tda998x_connector_get_modes() after
724  * we have seen a HPD inactive->active transition.  This code implements
725  * that delay.
726  */
727 static void tda998x_edid_delay_done(struct timer_list *t)
728 {
729 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
730 
731 	priv->edid_delay_active = false;
732 	wake_up(&priv->edid_delay_waitq);
733 	schedule_work(&priv->detect_work);
734 }
735 
736 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
737 {
738 	priv->edid_delay_active = true;
739 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
740 }
741 
742 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
743 {
744 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
745 }
746 
747 /*
748  * We need to run the KMS hotplug event helper outside of our threaded
749  * interrupt routine as this can call back into our get_modes method,
750  * which will want to make use of interrupts.
751  */
752 static void tda998x_detect_work(struct work_struct *work)
753 {
754 	struct tda998x_priv *priv =
755 		container_of(work, struct tda998x_priv, detect_work);
756 	struct drm_device *dev = priv->connector.dev;
757 
758 	if (dev)
759 		drm_kms_helper_hotplug_event(dev);
760 }
761 
762 /*
763  * only 2 interrupts may occur: screen plug/unplug and EDID read
764  */
765 static irqreturn_t tda998x_irq_thread(int irq, void *data)
766 {
767 	struct tda998x_priv *priv = data;
768 	u8 sta, cec, lvl, flag0, flag1, flag2;
769 	bool handled = false;
770 
771 	sta = cec_read(priv, REG_CEC_INTSTATUS);
772 	if (sta & CEC_INTSTATUS_HDMI) {
773 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
774 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
775 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
776 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
777 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
778 		DRM_DEBUG_DRIVER(
779 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
780 			sta, cec, lvl, flag0, flag1, flag2);
781 
782 		if (cec & CEC_RXSHPDINT_HPD) {
783 			if (lvl & CEC_RXSHPDLEV_HPD) {
784 				tda998x_edid_delay_start(priv);
785 			} else {
786 				schedule_work(&priv->detect_work);
787 				cec_notifier_set_phys_addr(priv->cec_notify,
788 						   CEC_PHYS_ADDR_INVALID);
789 			}
790 
791 			handled = true;
792 		}
793 
794 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
795 			priv->wq_edid_wait = 0;
796 			wake_up(&priv->wq_edid);
797 			handled = true;
798 		}
799 	}
800 
801 	return IRQ_RETVAL(handled);
802 }
803 
804 static void
805 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
806 		 union hdmi_infoframe *frame)
807 {
808 	u8 buf[MAX_WRITE_RANGE_BUF];
809 	ssize_t len;
810 
811 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
812 	if (len < 0) {
813 		dev_err(&priv->hdmi->dev,
814 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
815 			frame->any.type, len);
816 		return;
817 	}
818 
819 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
820 	reg_write_range(priv, addr, buf, len);
821 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
822 }
823 
824 static int tda998x_write_aif(struct tda998x_priv *priv,
825 			     struct hdmi_audio_infoframe *cea)
826 {
827 	union hdmi_infoframe frame;
828 
829 	frame.audio = *cea;
830 
831 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
832 
833 	return 0;
834 }
835 
836 static void
837 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
838 {
839 	union hdmi_infoframe frame;
840 
841 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
842 						 &priv->connector, mode);
843 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
844 
845 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
846 }
847 
848 /* Audio support */
849 
850 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
851 {
852 	if (on) {
853 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
854 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
855 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
856 	} else {
857 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
858 	}
859 }
860 
861 static int
862 tda998x_configure_audio(struct tda998x_priv *priv,
863 			struct tda998x_audio_params *params)
864 {
865 	u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
866 	u32 n;
867 
868 	/* Enable audio ports */
869 	reg_write(priv, REG_ENA_AP, params->config);
870 
871 	/* Set audio input source */
872 	switch (params->format) {
873 	case AFMT_SPDIF:
874 		reg_write(priv, REG_ENA_ACLK, 0);
875 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
876 		clksel_aip = AIP_CLKSEL_AIP_SPDIF;
877 		clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
878 		cts_n = CTS_N_M(3) | CTS_N_K(3);
879 		break;
880 
881 	case AFMT_I2S:
882 		reg_write(priv, REG_ENA_ACLK, 1);
883 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
884 		clksel_aip = AIP_CLKSEL_AIP_I2S;
885 		clksel_fs = AIP_CLKSEL_FS_ACLK;
886 		switch (params->sample_width) {
887 		case 16:
888 			cts_n = CTS_N_M(3) | CTS_N_K(1);
889 			break;
890 		case 18:
891 		case 20:
892 		case 24:
893 			cts_n = CTS_N_M(3) | CTS_N_K(2);
894 			break;
895 		default:
896 		case 32:
897 			cts_n = CTS_N_M(3) | CTS_N_K(3);
898 			break;
899 		}
900 		break;
901 
902 	default:
903 		dev_err(&priv->hdmi->dev, "Unsupported I2S format\n");
904 		return -EINVAL;
905 	}
906 
907 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
908 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
909 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
910 	reg_write(priv, REG_CTS_N, cts_n);
911 
912 	/*
913 	 * Audio input somehow depends on HDMI line rate which is
914 	 * related to pixclk. Testing showed that modes with pixclk
915 	 * >100MHz need a larger divider while <40MHz need the default.
