1 /* 2 * Copyright (C) 2012 Texas Instruments 3 * Author: Rob Clark <robdclark@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published by 7 * the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/component.h> 19 #include <linux/hdmi.h> 20 #include <linux/module.h> 21 #include <linux/irq.h> 22 #include <sound/asoundef.h> 23 #include <sound/hdmi-codec.h> 24 25 #include <drm/drmP.h> 26 #include <drm/drm_atomic_helper.h> 27 #include <drm/drm_crtc_helper.h> 28 #include <drm/drm_edid.h> 29 #include <drm/drm_of.h> 30 #include <drm/i2c/tda998x.h> 31 32 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) 33 34 struct tda998x_audio_port { 35 u8 format; /* AFMT_xxx */ 36 u8 config; /* AP value */ 37 }; 38 39 struct tda998x_priv { 40 struct i2c_client *cec; 41 struct i2c_client *hdmi; 42 struct mutex mutex; 43 u16 rev; 44 u8 cec_addr; 45 u8 current_page; 46 bool is_on; 47 bool supports_infoframes; 48 bool sink_has_audio; 49 u8 vip_cntrl_0; 50 u8 vip_cntrl_1; 51 u8 vip_cntrl_2; 52 unsigned long tmds_clock; 53 struct tda998x_audio_params audio_params; 54 55 struct platform_device *audio_pdev; 56 struct mutex audio_mutex; 57 58 wait_queue_head_t wq_edid; 59 volatile int wq_edid_wait; 60 61 struct work_struct detect_work; 62 struct timer_list edid_delay_timer; 63 wait_queue_head_t edid_delay_waitq; 64 bool edid_delay_active; 65 66 struct drm_encoder encoder; 67 struct drm_connector connector; 68 69 struct tda998x_audio_port audio_port[2]; 70 }; 71 72 #define conn_to_tda998x_priv(x) \ 73 container_of(x, struct tda998x_priv, connector) 74 75 #define enc_to_tda998x_priv(x) \ 76 container_of(x, struct tda998x_priv, encoder) 77 78 /* The TDA9988 series of devices use a paged register scheme.. to simplify 79 * things we encode the page # in upper bits of the register #. To read/ 80 * write a given register, we need to make sure CURPAGE register is set 81 * appropriately. Which implies reads/writes are not atomic. Fun! 82 */ 83 84 #define REG(page, addr) (((page) << 8) | (addr)) 85 #define REG2ADDR(reg) ((reg) & 0xff) 86 #define REG2PAGE(reg) (((reg) >> 8) & 0xff) 87 88 #define REG_CURPAGE 0xff /* write */ 89 90 91 /* Page 00h: General Control */ 92 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ 93 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ 94 # define MAIN_CNTRL0_SR (1 << 0) 95 # define MAIN_CNTRL0_DECS (1 << 1) 96 # define MAIN_CNTRL0_DEHS (1 << 2) 97 # define MAIN_CNTRL0_CECS (1 << 3) 98 # define MAIN_CNTRL0_CEHS (1 << 4) 99 # define MAIN_CNTRL0_SCALER (1 << 7) 100 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ 101 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ 102 # define SOFTRESET_AUDIO (1 << 0) 103 # define SOFTRESET_I2C_MASTER (1 << 1) 104 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ 105 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ 106 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ 107 # define I2C_MASTER_DIS_MM (1 << 0) 108 # define I2C_MASTER_DIS_FILT (1 << 1) 109 # define I2C_MASTER_APP_STRT_LAT (1 << 2) 110 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ 111 # define FEAT_POWERDOWN_PREFILT BIT(0) 112 # define FEAT_POWERDOWN_CSC BIT(1) 113 # define FEAT_POWERDOWN_SPDIF (1 << 3) 114 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ 115 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ 116 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ 117 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) 118 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ 119 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ 120 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ 121 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ 122 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ 123 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ 124 # define VIP_CNTRL_0_MIRR_A (1 << 7) 125 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) 126 # define VIP_CNTRL_0_MIRR_B (1 << 3) 127 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) 128 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ 129 # define VIP_CNTRL_1_MIRR_C (1 << 7) 130 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) 131 # define VIP_CNTRL_1_MIRR_D (1 << 3) 132 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) 133 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ 134 # define VIP_CNTRL_2_MIRR_E (1 << 7) 135 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) 136 # define VIP_CNTRL_2_MIRR_F (1 << 3) 137 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) 138 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ 139 # define VIP_CNTRL_3_X_TGL (1 << 0) 140 # define VIP_CNTRL_3_H_TGL (1 << 1) 141 # define VIP_CNTRL_3_V_TGL (1 << 2) 142 # define VIP_CNTRL_3_EMB (1 << 3) 143 # define VIP_CNTRL_3_SYNC_DE (1 << 4) 144 # define VIP_CNTRL_3_SYNC_HS (1 << 5) 145 # define VIP_CNTRL_3_DE_INT (1 << 6) 146 # define VIP_CNTRL_3_EDGE (1 << 7) 147 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ 148 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) 149 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) 150 # define VIP_CNTRL_4_CCIR656 (1 << 4) 151 # define VIP_CNTRL_4_656_ALT (1 << 5) 152 # define VIP_CNTRL_4_TST_656 (1 << 6) 153 # define VIP_CNTRL_4_TST_PAT (1 << 7) 154 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ 155 # define VIP_CNTRL_5_CKCASE (1 << 0) 156 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) 157 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ 158 # define MUX_AP_SELECT_I2S 0x64 159 # define MUX_AP_SELECT_SPDIF 0x40 160 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ 161 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ 162 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) 163 # define MAT_CONTRL_MAT_BP (1 << 2) 164 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ 165 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ 166 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ 167 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ 168 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ 169 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ 170 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ 171 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ 172 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ 173 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ 174 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ 175 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ 176 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ 177 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ 178 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ 179 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ 180 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ 181 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ 182 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ 183 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ 184 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ 185 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ 186 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ 187 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ 