xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright (C) 2012 Texas Instruments
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/component.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/module.h>
22 #include <linux/platform_data/tda9950.h>
23 #include <linux/irq.h>
24 #include <sound/asoundef.h>
25 #include <sound/hdmi-codec.h>
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_atomic_helper.h>
29 #include <drm/drm_crtc_helper.h>
30 #include <drm/drm_edid.h>
31 #include <drm/drm_of.h>
32 #include <drm/i2c/tda998x.h>
33 
34 #include <media/cec-notifier.h>
35 
36 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
37 
38 struct tda998x_audio_port {
39 	u8 format;		/* AFMT_xxx */
40 	u8 config;		/* AP value */
41 };
42 
43 struct tda998x_priv {
44 	struct i2c_client *cec;
45 	struct i2c_client *hdmi;
46 	struct mutex mutex;
47 	u16 rev;
48 	u8 cec_addr;
49 	u8 current_page;
50 	bool is_on;
51 	bool supports_infoframes;
52 	bool sink_has_audio;
53 	u8 vip_cntrl_0;
54 	u8 vip_cntrl_1;
55 	u8 vip_cntrl_2;
56 	unsigned long tmds_clock;
57 	struct tda998x_audio_params audio_params;
58 
59 	struct platform_device *audio_pdev;
60 	struct mutex audio_mutex;
61 
62 	struct mutex edid_mutex;
63 	wait_queue_head_t wq_edid;
64 	volatile int wq_edid_wait;
65 
66 	struct work_struct detect_work;
67 	struct timer_list edid_delay_timer;
68 	wait_queue_head_t edid_delay_waitq;
69 	bool edid_delay_active;
70 
71 	struct drm_encoder encoder;
72 	struct drm_bridge bridge;
73 	struct drm_connector connector;
74 
75 	struct tda998x_audio_port audio_port[2];
76 	struct tda9950_glue cec_glue;
77 	struct gpio_desc *calib;
78 	struct cec_notifier *cec_notify;
79 };
80 
81 #define conn_to_tda998x_priv(x) \
82 	container_of(x, struct tda998x_priv, connector)
83 #define enc_to_tda998x_priv(x) \
84 	container_of(x, struct tda998x_priv, encoder)
85 #define bridge_to_tda998x_priv(x) \
86 	container_of(x, struct tda998x_priv, bridge)
87 
88 /* The TDA9988 series of devices use a paged register scheme.. to simplify
89  * things we encode the page # in upper bits of the register #.  To read/
90  * write a given register, we need to make sure CURPAGE register is set
91  * appropriately.  Which implies reads/writes are not atomic.  Fun!
92  */
93 
94 #define REG(page, addr) (((page) << 8) | (addr))
95 #define REG2ADDR(reg)   ((reg) & 0xff)
96 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
97 
98 #define REG_CURPAGE               0xff                /* write */
99 
100 
101 /* Page 00h: General Control */
102 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
103 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
104 # define MAIN_CNTRL0_SR           (1 << 0)
105 # define MAIN_CNTRL0_DECS         (1 << 1)
106 # define MAIN_CNTRL0_DEHS         (1 << 2)
107 # define MAIN_CNTRL0_CECS         (1 << 3)
108 # define MAIN_CNTRL0_CEHS         (1 << 4)
109 # define MAIN_CNTRL0_SCALER       (1 << 7)
110 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
111 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
112 # define SOFTRESET_AUDIO          (1 << 0)
113 # define SOFTRESET_I2C_MASTER     (1 << 1)
114 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
115 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
116 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
117 # define I2C_MASTER_DIS_MM        (1 << 0)
118 # define I2C_MASTER_DIS_FILT      (1 << 1)
119 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
120 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
121 # define FEAT_POWERDOWN_PREFILT   BIT(0)
122 # define FEAT_POWERDOWN_CSC       BIT(1)
123 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
124 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
125 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
126 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
127 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
128 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
129 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
130 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
131 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
132 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
133 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
134 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
135 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
136 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
137 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
138 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
139 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
140 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
141 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
142 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
143 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
144 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
145 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
146 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
147 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
148 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
149 # define VIP_CNTRL_3_X_TGL        (1 << 0)
150 # define VIP_CNTRL_3_H_TGL        (1 << 1)
151 # define VIP_CNTRL_3_V_TGL        (1 << 2)
152 # define VIP_CNTRL_3_EMB          (1 << 3)
153 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
154 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
155 # define VIP_CNTRL_3_DE_INT       (1 << 6)
156 # define VIP_CNTRL_3_EDGE         (1 << 7)
157 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
158 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
159 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
160 # define VIP_CNTRL_4_CCIR656      (1 << 4)
161 # define VIP_CNTRL_4_656_ALT      (1 << 5)
162 # define VIP_CNTRL_4_TST_656      (1 << 6)
163 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
164 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
165 # define VIP_CNTRL_5_CKCASE       (1 << 0)
166 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
167 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
168 # define MUX_AP_SELECT_I2S	  0x64
169 # define MUX_AP_SELECT_SPDIF	  0x40
170 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
171 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
172 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
173 # define MAT_CONTRL_MAT_BP        (1 << 2)
174 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
175 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
176 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
177 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
178 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
179 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
180 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
181 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
182 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
183 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
184 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
185 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
186 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
187 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
188 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
189 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
190 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
191 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
192 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
193 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
194 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
195 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
196 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
197 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
198 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
199 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
200 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
201 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
202 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
203 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
204 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
205 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
206 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
207 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
208 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
209 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
210 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
211 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
212 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
213 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
214 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
215 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
216 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
217 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
218 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
219 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
220 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
221 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
222 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
223 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
224 # define TBG_CNTRL_1_H_TGL        (1 << 0)
225 # define TBG_CNTRL_1_V_TGL        (1 << 1)
226 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
227 # define TBG_CNTRL_1_X_EXT        (1 << 3)
228 # define TBG_CNTRL_1_H_EXT        (1 << 4)
229 # define TBG_CNTRL_1_V_EXT        (1 << 5)
230 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
231 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