916 	 * There is no detailed info in the datasheet, so we just
917 	 * assume 100MHz requires larger divider.
918 	 */
919 	adiv = AUDIO_DIV_SERCLK_8;
920 	if (priv->tmds_clock > 100000)
921 		adiv++;			/* AUDIO_DIV_SERCLK_16 */
922 
923 	/* S/PDIF asks for a larger divider */
924 	if (params->format == AFMT_SPDIF)
925 		adiv++;			/* AUDIO_DIV_SERCLK_16 or _32 */
926 
927 	reg_write(priv, REG_AUDIO_DIV, adiv);
928 
929 	/*
930 	 * This is the approximate value of N, which happens to be
931 	 * the recommended values for non-coherent clocks.
932 	 */
933 	n = 128 * params->sample_rate / 1000;
934 
935 	/* Write the CTS and N values */
936 	buf[0] = 0x44;
937 	buf[1] = 0x42;
938 	buf[2] = 0x01;
939 	buf[3] = n;
940 	buf[4] = n >> 8;
941 	buf[5] = n >> 16;
942 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
943 
944 	/* Set CTS clock reference */
945 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
946 
947 	/* Reset CTS generator */
948 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
949 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
950 
951 	/* Write the channel status
952 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
953 	 * there is a separate register for each I2S wire.
954 	 */
955 	buf[0] = params->status[0];
956 	buf[1] = params->status[1];
957 	buf[2] = params->status[3];
958 	buf[3] = params->status[4];
959 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
960 
961 	tda998x_audio_mute(priv, true);
962 	msleep(20);
963 	tda998x_audio_mute(priv, false);
964 
965 	return tda998x_write_aif(priv, &params->cea);
966 }
967 
968 static int tda998x_audio_hw_params(struct device *dev, void *data,
969 				   struct hdmi_codec_daifmt *daifmt,
970 				   struct hdmi_codec_params *params)
971 {
972 	struct tda998x_priv *priv = dev_get_drvdata(dev);
973 	int i, ret;
974 	struct tda998x_audio_params audio = {
975 		.sample_width = params->sample_width,
976 		.sample_rate = params->sample_rate,
977 		.cea = params->cea,
978 	};
979 
980 	memcpy(audio.status, params->iec.status,
981 	       min(sizeof(audio.status), sizeof(params->iec.status)));
982 
983 	switch (daifmt->fmt) {
984 	case HDMI_I2S:
985 		if (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
986 		    daifmt->bit_clk_master || daifmt->frame_clk_master) {
987 			dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
988 				daifmt->bit_clk_inv, daifmt->frame_clk_inv,
989 				daifmt->bit_clk_master,
990 				daifmt->frame_clk_master);
991 			return -EINVAL;
992 		}
993 		for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
994 			if (priv->audio_port[i].format == AFMT_I2S)
995 				audio.config = priv->audio_port[i].config;
996 		audio.format = AFMT_I2S;
997 		break;
998 	case HDMI_SPDIF:
999 		for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
1000 			if (priv->audio_port[i].format == AFMT_SPDIF)
1001 				audio.config = priv->audio_port[i].config;
1002 		audio.format = AFMT_SPDIF;
1003 		break;
1004 	default:
1005 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (audio.config == 0) {
1010 		dev_err(dev, "%s: No audio configuration found\n", __func__);
1011 		return -EINVAL;
1012 	}
1013 
1014 	mutex_lock(&priv->audio_mutex);
1015 	if (priv->supports_infoframes && priv->sink_has_audio)
1016 		ret = tda998x_configure_audio(priv, &audio);
1017 	else
1018 		ret = 0;
1019 
1020 	if (ret == 0)
1021 		priv->audio_params = audio;
1022 	mutex_unlock(&priv->audio_mutex);
1023 
1024 	return ret;
1025 }
1026 
1027 static void tda998x_audio_shutdown(struct device *dev, void *data)
1028 {
1029 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1030 
1031 	mutex_lock(&priv->audio_mutex);
1032 
1033 	reg_write(priv, REG_ENA_AP, 0);
1034 
1035 	priv->audio_params.format = AFMT_UNUSED;
1036 
1037 	mutex_unlock(&priv->audio_mutex);
1038 }
1039 
1040 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1041 {
1042 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1043 
1044 	mutex_lock(&priv->audio_mutex);
1045 
1046 	tda998x_audio_mute(priv, enable);
1047 
1048 	mutex_unlock(&priv->audio_mutex);
1049 	return 0;
1050 }
1051 
1052 static int tda998x_audio_get_eld(struct device *dev, void *data,
1053 				 uint8_t *buf, size_t len)
1054 {
1055 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1056 
