xref: /openbmc/linux/drivers/gpu/drm/i2c/tda998x_drv.c (revision 0edbfea5)
1 /*
2  * Copyright (C) 2012 Texas Instruments
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/component.h>
19 #include <linux/hdmi.h>
20 #include <linux/module.h>
21 #include <linux/irq.h>
22 #include <sound/asoundef.h>
23 
24 #include <drm/drmP.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_crtc_helper.h>
27 #include <drm/drm_edid.h>
28 #include <drm/drm_of.h>
29 #include <drm/i2c/tda998x.h>
30 
31 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
32 
33 struct tda998x_priv {
34 	struct i2c_client *cec;
35 	struct i2c_client *hdmi;
36 	struct mutex mutex;
37 	u16 rev;
38 	u8 current_page;
39 	int dpms;
40 	bool is_hdmi_sink;
41 	u8 vip_cntrl_0;
42 	u8 vip_cntrl_1;
43 	u8 vip_cntrl_2;
44 	struct tda998x_encoder_params params;
45 
46 	wait_queue_head_t wq_edid;
47 	volatile int wq_edid_wait;
48 
49 	struct work_struct detect_work;
50 	struct timer_list edid_delay_timer;
51 	wait_queue_head_t edid_delay_waitq;
52 	bool edid_delay_active;
53 
54 	struct drm_encoder encoder;
55 	struct drm_connector connector;
56 };
57 
58 #define conn_to_tda998x_priv(x) \
59 	container_of(x, struct tda998x_priv, connector)
60 
61 #define enc_to_tda998x_priv(x) \
62 	container_of(x, struct tda998x_priv, encoder)
63 
64 /* The TDA9988 series of devices use a paged register scheme.. to simplify
65  * things we encode the page # in upper bits of the register #.  To read/
66  * write a given register, we need to make sure CURPAGE register is set
67  * appropriately.  Which implies reads/writes are not atomic.  Fun!
68  */
69 
70 #define REG(page, addr) (((page) << 8) | (addr))
71 #define REG2ADDR(reg)   ((reg) & 0xff)
72 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
73 
74 #define REG_CURPAGE               0xff                /* write */
75 
76 
77 /* Page 00h: General Control */
78 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
79 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
80 # define MAIN_CNTRL0_SR           (1 << 0)
81 # define MAIN_CNTRL0_DECS         (1 << 1)
82 # define MAIN_CNTRL0_DEHS         (1 << 2)
83 # define MAIN_CNTRL0_CECS         (1 << 3)
84 # define MAIN_CNTRL0_CEHS         (1 << 4)
85 # define MAIN_CNTRL0_SCALER       (1 << 7)
86 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
87 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
88 # define SOFTRESET_AUDIO          (1 << 0)
89 # define SOFTRESET_I2C_MASTER     (1 << 1)
90 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
91 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
92 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
93 # define I2C_MASTER_DIS_MM        (1 << 0)
94 # define I2C_MASTER_DIS_FILT      (1 << 1)
95 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
96 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
97 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
98 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
99 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
100 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
101 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
102 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
103 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
104 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
105 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
106 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
107 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
108 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
109 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
110 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
111 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
112 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
113 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
114 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
115 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
116 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
117 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
118 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
119 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
120 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
121 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
122 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
123 # define VIP_CNTRL_3_X_TGL        (1 << 0)
124 # define VIP_CNTRL_3_H_TGL        (1 << 1)
125 # define VIP_CNTRL_3_V_TGL        (1 << 2)
126 # define VIP_CNTRL_3_EMB          (1 << 3)
127 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
128 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
129 # define VIP_CNTRL_3_DE_INT       (1 << 6)
130 # define VIP_CNTRL_3_EDGE         (1 << 7)
131 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
132 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
133 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
134 # define VIP_CNTRL_4_CCIR656      (1 << 4)
135 # define VIP_CNTRL_4_656_ALT      (1 << 5)
136 # define VIP_CNTRL_4_TST_656      (1 << 6)
137 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
138 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
139 # define VIP_CNTRL_5_CKCASE       (1 << 0)
140 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
141 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
142 # define MUX_AP_SELECT_I2S	  0x64
143 # define MUX_AP_SELECT_SPDIF	  0x40
144 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
145 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
146 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