232 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
233 # define HVF_CNTRL_0_SM           (1 << 7)
234 # define HVF_CNTRL_0_RWB          (1 << 6)
235 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
236 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
237 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
238 # define HVF_CNTRL_1_FOR          (1 << 0)
239 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
240 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
241 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
242 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
243 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
244 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
245 # define I2S_FORMAT(x)            (((x) & 3) << 0)
246 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
247 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
248 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
249 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
250 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
251 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
252 
253 /* Page 02h: PLL settings */
254 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
255 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
256 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
257 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
258 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
259 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
260 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
261 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
262 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
263 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
264 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
265 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
266 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
267 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
268 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
269 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
270 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
271 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
272 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
273 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
274 # define AUDIO_DIV_SERCLK_1       0
275 # define AUDIO_DIV_SERCLK_2       1
276 # define AUDIO_DIV_SERCLK_4       2
277 # define AUDIO_DIV_SERCLK_8       3
278 # define AUDIO_DIV_SERCLK_16      4
279 # define AUDIO_DIV_SERCLK_32      5
280 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
281 # define SEL_CLK_SEL_CLK1         (1 << 0)
282 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
283 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
284 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
285 
286 
287 /* Page 09h: EDID Control */
288 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
289 /* next 127 successive registers are the EDID block */
290 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
291 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
292 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
293 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
294 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
295 
296 
297 /* Page 10h: information frames and packets */
298 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
299 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
300 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
301 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
302 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
303 
304 
305 /* Page 11h: audio settings and content info packets */
306 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
307 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
308 # define AIP_CNTRL_0_SWAP         (1 << 1)
309 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
310 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
311 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
312 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
313 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
314 # define CA_I2S_HBR_CHSTAT        (1 << 6)
315 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
316 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
317 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
318 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
319 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
320 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
321 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
322 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
323 # define CTS_N_K(x)               (((x) & 7) << 0)
324 # define CTS_N_M(x)               (((x) & 3) << 4)
325 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
326 # define ENC_CNTRL_RST_ENC        (1 << 0)
327 # define ENC_CNTRL_RST_SEL        (1 << 1)
328 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
329 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
330 # define DIP_FLAGS_ACR            (1 << 0)
331 # define DIP_FLAGS_GC             (1 << 1)
332 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
333 # define DIP_IF_FLAGS_IF1         (1 << 1)
334 # define DIP_IF_FLAGS_IF2         (1 << 2)
335 # define DIP_IF_FLAGS_IF3         (1 << 3)
336 # define DIP_IF_FLAGS_IF4         (1 << 4)
337 # define DIP_IF_FLAGS_IF5         (1 << 5)
338 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
339 
340 
341 /* Page 12h: HDCP and OTP */
342 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
343 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
344 # define TX4_PD_RAM               (1 << 1)
345 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
346 # define TX33_HDMI                (1 << 1)
347 
348 
349 /* Page 13h: Gamut related metadata packets */
350 
351 
352 
353 /* CEC registers: (not paged)
354  */
355 #define REG_CEC_INTSTATUS	  0xee		      /* read */
356 # define CEC_INTSTATUS_CEC	  (1 << 0)
357 # define CEC_INTSTATUS_HDMI	  (1 << 1)
358 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
359 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
360 #define REG_CEC_DES_FREQ2         0xf5
361 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
362 #define REG_CEC_CLK               0xf6
363 # define CEC_CLK_FRO              0x11
364 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
365 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
366 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
367 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
368 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
369 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
370 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
371 # define CEC_RXSHPDINT_RXSENS     BIT(0)
372 # define CEC_RXSHPDINT_HPD        BIT(1)
373 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
374 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
375 # define CEC_RXSHPDLEV_HPD        (1 << 1)
376 
377 #define REG_CEC_ENAMODS           0xff                /* read/write */
378 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
379 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
380 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
381 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
382 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
383 # define CEC_ENAMODS_EN_CEC       (1 << 0)
384 
385 
386 /* Device versions: */
387 #define TDA9989N2                 0x0101
388 #define TDA19989                  0x0201
389 #define TDA19989N2                0x0202
390 #define TDA19988                  0x0301
391 
392 static void
393 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
394 {
395 	u8 buf[] = {addr, val};
396 	struct i2c_msg msg = {
397 		.addr = priv->cec_addr,
398 		.len = 2,
399 		.buf = buf,
400 	};
401 	int ret;
402 
403 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
404 	if (ret < 0)
405 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
406 			ret, addr);
407 }
408 
409 static u8
410 cec_read(struct tda998x_priv *priv, u8 addr)
411 {
412 	u8 val;
413 	struct i2c_msg msg[2] = {
414 		{
415 			.addr = priv->cec_addr,
416 			.len = 1,
417 			.buf = &addr,
418 		}, {
419 			.addr = priv->cec_addr,
420 			.flags = I2C_M_RD,
421 			.len = 1,
422 			.buf = &val,
423 		},
424 	};
425 	int ret;
426 
427 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
428 	if (ret < 0) {
429 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
430 			ret, addr);
431 		val = 0;
432 	}
433 
434 	return val;
435 }
436 
437 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
438 {
439 	int val = cec_read(priv, REG_CEC_ENAMODS);
440 
441 	if (val < 0)
442 		return;
443 
444 	if (enable)
445 		val |= mods;
446 	else
447 		val &= ~mods;
448 
449 	cec_write(priv, REG_CEC_ENAMODS, val);
450 }
451 
452 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
453 {
454 	if (enable) {
455 		u8 val;
456 
457 		cec_write(priv, 0xf3, 0xc0);
458 		cec_write(priv, 0xf4, 0xd4);
459 
460 		/* Enable automatic calibration mode */
461 		val = cec_read(priv, REG_CEC_DES_FREQ2);
462 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
463 		cec_write(priv, REG_CEC_DES_FREQ2, val);
464 
465 		/* Enable free running oscillator */
466 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
467 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
468 
469 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
470 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
471 	} else {
472 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
473 	}
474 }
475 
476 /*
477  * Calibration for the internal oscillator: we need to set calibration mode,
478  * and then pulse the IRQ line low for a 10ms ± 1% period.