1057 	mutex_lock(&priv->audio_mutex);
1058 	memcpy(buf, priv->connector.eld,
1059 	       min(sizeof(priv->connector.eld), len));
1060 	mutex_unlock(&priv->audio_mutex);
1061 
1062 	return 0;
1063 }
1064 
1065 static const struct hdmi_codec_ops audio_codec_ops = {
1066 	.hw_params = tda998x_audio_hw_params,
1067 	.audio_shutdown = tda998x_audio_shutdown,
1068 	.digital_mute = tda998x_audio_digital_mute,
1069 	.get_eld = tda998x_audio_get_eld,
1070 };
1071 
1072 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1073 				    struct device *dev)
1074 {
1075 	struct hdmi_codec_pdata codec_data = {
1076 		.ops = &audio_codec_ops,
1077 		.max_i2s_channels = 2,
1078 	};
1079 	int i;
1080 
1081 	for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) {
1082 		if (priv->audio_port[i].format == AFMT_I2S &&
1083 		    priv->audio_port[i].config != 0)
1084 			codec_data.i2s = 1;
1085 		if (priv->audio_port[i].format == AFMT_SPDIF &&
1086 		    priv->audio_port[i].config != 0)
1087 			codec_data.spdif = 1;
1088 	}
1089 
1090 	priv->audio_pdev = platform_device_register_data(
1091 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1092 		&codec_data, sizeof(codec_data));
1093 
1094 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1095 }
1096 
1097 /* DRM connector functions */
1098 
1099 static enum drm_connector_status
1100 tda998x_connector_detect(struct drm_connector *connector, bool force)
1101 {
1102 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1103 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1104 
1105 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1106 			connector_status_disconnected;
1107 }
1108 
1109 static void tda998x_connector_destroy(struct drm_connector *connector)
1110 {
1111 	drm_connector_cleanup(connector);
1112 }
1113 
1114 static const struct drm_connector_funcs tda998x_connector_funcs = {
1115 	.reset = drm_atomic_helper_connector_reset,
1116 	.fill_modes = drm_helper_probe_single_connector_modes,
1117 	.detect = tda998x_connector_detect,
1118 	.destroy = tda998x_connector_destroy,
1119 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1120 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1121 };
1122 
1123 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1124 {
1125 	struct tda998x_priv *priv = data;
1126 	u8 offset, segptr;
1127 	int ret, i;
1128 
1129 	offset = (blk & 1) ? 128 : 0;
1130 	segptr = blk / 2;
1131 
1132 	mutex_lock(&priv->edid_mutex);
1133 
1134 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1135 	reg_write(priv, REG_DDC_OFFS, offset);
1136 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1137 	reg_write(priv, REG_DDC_SEGM, segptr);
1138 
1139 	/* enable reading EDID: */
1140 	priv->wq_edid_wait = 1;
1141 	reg_write(priv, REG_EDID_CTRL, 0x1);
1142 
1143 	/* flag must be cleared by sw: */
1144 	reg_write(priv, REG_EDID_CTRL, 0x0);
1145 
1146 	/* wait for block read to complete: */
1147 	if (priv->hdmi->irq) {
1148 		i = wait_event_timeout(priv->wq_edid,
1149 					!priv->wq_edid_wait,
1150 					msecs_to_jiffies(100));
1151 		if (i < 0) {
1152 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1153 			ret = i;
1154 			goto failed;
1155 		}
1156 	} else {
1157 		for (i = 100; i > 0; i--) {
1158 			msleep(1);
1159 			ret = reg_read(priv, REG_INT_FLAGS_2);
1160 			if (ret < 0)
1161 				goto failed;
1162 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1163 				break;
1164 		}
1165 	}
1166 
1167 	if (i == 0) {
1168 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1169 		ret = -ETIMEDOUT;
1170 		goto failed;
1171 	}
1172 
1173 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1174 	if (ret != length) {
1175 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1176 			blk, ret);
1177 		goto failed;
1178 	}
1179 
1180 	ret = 0;
1181 
1182  failed:
1183 	mutex_unlock(&priv->edid_mutex);
1184 	return ret;
1185 }
1186 
1187 static int tda998x_connector_get_modes(struct drm_connector *connector)
1188 {
1189 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1190 	struct edid *edid;
1191 	int n;
1192 
1193 	/*
1194 	 * If we get killed while waiting for the HPD timeout, return
1195 	 * no modes found: we are not in a restartable path, so we
1196 	 * can't handle signals gracefully.