147 # define MAT_CONTRL_MAT_BP        (1 << 2)
148 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
149 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
150 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
151 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
152 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
153 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
154 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
155 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
156 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
157 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
158 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
159 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
160 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
161 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
162 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
163 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
164 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
165 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
166 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
167 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
168 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
169 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
170 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
171 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
172 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
173 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
174 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
175 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
176 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
177 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
178 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
179 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
180 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
181 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
182 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
183 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
184 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
185 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
186 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
187 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
188 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
189 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
190 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
191 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
192 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
193 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
194 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
195 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
196 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
197 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
198 # define TBG_CNTRL_1_H_TGL        (1 << 0)
199 # define TBG_CNTRL_1_V_TGL        (1 << 1)
200 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
201 # define TBG_CNTRL_1_X_EXT        (1 << 3)
202 # define TBG_CNTRL_1_H_EXT        (1 << 4)
203 # define TBG_CNTRL_1_V_EXT        (1 << 5)
204 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
205 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
206 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
207 # define HVF_CNTRL_0_SM           (1 << 7)
208 # define HVF_CNTRL_0_RWB          (1 << 6)
209 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
210 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
211 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
212 # define HVF_CNTRL_1_FOR          (1 << 0)
213 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
214 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
215 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
216 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
217 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
218 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
219 # define I2S_FORMAT(x)            (((x) & 3) << 0)
220 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
221 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
222 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
223 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
224 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
225 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
226 
227 /* Page 02h: PLL settings */
228 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
229 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
230 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
231 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
232 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
233 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
234 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
235 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
236 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
237 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
238 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
239 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
240 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
241 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
242 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
243 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
244 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
245 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
246 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