479  */
480 static void tda998x_cec_calibration(struct tda998x_priv *priv)
481 {
482 	struct gpio_desc *calib = priv->calib;
483 
484 	mutex_lock(&priv->edid_mutex);
485 	if (priv->hdmi->irq > 0)
486 		disable_irq(priv->hdmi->irq);
487 	gpiod_direction_output(calib, 1);
488 	tda998x_cec_set_calibration(priv, true);
489 
490 	local_irq_disable();
491 	gpiod_set_value(calib, 0);
492 	mdelay(10);
493 	gpiod_set_value(calib, 1);
494 	local_irq_enable();
495 
496 	tda998x_cec_set_calibration(priv, false);
497 	gpiod_direction_input(calib);
498 	if (priv->hdmi->irq > 0)
499 		enable_irq(priv->hdmi->irq);
500 	mutex_unlock(&priv->edid_mutex);
501 }
502 
503 static int tda998x_cec_hook_init(void *data)
504 {
505 	struct tda998x_priv *priv = data;
506 	struct gpio_desc *calib;
507 
508 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
509 	if (IS_ERR(calib)) {
510 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
511 			 PTR_ERR(calib));
512 		return PTR_ERR(calib);
513 	}
514 
515 	priv->calib = calib;
516 
517 	return 0;
518 }
519 
520 static void tda998x_cec_hook_exit(void *data)
521 {
522 	struct tda998x_priv *priv = data;
523 
524 	gpiod_put(priv->calib);
525 	priv->calib = NULL;
526 }
527 
528 static int tda998x_cec_hook_open(void *data)
529 {
530 	struct tda998x_priv *priv = data;
531 
532 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
533 	tda998x_cec_calibration(priv);
534 
535 	return 0;
536 }
537 
538 static void tda998x_cec_hook_release(void *data)
539 {
540 	struct tda998x_priv *priv = data;
541 
542 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
543 }
544 
545 static int
546 set_page(struct tda998x_priv *priv, u16 reg)
547 {
548 	if (REG2PAGE(reg) != priv->current_page) {
549 		struct i2c_client *client = priv->hdmi;
550 		u8 buf[] = {
551 				REG_CURPAGE, REG2PAGE(reg)
552 		};
553 		int ret = i2c_master_send(client, buf, sizeof(buf));
554 		if (ret < 0) {
555 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
556 					reg, ret);
557 			return ret;
558 		}
559 
560 		priv->current_page = REG2PAGE(reg);
561 	}
562 	return 0;
563 }
564 
565 static int
566 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
567 {
568 	struct i2c_client *client = priv->hdmi;
569 	u8 addr = REG2ADDR(reg);
570 	int ret;
571 
572 	mutex_lock(&priv->mutex);
573 	ret = set_page(priv, reg);
574 	if (ret < 0)
575 		goto out;
576 
577 	ret = i2c_master_send(client, &addr, sizeof(addr));
578 	if (ret < 0)
579 		goto fail;
580 
581 	ret = i2c_master_recv(client, buf, cnt);
582 	if (ret < 0)
583 		goto fail;
584 
585 	goto out;
586 
587 fail:
588 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
589 out:
590 	mutex_unlock(&priv->mutex);
591 	return ret;
592 }
593 
594 #define MAX_WRITE_RANGE_BUF 32
595 
596 static void
597 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
598 {
599 	struct i2c_client *client = priv->hdmi;
600 	/* This is the maximum size of the buffer passed in */
601 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
602 	int ret;
603 
604 	if (cnt > MAX_WRITE_RANGE_BUF) {
605 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
606 				MAX_WRITE_RANGE_BUF);
607 		return;
608 	}
609 
610 	buf[0] = REG2ADDR(reg);
611 	memcpy(&buf[1], p, cnt);
612 
613 	mutex_lock(&priv->mutex);
614 	ret = set_page(priv, reg);
615 	if (ret < 0)
616 		goto out;
617 
618 	ret = i2c_master_send(client, buf, cnt + 1);
619 	if (ret < 0)
620 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
621 out:
622 	mutex_unlock(&priv->mutex);
623 }
624 
625 static int
626 reg_read(struct tda998x_priv *priv, u16 reg)
627 {
628 	u8 val = 0;
629 	int ret;
630 
631 	ret = reg_read_range(priv, reg, &val, sizeof(val));
632 	if (ret < 0)
633 		return ret;
634 	return val;
635 }
636 
637 static void
638 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
639 {
640 	struct i2c_client *client = priv->hdmi;
641 	u8 buf[] = {REG2ADDR(reg), val};
642 	int ret;
643 
644 	mutex_lock(&priv->mutex);
645 	ret = set_page(priv, reg);
646 	if (ret < 0)
647 		goto out;
648 
649 	ret = i2c_master_send(client, buf, sizeof(buf));
650 	if (ret < 0)
651 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
652 out:
653 	mutex_unlock(&priv->mutex);
654 }
655 
656 static void
657 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
658 {
659 	struct i2c_client *client = priv->hdmi;
660 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
661 	int ret;
662 
663 	mutex_lock(&priv->mutex);
664 	ret = set_page(priv, reg);
665 	if (ret < 0)
666 		goto out;
667 
668 	ret = i2c_master_send(client, buf, sizeof(buf));
669 	if (ret < 0)
670 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
671 out:
672 	mutex_unlock(&priv->mutex);
673 }
674 
675 static void
676 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
677 {
678 	int old_val;
679 
680 	old_val = reg_read(priv, reg);
681 	if (old_val >= 0)
682 		reg_write(priv, reg, old_val | val);
683 }
684 
685 static void
686 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
687 {
688 	int old_val;
689 
690 	old_val = reg_read(priv, reg);
691 	if (old_val >= 0)
692 		reg_write(priv, reg, old_val & ~val);
693 }
694 
695 static void
696 tda998x_reset(struct tda998x_priv *priv)
697 {
698 	/* reset audio and i2c master: */
699 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
700 	msleep(50);
701 	reg_write(priv, REG_SOFTRESET, 0);
702 	msleep(50);
703 
704 	/* reset transmitter: */
705 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
706 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
707 
708 	/* PLL registers common configuration */
709 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
710 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
711 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
712 	reg_write(priv, REG_SERIALIZER,   0x00);
713 	reg_write(priv, REG_BUFFER_OUT,   0x00);
714 	reg_write(priv, REG_PLL_SCG1,     0x00);
715 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
716 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
717 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
718 	reg_write(priv, REG_PLL_SCGN2,    0x00);
719 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
720 	reg_write(priv, REG_PLL_SCGR2,    0x00);
721 	reg_write(priv, REG_PLL_SCG2,     0x10);
722 
723 	/* Write the default value MUX register */
724 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
725 }
726 
727 /*
728  * The TDA998x has a problem when trying to read the EDID close to a
729  * HPD assertion: it needs a delay of 100ms to avoid timing out while
730  * trying to read EDID data.
731  *
732  * However, tda998x_connector_get_modes() may be called at any moment
733  * after tda998x_connector_detect() indicates that we are connected, so
734  * we need to delay probing modes in tda998x_connector_get_modes() after
735  * we have seen a HPD inactive->active transition.  This code implements
736  * that delay.
737  */
738 static void tda998x_edid_delay_done(struct timer_list *t)
739 {
740 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
741 
742 	priv->edid_delay_active = false;
743 	wake_up(&priv->edid_delay_waitq);
744 	schedule_work(&priv->detect_work);
745 }
746 
747 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
748 {
749 	priv->edid_delay_active = true;
750 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
751 }
752 
753 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
754 {
755 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
756 }
757 
758 /*
759  * We need to run the KMS hotplug event helper outside of our threaded
760  * interrupt routine as this can call back into our get_modes method,
761  * which will want to make use of interrupts.