1197 	 */
1198 	if (tda998x_edid_delay_wait(priv))
1199 		return 0;
1200 
1201 	if (priv->rev == TDA19988)
1202 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1203 
1204 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1205 
1206 	if (priv->rev == TDA19988)
1207 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1208 
1209 	if (!edid) {
1210 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1211 		return 0;
1212 	}
1213 
1214 	drm_connector_update_edid_property(connector, edid);
1215 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1216 
1217 	mutex_lock(&priv->audio_mutex);
1218 	n = drm_add_edid_modes(connector, edid);
1219 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1220 	mutex_unlock(&priv->audio_mutex);
1221 
1222 	kfree(edid);
1223 
1224 	return n;
1225 }
1226 
1227 static struct drm_encoder *
1228 tda998x_connector_best_encoder(struct drm_connector *connector)
1229 {
1230 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1231 
1232 	return priv->bridge.encoder;
1233 }
1234 
1235 static
1236 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1237 	.get_modes = tda998x_connector_get_modes,
1238 	.best_encoder = tda998x_connector_best_encoder,
1239 };
1240 
1241 static int tda998x_connector_init(struct tda998x_priv *priv,
1242 				  struct drm_device *drm)
1243 {
1244 	struct drm_connector *connector = &priv->connector;
1245 	int ret;
1246 
1247 	connector->interlace_allowed = 1;
1248 
1249 	if (priv->hdmi->irq)
1250 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1251 	else
1252 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1253 			DRM_CONNECTOR_POLL_DISCONNECT;
1254 
1255 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1256 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1257 				 DRM_MODE_CONNECTOR_HDMIA);
1258 	if (ret)
1259 		return ret;
1260 
1261 	drm_connector_attach_encoder(&priv->connector,
1262 				     priv->bridge.encoder);
1263 
1264 	return 0;
1265 }
1266 
1267 /* DRM bridge functions */
1268 
1269 static int tda998x_bridge_attach(struct drm_bridge *bridge)
1270 {
1271 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1272 
1273 	return tda998x_connector_init(priv, bridge->dev);
1274 }
1275 
1276 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1277 {
1278 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1279 
1280 	drm_connector_cleanup(&priv->connector);
1281 }
1282 
1283 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1284 				     const struct drm_display_mode *mode)
1285 {
1286 	/* TDA19988 dotclock can go up to 165MHz */
1287 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1288 
1289 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1290 		return MODE_CLOCK_HIGH;
1291 	if (mode->htotal >= BIT(13))
1292 		return MODE_BAD_HVALUE;
1293 	if (mode->vtotal >= BIT(11))
1294 		return MODE_BAD_VVALUE;
1295 	return MODE_OK;
1296 }
1297 
1298 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1299 {
1300 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1301 
1302 	if (!priv->is_on) {
1303 		/* enable video ports, audio will be enabled later */
1304 		reg_write(priv, REG_ENA_VP_0, 0xff);
1305 		reg_write(priv, REG_ENA_VP_1, 0xff);
1306 		reg_write(priv, REG_ENA_VP_2, 0xff);
1307 		/* set muxing after enabling ports: */
1308 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1309 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1310 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1311 
1312 		priv->is_on = true;
1313 	}
1314 }
1315 
1316 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1317 {
1318 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1319 
1320 	if (priv->is_on) {
1321 		/* disable video ports */
1322 		reg_write(priv, REG_ENA_VP_0, 0x00);
1323 		reg_write(priv, REG_ENA_VP_1, 0x00);
1324 		reg_write(priv, REG_ENA_VP_2, 0x00);
1325 
1326 		priv->is_on = false;
1327 	}
1328 }
1329 
1330 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1331 				    const struct drm_display_mode *mode,
1332 				    const struct drm_display_mode *adjusted_mode)
1333 {
1334 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1335 	unsigned long tmds_clock;
1336 	u16 ref_pix, ref_line, n_pix, n_line;
1337 	u16 hs_pix_s, hs_pix_e;
1338 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1339 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1340 	u16 vwin1_line_s, vwin1_line_e;
1341 	u16 vwin2_line_s, vwin2_line_e;
1342 	u16 de_pix_s, de_pix_e;
1343 	u8 reg, div, rep;
1344 
1345 	/*
1346 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1347 	 * we get VESA style sync. TDA998x is using a reference pixel
1348 	 * relative to ITU to sync to the input frame and for output
1349 	 * sync generation. Currently, we are using reference detection
1350 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1351 	 * which is position of rising VS with coincident rising HS.