247 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
248 # define AUDIO_DIV_SERCLK_1       0
249 # define AUDIO_DIV_SERCLK_2       1
250 # define AUDIO_DIV_SERCLK_4       2
251 # define AUDIO_DIV_SERCLK_8       3
252 # define AUDIO_DIV_SERCLK_16      4
253 # define AUDIO_DIV_SERCLK_32      5
254 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
255 # define SEL_CLK_SEL_CLK1         (1 << 0)
256 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
257 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
258 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
259 
260 
261 /* Page 09h: EDID Control */
262 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
263 /* next 127 successive registers are the EDID block */
264 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
265 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
266 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
267 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
268 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
269 
270 
271 /* Page 10h: information frames and packets */
272 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
273 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
274 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
275 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
276 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
277 
278 
279 /* Page 11h: audio settings and content info packets */
280 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
281 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
282 # define AIP_CNTRL_0_SWAP         (1 << 1)
283 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
284 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
285 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
286 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
287 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
288 # define CA_I2S_HBR_CHSTAT        (1 << 6)
289 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
290 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
291 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
292 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
293 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
294 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
295 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
296 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
297 # define CTS_N_K(x)               (((x) & 7) << 0)
298 # define CTS_N_M(x)               (((x) & 3) << 4)
299 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
300 # define ENC_CNTRL_RST_ENC        (1 << 0)
301 # define ENC_CNTRL_RST_SEL        (1 << 1)
302 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
303 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
304 # define DIP_FLAGS_ACR            (1 << 0)
305 # define DIP_FLAGS_GC             (1 << 1)
306 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
307 # define DIP_IF_FLAGS_IF1         (1 << 1)
308 # define DIP_IF_FLAGS_IF2         (1 << 2)
309 # define DIP_IF_FLAGS_IF3         (1 << 3)
310 # define DIP_IF_FLAGS_IF4         (1 << 4)
311 # define DIP_IF_FLAGS_IF5         (1 << 5)
312 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
313 
314 
315 /* Page 12h: HDCP and OTP */
316 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
317 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
318 # define TX4_PD_RAM               (1 << 1)
319 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
320 # define TX33_HDMI                (1 << 1)
321 
322 
323 /* Page 13h: Gamut related metadata packets */
324 
325 
326 
327 /* CEC registers: (not paged)
328  */
329 #define REG_CEC_INTSTATUS	  0xee		      /* read */
330 # define CEC_INTSTATUS_CEC	  (1 << 0)
331 # define CEC_INTSTATUS_HDMI	  (1 << 1)
332 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
333 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
334 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
335 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
336 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
337 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
338 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
339 # define CEC_RXSHPDINT_RXSENS     BIT(0)
340 # define CEC_RXSHPDINT_HPD        BIT(1)
341 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
342 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
343 # define CEC_RXSHPDLEV_HPD        (1 << 1)
344 
345 #define REG_CEC_ENAMODS           0xff                /* read/write */
346 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
347 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
348 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
349 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
350 # define CEC_ENAMODS_EN_CEC       (1 << 0)
351 
352 
353 /* Device versions: */
354 #define TDA9989N2                 0x0101
355 #define TDA19989                  0x0201
356 #define TDA19989N2                0x0202
357 #define TDA19988                  0x0301
358 
359 static void
360 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
361 {
362 	struct i2c_client *client = priv->cec;
363 	u8 buf[] = {addr, val};
364 	int ret;
365 
366 	ret = i2c_master_send(client, buf, sizeof(buf));
367 	if (ret < 0)
368 		dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
369 }
370 
371 static u8
372 cec_read(struct tda998x_priv *priv, u8 addr)
373 {
374 	struct i2c_client *client = priv->cec;
375 	u8 val;
376 	int ret;
377 
378 	ret = i2c_master_send(client, &addr, sizeof(addr));
379 	if (ret < 0)
380 		goto fail;
381 