762  */
763 static void tda998x_detect_work(struct work_struct *work)
764 {
765 	struct tda998x_priv *priv =
766 		container_of(work, struct tda998x_priv, detect_work);
767 	struct drm_device *dev = priv->connector.dev;
768 
769 	if (dev)
770 		drm_kms_helper_hotplug_event(dev);
771 }
772 
773 /*
774  * only 2 interrupts may occur: screen plug/unplug and EDID read
775  */
776 static irqreturn_t tda998x_irq_thread(int irq, void *data)
777 {
778 	struct tda998x_priv *priv = data;
779 	u8 sta, cec, lvl, flag0, flag1, flag2;
780 	bool handled = false;
781 
782 	sta = cec_read(priv, REG_CEC_INTSTATUS);
783 	if (sta & CEC_INTSTATUS_HDMI) {
784 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
785 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
786 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
787 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
788 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
789 		DRM_DEBUG_DRIVER(
790 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
791 			sta, cec, lvl, flag0, flag1, flag2);
792 
793 		if (cec & CEC_RXSHPDINT_HPD) {
794 			if (lvl & CEC_RXSHPDLEV_HPD) {
795 				tda998x_edid_delay_start(priv);
796 			} else {
797 				schedule_work(&priv->detect_work);
798 				cec_notifier_set_phys_addr(priv->cec_notify,
799 						   CEC_PHYS_ADDR_INVALID);
800 			}
801 
802 			handled = true;
803 		}
804 
805 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
806 			priv->wq_edid_wait = 0;
807 			wake_up(&priv->wq_edid);
808 			handled = true;
809 		}
810 	}
811 
812 	return IRQ_RETVAL(handled);
813 }
814 
815 static void
816 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
817 		 union hdmi_infoframe *frame)
818 {
819 	u8 buf[MAX_WRITE_RANGE_BUF];
820 	ssize_t len;
821 
822 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
823 	if (len < 0) {
824 		dev_err(&priv->hdmi->dev,
825 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
826 			frame->any.type, len);
827 		return;
828 	}
829 
830 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
831 	reg_write_range(priv, addr, buf, len);
832 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
833 }
834 
835 static int tda998x_write_aif(struct tda998x_priv *priv,
836 			     struct hdmi_audio_infoframe *cea)
837 {
838 	union hdmi_infoframe frame;
839 
840 	frame.audio = *cea;
841 
842 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
843 
844 	return 0;
845 }
846 
847 static void
848 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
849 {
850 	union hdmi_infoframe frame;
851 
852 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode, false);
853 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
854 
855 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
856 }
857 
858 /* Audio support */
859 
860 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
861 {
862 	if (on) {
863 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
864 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
865 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
866 	} else {
867 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
868 	}
869 }
870 
871 static int
872 tda998x_configure_audio(struct tda998x_priv *priv,
873 			struct tda998x_audio_params *params)
874 {
875 	u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
876 	u32 n;
877 
878 	/* Enable audio ports */
879 	reg_write(priv, REG_ENA_AP, params->config);
880 
881 	/* Set audio input source */
882 	switch (params->format) {
883 	case AFMT_SPDIF:
884 		reg_write(priv, REG_ENA_ACLK, 0);
885 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
886 		clksel_aip = AIP_CLKSEL_AIP_SPDIF;
887 		clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
888 		cts_n = CTS_N_M(3) | CTS_N_K(3);
889 		break;
890 
891 	case AFMT_I2S:
892 		reg_write(priv, REG_ENA_ACLK, 1);
893 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
894 		clksel_aip = AIP_CLKSEL_AIP_I2S;
895 		clksel_fs = AIP_CLKSEL_FS_ACLK;
896 		switch (params->sample_width) {
897 		case 16:
898 			cts_n = CTS_N_M(3) | CTS_N_K(1);
899 			break;
900 		case 18:
901 		case 20:
902 		case 24:
903 			cts_n = CTS_N_M(3) | CTS_N_K(2);
904 			break;
905 		default:
906 		case 32:
907 			cts_n = CTS_N_M(3) | CTS_N_K(3);
908 			break;
909 		}
910 		break;
911 
912 	default:
913 		dev_err(&priv->hdmi->dev, "Unsupported I2S format\n");
914 		return -EINVAL;
915 	}
916 
917 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
918 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
919 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
920 	reg_write(priv, REG_CTS_N, cts_n);
921 
922 	/*
923 	 * Audio input somehow depends on HDMI line rate which is
924 	 * related to pixclk. Testing showed that modes with pixclk
925 	 * >100MHz need a larger divider while <40MHz need the default.
926 	 * There is no detailed info in the datasheet, so we just
927 	 * assume 100MHz requires larger divider.
928 	 */
929 	adiv = AUDIO_DIV_SERCLK_8;
930 	if (priv->tmds_clock > 100000)
931 		adiv++;			/* AUDIO_DIV_SERCLK_16 */
932 
933 	/* S/PDIF asks for a larger divider */
934 	if (params->format == AFMT_SPDIF)
935 		adiv++;			/* AUDIO_DIV_SERCLK_16 or _32 */
936 
937 	reg_write(priv, REG_AUDIO_DIV, adiv);
938 
939 	/*
940 	 * This is the approximate value of N, which happens to be
941 	 * the recommended values for non-coherent clocks.
942 	 */
943 	n = 128 * params->sample_rate / 1000;
944 
945 	/* Write the CTS and N values */
946 	buf[0] = 0x44;
947 	buf[1] = 0x42;
948 	buf[2] = 0x01;
949 	buf[3] = n;
950 	buf[4] = n >> 8;
951 	buf[5] = n >> 16;
952 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
953 
954 	/* Set CTS clock reference */
955 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
956 
957 	/* Reset CTS generator */
958 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
959 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
960 
961 	/* Write the channel status
962 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
963 	 * there is a separate register for each I2S wire.
964 	 */
965 	buf[0] = params->status[0];
966 	buf[1] = params->status[1];
967 	buf[2] = params->status[3];
968 	buf[3] = params->status[4];
969 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
970 
971 	tda998x_audio_mute(priv, true);
972 	msleep(20);
973 	tda998x_audio_mute(priv, false);
974 
975 	return tda998x_write_aif(priv, &params->cea);
976 }
977 
978 static int tda998x_audio_hw_params(struct device *dev, void *data,
979 				   struct hdmi_codec_daifmt *daifmt,
980 				   struct hdmi_codec_params *params)
981 {
982 	struct tda998x_priv *priv = dev_get_drvdata(dev);
983 	int i, ret;
984 	struct tda998x_audio_params audio = {
985 		.sample_width = params->sample_width,