1352 	 *
1353 	 * Now there is some issues to take care of:
1354 	 * - HDMI data islands require sync-before-active
1355 	 * - TDA998x register values must be > 0 to be enabled
1356 	 * - REFLINE needs an additional offset of +1
1357 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1358 	 *
1359 	 * So we add +1 to all horizontal and vertical register values,
1360 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1361 	 */
1362 	n_pix        = mode->htotal;
1363 	n_line       = mode->vtotal;
1364 
1365 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1366 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1367 	de_pix_e     = mode->htotal;
1368 	de_pix_s     = mode->htotal - mode->hdisplay;
1369 	ref_pix      = 3 + hs_pix_s;
1370 
1371 	/*
1372 	 * Attached LCD controllers may generate broken sync. Allow
1373 	 * those to adjust the position of the rising VS edge by adding
1374 	 * HSKEW to ref_pix.
1375 	 */
1376 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1377 		ref_pix += adjusted_mode->hskew;
1378 
1379 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1380 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1381 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1382 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1383 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1384 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1385 		vs1_line_e   = vs1_line_s +
1386 			       mode->vsync_end - mode->vsync_start;
1387 		vwin2_line_s = vwin2_line_e = 0;
1388 		vs2_pix_s    = vs2_pix_e  = 0;
1389 		vs2_line_s   = vs2_line_e = 0;
1390 	} else {
1391 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1392 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1393 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1394 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1395 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1396 		vs1_line_e   = vs1_line_s +
1397 			       (mode->vsync_end - mode->vsync_start)/2;
1398 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1399 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1400 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1401 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1402 		vs2_line_e   = vs2_line_s +
1403 			       (mode->vsync_end - mode->vsync_start)/2;
1404 	}
1405 
1406 	tmds_clock = mode->clock;
1407 
1408 	/*
1409 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1410 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1411 	 *   0 - 800 to 1500 Msample/s
1412 	 *   1 - 400 to 800 Msample/s
1413 	 *   2 - 200 to 400 Msample/s
1414 	 *   3 - as 2 above
1415 	 */
1416 	for (div = 0; div < 3; div++)
1417 		if (80000 >> div <= tmds_clock)
1418 			break;
1419 
1420 	mutex_lock(&priv->audio_mutex);
1421 
1422 	/* mute the audio FIFO: */
1423 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1424 
1425 	/* set HDMI HDCP mode off: */
1426 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1427 	reg_clear(priv, REG_TX33, TX33_HDMI);
1428 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1429 
1430 	/* no pre-filter or interpolator: */
1431 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1432 			HVF_CNTRL_0_INTPOL(0));
1433 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1434 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1435 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1436 			VIP_CNTRL_4_BLC(0));
1437 
1438 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1439 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1440 					  PLL_SERIAL_3_SRL_DE);
1441 	reg_write(priv, REG_SERIALIZER, 0);
1442 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1443 
1444 	/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
1445 	rep = 0;
1446 	reg_write(priv, REG_RPT_CNTRL, 0);
1447 	reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
1448 			SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
1449 
1450 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1451 			PLL_SERIAL_2_SRL_PR(rep));
1452 
1453 	/* set color matrix bypass flag: */
1454 	reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1455 				MAT_CONTRL_MAT_SC(1));
1456 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1457 
1458 	/* set BIAS tmds value: */
1459 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1460 
1461 	/*
1462 	 * Sync on rising HSYNC/VSYNC
1463 	 */
1464 	reg = VIP_CNTRL_3_SYNC_HS;
1465 
1466 	/*
1467 	 * TDA19988 requires high-active sync at input stage,
1468 	 * so invert low-active sync provided by master encoder here
1469 	 */
1470 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1471 		reg |= VIP_CNTRL_3_H_TGL;
1472 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1473 		reg |= VIP_CNTRL_3_V_TGL;
1474 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1475 
1476 	reg_write(priv, REG_VIDFORMAT, 0x00);
1477 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1478 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1479 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1480 	reg_write16(priv, REG_NLINE_MSB, n_line);
1481 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1482 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1483 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1484 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1485 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1486 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1487 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1488 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1489 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1490 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1491 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1492 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1493 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1494 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1495 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1496 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1497 
1498 	if (priv->rev == TDA19988) {
1499 		/* let incoming pixels fill the active space (if any) */
1500 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1501 	}
1502 
1503 	/*
1504 	 * Always generate sync polarity relative to input sync and
1505 	 * revert input stage toggled sync at output stage
1506 	 */
1507 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1508 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1509 		reg |= TBG_CNTRL_1_H_TGL;
1510 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1511 		reg |= TBG_CNTRL_1_V_TGL;
1512 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1513 
1514 	/* must be last register set: */
1515 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1516 
1517 	priv->tmds_clock = adjusted_mode->clock;
1518 
1519 	/* CEA-861B section 6 says that:
1520 	 * CEA version 1 (CEA-861) has no support for infoframes.