382 	ret = i2c_master_recv(client, &val, sizeof(val));
383 	if (ret < 0)
384 		goto fail;
385 
386 	return val;
387 
388 fail:
389 	dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
390 	return 0;
391 }
392 
393 static int
394 set_page(struct tda998x_priv *priv, u16 reg)
395 {
396 	if (REG2PAGE(reg) != priv->current_page) {
397 		struct i2c_client *client = priv->hdmi;
398 		u8 buf[] = {
399 				REG_CURPAGE, REG2PAGE(reg)
400 		};
401 		int ret = i2c_master_send(client, buf, sizeof(buf));
402 		if (ret < 0) {
403 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
404 					reg, ret);
405 			return ret;
406 		}
407 
408 		priv->current_page = REG2PAGE(reg);
409 	}
410 	return 0;
411 }
412 
413 static int
414 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
415 {
416 	struct i2c_client *client = priv->hdmi;
417 	u8 addr = REG2ADDR(reg);
418 	int ret;
419 
420 	mutex_lock(&priv->mutex);
421 	ret = set_page(priv, reg);
422 	if (ret < 0)
423 		goto out;
424 
425 	ret = i2c_master_send(client, &addr, sizeof(addr));
426 	if (ret < 0)
427 		goto fail;
428 
429 	ret = i2c_master_recv(client, buf, cnt);
430 	if (ret < 0)
431 		goto fail;
432 
433 	goto out;
434 
435 fail:
436 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
437 out:
438 	mutex_unlock(&priv->mutex);
439 	return ret;
440 }
441 
442 static void
443 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
444 {
445 	struct i2c_client *client = priv->hdmi;
446 	u8 buf[cnt+1];
447 	int ret;
448 
449 	buf[0] = REG2ADDR(reg);
450 	memcpy(&buf[1], p, cnt);
451 
452 	mutex_lock(&priv->mutex);
453 	ret = set_page(priv, reg);
454 	if (ret < 0)
455 		goto out;
456 
457 	ret = i2c_master_send(client, buf, cnt + 1);
458 	if (ret < 0)
459 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
460 out:
461 	mutex_unlock(&priv->mutex);
462 }
463 
464 static int
465 reg_read(struct tda998x_priv *priv, u16 reg)
466 {
467 	u8 val = 0;
468 	int ret;
469 
470 	ret = reg_read_range(priv, reg, &val, sizeof(val));
471 	if (ret < 0)
472 		return ret;
473 	return val;
474 }
475 
476 static void
477 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
478 {
479 	struct i2c_client *client = priv->hdmi;
480 	u8 buf[] = {REG2ADDR(reg), val};
481 	int ret;
482 
483 	mutex_lock(&priv->mutex);
484 	ret = set_page(priv, reg);
485 	if (ret < 0)
486 		goto out;
487 
488 	ret = i2c_master_send(client, buf, sizeof(buf));
489 	if (ret < 0)
490 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
491 out:
492 	mutex_unlock(&priv->mutex);
493 }
494 
495 static void
496 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
497 {
498 	struct i2c_client *client = priv->hdmi;
499 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
500 	int ret;
501 
502 	mutex_lock(&priv->mutex);
503 	ret = set_page(priv, reg);
504 	if (ret < 0)
505 		goto out;
506 
507 	ret = i2c_master_send(client, buf, sizeof(buf));
508 	if (ret < 0)
509 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
510 out:
511 	mutex_unlock(&priv->mutex);
512 }
513 
514 static void
515 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
516 {
517 	int old_val;
518 
519 	old_val = reg_read(priv, reg);
520 	if (old_val >= 0)
521 		reg_write(priv, reg, old_val | val);
522 }
523 
524 static void
525 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
526 {
527 	int old_val;
528 
529 	old_val = reg_read(priv, reg);
530 	if (old_val >= 0)
531 		reg_write(priv, reg, old_val & ~val);
532 }
533 
534 static void
535 tda998x_reset(struct tda998x_priv *priv)
536 {
537 	/* reset audio and i2c master: */
538 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
539 	msleep(50);
540 	reg_write(priv, REG_SOFTRESET, 0);
541 	msleep(50);
542 
543 	/* reset transmitter: */
544 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
545 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
546 
547 	/* PLL registers common configuration */
548 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
549 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
550 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
551 	reg_write(priv, REG_SERIALIZER,   0x00);
552 	reg_write(priv, REG_BUFFER_OUT,   0x00);
553 	reg_write(priv, REG_PLL_SCG1,     0x00);
554 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
555 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
556 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
557 	reg_write(priv, REG_PLL_SCGN2,    0x00);
558 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
559 	reg_write(priv, REG_PLL_SCGR2,    0x00);
560 	reg_write(priv, REG_PLL_SCG2,     0x10);
561 
562 	/* Write the default value MUX register */
563 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
564 }
565 
566 /*
567  * The TDA998x has a problem when trying to read the EDID close to a
568  * HPD assertion: it needs a delay of 100ms to avoid timing out while
569  * trying to read EDID data.
570  *
571  * However, tda998x_encoder_get_modes() may be called at any moment
572  * after tda998x_connector_detect() indicates that we are connected, so
573  * we need to delay probing modes in tda998x_encoder_get_modes() after
574  * we have seen a HPD inactive->active transition.  This code implements
575  * that delay.
576  */
577 static void tda998x_edid_delay_done(unsigned long data)
578 {
579 	struct tda998x_priv *priv = (struct tda998x_priv *)data;
580 
581 	priv->edid_delay_active = false;
582 	wake_up(&priv->edid_delay_waitq);
583 	schedule_work(&priv->detect_work);
584 }
585 
586 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
587 {
588 	priv->edid_delay_active = true;
589 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