986 		.sample_rate = params->sample_rate,
987 		.cea = params->cea,
988 	};
989 
990 	memcpy(audio.status, params->iec.status,
991 	       min(sizeof(audio.status), sizeof(params->iec.status)));
992 
993 	switch (daifmt->fmt) {
994 	case HDMI_I2S:
995 		if (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
996 		    daifmt->bit_clk_master || daifmt->frame_clk_master) {
997 			dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
998 				daifmt->bit_clk_inv, daifmt->frame_clk_inv,
999 				daifmt->bit_clk_master,
1000 				daifmt->frame_clk_master);
1001 			return -EINVAL;
1002 		}
1003 		for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
1004 			if (priv->audio_port[i].format == AFMT_I2S)
1005 				audio.config = priv->audio_port[i].config;
1006 		audio.format = AFMT_I2S;
1007 		break;
1008 	case HDMI_SPDIF:
1009 		for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
1010 			if (priv->audio_port[i].format == AFMT_SPDIF)
1011 				audio.config = priv->audio_port[i].config;
1012 		audio.format = AFMT_SPDIF;
1013 		break;
1014 	default:
1015 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1016 		return -EINVAL;
1017 	}
1018 
1019 	if (audio.config == 0) {
1020 		dev_err(dev, "%s: No audio configuration found\n", __func__);
1021 		return -EINVAL;
1022 	}
1023 
1024 	mutex_lock(&priv->audio_mutex);
1025 	if (priv->supports_infoframes && priv->sink_has_audio)
1026 		ret = tda998x_configure_audio(priv, &audio);
1027 	else
1028 		ret = 0;
1029 
1030 	if (ret == 0)
1031 		priv->audio_params = audio;
1032 	mutex_unlock(&priv->audio_mutex);
1033 
1034 	return ret;
1035 }
1036 
1037 static void tda998x_audio_shutdown(struct device *dev, void *data)
1038 {
1039 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1040 
1041 	mutex_lock(&priv->audio_mutex);
1042 
1043 	reg_write(priv, REG_ENA_AP, 0);
1044 
1045 	priv->audio_params.format = AFMT_UNUSED;
1046 
1047 	mutex_unlock(&priv->audio_mutex);
1048 }
1049 
1050 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
1051 {
1052 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1053 
1054 	mutex_lock(&priv->audio_mutex);
1055 
1056 	tda998x_audio_mute(priv, enable);
1057 
1058 	mutex_unlock(&priv->audio_mutex);
1059 	return 0;
1060 }
1061 
1062 static int tda998x_audio_get_eld(struct device *dev, void *data,
1063 				 uint8_t *buf, size_t len)
1064 {
1065 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1066 
1067 	mutex_lock(&priv->audio_mutex);
1068 	memcpy(buf, priv->connector.eld,
1069 	       min(sizeof(priv->connector.eld), len));
1070 	mutex_unlock(&priv->audio_mutex);
1071 
1072 	return 0;
1073 }
1074 
1075 static const struct hdmi_codec_ops audio_codec_ops = {
1076 	.hw_params = tda998x_audio_hw_params,
1077 	.audio_shutdown = tda998x_audio_shutdown,
1078 	.digital_mute = tda998x_audio_digital_mute,
1079 	.get_eld = tda998x_audio_get_eld,
1080 };
1081 
1082 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1083 				    struct device *dev)
1084 {
1085 	struct hdmi_codec_pdata codec_data = {
1086 		.ops = &audio_codec_ops,
1087 		.max_i2s_channels = 2,
1088 	};
1089 	int i;
1090 
1091 	for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) {
1092 		if (priv->audio_port[i].format == AFMT_I2S &&
1093 		    priv->audio_port[i].config != 0)
1094 			codec_data.i2s = 1;
1095 		if (priv->audio_port[i].format == AFMT_SPDIF &&
1096 		    priv->audio_port[i].config != 0)
1097 			codec_data.spdif = 1;
1098 	}
1099 
1100 	priv->audio_pdev = platform_device_register_data(
1101 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1102 		&codec_data, sizeof(codec_data));
1103 
1104 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1105 }
1106 
1107 /* DRM connector functions */
1108 
1109 static enum drm_connector_status
1110 tda998x_connector_detect(struct drm_connector *connector, bool force)
1111 {
1112 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1113 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1114 
1115 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1116 			connector_status_disconnected;
1117 }
1118 
1119 static void tda998x_connector_destroy(struct drm_connector *connector)
1120 {
1121 	drm_connector_cleanup(connector);
1122 }
1123 
1124 static const struct drm_connector_funcs tda998x_connector_funcs = {
1125 	.dpms = drm_helper_connector_dpms,
1126 	.reset = drm_atomic_helper_connector_reset,
1127 	.fill_modes = drm_helper_probe_single_connector_modes,
1128 	.detect = tda998x_connector_detect,
1129 	.destroy = tda998x_connector_destroy,
1130 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1131 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1132 };
1133 
1134 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1135 {
1136 	struct tda998x_priv *priv = data;
1137 	u8 offset, segptr;
1138 	int ret, i;
1139 
1140 	offset = (blk & 1) ? 128 : 0;
1141 	segptr = blk / 2;
1142 
1143 	mutex_lock(&priv->edid_mutex);
1144 
1145 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1146 	reg_write(priv, REG_DDC_OFFS, offset);
1147 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1148 	reg_write(priv, REG_DDC_SEGM, segptr);
1149 
1150 	/* enable reading EDID: */
1151 	priv->wq_edid_wait = 1;
1152 	reg_write(priv, REG_EDID_CTRL, 0x1);
1153 
1154 	/* flag must be cleared by sw: */
1155 	reg_write(priv, REG_EDID_CTRL, 0x0);
1156 
1157 	/* wait for block read to complete: */
1158 	if (priv->hdmi->irq) {
1159 		i = wait_event_timeout(priv->wq_edid,
1160 					!priv->wq_edid_wait,
1161 					msecs_to_jiffies(100));
1162 		if (i < 0) {
1163 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1164 			ret = i;
1165 			goto failed;
1166 		}
1167 	} else {
1168 		for (i = 100; i > 0; i--) {
1169 			msleep(1);
1170 			ret = reg_read(priv, REG_INT_FLAGS_2);
1171 			if (ret < 0)
1172 				goto failed;
1173 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1174 				break;
1175 		}
1176 	}
1177 
1178 	if (i == 0) {
1179 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1180 		ret = -ETIMEDOUT;
1181 		goto failed;
1182 	}
1183 
1184 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1185 	if (ret != length) {
1186 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1187 			blk, ret);
1188 		goto failed;
1189 	}
1190 
1191 	ret = 0;
1192 
1193  failed:
1194 	mutex_unlock(&priv->edid_mutex);
1195 	return ret;
1196 }
1197 
1198 static int tda998x_connector_get_modes(struct drm_connector *connector)
1199 {
1200 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1201 	struct edid *edid;
1202 	int n;
1203 
1204 	/*
1205 	 * If we get killed while waiting for the HPD timeout, return
1206 	 * no modes found: we are not in a restartable path, so we
1207 	 * can't handle signals gracefully.