1521 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1522 	 * and optional basic audio.
1523 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1524 	 * and optional digital audio, with audio infoframes.
1525 	 *
1526 	 * Since we only support generation of version 2 AVI infoframes,
1527 	 * ignore CEA version 2 and below (iow, behave as if we're a
1528 	 * CEA-861 source.)
1529 	 */
1530 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1531 
1532 	if (priv->supports_infoframes) {
1533 		/* We need to turn HDMI HDCP stuff on to get audio through */
1534 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1535 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1536 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1537 		reg_set(priv, REG_TX33, TX33_HDMI);
1538 
1539 		tda998x_write_avi(priv, adjusted_mode);
1540 
1541 		if (priv->audio_params.format != AFMT_UNUSED &&
1542 		    priv->sink_has_audio)
1543 			tda998x_configure_audio(priv, &priv->audio_params);
1544 	}
1545 
1546 	mutex_unlock(&priv->audio_mutex);
1547 }
1548 
1549 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1550 	.attach = tda998x_bridge_attach,
1551 	.detach = tda998x_bridge_detach,
1552 	.mode_valid = tda998x_bridge_mode_valid,
1553 	.disable = tda998x_bridge_disable,
1554 	.mode_set = tda998x_bridge_mode_set,
1555 	.enable = tda998x_bridge_enable,
1556 };
1557 
1558 /* I2C driver functions */
1559 
1560 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1561 				   struct device_node *np)
1562 {
1563 	const u32 *port_data;
1564 	u32 size;
1565 	int i;
1566 
1567 	port_data = of_get_property(np, "audio-ports", &size);
1568 	if (!port_data)
1569 		return 0;
1570 
1571 	size /= sizeof(u32);
1572 	if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) {
1573 		dev_err(&priv->hdmi->dev,
1574 			"Bad number of elements in audio-ports dt-property\n");
1575 		return -EINVAL;
1576 	}
1577 
1578 	size /= 2;
1579 
1580 	for (i = 0; i < size; i++) {
1581 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1582 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1583 
1584 		if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) {
1585 			dev_err(&priv->hdmi->dev,
1586 				"Bad audio format %u\n", afmt);
1587 			return -EINVAL;
1588 		}
1589 
1590 		priv->audio_port[i].format = afmt;
1591 		priv->audio_port[i].config = ena_ap;
1592 	}
1593 
1594 	if (priv->audio_port[0].format == priv->audio_port[1].format) {
1595 		dev_err(&priv->hdmi->dev,
1596 			"There can only be on I2S port and one SPDIF port\n");
1597 		return -EINVAL;
1598 	}
1599 	return 0;
1600 }
1601 
1602 static void tda998x_set_config(struct tda998x_priv *priv,
1603 			       const struct tda998x_encoder_params *p)
1604 {
1605 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1606 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1607 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1608 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1609 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1610 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1611 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1612 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1613 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1614 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1615 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1616 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1617 
1618 	priv->audio_params = p->audio_params;
1619 }
1620 
1621 static void tda998x_destroy(struct device *dev)
1622 {
1623 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1624 
1625 	drm_bridge_remove(&priv->bridge);
1626 
1627 	/* disable all IRQs and free the IRQ handler */
1628 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1629 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1630 
1631 	if (priv->audio_pdev)
1632 		platform_device_unregister(priv->audio_pdev);
1633 
1634 	if (priv->hdmi->irq)
1635 		free_irq(priv->hdmi->irq, priv);
1636 
1637 	del_timer_sync(&priv->edid_delay_timer);
1638 	cancel_work_sync(&priv->detect_work);
1639 
1640 	i2c_unregister_device(priv->cec);
1641 
1642 	if (priv->cec_notify)
1643 		cec_notifier_put(priv->cec_notify);
1644 }
1645 
1646 static int tda998x_create(struct device *dev)
1647 {
1648 	struct i2c_client *client = to_i2c_client(dev);
1649 	struct device_node *np = client->dev.of_node;
1650 	struct i2c_board_info cec_info;