188 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ 189 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ 190 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ 191 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ 192 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ 193 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ 194 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ 195 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ 196 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ 197 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ 198 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ 199 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ 200 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ 201 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ 202 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ 203 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ 204 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ 205 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ 206 # define TBG_CNTRL_0_TOP_TGL (1 << 0) 207 # define TBG_CNTRL_0_TOP_SEL (1 << 1) 208 # define TBG_CNTRL_0_DE_EXT (1 << 2) 209 # define TBG_CNTRL_0_TOP_EXT (1 << 3) 210 # define TBG_CNTRL_0_FRAME_DIS (1 << 5) 211 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) 212 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) 213 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ 214 # define TBG_CNTRL_1_H_TGL (1 << 0) 215 # define TBG_CNTRL_1_V_TGL (1 << 1) 216 # define TBG_CNTRL_1_TGL_EN (1 << 2) 217 # define TBG_CNTRL_1_X_EXT (1 << 3) 218 # define TBG_CNTRL_1_H_EXT (1 << 4) 219 # define TBG_CNTRL_1_V_EXT (1 << 5) 220 # define TBG_CNTRL_1_DWIN_DIS (1 << 6) 221 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ 222 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ 223 # define HVF_CNTRL_0_SM (1 << 7) 224 # define HVF_CNTRL_0_RWB (1 << 6) 225 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) 226 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) 227 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ 228 # define HVF_CNTRL_1_FOR (1 << 0) 229 # define HVF_CNTRL_1_YUVBLK (1 << 1) 230 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) 231 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) 232 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) 233 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ 234 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ 235 # define I2S_FORMAT(x) (((x) & 3) << 0) 236 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ 237 # define AIP_CLKSEL_AIP_SPDIF (0 << 3) 238 # define AIP_CLKSEL_AIP_I2S (1 << 3) 239 # define AIP_CLKSEL_FS_ACLK (0 << 0) 240 # define AIP_CLKSEL_FS_MCLK (1 << 0) 241 # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0) 242 243 /* Page 02h: PLL settings */ 244 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ 245 # define PLL_SERIAL_1_SRL_FDN (1 << 0) 246 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) 247 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) 248 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ 249 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0) 250 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) 251 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ 252 # define PLL_SERIAL_3_SRL_CCIR (1 << 0) 253 # define PLL_SERIAL_3_SRL_DE (1 << 2) 254 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) 255 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ 256 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ 257 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ 258 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ 259 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ 260 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ 261 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ 262 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ 263 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ 264 # define AUDIO_DIV_SERCLK_1 0 265 # define AUDIO_DIV_SERCLK_2 1 266 # define AUDIO_DIV_SERCLK_4 2 267 # define AUDIO_DIV_SERCLK_8 3 268 # define AUDIO_DIV_SERCLK_16 4 269 # define AUDIO_DIV_SERCLK_32 5 270 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ 271 # define SEL_CLK_SEL_CLK1 (1 << 0) 272 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) 273 # define SEL_CLK_ENA_SC_CLK (1 << 3) 274 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ 275 276 277 /* Page 09h: EDID Control */ 278 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ 279 /* next 127 successive registers are the EDID block */ 280 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ 281 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ 282 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ 283 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ 284 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ 285 286 287 /* Page 10h: information frames and packets */ 288 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ 289 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ 290 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ 291 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ 292 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ 293 294 295 /* Page 11h: audio settings and content info packets */ 296 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ 297 # define AIP_CNTRL_0_RST_FIFO (1 << 0) 298 # define AIP_CNTRL_0_SWAP (1 << 1) 299 # define AIP_CNTRL_0_LAYOUT (1 << 2) 300 # define AIP_CNTRL_0_ACR_MAN (1 << 5) 301 # define AIP_CNTRL_0_RST_CTS (1 << 6) 302 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ 303 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) 304 # define CA_I2S_HBR_CHSTAT (1 << 6) 305 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ 306 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ 307 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ 308 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ 309 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ 310 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ 311 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ 312 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ 313 # define CTS_N_K(x) (((x) & 7) << 0) 314 # define CTS_N_M(x) (((x) & 3) << 4) 315 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ 316 # define ENC_CNTRL_RST_ENC (1 << 0) 317 # define ENC_CNTRL_RST_SEL (1 << 1) 318 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) 319 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ 320 # define DIP_FLAGS_ACR (1 << 0) 321 # define DIP_FLAGS_GC (1 << 1) 322 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ 323 # define DIP_IF_FLAGS_IF1 (1 << 1) 324 # define DIP_IF_FLAGS_IF2 (1 << 2) 325 # define DIP_IF_FLAGS_IF3 (1 << 3) 326 # define DIP_IF_FLAGS_IF4 (1 << 4) 327 # define DIP_IF_FLAGS_IF5 (1 << 5) 328 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ 329 330 331 /* Page 12h: HDCP and OTP */ 332 #define REG_TX3 REG(0x12, 0x9a) /* read/write */ 333 #define REG_TX4 REG(0x12, 0x9b) /* read/write */ 334 # define TX4_PD_RAM (1 << 1) 335 #define REG_TX33 REG(0x12, 0xb8) /* read/write */ 336 # define TX33_HDMI (1 << 1) 337 338 339 /* Page 13h: Gamut related metadata packets */ 340 341 342 343 /* CEC registers: (not paged) 344 */ 345 #define REG_CEC_INTSTATUS 0xee /* read */ 346 # define CEC_INTSTATUS_CEC (1 << 0) 347 # define CEC_INTSTATUS_HDMI (1 << 1) 348 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ 349 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) 350 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) 351 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) 352 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) 353 #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */ 354 #define REG_CEC_RXSHPDINT 0xfd /* read */ 355 # define CEC_RXSHPDINT_RXSENS BIT(0) 356 # define CEC_RXSHPDINT_HPD BIT(1) 357 #define REG_CEC_RXSHPDLEV 0xfe /* read */ 358 # define CEC_RXSHPDLEV_RXSENS (1 << 0) 359 # define CEC_RXSHPDLEV_HPD (1 << 1) 360 361 #define REG_CEC_ENAMODS 0xff /* read/write */ 362 # define CEC_ENAMODS_DIS_FRO (1 << 6) 363 # define CEC_ENAMODS_DIS_CCLK (1 << 5) 364 # define CEC_ENAMODS_EN_RXSENS (1 << 2) 365 # define CEC_ENAMODS_EN_HDMI (1 << 1) 366 # define CEC_ENAMODS_EN_CEC (1 << 0) 367 368 369 /* Device versions: */ 370 #define TDA9989N2 0x0101 371 #define TDA19989 0x0201 372 #define TDA19989N2 0x0202 373 #define TDA19988 0x0301 374 375 static void 376 cec_write(struct tda998x_priv *priv, u16 addr, u8 val) 377 { 378 u8 buf[] = {addr, val}; 379 struct i2c_msg msg = { 380 .addr = priv->cec_addr, 381 .len = 2, 382 .buf = buf, 383 }; 384 int ret; 385 386 ret = i2c_transfer(priv->hdmi->adapter, &msg, 1); 387 if (ret < 0) 388 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n", 389 ret, addr); 390 } 391 392 static u8 393 cec_read(struct tda998x_priv *priv, u8 addr) 394 { 395 u8 val; 396 struct i2c_msg msg[2] = { 397 { 398 .addr = priv->cec_addr, 399 .len = 1, 400 .buf = &addr, 401 }, { 402 .addr = priv->cec_addr, 403 .flags = I2C_M_RD, 404 .len = 1, 405 .buf = &val, 406 }, 407 }; 408 int ret; 409 410 ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg)); 411 if (ret < 0) { 412 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n", 413 ret, addr); 414 val = 0; 415 } 416 417 return val; 418 } 419 420 static int 421 set_page(struct tda998x_priv *priv, u16 reg) 422 { 423 if (REG2PAGE(reg) != priv->current_page) { 424 struct i2c_client *client = priv->hdmi; 425 u8 buf[] = { 426 REG_CURPAGE, REG2PAGE(reg) 427 }; 428 int ret = i2c_master_send(client, buf, sizeof(buf)); 429 if (ret < 0) { 430 dev_err(&client->dev, "%s %04x err %d\n", __func__, 431 reg, ret); 432 return ret; 433 } 434 435 priv->current_page = REG2PAGE(reg); 436 } 437 return 0; 438 } 439 440 static int 441 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt) 442 { 443 struct i2c_client *client = priv->hdmi; 444 u8 addr = REG2ADDR(reg); 445 int ret; 446 447 mutex_lock(&priv->mutex); 448 ret = set_page(priv, reg); 449 if (ret < 0) 450 goto out; 451 452 ret = i2c_master_send(client, &addr, sizeof(addr)); 453 if (ret < 0) 454 goto fail; 455 456 ret = i2c_master_recv(client, buf, cnt); 457 if (ret < 0) 458 goto fail; 459 460 goto out; 461 462 fail: 463 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); 464 out: 465 mutex_unlock(&priv->mutex); 466 return ret; 467 } 468 469 static void 470 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt) 471 { 472 struct i2c_client *client = priv->hdmi; 473 u8 buf[cnt+1]; 474 int ret; 475 476 buf[0] = REG2ADDR(reg); 477 memcpy(&buf[1], p, cnt); 478 479 mutex_lock(&priv->mutex); 480 ret = set_page(priv, reg); 481 if (ret < 0) 482 goto out; 483 484 ret = i2c_master_send(client, buf, cnt + 1); 485 if (ret < 0) 486 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 487 out: 488 mutex_unlock(&priv->mutex); 489 } 490 491 static int 492 reg_read(struct tda998x_priv *priv, u16 reg) 493 { 494 u8 val = 0; 495 int ret; 496 497 ret = reg_read_range(priv, reg, &val, sizeof(val)); 498 if (ret < 0) 499 return ret; 500 return val; 501 } 502 503 static void 504 reg_write(struct tda998x_priv *priv, u16 reg, u8 val) 505 { 506 struct i2c_client *client = priv->hdmi; 507 u8 buf[] = {REG2ADDR(reg), val}; 508 int ret; 509 510 mutex_lock(&priv->mutex); 511 ret = set_page(priv, reg); 512 if (ret < 0) 513 goto out; 514 515 ret = i2c_master_send(client, buf, sizeof(buf)); 516 if (ret < 0) 517 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 518 out: 519 mutex_unlock(&priv->mutex); 520 } 521 522 static void 523 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val) 524 { 525 struct i2c_client *client = priv->hdmi; 526 u8 buf[] = {REG2ADDR(reg), val >> 8, val}; 527 int ret; 528 529 mutex_lock(&priv->mutex); 530 ret = set_page(priv, reg); 531 if (ret < 0) 532 goto out; 533 534 ret = i2c_master_send(client, buf, sizeof(buf)); 535 if (ret < 0) 536 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); 537 out: 538 mutex_unlock(&priv->mutex); 539 } 540 541 static void 542 reg_set(struct tda998x_priv *priv, u16 reg, u8 val) 543 { 544 int old_val; 545 546 old_val = reg_read(priv, reg); 547 if (old_val >= 0) 548 reg_write(priv, reg, old_val | val); 549 } 550 551 static void 552 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val) 553 { 554 int old_val; 555 556 old_val = reg_read(priv, reg); 557 if (old_val >= 0) 558 reg_write(priv, reg, old_val & ~val); 559 } 560 561 static void 562 tda998x_reset(struct tda998x_priv *priv) 563 { 564 /* reset audio and i2c master: */ 565 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); 566 msleep(50); 567 reg_write(priv, REG_SOFTRESET, 0); 568 msleep(50); 569 570 /* reset transmitter: */ 571 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 572 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); 573 574 /* PLL registers common configuration */ 575 reg_write(priv, REG_PLL_SERIAL_1, 0x00); 576 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); 577 reg_write(priv, REG_PLL_SERIAL_3, 0x00); 578 reg_write(priv, REG_SERIALIZER, 0x00); 579 reg_write(priv, REG_BUFFER_OUT, 0x00); 580 reg_write(priv, REG_PLL_SCG1, 0x00); 581 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); 582 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); 583 reg_write(priv, REG_PLL_SCGN1, 0xfa); 584 reg_write(priv, REG_PLL_SCGN2, 0x00); 585 reg_write(priv, REG_PLL_SCGR1, 0x5b); 586 reg_write(priv, REG_PLL_SCGR2, 0x00); 587 reg_write(priv, REG_PLL_SCG2, 0x10); 588 589 /* Write the default value MUX register */ 590 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24); 591 } 592 593 /* 594 * The TDA998x has a problem when trying to read the EDID close to a 595 * HPD assertion: it needs a delay of 100ms to avoid timing out while 596 * trying to read EDID data. 597 * 598 * However, tda998x_connector_get_modes() may be called at any moment 599 * after tda998x_connector_detect() indicates that we are connected, so 600 * we need to delay probing modes in tda998x_connector_get_modes() after 601 * we have seen a HPD inactive->active transition. This code implements 602 * that delay. 