1208 	 */
1209 	if (tda998x_edid_delay_wait(priv))
1210 		return 0;
1211 
1212 	if (priv->rev == TDA19988)
1213 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1214 
1215 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1216 
1217 	if (priv->rev == TDA19988)
1218 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1219 
1220 	if (!edid) {
1221 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1222 		return 0;
1223 	}
1224 
1225 	drm_connector_update_edid_property(connector, edid);
1226 	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1227 
1228 	mutex_lock(&priv->audio_mutex);
1229 	n = drm_add_edid_modes(connector, edid);
1230 	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1231 	mutex_unlock(&priv->audio_mutex);
1232 
1233 	kfree(edid);
1234 
1235 	return n;
1236 }
1237 
1238 static struct drm_encoder *
1239 tda998x_connector_best_encoder(struct drm_connector *connector)
1240 {
1241 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1242 
1243 	return priv->bridge.encoder;
1244 }
1245 
1246 static
1247 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1248 	.get_modes = tda998x_connector_get_modes,
1249 	.best_encoder = tda998x_connector_best_encoder,
1250 };
1251 
1252 static int tda998x_connector_init(struct tda998x_priv *priv,
1253 				  struct drm_device *drm)
1254 {
1255 	struct drm_connector *connector = &priv->connector;
1256 	int ret;
1257 
1258 	connector->interlace_allowed = 1;
1259 
1260 	if (priv->hdmi->irq)
1261 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1262 	else
1263 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1264 			DRM_CONNECTOR_POLL_DISCONNECT;
1265 
1266 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1267 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1268 				 DRM_MODE_CONNECTOR_HDMIA);
1269 	if (ret)
1270 		return ret;
1271 
1272 	drm_connector_attach_encoder(&priv->connector,
1273 				     priv->bridge.encoder);
1274 
1275 	return 0;
1276 }
1277 
1278 /* DRM bridge functions */
1279 
1280 static int tda998x_bridge_attach(struct drm_bridge *bridge)
1281 {
1282 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1283 
1284 	return tda998x_connector_init(priv, bridge->dev);
1285 }
1286 
1287 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1288 {
1289 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1290 
1291 	drm_connector_cleanup(&priv->connector);
1292 }
1293 
1294 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1295 				     const struct drm_display_mode *mode)
1296 {
1297 	/* TDA19988 dotclock can go up to 165MHz */
1298 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1299 
1300 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1301 		return MODE_CLOCK_HIGH;
1302 	if (mode->htotal >= BIT(13))
1303 		return MODE_BAD_HVALUE;
1304 	if (mode->vtotal >= BIT(11))
1305 		return MODE_BAD_VVALUE;
1306 	return MODE_OK;
1307 }
1308 
1309 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1310 {
1311 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1312 
1313 	if (!priv->is_on) {
1314 		/* enable video ports, audio will be enabled later */
1315 		reg_write(priv, REG_ENA_VP_0, 0xff);
1316 		reg_write(priv, REG_ENA_VP_1, 0xff);
1317 		reg_write(priv, REG_ENA_VP_2, 0xff);
1318 		/* set muxing after enabling ports: */
1319 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1320 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1321 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1322 
1323 		priv->is_on = true;
1324 	}
1325 }
1326 
1327 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1328 {
1329 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1330 
1331 	if (priv->is_on) {
1332 		/* disable video ports */
1333 		reg_write(priv, REG_ENA_VP_0, 0x00);
1334 		reg_write(priv, REG_ENA_VP_1, 0x00);
1335 		reg_write(priv, REG_ENA_VP_2, 0x00);
1336 
1337 		priv->is_on = false;
1338 	}
1339 }
1340 
1341 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1342 				    struct drm_display_mode *mode,
1343 				    struct drm_display_mode *adjusted_mode)
1344 {
1345 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1346 	unsigned long tmds_clock;
1347 	u16 ref_pix, ref_line, n_pix, n_line;
1348 	u16 hs_pix_s, hs_pix_e;
1349 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1350 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1351 	u16 vwin1_line_s, vwin1_line_e;
1352 	u16 vwin2_line_s, vwin2_line_e;
1353 	u16 de_pix_s, de_pix_e;
1354 	u8 reg, div, rep;
1355 
1356 	/*
1357 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1358 	 * we get VESA style sync. TDA998x is using a reference pixel
1359 	 * relative to ITU to sync to the input frame and for output
1360 	 * sync generation. Currently, we are using reference detection
1361 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1362 	 * which is position of rising VS with coincident rising HS.
1363 	 *
1364 	 * Now there is some issues to take care of:
1365 	 * - HDMI data islands require sync-before-active
1366 	 * - TDA998x register values must be > 0 to be enabled
1367 	 * - REFLINE needs an additional offset of +1
1368 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1369 	 *
1370 	 * So we add +1 to all horizontal and vertical register values,
1371 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1372 	 */
1373 	n_pix        = mode->htotal;
1374 	n_line       = mode->vtotal;
1375 
1376 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1377 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1378 	de_pix_e     = mode->htotal;
1379 	de_pix_s     = mode->htotal - mode->hdisplay;
1380 	ref_pix      = 3 + hs_pix_s;
1381 
1382 	/*
1383 	 * Attached LCD controllers may generate broken sync. Allow
1384 	 * those to adjust the position of the rising VS edge by adding
1385 	 * HSKEW to ref_pix.
1386 	 */
1387 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1388 		ref_pix += adjusted_mode->hskew;
1389 
1390 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1391 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1392 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1393 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1394 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1395 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1396 		vs1_line_e   = vs1_line_s +
1397 			       mode->vsync_end - mode->vsync_start;
1398 		vwin2_line_s = vwin2_line_e = 0;
1399 		vs2_pix_s    = vs2_pix_e  = 0;
1400 		vs2_line_s   = vs2_line_e = 0;
1401 	} else {
1402 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1403 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1404 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1405 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1406 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1407 		vs1_line_e   = vs1_line_s +
1408 			       (mode->vsync_end - mode->vsync_start)/2;
1409 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1410 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1411 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1412 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1413 		vs2_line_e   = vs2_line_s +
1414 			       (mode->vsync_end - mode->vsync_start)/2;
1415 	}
1416 
1417 	tmds_clock = mode->clock;
1418 
1419 	/*
1420 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1421 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1422 	 *   0 - 800 to 1500 Msample/s
1423 	 *   1 - 400 to 800 Msample/s
1424 	 *   2 - 200 to 400 Msample/s
1425 	 *   3 - as 2 above
1426 	 */
1427 	for (div = 0; div < 3; div++)
1428 		if (80000 >> div <= tmds_clock)
1429 			break;
1430 
1431 	mutex_lock(&priv->audio_mutex);
1432 
1433 	/* mute the audio FIFO: */
1434 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1435 
1436 	/* set HDMI HDCP mode off: */
1437 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1438 	reg_clear(priv, REG_TX33, TX33_HDMI);
1439 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1440 
1441 	/* no pre-filter or interpolator: */
1442 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1443 			HVF_CNTRL_0_INTPOL(0));
1444 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1445 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1446 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1447 			VIP_CNTRL_4_BLC(0));
1448 
1449 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1450 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1451 					  PLL_SERIAL_3_SRL_DE);
1452 	reg_write(priv, REG_SERIALIZER, 0);
1453 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1454 
1455 	/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
1456 	rep = 0;
1457 	reg_write(priv, REG_RPT_CNTRL, 0);
1458 	reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
1459 			SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
1460 
1461 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1462 			PLL_SERIAL_2_SRL_PR(rep));
1463 
1464 	/* set color matrix bypass flag: */
1465 	reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1466 				MAT_CONTRL_MAT_SC(1));
1467 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1468 
1469 	/* set BIAS tmds value: */
1470 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1471 
1472 	/*
1473 	 * Sync on rising HSYNC/VSYNC
1474 	 */
1475 	reg = VIP_CNTRL_3_SYNC_HS;
1476 
1477 	/*
1478 	 * TDA19988 requires high-active sync at input stage,
1479 	 * so invert low-active sync provided by master encoder here
1480 	 */
1481 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1482 		reg |= VIP_CNTRL_3_H_TGL;
1483 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1484 		reg |= VIP_CNTRL_3_V_TGL;
1485 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1486 
1487 	reg_write(priv, REG_VIDFORMAT, 0x00);
1488 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1489 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1490 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1491 	reg_write16(priv, REG_NLINE_MSB, n_line);
1492 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1493 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1494 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1495 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1496 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1497 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1498 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1499 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1500 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1501 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1502 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1503 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1504 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1505 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1506 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1507 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1508 
1509 	if (priv->rev == TDA19988) {
1510 		/* let incoming pixels fill the active space (if any) */
1511 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1512 	}
1513 
1514 	/*
1515 	 * Always generate sync polarity relative to input sync and
1516 	 * revert input stage toggled sync at output stage
1517 	 */
1518 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1519 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1520 		reg |= TBG_CNTRL_1_H_TGL;
1521 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1522 		reg |= TBG_CNTRL_1_V_TGL;
1523 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1524 
1525 	/* must be last register set: */
1526 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1527 
1528 	priv->tmds_clock = adjusted_mode->clock;
1529 
1530 	/* CEA-861B section 6 says that:
1531 	 * CEA version 1 (CEA-861) has no support for infoframes.