590 }
591 
592 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
593 {
594 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
595 }
596 
597 /*
598  * We need to run the KMS hotplug event helper outside of our threaded
599  * interrupt routine as this can call back into our get_modes method,
600  * which will want to make use of interrupts.
601  */
602 static void tda998x_detect_work(struct work_struct *work)
603 {
604 	struct tda998x_priv *priv =
605 		container_of(work, struct tda998x_priv, detect_work);
606 	struct drm_device *dev = priv->encoder.dev;
607 
608 	if (dev)
609 		drm_kms_helper_hotplug_event(dev);
610 }
611 
612 /*
613  * only 2 interrupts may occur: screen plug/unplug and EDID read
614  */
615 static irqreturn_t tda998x_irq_thread(int irq, void *data)
616 {
617 	struct tda998x_priv *priv = data;
618 	u8 sta, cec, lvl, flag0, flag1, flag2;
619 	bool handled = false;
620 
621 	sta = cec_read(priv, REG_CEC_INTSTATUS);
622 	cec = cec_read(priv, REG_CEC_RXSHPDINT);
623 	lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
624 	flag0 = reg_read(priv, REG_INT_FLAGS_0);
625 	flag1 = reg_read(priv, REG_INT_FLAGS_1);
626 	flag2 = reg_read(priv, REG_INT_FLAGS_2);
627 	DRM_DEBUG_DRIVER(
628 		"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
629 		sta, cec, lvl, flag0, flag1, flag2);
630 
631 	if (cec & CEC_RXSHPDINT_HPD) {
632 		if (lvl & CEC_RXSHPDLEV_HPD)
633 			tda998x_edid_delay_start(priv);
634 		else
635 			schedule_work(&priv->detect_work);
636 
637 		handled = true;
638 	}
639 
640 	if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
641 		priv->wq_edid_wait = 0;
642 		wake_up(&priv->wq_edid);
643 		handled = true;
644 	}
645 
646 	return IRQ_RETVAL(handled);
647 }
648 
649 static void
650 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
651 		 union hdmi_infoframe *frame)
652 {
653 	u8 buf[32];
654 	ssize_t len;
655 
656 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
657 	if (len < 0) {
658 		dev_err(&priv->hdmi->dev,
659 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
660 			frame->any.type, len);
661 		return;
662 	}
663 
664 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
665 	reg_write_range(priv, addr, buf, len);
666 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
667 }
668 
669 static void
670 tda998x_write_aif(struct tda998x_priv *priv, struct tda998x_encoder_params *p)
671 {
672 	union hdmi_infoframe frame;
673 
674 	hdmi_audio_infoframe_init(&frame.audio);
675 
676 	frame.audio.channels = p->audio_frame[1] & 0x07;
677 	frame.audio.channel_allocation = p->audio_frame[4];
678 	frame.audio.level_shift_value = (p->audio_frame[5] & 0x78) >> 3;
679 	frame.audio.downmix_inhibit = (p->audio_frame[5] & 0x80) >> 7;
680 
681 	/*
682 	 * L-PCM and IEC61937 compressed audio shall always set sample
683 	 * frequency to "refer to stream".  For others, see the HDMI
684 	 * specification.
685 	 */
686 	frame.audio.sample_frequency = (p->audio_frame[2] & 0x1c) >> 2;
687 
688 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
689 }
690 
691 static void
692 tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
693 {
694 	union hdmi_infoframe frame;
695 
696 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode);
697 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
698 
699 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
700 }
701 
702 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
703 {
704 	if (on) {
705 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
706 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
707 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
708 	} else {
709 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
710 	}
711 }
712 
713 static void
714 tda998x_configure_audio(struct tda998x_priv *priv,
715 		struct drm_display_mode *mode, struct tda998x_encoder_params *p)
716 {
717 	u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
718 	u32 n;
719 
720 	/* Enable audio ports */
721 	reg_write(priv, REG_ENA_AP, p->audio_cfg);
722 	reg_write(priv, REG_ENA_ACLK, p->audio_clk_cfg);
723 
724 	/* Set audio input source */
725 	switch (p->audio_format) {
726 	case AFMT_SPDIF:
727 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
728 		clksel_aip = AIP_CLKSEL_AIP_SPDIF;
729 		clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
730 		cts_n = CTS_N_M(3) | CTS_N_K(3);
731 		break;
732 
733 	case AFMT_I2S:
734 		reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
735 		clksel_aip = AIP_CLKSEL_AIP_I2S;
736 		clksel_fs = AIP_CLKSEL_FS_ACLK;
737 		cts_n = CTS_N_M(3) | CTS_N_K(3);
738 		break;
739 
740 	default:
741 		BUG();
742 		return;
743 	}
744 
745 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
746 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
747 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
748 	reg_write(priv, REG_CTS_N, cts_n);
749 
750 	/*
751 	 * Audio input somehow depends on HDMI line rate which is
752 	 * related to pixclk. Testing showed that modes with pixclk
753 	 * >100MHz need a larger divider while <40MHz need the default.
754 	 * There is no detailed info in the datasheet, so we just
755 	 * assume 100MHz requires larger divider.
756 	 */
757 	adiv = AUDIO_DIV_SERCLK_8;
758 	if (mode->clock > 100000)
759 		adiv++;			/* AUDIO_DIV_SERCLK_16 */
760 
761 	/* S/PDIF asks for a larger divider */
762 	if (p->audio_format == AFMT_SPDIF)
763 		adiv++;			/* AUDIO_DIV_SERCLK_16 or _32 */
764 
765 	reg_write(priv, REG_AUDIO_DIV, adiv);
766 
767 	/*
768 	 * This is the approximate value of N, which happens to be
769 	 * the recommended values for non-coherent clocks.