603 */ 604 static void tda998x_edid_delay_done(struct timer_list *t) 605 { 606 struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer); 607 608 priv->edid_delay_active = false; 609 wake_up(&priv->edid_delay_waitq); 610 schedule_work(&priv->detect_work); 611 } 612 613 static void tda998x_edid_delay_start(struct tda998x_priv *priv) 614 { 615 priv->edid_delay_active = true; 616 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10); 617 } 618 619 static int tda998x_edid_delay_wait(struct tda998x_priv *priv) 620 { 621 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active); 622 } 623 624 /* 625 * We need to run the KMS hotplug event helper outside of our threaded 626 * interrupt routine as this can call back into our get_modes method, 627 * which will want to make use of interrupts. 628 */ 629 static void tda998x_detect_work(struct work_struct *work) 630 { 631 struct tda998x_priv *priv = 632 container_of(work, struct tda998x_priv, detect_work); 633 struct drm_device *dev = priv->encoder.dev; 634 635 if (dev) 636 drm_kms_helper_hotplug_event(dev); 637 } 638 639 /* 640 * only 2 interrupts may occur: screen plug/unplug and EDID read 641 */ 642 static irqreturn_t tda998x_irq_thread(int irq, void *data) 643 { 644 struct tda998x_priv *priv = data; 645 u8 sta, cec, lvl, flag0, flag1, flag2; 646 bool handled = false; 647 648 sta = cec_read(priv, REG_CEC_INTSTATUS); 649 if (sta & CEC_INTSTATUS_HDMI) { 650 cec = cec_read(priv, REG_CEC_RXSHPDINT); 651 lvl = cec_read(priv, REG_CEC_RXSHPDLEV); 652 flag0 = reg_read(priv, REG_INT_FLAGS_0); 653 flag1 = reg_read(priv, REG_INT_FLAGS_1); 654 flag2 = reg_read(priv, REG_INT_FLAGS_2); 655 DRM_DEBUG_DRIVER( 656 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n", 657 sta, cec, lvl, flag0, flag1, flag2); 658 659 if (cec & CEC_RXSHPDINT_HPD) { 660 if (lvl & CEC_RXSHPDLEV_HPD) 661 tda998x_edid_delay_start(priv); 662 else 663 schedule_work(&priv->detect_work); 664 665 handled = true; 666 } 667 668 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) { 669 priv->wq_edid_wait = 0; 670 wake_up(&priv->wq_edid); 671 handled = true; 672 } 673 } 674 675 return IRQ_RETVAL(handled); 676 } 677 678 static void 679 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr, 680 union hdmi_infoframe *frame) 681 { 682 u8 buf[32]; 683 ssize_t len; 684 685 len = hdmi_infoframe_pack(frame, buf, sizeof(buf)); 686 if (len < 0) { 687 dev_err(&priv->hdmi->dev, 688 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n", 689 frame->any.type, len); 690 return; 691 } 692 693 reg_clear(priv, REG_DIP_IF_FLAGS, bit); 694 reg_write_range(priv, addr, buf, len); 695 reg_set(priv, REG_DIP_IF_FLAGS, bit); 696 } 697 698 static int tda998x_write_aif(struct tda998x_priv *priv, 699 struct hdmi_audio_infoframe *cea) 700 { 701 union hdmi_infoframe frame; 702 703 frame.audio = *cea; 704 705 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame); 706 707 return 0; 708 } 709 710 static void 711 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode) 712 { 713 union hdmi_infoframe frame; 714 715 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode, false); 716 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; 717 718 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame); 719 } 720 721 /* Audio support */ 722 723 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on) 724 { 725 if (on) { 726 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 727 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO); 728 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 729 } else { 730 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 731 } 732 } 733 734 static int 735 tda998x_configure_audio(struct tda998x_priv *priv, 736 struct tda998x_audio_params *params) 737 { 738 u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv; 739 u32 n; 740 741 /* Enable audio ports */ 742 reg_write(priv, REG_ENA_AP, params->config); 743 744 /* Set audio input source */ 745 switch (params->format) { 746 case AFMT_SPDIF: 747 reg_write(priv, REG_ENA_ACLK, 0); 748 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF); 749 clksel_aip = AIP_CLKSEL_AIP_SPDIF; 750 clksel_fs = AIP_CLKSEL_FS_FS64SPDIF; 751 cts_n = CTS_N_M(3) | CTS_N_K(3); 752 break; 753 754 case AFMT_I2S: 755 reg_write(priv, REG_ENA_ACLK, 1); 756 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S); 757 clksel_aip = AIP_CLKSEL_AIP_I2S; 758 clksel_fs = AIP_CLKSEL_FS_ACLK; 759 switch (params->sample_width) { 760 case 16: 761 cts_n = CTS_N_M(3) | CTS_N_K(1); 762 break; 763 case 18: 764 case 20: 765 case 24: 766 cts_n = CTS_N_M(3) | CTS_N_K(2); 767 break; 768 default: 769 case 32: 770 cts_n = CTS_N_M(3) | CTS_N_K(3); 771 break; 772 } 773 break; 774 775 default: 776 dev_err(&priv->hdmi->dev, "Unsupported I2S format\n"); 777 return -EINVAL; 778 } 779 780 reg_write(priv, REG_AIP_CLKSEL, clksel_aip); 781 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT | 782 AIP_CNTRL_0_ACR_MAN); /* auto CTS */ 783 reg_write(priv, REG_CTS_N, cts_n); 784 785 /* 786 * Audio input somehow depends on HDMI line rate which is 787 * related to pixclk. Testing showed that modes with pixclk 788 * >100MHz need a larger divider while <40MHz need the default. 789 * There is no detailed info in the datasheet, so we just 790 * assume 100MHz requires larger divider. 791 */ 792 adiv = AUDIO_DIV_SERCLK_8; 793 if (priv->tmds_clock > 100000) 794 adiv++; /* AUDIO_DIV_SERCLK_16 */ 795 796 /* S/PDIF asks for a larger divider */ 797 if (params->format == AFMT_SPDIF) 798 adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */ 799 800 reg_write(priv, REG_AUDIO_DIV, adiv); 801 802 /* 803 * This is the approximate value of N, which happens to be 804 * the recommended values for non-coherent clocks. 805 */ 806 n = 128 * params->sample_rate / 1000; 807 808 /* Write the CTS and N values */ 809 buf[0] = 0x44; 810 buf[1] = 0x42; 811 buf[2] = 0x01; 812 buf[3] = n; 813 buf[4] = n >> 8; 814 buf[5] = n >> 16; 815 reg_write_range(priv, REG_ACR_CTS_0, buf, 6); 816 817 /* Set CTS clock reference */ 818 reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs); 819 820 /* Reset CTS generator */ 821 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 822 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); 823 824 /* Write the channel status 825 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because 826 * there is a separate register for each I2S wire. 827 */ 828 buf[0] = params->status[0]; 829 buf[1] = params->status[1]; 830 buf[2] = params->status[3]; 831 buf[3] = params->status[4]; 832 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4); 833 834 tda998x_audio_mute(priv, true); 835 msleep(20); 836 tda998x_audio_mute(priv, false); 837 838 return tda998x_write_aif(priv, ¶ms->cea); 839 } 840 841 static int tda998x_audio_hw_params(struct device *dev, void *data, 842 struct hdmi_codec_daifmt *daifmt, 843 struct hdmi_codec_params *params) 844 { 845 struct tda998x_priv *priv = dev_get_drvdata(dev); 846 int i, ret; 847 struct tda998x_audio_params audio = { 848 .sample_width = params->sample_width, 849 .sample_rate = params->sample_rate, 850 .cea = params->cea, 851 }; 852 853 memcpy(audio.status, params->iec.status, 854 min(sizeof(audio.status), sizeof(params->iec.status))); 855 856 switch (daifmt->fmt) { 857 case