1532 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1533 	 * and optional basic audio.
1534 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1535 	 * and optional digital audio, with audio infoframes.
1536 	 *
1537 	 * Since we only support generation of version 2 AVI infoframes,
1538 	 * ignore CEA version 2 and below (iow, behave as if we're a
1539 	 * CEA-861 source.)
1540 	 */
1541 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1542 
1543 	if (priv->supports_infoframes) {
1544 		/* We need to turn HDMI HDCP stuff on to get audio through */
1545 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1546 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1547 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1548 		reg_set(priv, REG_TX33, TX33_HDMI);
1549 
1550 		tda998x_write_avi(priv, adjusted_mode);
1551 
1552 		if (priv->audio_params.format != AFMT_UNUSED &&
1553 		    priv->sink_has_audio)
1554 			tda998x_configure_audio(priv, &priv->audio_params);
1555 	}
1556 
1557 	mutex_unlock(&priv->audio_mutex);
1558 }
1559 
1560 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1561 	.attach = tda998x_bridge_attach,
1562 	.detach = tda998x_bridge_detach,
1563 	.mode_valid = tda998x_bridge_mode_valid,
1564 	.disable = tda998x_bridge_disable,
1565 	.mode_set = tda998x_bridge_mode_set,
1566 	.enable = tda998x_bridge_enable,
1567 };
1568 
1569 /* I2C driver functions */
1570 
1571 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1572 				   struct device_node *np)
1573 {
1574 	const u32 *port_data;
1575 	u32 size;
1576 	int i;
1577 
1578 	port_data = of_get_property(np, "audio-ports", &size);
1579 	if (!port_data)
1580 		return 0;
1581 
1582 	size /= sizeof(u32);
1583 	if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) {
1584 		dev_err(&priv->hdmi->dev,
1585 			"Bad number of elements in audio-ports dt-property\n");
1586 		return -EINVAL;
1587 	}
1588 
1589 	size /= 2;
1590 
1591 	for (i = 0; i < size; i++) {
1592 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1593 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1594 
1595 		if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) {
1596 			dev_err(&priv->hdmi->dev,
1597 				"Bad audio format %u\n", afmt);
1598 			return -EINVAL;
1599 		}
1600 
1601 		priv->audio_port[i].format = afmt;
1602 		priv->audio_port[i].config = ena_ap;
1603 	}
1604 
1605 	if (priv->audio_port[0].format == priv->audio_port[1].format) {
1606 		dev_err(&priv->hdmi->dev,
1607 			"There can only be on I2S port and one SPDIF port\n");
1608 		return -EINVAL;
1609 	}
1610 	return 0;
1611 }
1612 
1613 static void tda998x_set_config(struct tda998x_priv *priv,
1614 			       const struct tda998x_encoder_params *p)
1615 {
1616 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1617 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1618 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1619 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1620 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1621 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1622 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1623 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1624 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1625 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1626 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1627 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1628 
1629 	priv->audio_params = p->audio_params;
1630 }
1631 
1632 static void tda998x_destroy(struct device *dev)
1633 {
1634 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1635 
1636 	drm_bridge_remove(&priv->bridge);
1637 
1638 	/* disable all IRQs and free the IRQ handler */
1639 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1640 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1641 
1642 	if (priv->audio_pdev)
1643 		platform_device_unregister(priv->audio_pdev);
1644 
1645 	if (priv->hdmi->irq)
1646 		free_irq(priv->hdmi->irq, priv);
1647 
1648 	del_timer_sync(&priv->edid_delay_timer);
1649 	cancel_work_sync(&priv->detect_work);
1650 
1651 	i2c_unregister_device(priv->cec);
1652 
1653 	if (priv->cec_notify)
1654 		cec_notifier_put(priv->cec_notify);
1655 }
1656 
1657 static int tda998x_create(struct device *dev)
1658 {
1659 	struct i2c_client *client = to_i2c_client(dev);
1660 	struct device_node *np = client->dev.of_node;
1661 	struct i2c_board_info cec_info;
1662 	struct tda998x_priv *priv;
1663 	u32 video;
1664 	int rev_lo, rev_hi, ret;
1665 
1666 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1667 	if (!priv)
1668 		return -ENOMEM;
1669 
1670 	dev_set_drvdata(dev, priv);
1671 
1672 	mutex_init(&priv->mutex);	/* protect the page access */
1673 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1674 	mutex_init(&priv->edid_mutex);
1675 	INIT_LIST_HEAD(&priv->bridge.list);
1676 	init_waitqueue_head(&priv->edid_delay_waitq);
1677 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1678 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1679 
1680 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1681 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1682 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1683 
1684 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1685 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1686 	priv->current_page = 0xff;
1687 	priv->hdmi = client;
1688 
1689 	/* wake up the device: */
1690 	cec_write(priv, REG_CEC_ENAMODS,
1691 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1692 
1693 	tda998x_reset(priv);
1694 
1695 	/* read version: */
1696 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1697 	if (rev_lo < 0) {
1698 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1699 		return rev_lo;
1700 	}
1701 
1702 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1703 	if (rev_hi < 0) {
1704 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1705 		return rev_hi;
1706 	}
1707 
1708 	priv->rev = rev_lo | rev_hi << 8;
1709 
1710 	/* mask off feature bits: */
1711 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1712 
1713 	switch (priv->rev) {
1714 	case TDA9989N2:
1715 		dev_info(dev, "found TDA9989 n2");
1716 		break;
1717 	case TDA19989:
1718 		dev_info(dev, "found TDA19989");
1719 		break;
1720 	case TDA19989N2:
1721 		dev_info(dev, "found TDA19989 n2");
1722 		break;
1723 	case TDA19988:
1724 		dev_info(dev, "found TDA19988");
1725 		break;
1726 	default:
1727 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1728 		return -ENXIO;
1729 	}
1730 
1731 	/* after reset, enable DDC: */
1732 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1733 
1734 	/* set clock on DDC channel: */
1735 	reg_write(priv, REG_TX3, 39);
1736 
1737 	/* if necessary, disable multi-master: */
1738 	if (priv->rev == TDA19989)
1739 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1740 
1741 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1742 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1743 
1744 	/* ensure interrupts are disabled */
1745 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1746 
1747 	/* clear pending interrupts */
1748 	cec_read(priv, REG_CEC_RXSHPDINT);
1749 	reg_read(priv, REG_INT_FLAGS_0);
1750 	reg_read(priv, REG_INT_FLAGS_1);
1751 	reg_read(priv, REG_INT_FLAGS_2);
1752 
1753 	/* initialize the optional IRQ */
1754 	if (client->irq) {
1755 		unsigned long irq_flags;
1756 
1757 		/* init read EDID waitqueue and HDP work */
1758 		init_waitqueue_head(&priv->wq_edid);
1759 
1760 		irq_flags =
1761 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1762 
1763 		priv->cec_glue.irq_flags = irq_flags;
1764 
1765 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1766 		ret = request_threaded_irq(client->irq, NULL,
1767 					   tda998x_irq_thread, irq_flags,
1768 					   "tda998x", priv);
1769 		if (ret) {
1770 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1771 				client->irq, ret);
1772 			goto err_irq;
1773 		}
1774 
1775 		/* enable HPD irq */
1776 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1777 	}
1778 
1779 	priv->cec_notify = cec_notifier_get(dev);
1780 	if (!priv->cec_notify) {
1781 		ret = -ENOMEM;
1782 		goto fail;
1783 	}
1784 
1785 	priv->cec_glue.parent = dev;
1786 	priv->cec_glue.data = priv;
1787 	priv->cec_glue.init = tda998x_cec_hook_init;
1788 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1789 	priv->cec_glue.open = tda998x_cec_hook_open;
1790 	priv->cec_glue.release = tda998x_cec_hook_release;
1791 
1792 	/*
1793 	 * Some TDA998x are actually two I2C devices merged onto one piece
1794 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1795 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1796 	 * is at the TDA9950 address, with the address pins strapped across
1797 	 * to the TDA998x address pins.  Hence, it always has the same
1798 	 * offset.