770 	 */
771 	n = 128 * p->audio_sample_rate / 1000;
772 
773 	/* Write the CTS and N values */
774 	buf[0] = 0x44;
775 	buf[1] = 0x42;
776 	buf[2] = 0x01;
777 	buf[3] = n;
778 	buf[4] = n >> 8;
779 	buf[5] = n >> 16;
780 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
781 
782 	/* Set CTS clock reference */
783 	reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
784 
785 	/* Reset CTS generator */
786 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
787 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
788 
789 	/* Write the channel status */
790 	buf[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
791 	buf[1] = 0x00;
792 	buf[2] = IEC958_AES3_CON_FS_NOTID;
793 	buf[3] = IEC958_AES4_CON_ORIGFS_NOTID |
794 			IEC958_AES4_CON_MAX_WORDLEN_24;
795 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
796 
797 	tda998x_audio_mute(priv, true);
798 	msleep(20);
799 	tda998x_audio_mute(priv, false);
800 
801 	/* Write the audio information packet */
802 	tda998x_write_aif(priv, p);
803 }
804 
805 /* DRM encoder functions */
806 
807 static void tda998x_encoder_set_config(struct tda998x_priv *priv,
808 				       const struct tda998x_encoder_params *p)
809 {
810 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
811 			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
812 			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
813 			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
814 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
815 			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
816 			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
817 			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
818 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
819 			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
820 			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
821 			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
822 
823 	priv->params = *p;
824 }
825 
826 static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
827 {
828 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
829 
830 	/* we only care about on or off: */
831 	if (mode != DRM_MODE_DPMS_ON)
832 		mode = DRM_MODE_DPMS_OFF;
833 
834 	if (mode == priv->dpms)
835 		return;
836 
837 	switch (mode) {
838 	case DRM_MODE_DPMS_ON:
839 		/* enable video ports, audio will be enabled later */
840 		reg_write(priv, REG_ENA_VP_0, 0xff);
841 		reg_write(priv, REG_ENA_VP_1, 0xff);
842 		reg_write(priv, REG_ENA_VP_2, 0xff);
843 		/* set muxing after enabling ports: */
844 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
845 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
846 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
847 		break;
848 	case DRM_MODE_DPMS_OFF:
849 		/* disable video ports */
850 		reg_write(priv, REG_ENA_VP_0, 0x00);
851 		reg_write(priv, REG_ENA_VP_1, 0x00);
852 		reg_write(priv, REG_ENA_VP_2, 0x00);
853 		break;
854 	}
855 
856 	priv->dpms = mode;
857 }
858 
859 static int tda998x_connector_mode_valid(struct drm_connector *connector,
860 					struct drm_display_mode *mode)
861 {
862 	/* TDA19988 dotclock can go up to 165MHz */
863 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
864 
865 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
866 		return MODE_CLOCK_HIGH;
867 	if (mode->htotal >= BIT(13))
868 		return MODE_BAD_HVALUE;
869 	if (mode->vtotal >= BIT(11))
870 		return MODE_BAD_VVALUE;
871 	return MODE_OK;
872 }
873 
874 static void
875 tda998x_encoder_mode_set(struct drm_encoder *encoder,
876 			 struct drm_display_mode *mode,
877 			 struct drm_display_mode *adjusted_mode)
878 {
879 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
880 	u16 ref_pix, ref_line, n_pix, n_line;
881 	u16 hs_pix_s, hs_pix_e;
882 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
883 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
884 	u16 vwin1_line_s, vwin1_line_e;
885 	u16 vwin2_line_s, vwin2_line_e;
886 	u16 de_pix_s, de_pix_e;
887 	u8 reg, div, rep;
888 
889 	/*
890 	 * Internally TDA998x is using ITU-R BT.656 style sync but
891 	 * we get VESA style sync. TDA998x is using a reference pixel
892 	 * relative to ITU to sync to the input frame and for output
893 	 * sync generation. Currently, we are using reference detection
894 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
895 	 * which is position of rising VS with coincident rising HS.
896 	 *
897 	 * Now there is some issues to take care of:
898 	 * - HDMI data islands require sync-before-active
899 	 * - TDA998x register values must be > 0 to be enabled
900 	 * - REFLINE needs an additional offset of +1
901 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
902 	 *
903 	 * So we add +1 to all horizontal and vertical register values,
904 	 * plus an additional +3 for REFPIX as we are using RGB input only.