HDMI_I2S: 858 if (daifmt->bit_clk_inv || daifmt->frame_clk_inv || 859 daifmt->bit_clk_master || daifmt->frame_clk_master) { 860 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, 861 daifmt->bit_clk_inv, daifmt->frame_clk_inv, 862 daifmt->bit_clk_master, 863 daifmt->frame_clk_master); 864 return -EINVAL; 865 } 866 for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) 867 if (priv->audio_port[i].format == AFMT_I2S) 868 audio.config = priv->audio_port[i].config; 869 audio.format = AFMT_I2S; 870 break; 871 case HDMI_SPDIF: 872 for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) 873 if (priv->audio_port[i].format == AFMT_SPDIF) 874 audio.config = priv->audio_port[i].config; 875 audio.format = AFMT_SPDIF; 876 break; 877 default: 878 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt); 879 return -EINVAL; 880 } 881 882 if (audio.config == 0) { 883 dev_err(dev, "%s: No audio configuration found\n", __func__); 884 return -EINVAL; 885 } 886 887 mutex_lock(&priv->audio_mutex); 888 if (priv->supports_infoframes && priv->sink_has_audio) 889 ret = tda998x_configure_audio(priv, &audio); 890 else 891 ret = 0; 892 893 if (ret == 0) 894 priv->audio_params = audio; 895 mutex_unlock(&priv->audio_mutex); 896 897 return ret; 898 } 899 900 static void tda998x_audio_shutdown(struct device *dev, void *data) 901 { 902 struct tda998x_priv *priv = dev_get_drvdata(dev); 903 904 mutex_lock(&priv->audio_mutex); 905 906 reg_write(priv, REG_ENA_AP, 0); 907 908 priv->audio_params.format = AFMT_UNUSED; 909 910 mutex_unlock(&priv->audio_mutex); 911 } 912 913 int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable) 914 { 915 struct tda998x_priv *priv = dev_get_drvdata(dev); 916 917 mutex_lock(&priv->audio_mutex); 918 919 tda998x_audio_mute(priv, enable); 920 921 mutex_unlock(&priv->audio_mutex); 922 return 0; 923 } 924 925 static int tda998x_audio_get_eld(struct device *dev, void *data, 926 uint8_t *buf, size_t len) 927 { 928 struct tda998x_priv *priv = dev_get_drvdata(dev); 929 930 mutex_lock(&priv->audio_mutex); 931 memcpy(buf, priv->connector.eld, 932 min(sizeof(priv->connector.eld), len)); 933 mutex_unlock(&priv->audio_mutex); 934 935 return 0; 936 } 937 938 static const struct hdmi_codec_ops audio_codec_ops = { 939 .hw_params = tda998x_audio_hw_params, 940 .audio_shutdown = tda998x_audio_shutdown, 941 .digital_mute = tda998x_audio_digital_mute, 942 .get_eld = tda998x_audio_get_eld, 943 }; 944 945 static int tda998x_audio_codec_init(struct tda998x_priv *priv, 946 struct device *dev) 947 { 948 struct hdmi_codec_pdata codec_data = { 949 .ops = &audio_codec_ops, 950 .max_i2s_channels = 2, 951 }; 952 int i; 953 954 for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) { 955 if (priv->audio_port[i].format == AFMT_I2S && 956 priv->audio_port[i].config != 0) 957 codec_data.i2s = 1; 958 if (priv->audio_port[i].format == AFMT_SPDIF && 959 priv->audio_port[i].config != 0) 960 codec_data.spdif = 1; 961 } 962 963 priv->audio_pdev = platform_device_register_data( 964 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, 965 &codec_data, sizeof(codec_data)); 966 967 return PTR_ERR_OR_ZERO(priv->audio_pdev); 968 } 969 970 /* DRM connector functions */ 971 972 static int tda998x_connector_fill_modes(struct drm_connector *connector, 973 uint32_t maxX, uint32_t maxY) 974 { 975 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 976 int ret; 977 978 mutex_lock(&priv->audio_mutex); 979 ret = drm_helper_probe_single_connector_modes(connector, maxX, maxY); 980 981 if (connector->edid_blob_ptr) { 982 struct edid *edid = (void *)connector->edid_blob_ptr->data; 983 984 priv->sink_has_audio = drm_detect_monitor_audio(edid); 985 } else { 986 priv->sink_has_audio = false; 987 } 988 mutex_unlock(&priv->audio_mutex); 989 990 return ret; 991 } 992 993 static enum drm_connector_status 994 tda998x_connector_detect(struct drm_connector *connector, bool force) 995 { 996 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 997 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV); 998 999 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : 1000 connector_status_disconnected; 1001 } 1002 1003 static void tda998x_connector_destroy(struct drm_connector *connector) 1004 { 1005 drm_connector_cleanup(connector); 1006 } 1007 1008 static const struct drm_connector_funcs tda998x_connector_funcs = { 1009 .dpms = drm_helper_connector_dpms, 1010 .reset = drm_atomic_helper_connector_reset, 1011 .fill_modes = tda998x_connector_fill_modes, 1012 .detect = tda998x_connector_detect, 1013 .destroy = tda998x_connector_destroy, 1014 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 1015 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1016 }; 1017 1018 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length) 1019 { 1020 struct tda998x_priv *priv = data; 1021 u8 offset, segptr; 1022 int ret, i; 1023 1024 offset = (blk & 1) ? 128 : 0; 1025 segptr = blk / 2; 1026 1027 reg_write(priv, REG_DDC_ADDR, 0xa0); 1028 reg_write(priv, REG_DDC_OFFS, offset); 1029 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60); 1030 reg_write(priv, REG_DDC_SEGM, segptr); 1031 1032 /* enable reading EDID: */ 1033 priv->wq_edid_wait = 1; 1034 reg_write(priv, REG_EDID_CTRL, 0x1); 1035 1036 /* flag must be cleared by sw: */ 1037 reg_write(priv, REG_EDID_CTRL, 0x0); 1038 1039 /* wait for block read to complete: */ 1040 if (priv->hdmi->irq) { 1041 i = wait_event_timeout(priv->wq_edid, 1042 !priv->wq_edid_wait, 1043 msecs_to_jiffies(100)); 1044 if (i < 0) { 1045 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i); 1046 return i; 1047 } 1048 } else { 1049 for (i = 100; i > 0; i--) { 1050 msleep(1); 1051 ret = reg_read(priv, REG_INT_FLAGS_2); 1052 if (ret < 0) 1053 return ret; 1054 if (ret & INT_FLAGS_2_EDID_BLK_RD) 1055 break; 1056 } 1057 } 1058 1059 if (i == 0) { 1060 dev_err(&priv->hdmi->dev, "read edid timeout\n"); 1061 return -ETIMEDOUT; 1062 } 1063 1064 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length); 1065 if (ret != length) { 1066 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n", 1067 blk, ret); 1068 return ret; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int tda998x_connector_get_modes(struct drm_connector *connector) 1075 { 1076 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1077 struct edid *edid; 1078 int n; 1079 1080 /* 1081 * If we get killed while waiting for the HPD timeout, return 1082 * no modes found: we are not in a restartable path, so we 1083 * can't handle signals gracefully. 