1651 	struct tda998x_priv *priv;
1652 	u32 video;
1653 	int rev_lo, rev_hi, ret;
1654 
1655 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1656 	if (!priv)
1657 		return -ENOMEM;
1658 
1659 	dev_set_drvdata(dev, priv);
1660 
1661 	mutex_init(&priv->mutex);	/* protect the page access */
1662 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1663 	mutex_init(&priv->edid_mutex);
1664 	INIT_LIST_HEAD(&priv->bridge.list);
1665 	init_waitqueue_head(&priv->edid_delay_waitq);
1666 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1667 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1668 
1669 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1670 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1671 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1672 
1673 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1674 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1675 	priv->current_page = 0xff;
1676 	priv->hdmi = client;
1677 
1678 	/* wake up the device: */
1679 	cec_write(priv, REG_CEC_ENAMODS,
1680 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1681 
1682 	tda998x_reset(priv);
1683 
1684 	/* read version: */
1685 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1686 	if (rev_lo < 0) {
1687 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1688 		return rev_lo;
1689 	}
1690 
1691 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1692 	if (rev_hi < 0) {
1693 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1694 		return rev_hi;
1695 	}
1696 
1697 	priv->rev = rev_lo | rev_hi << 8;
1698 
1699 	/* mask off feature bits: */
1700 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1701 
1702 	switch (priv->rev) {
1703 	case TDA9989N2:
1704 		dev_info(dev, "found TDA9989 n2");
1705 		break;
1706 	case TDA19989:
1707 		dev_info(dev, "found TDA19989");
1708 		break;
1709 	case TDA19989N2:
1710 		dev_info(dev, "found TDA19989 n2");
1711 		break;
1712 	case TDA19988:
1713 		dev_info(dev, "found TDA19988");
1714 		break;
1715 	default:
1716 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1717 		return -ENXIO;
1718 	}
1719 
1720 	/* after reset, enable DDC: */
1721 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1722 
1723 	/* set clock on DDC channel: */
1724 	reg_write(priv, REG_TX3, 39);
1725 
1726 	/* if necessary, disable multi-master: */
1727 	if (priv->rev == TDA19989)
1728 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1729 
1730 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1731 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1732 
1733 	/* ensure interrupts are disabled */
1734 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1735 
1736 	/* clear pending interrupts */
1737 	cec_read(priv, REG_CEC_RXSHPDINT);
1738 	reg_read(priv, REG_INT_FLAGS_0);
1739 	reg_read(priv, REG_INT_FLAGS_1);
1740 	reg_read(priv, REG_INT_FLAGS_2);
1741 
1742 	/* initialize the optional IRQ */
1743 	if (client->irq) {
1744 		unsigned long irq_flags;
1745 
1746 		/* init read EDID waitqueue and HDP work */
1747 		init_waitqueue_head(&priv->wq_edid);
1748 
1749 		irq_flags =
1750 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1751 
1752 		priv->cec_glue.irq_flags = irq_flags;
1753 
1754 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1755 		ret = request_threaded_irq(client->irq, NULL,
1756 					   tda998x_irq_thread, irq_flags,
1757 					   "tda998x", priv);
1758 		if (ret) {
1759 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1760 				client->irq, ret);
1761 			goto err_irq;
1762 		}
1763 
1764 		/* enable HPD irq */
1765 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1766 	}
1767 
1768 	priv->cec_notify = cec_notifier_get(dev);
1769 	if (!priv->cec_notify) {
1770 		ret = -ENOMEM;
1771 		goto fail;
1772 	}
1773 
1774 	priv->cec_glue.parent = dev;
1775 	priv->cec_glue.data = priv;
1776 	priv->cec_glue.init = tda998x_cec_hook_init;
1777 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1778 	priv->cec_glue.open = tda998x_cec_hook_open;
1779 	priv->cec_glue.release = tda998x_cec_hook_release;
1780 
1781 	/*
1782 	 * Some TDA998x are actually two I2C devices merged onto one piece
1783 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1784 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1785 	 * is at the TDA9950 address, with the address pins strapped across
1786 	 * to the TDA998x address pins.  Hence, it always has the same
1787 	 * offset.