905 	 */
906 	n_pix        = mode->htotal;
907 	n_line       = mode->vtotal;
908 
909 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
910 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
911 	de_pix_e     = mode->htotal;
912 	de_pix_s     = mode->htotal - mode->hdisplay;
913 	ref_pix      = 3 + hs_pix_s;
914 
915 	/*
916 	 * Attached LCD controllers may generate broken sync. Allow
917 	 * those to adjust the position of the rising VS edge by adding
918 	 * HSKEW to ref_pix.
919 	 */
920 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
921 		ref_pix += adjusted_mode->hskew;
922 
923 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
924 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
925 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
926 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
927 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
928 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
929 		vs1_line_e   = vs1_line_s +
930 			       mode->vsync_end - mode->vsync_start;
931 		vwin2_line_s = vwin2_line_e = 0;
932 		vs2_pix_s    = vs2_pix_e  = 0;
933 		vs2_line_s   = vs2_line_e = 0;
934 	} else {
935 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
936 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
937 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
938 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
939 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
940 		vs1_line_e   = vs1_line_s +
941 			       (mode->vsync_end - mode->vsync_start)/2;
942 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
943 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
944 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
945 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
946 		vs2_line_e   = vs2_line_s +
947 			       (mode->vsync_end - mode->vsync_start)/2;
948 	}
949 
950 	div = 148500 / mode->clock;
951 	if (div != 0) {
952 		div--;
953 		if (div > 3)
954 			div = 3;
955 	}
956 
957 	/* mute the audio FIFO: */
958 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
959 
960 	/* set HDMI HDCP mode off: */
961 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
962 	reg_clear(priv, REG_TX33, TX33_HDMI);
963 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
964 
965 	/* no pre-filter or interpolator: */
966 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
967 			HVF_CNTRL_0_INTPOL(0));
968 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
969 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
970 			VIP_CNTRL_4_BLC(0));
971 
972 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
973 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
974 					  PLL_SERIAL_3_SRL_DE);
975 	reg_write(priv, REG_SERIALIZER, 0);
976 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
977 
978 	/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
979 	rep = 0;
980 	reg_write(priv, REG_RPT_CNTRL, 0);
981 	reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
982 			SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
983 
984 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
985 			PLL_SERIAL_2_SRL_PR(rep));
986 
987 	/* set color matrix bypass flag: */
988 	reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
989 				MAT_CONTRL_MAT_SC(1));
990 
991 	/* set BIAS tmds value: */
992 	reg_write(priv, REG_ANA_GENERAL, 0x09);
993 
994 	/*
995 	 * Sync on rising HSYNC/VSYNC
996 	 */
997 	reg = VIP_CNTRL_3_SYNC_HS;
998 
999 	/*
1000 	 * TDA19988 requires high-active sync at input stage,
1001 	 * so invert low-active sync provided by master encoder here
1002 	 */
1003 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1004 		reg |= VIP_CNTRL_3_H_TGL;
1005 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1006 		reg |= VIP_CNTRL_3_V_TGL;
1007 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1008 
1009 	reg_write(priv, REG_VIDFORMAT, 0x00);
1010 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1011 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1012 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1013 	reg_write16(priv, REG_NLINE_MSB, n_line);
1014 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1015 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1016 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1017 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1018 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1019 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1020 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1021 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1022 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1023 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1024 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1025 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1026 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1027 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1028 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1029 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1030 
1031 	if (priv->rev == TDA19988) {
1032 		/* let incoming pixels fill the active space (if any) */
1033 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1034 	}
1035 
1036 	/*