1084 */ 1085 if (tda998x_edid_delay_wait(priv)) 1086 return 0; 1087 1088 if (priv->rev == TDA19988) 1089 reg_clear(priv, REG_TX4, TX4_PD_RAM); 1090 1091 edid = drm_do_get_edid(connector, read_edid_block, priv); 1092 1093 if (priv->rev == TDA19988) 1094 reg_set(priv, REG_TX4, TX4_PD_RAM); 1095 1096 if (!edid) { 1097 dev_warn(&priv->hdmi->dev, "failed to read EDID\n"); 1098 return 0; 1099 } 1100 1101 drm_mode_connector_update_edid_property(connector, edid); 1102 n = drm_add_edid_modes(connector, edid); 1103 drm_edid_to_eld(connector, edid); 1104 1105 kfree(edid); 1106 1107 return n; 1108 } 1109 1110 static int tda998x_connector_mode_valid(struct drm_connector *connector, 1111 struct drm_display_mode *mode) 1112 { 1113 /* TDA19988 dotclock can go up to 165MHz */ 1114 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1115 1116 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000)) 1117 return MODE_CLOCK_HIGH; 1118 if (mode->htotal >= BIT(13)) 1119 return MODE_BAD_HVALUE; 1120 if (mode->vtotal >= BIT(11)) 1121 return MODE_BAD_VVALUE; 1122 return MODE_OK; 1123 } 1124 1125 static struct drm_encoder * 1126 tda998x_connector_best_encoder(struct drm_connector *connector) 1127 { 1128 struct tda998x_priv *priv = conn_to_tda998x_priv(connector); 1129 1130 return &priv->encoder; 1131 } 1132 1133 static 1134 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = { 1135 .get_modes = tda998x_connector_get_modes, 1136 .mode_valid = tda998x_connector_mode_valid, 1137 .best_encoder = tda998x_connector_best_encoder, 1138 }; 1139 1140 static int tda998x_connector_init(struct tda998x_priv *priv, 1141 struct drm_device *drm) 1142 { 1143 struct drm_connector *connector = &priv->connector; 1144 int ret; 1145 1146 connector->interlace_allowed = 1; 1147 1148 if (priv->hdmi->irq) 1149 connector->polled = DRM_CONNECTOR_POLL_HPD; 1150 else 1151 connector->polled = DRM_CONNECTOR_POLL_CONNECT | 1152 DRM_CONNECTOR_POLL_DISCONNECT; 1153 1154 drm_connector_helper_add(connector, &tda998x_connector_helper_funcs); 1155 ret = drm_connector_init(drm, connector, &tda998x_connector_funcs, 1156 DRM_MODE_CONNECTOR_HDMIA); 1157 if (ret) 1158 return ret; 1159 1160 drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder); 1161 1162 return 0; 1163 } 1164 1165 /* DRM encoder functions */ 1166 1167 static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode) 1168 { 1169 struct tda998x_priv *priv = enc_to_tda998x_priv(encoder); 1170 bool on; 1171 1172 /* we only care about on or off: */ 1173 on = mode == DRM_MODE_DPMS_ON; 1174 1175 if (on == priv->is_on) 1176 return; 1177 1178 if (on) { 1179 /* enable video ports, audio will be enabled later */ 1180 reg_write(priv, REG_ENA_VP_0, 0xff); 1181 reg_write(priv, REG_ENA_VP_1, 0xff); 1182 reg_write(priv, REG_ENA_VP_2, 0xff); 1183 /* set muxing after enabling ports: */ 1184 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0); 1185 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1); 1186 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2); 1187 1188 priv->is_on = true; 1189 } else { 1190 /* disable video ports */ 1191 reg_write(priv, REG_ENA_VP_0, 0x00); 1192 reg_write(priv, REG_ENA_VP_1, 0x00); 1193 reg_write(priv, REG_ENA_VP_2, 0x00); 1194 1195 priv->is_on = false; 1196 } 1197 } 1198 1199 static void 1200 tda998x_encoder_mode_set(struct drm_encoder *encoder, 1201 struct drm_display_mode *mode, 1202 struct drm_display_mode *adjusted_mode) 1203 { 1204 struct tda998x_priv *priv = enc_to_tda998x_priv(encoder); 1205 u16 ref_pix, ref_line, n_pix, n_line; 1206 u16 hs_pix_s, hs_pix_e; 1207 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; 1208 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; 1209 u16 vwin1_line_s, vwin1_line_e; 1210 u16 vwin2_line_s, vwin2_line_e; 1211 u16 de_pix_s, de_pix_e; 1212 u8 reg, div, rep; 1213 1214 /* 1215 * Internally TDA998x is using ITU-R BT.656 style sync but 1216 * we get VESA style sync. TDA998x is using a reference pixel 1217 * relative to ITU to sync to the input frame and for output 1218 * sync generation. Currently, we are using reference detection 1219 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point 1220 * which is position of rising VS with coincident rising HS. 1221 * 1222 * Now there is some issues to take care of: 1223 * - HDMI data islands require sync-before-active 1224 * - TDA998x register values must be > 0 to be enabled 1225 * - REFLINE needs an additional offset of +1 1226 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB 1227 * 1228 * So we add +1 to all horizontal and vertical register values, 1229 * plus an additional +3 for REFPIX as we are using RGB input only. 1230 */ 1231 n_pix = mode->htotal; 1232 n_line = mode->vtotal; 1233 1234 hs_pix_e = mode->hsync_end - mode->hdisplay; 1235 hs_pix_s = mode->hsync_start - mode->hdisplay; 1236 de_pix_e = mode->htotal; 1237 de_pix_s = mode->htotal - mode->hdisplay; 1238 ref_pix = 3 + hs_pix_s; 1239 1240 /* 1241 * Attached LCD controllers may generate broken sync. Allow 1242 * those to adjust the position of the rising VS edge by adding 1243 * HSKEW to ref_pix. 1244 */ 1245 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) 1246 ref_pix += adjusted_mode->hskew; 1247 1248 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { 1249 ref_line = 1 + mode->vsync_start - mode->vdisplay; 1250 vwin1_line_s = mode->vtotal - mode->vdisplay - 1; 1251 vwin1_line_e = vwin1_line_s + mode->vdisplay; 1252 vs1_pix_s = vs1_pix_e = hs_pix_s; 1253 vs1_line_s = mode->vsync_start - mode->vdisplay; 1254 vs1_line_e = vs1_line_s + 1255 mode->vsync_end - mode->vsync_start; 1256 vwin2_line_s = vwin2_line_e = 0; 1257 vs2_pix_s = vs2_pix_e = 0; 1258 vs2_line_s = vs2_line_e = 0; 1259 } else { 1260 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; 1261 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; 1262 vwin1_line_e = vwin1_line_s + mode->vdisplay/2; 1263 vs1_pix_s = vs1_pix_e = hs_pix_s; 1264 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; 1265 vs1_line_e = vs1_line_s + 1266 (mode->vsync_end - mode->vsync_start)/2; 1267 vwin2_line_s = vwin1_line_s + mode->vtotal/2; 1268 vwin2_line_e = vwin2_line_s + mode->vdisplay/2; 1269 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; 1270 vs2_line_s = vs1_line_s + mode->vtotal/2 ; 1271 vs2_line_e = vs2_line_s + 1272 (mode->vsync_end - mode->vsync_start)/2; 1273 } 1274 1275 div = 148500 / mode->clock; 1276 if (div != 0) { 1277 div--; 1278 if (div > 3) 1279 div = 3; 1280 } 1281 1282 mutex_lock(&priv->audio_mutex); 1283 1284 /* mute the audio FIFO: */ 1285 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); 1286 1287 /* set HDMI HDCP mode off: */ 1288 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); 1289 reg_clear(priv, REG_TX33, TX33_HDMI); 1290 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); 1291 1292 /* no pre-filter or interpolator: */ 1293 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | 1294 HVF_CNTRL_0_INTPOL(0)); 1295 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT); 1296 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); 1297 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | 1298 VIP_CNTRL_4_BLC(0)); 1299 1300 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); 1301 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR | 1302 PLL_SERIAL_3_SRL_DE); 1303 reg_write(priv, REG_SERIALIZER, 0); 1304 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); 1305 1306 /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */ 1307 rep = 0; 1308 reg_write(priv, REG_RPT_CNTRL, 0); 1309 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) | 1310 SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); 1311 1312 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | 1313 PLL_SERIAL_2_SRL_PR(rep)); 