1788 	 */
1789 	memset(&cec_info, 0, sizeof(cec_info));
1790 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1791 	cec_info.addr = priv->cec_addr;
1792 	cec_info.platform_data = &priv->cec_glue;
1793 	cec_info.irq = client->irq;
1794 
1795 	priv->cec = i2c_new_device(client->adapter, &cec_info);
1796 	if (!priv->cec) {
1797 		ret = -ENODEV;
1798 		goto fail;
1799 	}
1800 
1801 	/* enable EDID read irq: */
1802 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1803 
1804 	if (np) {
1805 		/* get the device tree parameters */
1806 		ret = of_property_read_u32(np, "video-ports", &video);
1807 		if (ret == 0) {
1808 			priv->vip_cntrl_0 = video >> 16;
1809 			priv->vip_cntrl_1 = video >> 8;
1810 			priv->vip_cntrl_2 = video;
1811 		}
1812 
1813 		ret = tda998x_get_audio_ports(priv, np);
1814 		if (ret)
1815 			goto fail;
1816 
1817 		if (priv->audio_port[0].format != AFMT_UNUSED)
1818 			tda998x_audio_codec_init(priv, &client->dev);
1819 	} else if (dev->platform_data) {
1820 		tda998x_set_config(priv, dev->platform_data);
1821 	}
1822 
1823 	priv->bridge.funcs = &tda998x_bridge_funcs;
1824 #ifdef CONFIG_OF
1825 	priv->bridge.of_node = dev->of_node;
1826 #endif
1827 
1828 	drm_bridge_add(&priv->bridge);
1829 
1830 	return 0;
1831 
1832 fail:
1833 	tda998x_destroy(dev);
1834 err_irq:
1835 	return ret;
1836 }
1837 
1838 /* DRM encoder functions */
1839 
1840 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1841 {
1842 	drm_encoder_cleanup(encoder);
1843 }
1844 
1845 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1846 	.destroy = tda998x_encoder_destroy,
1847 };
1848 
1849 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
1850 {
1851 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1852 	u32 crtcs = 0;
1853 	int ret;
1854 
1855 	if (dev->of_node)
1856 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1857 
1858 	/* If no CRTCs were found, fall back to our old behaviour */
1859 	if (crtcs == 0) {
1860 		dev_warn(dev, "Falling back to first CRTC\n");
1861 		crtcs = 1 << 0;
1862 	}
1863 
1864 	priv->encoder.possible_crtcs = crtcs;
1865 
1866 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1867 			       DRM_MODE_ENCODER_TMDS, NULL);
1868 	if (ret)
1869 		goto err_encoder;
1870 
1871 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL);
1872 	if (ret)
1873 		goto err_bridge;
1874 
1875 	return 0;
1876 
1877 err_bridge:
1878 	drm_encoder_cleanup(&priv->encoder);
1879 err_encoder:
1880 	return ret;
1881 }
1882 
1883 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1884 {
1885 	struct drm_device *drm = data;
1886 
1887 	return tda998x_encoder_init(dev, drm);
1888 }
1889 
1890 static void tda998x_unbind(struct device *dev, struct device *master,
1891 			   void *data)
1892 {
1893 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1894 
1895 	drm_encoder_cleanup(&priv->encoder);
1896 }
1897 
1898 static const struct component_ops tda998x_ops = {
1899 	.bind = tda998x_bind,
1900 	.unbind = tda998x_unbind,
1901 };
1902 
1903 static int
1904 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1905 {
1906 	int ret;
1907 
1908 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1909 		dev_warn(&client->dev, "adapter does not support I2C\n");
1910 		return -EIO;
1911 	}
1912 
1913 	ret = tda998x_create(&client->dev);
1914 	if (ret)
1915 		return ret;
1916 
1917 	ret = component_add(&client->dev, &tda998x_ops);
1918 	if (ret)
1919 		tda998x_destroy(&client->dev);
1920 	return ret;
1921 }
1922 
1923 static int tda998x_remove(struct i2c_client *client)
1924 {
1925 	component_del(&client->dev, &tda998x_ops);
1926 	tda998x_destroy(&client->dev);
1927 	return 0;
1928 }
1929 
1930 #ifdef CONFIG_OF
1931 static const struct of_device_id tda998x_dt_ids[] = {
1932 	{ .compatible = "nxp,tda998x", },
1933 	{ }
1934 };
1935 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1936 #endif
1937 
1938 static const struct i2c_device_id tda998x_ids[] = {
1939 	{ "tda998x", 0 },
1940 	{ }
1941 };
1942 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1943 
1944 static struct i2c_driver tda998x_driver = {
1945 	.probe = tda998x_probe,
1946 	.remove = tda998x_remove,
1947 	.driver = {
1948 		.name = "tda998x",
1949 		.of_match_table = of_match_ptr(tda998x_dt_ids),
1950 	},
1951 	.id_table = tda998x_ids,
1952 };
1953 
1954 module_i2c_driver(tda998x_driver);
1955 
1956 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1957 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1958 MODULE_LICENSE("GPL");
1959