1799 	 */
1800 	memset(&cec_info, 0, sizeof(cec_info));
1801 	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1802 	cec_info.addr = priv->cec_addr;
1803 	cec_info.platform_data = &priv->cec_glue;
1804 	cec_info.irq = client->irq;
1805 
1806 	priv->cec = i2c_new_device(client->adapter, &cec_info);
1807 	if (!priv->cec) {
1808 		ret = -ENODEV;
1809 		goto fail;
1810 	}
1811 
1812 	/* enable EDID read irq: */
1813 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1814 
1815 	if (np) {
1816 		/* get the device tree parameters */
1817 		ret = of_property_read_u32(np, "video-ports", &video);
1818 		if (ret == 0) {
1819 			priv->vip_cntrl_0 = video >> 16;
1820 			priv->vip_cntrl_1 = video >> 8;
1821 			priv->vip_cntrl_2 = video;
1822 		}
1823 
1824 		ret = tda998x_get_audio_ports(priv, np);
1825 		if (ret)
1826 			goto fail;
1827 
1828 		if (priv->audio_port[0].format != AFMT_UNUSED)
1829 			tda998x_audio_codec_init(priv, &client->dev);
1830 	} else if (dev->platform_data) {
1831 		tda998x_set_config(priv, dev->platform_data);
1832 	}
1833 
1834 	priv->bridge.funcs = &tda998x_bridge_funcs;
1835 #ifdef CONFIG_OF
1836 	priv->bridge.of_node = dev->of_node;
1837 #endif
1838 
1839 	drm_bridge_add(&priv->bridge);
1840 
1841 	return 0;
1842 
1843 fail:
1844 	tda998x_destroy(dev);
1845 err_irq:
1846 	return ret;
1847 }
1848 
1849 /* DRM encoder functions */
1850 
1851 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1852 {
1853 	drm_encoder_cleanup(encoder);
1854 }
1855 
1856 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1857 	.destroy = tda998x_encoder_destroy,
1858 };
1859 
1860 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
1861 {
1862 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1863 	u32 crtcs = 0;
1864 	int ret;
1865 
1866 	if (dev->of_node)
1867 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1868 
1869 	/* If no CRTCs were found, fall back to our old behaviour */
1870 	if (crtcs == 0) {
1871 		dev_warn(dev, "Falling back to first CRTC\n");
1872 		crtcs = 1 << 0;
1873 	}
1874 
1875 	priv->encoder.possible_crtcs = crtcs;
1876 
1877 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1878 			       DRM_MODE_ENCODER_TMDS, NULL);
1879 	if (ret)
1880 		goto err_encoder;
1881 
1882 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL);
1883 	if (ret)
1884 		goto err_bridge;
1885 
1886 	return 0;
1887 
1888 err_bridge:
1889 	drm_encoder_cleanup(&priv->encoder);
1890 err_encoder:
1891 	return ret;
1892 }
1893 
1894 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1895 {
1896 	struct drm_device *drm = data;
1897 
1898 	return tda998x_encoder_init(dev, drm);
1899 }
1900 
1901 static void tda998x_unbind(struct device *dev, struct device *master,
1902 			   void *data)
1903 {
1904 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1905 
1906 	drm_encoder_cleanup(&priv->encoder);
1907 }
1908 
1909 static const struct component_ops tda998x_ops = {
1910 	.bind = tda998x_bind,
1911 	.unbind = tda998x_unbind,
1912 };
1913 
1914 static int
1915 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1916 {
1917 	int ret;
1918 
1919 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1920 		dev_warn(&client->dev, "adapter does not support I2C\n");
1921 		return -EIO;
1922 	}
1923 
1924 	ret = tda998x_create(&client->dev);
1925 	if (ret)
1926 		return ret;
1927 
1928 	ret = component_add(&client->dev, &tda998x_ops);
1929 	if (ret)
1930 		tda998x_destroy(&client->dev);
1931 	return ret;
1932 }
1933 
1934 static int tda998x_remove(struct i2c_client *client)
1935 {
1936 	component_del(&client->dev, &tda998x_ops);
1937 	tda998x_destroy(&client->dev);
1938 	return 0;
1939 }
1940 
1941 #ifdef CONFIG_OF
1942 static const struct of_device_id tda998x_dt_ids[] = {
1943 	{ .compatible = "nxp,tda998x", },
1944 	{ }
1945 };
1946 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1947 #endif
1948 
1949 static const struct i2c_device_id tda998x_ids[] = {
1950 	{ "tda998x", 0 },
1951 	{ }
1952 };
1953 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1954 
1955 static struct i2c_driver tda998x_driver = {
1956 	.probe = tda998x_probe,
1957 	.remove = tda998x_remove,
1958 	.driver = {
1959 		.name = "tda998x",
1960 		.of_match_table = of_match_ptr(tda998x_dt_ids),
1961 	},
1962 	.id_table = tda998x_ids,
1963 };
1964 
1965 module_i2c_driver(tda998x_driver);
1966 
1967 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1968 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1969 MODULE_LICENSE("GPL");
1970