1314 1315 /* set color matrix bypass flag: */ 1316 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP | 1317 MAT_CONTRL_MAT_SC(1)); 1318 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); 1319 1320 /* set BIAS tmds value: */ 1321 reg_write(priv, REG_ANA_GENERAL, 0x09); 1322 1323 /* 1324 * Sync on rising HSYNC/VSYNC 1325 */ 1326 reg = VIP_CNTRL_3_SYNC_HS; 1327 1328 /* 1329 * TDA19988 requires high-active sync at input stage, 1330 * so invert low-active sync provided by master encoder here 1331 */ 1332 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1333 reg |= VIP_CNTRL_3_H_TGL; 1334 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1335 reg |= VIP_CNTRL_3_V_TGL; 1336 reg_write(priv, REG_VIP_CNTRL_3, reg); 1337 1338 reg_write(priv, REG_VIDFORMAT, 0x00); 1339 reg_write16(priv, REG_REFPIX_MSB, ref_pix); 1340 reg_write16(priv, REG_REFLINE_MSB, ref_line); 1341 reg_write16(priv, REG_NPIX_MSB, n_pix); 1342 reg_write16(priv, REG_NLINE_MSB, n_line); 1343 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s); 1344 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); 1345 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e); 1346 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e); 1347 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s); 1348 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); 1349 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e); 1350 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e); 1351 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s); 1352 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e); 1353 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s); 1354 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e); 1355 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s); 1356 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e); 1357 reg_write16(priv, REG_DE_START_MSB, de_pix_s); 1358 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e); 1359 1360 if (priv->rev == TDA19988) { 1361 /* let incoming pixels fill the active space (if any) */ 1362 reg_write(priv, REG_ENABLE_SPACE, 0x00); 1363 } 1364 1365 /* 1366 * Always generate sync polarity relative to input sync and 1367 * revert input stage toggled sync at output stage 1368 */ 1369 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN; 1370 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 1371 reg |= TBG_CNTRL_1_H_TGL; 1372 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 1373 reg |= TBG_CNTRL_1_V_TGL; 1374 reg_write(priv, REG_TBG_CNTRL_1, reg); 1375 1376 /* must be last register set: */ 1377 reg_write(priv, REG_TBG_CNTRL_0, 0); 1378 1379 priv->tmds_clock = adjusted_mode->clock; 1380 1381 /* CEA-861B section 6 says that: 1382 * CEA version 1 (CEA-861) has no support for infoframes. 1383 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes, 1384 * and optional basic audio. 1385 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes, 1386 * and optional digital audio, with audio infoframes. 1387 * 1388 * Since we only support generation of version 2 AVI infoframes, 1389 * ignore CEA version 2 and below (iow, behave as if we're a 1390 * CEA-861 source.) 1391 */ 1392 priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3; 1393 1394 if (priv->supports_infoframes) { 1395 /* We need to turn HDMI HDCP stuff on to get audio through */ 1396 reg &= ~TBG_CNTRL_1_DWIN_DIS; 1397 reg_write(priv, REG_TBG_CNTRL_1, reg); 1398 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); 1399 reg_set(priv, REG_TX33, TX33_HDMI); 1400 1401 tda998x_write_avi(priv, adjusted_mode); 1402 1403 if (priv->audio_params.format != AFMT_UNUSED && 1404 priv->sink_has_audio) 1405 tda998x_configure_audio(priv, &priv->audio_params); 1406 } 1407 1408 mutex_unlock(&priv->audio_mutex); 1409 } 1410 1411 static void tda998x_destroy(struct tda998x_priv *priv) 1412 { 1413 /* disable all IRQs and free the IRQ handler */ 1414 cec_write(priv, REG_CEC_RXSHPDINTENA, 0); 1415 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1416 1417 if (priv->audio_pdev) 1418 platform_device_unregister(priv->audio_pdev); 1419 1420 if (priv->hdmi->irq) 1421 free_irq(priv->hdmi->irq, priv); 1422 1423 del_timer_sync(&priv->edid_delay_timer); 1424 cancel_work_sync(&priv->detect_work); 1425 1426 i2c_unregister_device(priv->cec); 1427 } 1428 1429 /* I2C driver functions */ 1430 1431 static int tda998x_get_audio_ports(struct tda998x_priv *priv, 1432 struct device_node *np) 1433 { 1434 const u32 *port_data; 1435 u32 size; 1436 int i; 1437 1438 port_data = of_get_property(np, "audio-ports", &size); 1439 if (!port_data) 1440 return 0; 1441 1442 size /= sizeof(u32); 1443 if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) { 1444 dev_err(&priv->hdmi->dev, 1445 "Bad number of elements in audio-ports dt-property\n"); 1446 return -EINVAL; 1447 } 1448 1449 size /= 2; 1450 1451 for (i = 0; i < size; i++) { 1452 u8 afmt = be32_to_cpup(&port_data[2*i]); 1453 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]); 1454 1455 if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) { 1456 dev_err(&priv->hdmi->dev, 1457 "Bad audio format %u\n", afmt); 1458 return -EINVAL; 1459 } 1460 1461 priv->audio_port[i].format = afmt; 1462 priv->audio_port[i].config = ena_ap; 1463 } 1464 1465 if (priv->audio_port[0].format == priv->audio_port[1].format) { 1466 dev_err(&priv->hdmi->dev, 1467 "There can only be on I2S port and one SPDIF port\n"); 1468 return -EINVAL; 1469 } 1470 return 0; 1471 } 1472 1473 static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv) 1474 { 1475 struct device_node *np = client->dev.of_node; 1476 u32 video; 1477 int rev_lo, rev_hi, ret; 1478 1479 mutex_init(&priv->audio_mutex); /* Protect access from audio thread */ 1480 1481 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); 1482 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); 1483 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); 1484 1485 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */ 1486 priv->cec_addr = 0x34 + (client->addr & 0x03); 1487 priv->current_page = 0xff; 1488 priv->hdmi = client; 1489 priv->cec = i2c_new_dummy(client->adapter, priv->cec_addr); 1490 if (!priv->cec) 1491 return -ENODEV; 1492 1493 mutex_init(&priv->mutex); /* protect the page access */ 1494 init_waitqueue_head(&priv->edid_delay_waitq); 1495 timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0); 1496 INIT_WORK(&priv->detect_work, tda998x_detect_work); 1497 1498 /* wake up the device: */ 1499 cec_write(priv, REG_CEC_ENAMODS, 1500 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); 1501 1502 tda998x_reset(priv); 1503 1504 /* read version: */ 1505 rev_lo = reg_read(priv, REG_VERSION_LSB); 1506 rev_hi = reg_read(priv, REG_VERSION_MSB); 1507 if (rev_lo < 0 || rev_hi < 0) { 1508 ret = rev_lo < 0 ? rev_lo : rev_hi; 1509 goto fail; 1510 } 1511 1512 priv->rev = rev_lo | rev_hi << 8; 1513 1514 /* mask off feature bits: */ 1515 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ 1516 1517 switch (priv->rev) { 1518 case TDA9989N2: 1519 dev_info(&client->dev, "found TDA9989 n2"); 1520 break; 1521 case TDA19989: 1522 dev_info(&client->dev, "found TDA19989"); 1523 break; 1524 case TDA19989N2: 1525 dev_info(&client->dev, "found TDA19989 n2"); 1526 break; 1527 case TDA19988: 1528 dev_info(&client->dev, "found TDA19988"); 1529 break; 1530 default: 1531 dev_err(&client->dev, "found unsupported device: %04x\n", 1532 priv->rev); 1533 goto fail; 1534 } 1535 1536 /* after reset, enable DDC: */ 1537 reg_write(priv, REG_DDC_DISABLE, 0x00); 1538 1539 /* set clock on DDC channel: */ 1540 reg_write(priv, REG_TX3, 39); 1541 1542 /* if necessary, disable multi-master: */ 1543 if (priv->rev == TDA19989) 1544 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM); 1545 1546 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL, 1547 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); 1548 1549 /* initialize the optional IRQ */ 1550 if (client->irq) { 1551 unsigned long irq_flags; 1552 1553 /* init read EDID waitqueue and HDP work */ 1554 init_waitqueue_head(&priv->wq_edid); 1555 1556 /* clear pending interrupts */ 1557 reg_read(priv, REG_INT_FLAGS_0); 1558 reg_read(priv, REG_INT_FLAGS_1); 1559 reg_read(priv, REG_INT_FLAGS_2); 1560 1561 irq_flags = 1562 irqd_get_trigger_type(irq_get_irq_data(client->irq)); 1563 irq_flags |= IRQF_SHARED | IRQF_ONESHOT; 1564 ret = request_threaded_irq(client->irq, NULL, 1565 tda998x_irq_thread, irq_flags, 1566 "tda998x", priv); 1567 if (ret) { 1568 dev_err(&client->dev, 1569 "failed to request IRQ#%u: %d\n", 1570 client->irq, ret); 1571 goto fail; 1572 } 1573 1574 /* enable HPD irq */ 1575 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD); 1576 } 1577 1578 /* enable EDID read irq: */ 1579 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); 1580 1581 if (!np) 1582 return 0; /* non-DT */ 1583 1584 /* get the device tree parameters */ 1585 ret = of_property_read_u32(np, "video-ports", &video); 1586 if (ret == 0) { 1587 priv->vip_cntrl_0 = video >> 16; 1588 priv->vip_cntrl_1 = video >> 8; 1589 priv->vip_cntrl_2 = video; 1590 } 1591 1592 ret = tda998x_get_audio_ports(priv, np); 1593 if (ret) 1594 goto fail; 1595 1596 if (priv->audio_port[0].format != AFMT_UNUSED) 1597 tda998x_audio_codec_init(priv, &client->dev); 1598 1599 return 0; 1600 fail: 1601 /* if encoder_init fails, the encoder slave is never registered, 1602 * so cleanup here: 1603 */ 1604 if (priv->cec) 1605 i2c_unregister_device(priv->cec); 1606 return -ENXIO; 1607 } 1608 1609 static void tda998x_encoder_prepare(struct drm_encoder *encoder) 1610 { 1611 tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); 1612 } 1613 1614 static void tda998x_encoder_commit(struct drm_encoder *encoder) 1615 { 1616 tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON); 1617 } 1618 1619 static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = { 1620 .dpms = tda998x_encoder_dpms, 1621 .prepare = tda998x_encoder_prepare, 1622 .commit = tda998x_encoder_commit, 1623 .mode_set = tda998x_encoder_mode_set, 1624 }; 1625 1626 static void tda998x_encoder_destroy(struct drm_encoder *encoder) 1627 { 1628 struct tda998x_priv *priv = enc_to_tda998x_priv(encoder); 1629 1630 tda998x_destroy(priv); 1631 drm_encoder_cleanup(encoder); 1632 } 1633 1634 static const struct drm_encoder_funcs tda998x_encoder_funcs = { 1635 .destroy = tda998x_encoder_destroy, 1636 }; 1637 1638 static void tda998x_set_config(struct tda998x_priv *priv, 1639 const struct tda998x_encoder_params *p) 1640 { 1641 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | 1642 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | 1643 VIP_CNTRL_0_SWAP_B(p->swap_b) | 1644 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); 1645 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | 1646 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | 1647 VIP_CNTRL_1_SWAP_D(p->swap_d) | 1648 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); 1649 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | 1650 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | 1651 VIP_CNTRL_2_SWAP_F(p->swap_f) | 1652 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); 1653 1654 priv->audio_params = p->audio_params; 1655 } 1656 1657 static int tda998x_bind(struct device *dev, struct device *master, void *data) 1658 { 1659 struct tda998x_encoder_params *params = dev->platform_data; 1660 struct i2c_client *client = to_i2c_client(dev); 1661 struct drm_device *drm = data; 1662 struct tda998x_priv *priv; 1663 u32 crtcs = 0; 1664 int ret; 1665 1666 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1667 if (!priv) 1668 return -ENOMEM; 1669 1670 dev_set_drvdata(dev, priv); 1671 1672 if (dev->of_node) 1673 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); 1674 1675 /* If no CRTCs were found, fall back to our old behaviour */ 1676 if (crtcs == 0) { 1677 dev_warn(dev, "Falling back to first CRTC\n"); 1678 crtcs = 1 << 0; 1679 } 1680 1681 priv->encoder.possible_crtcs = crtcs; 1682 1683 ret = tda998x_create(client, priv); 1684 if (ret) 1685 return ret; 1686 1687 if (!dev->of_node && params) 1688 tda998x_set_config(priv, params); 1689 1690 drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs); 1691 ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs, 1692 DRM_MODE_ENCODER_TMDS, NULL); 1693 if (ret) 1694 goto err_encoder; 1695 1696 ret = tda998x_connector_init(priv, drm); 1697 if (ret) 1698 goto err_connector; 1699 1700 return 0; 1701 1702 err_connector: 1703 drm_encoder_cleanup(&priv->encoder); 1704 err_encoder: 1705 tda998x_destroy(priv); 1706 return ret; 1707 } 1708 1709 static void tda998x_unbind(struct device *dev, struct device *master, 1710 void *data) 1711 { 1712 struct tda998x_priv *priv = dev_get_drvdata(dev); 1713 1714 drm_connector_cleanup(&priv->connector); 1715 drm_encoder_cleanup(&priv->encoder); 1716 tda998x_destroy(priv); 1717 } 1718 1719 static const struct component_ops tda998x_ops = { 1720 .bind = tda998x_bind, 1721 .unbind = tda998x_unbind, 1722 }; 1723 1724 static int 1725 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) 1726 { 1727 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 1728 dev_warn(&client->dev, "adapter does not support I2C\n"); 1729 return -EIO; 1730 } 1731 return component_add(&client->dev, &tda998x_ops); 1732 } 1733 1734 static int tda998x_remove(struct i2c_client *client) 1735 { 1736 component_del(&client->dev, &tda998x_ops); 1737 return 0; 1738 } 1739 1740 #ifdef CONFIG_OF 1741 static const struct of_device_id tda998x_dt_ids[] = { 1742 { .compatible = "nxp,tda998x", }, 1743 { } 1744 }; 1745 MODULE_DEVICE_TABLE(of, tda998x_dt_ids); 1746 #endif 1747 1748 static const struct i2c_device_id tda998x_ids[] = { 1749 { "tda998x", 0 }, 1750 { } 1751 }; 1752 MODULE_DEVICE_TABLE(i2c, tda998x_ids); 1753 1754 static struct i2c_driver tda998x_driver = { 1755 .probe = tda998x_probe, 1756 .remove = tda998x_remove, 1757 .driver = { 1758 .name = "tda998x", 1759 .of_match_table = of_match_ptr(tda998x_dt_ids), 1760 }, 1761 .id_table = tda998x_ids, 1762 }; 1763 1764 module_i2c_driver(tda998x_driver); 1765 1766 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com"); 1767 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder"); 1768 MODULE_LICENSE("GPL"); 1769