1037 	 * Always generate sync polarity relative to input sync and
1038 	 * revert input stage toggled sync at output stage
1039 	 */
1040 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1041 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1042 		reg |= TBG_CNTRL_1_H_TGL;
1043 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1044 		reg |= TBG_CNTRL_1_V_TGL;
1045 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1046 
1047 	/* must be last register set: */
1048 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1049 
1050 	/* Only setup the info frames if the sink is HDMI */
1051 	if (priv->is_hdmi_sink) {
1052 		/* We need to turn HDMI HDCP stuff on to get audio through */
1053 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1054 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1055 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1056 		reg_set(priv, REG_TX33, TX33_HDMI);
1057 
1058 		tda998x_write_avi(priv, adjusted_mode);
1059 
1060 		if (priv->params.audio_cfg)
1061 			tda998x_configure_audio(priv, adjusted_mode,
1062 						&priv->params);
1063 	}
1064 }
1065 
1066 static enum drm_connector_status
1067 tda998x_connector_detect(struct drm_connector *connector, bool force)
1068 {
1069 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1070 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1071 
1072 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1073 			connector_status_disconnected;
1074 }
1075 
1076 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1077 {
1078 	struct tda998x_priv *priv = data;
1079 	u8 offset, segptr;
1080 	int ret, i;
1081 
1082 	offset = (blk & 1) ? 128 : 0;
1083 	segptr = blk / 2;
1084 
1085 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1086 	reg_write(priv, REG_DDC_OFFS, offset);
1087 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1088 	reg_write(priv, REG_DDC_SEGM, segptr);
1089 
1090 	/* enable reading EDID: */
1091 	priv->wq_edid_wait = 1;
1092 	reg_write(priv, REG_EDID_CTRL, 0x1);
1093 
1094 	/* flag must be cleared by sw: */
1095 	reg_write(priv, REG_EDID_CTRL, 0x0);
1096 
1097 	/* wait for block read to complete: */
1098 	if (priv->hdmi->irq) {
1099 		i = wait_event_timeout(priv->wq_edid,
1100 					!priv->wq_edid_wait,
1101 					msecs_to_jiffies(100));
1102 		if (i < 0) {
1103 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1104 			return i;
1105 		}
1106 	} else {
1107 		for (i = 100; i > 0; i--) {
1108 			msleep(1);
1109 			ret = reg_read(priv, REG_INT_FLAGS_2);
1110 			if (ret < 0)
1111 				return ret;
1112 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1113 				break;
1114 		}
1115 	}
1116 
1117 	if (i == 0) {
1118 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1119 		return -ETIMEDOUT;
1120 	}
1121 
1122 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1123 	if (ret != length) {
1124 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1125 			blk, ret);
1126 		return ret;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int tda998x_connector_get_modes(struct drm_connector *connector)
1133 {
1134 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1135 	struct edid *edid;
1136 	int n;
1137 
1138 	/*
1139 	 * If we get killed while waiting for the HPD timeout, return
1140 	 * no modes found: we are not in a restartable path, so we
1141 	 * can't handle signals gracefully.
1142 	 */
1143 	if (tda998x_edid_delay_wait(priv))
1144 		return 0;
1145 
1146 	if (priv->rev == TDA19988)
1147 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1148 
1149 	edid = drm_do_get_edid(connector, read_edid_block, priv);
1150 
1151 	if (priv->rev == TDA19988)
1152 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1153 
1154 	if (!edid) {
1155 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1156 		return 0;
1157 	}
1158 
1159 	drm_mode_connector_update_edid_property(connector, edid);
1160 	n = drm_add_edid_modes(connector, edid);
1161 	priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1162 	kfree(edid);
1163 
1164 	return n;
1165 }
1166 
1167 static void tda998x_encoder_set_polling(struct tda998x_priv *priv,
1168 					struct drm_connector *connector)
1169 {
1170 	if (priv->hdmi->irq)
1171 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1172 	else
1173 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1174 			DRM_CONNECTOR_POLL_DISCONNECT;
1175 }
1176 
1177 static void tda998x_destroy(struct tda998x_priv *priv)
1178 {
1179 	/* disable all IRQs and free the IRQ handler */
1180 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1181 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1182 
1183 	if (priv->hdmi->irq)
1184 		free_irq(priv->hdmi->irq, priv);
1185 
1186 	del_timer_sync(&priv->edid_delay_timer);
1187 	cancel_work_sync(&priv->detect_work);
1188 
1189 	i2c_unregister_device(priv->cec);
1190 }
1191 
1192 /* I2C driver functions */
1193 
1194 static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
1195 {
1196 	struct device_node *np = client->dev.of_node;
1197 	u32 video;
1198 	int rev_lo, rev_hi, ret;
1199 	unsigned short cec_addr;
1200 
1201 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1202 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1203 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1204 
1205 	priv->current_page = 0xff;
1206 	priv->hdmi = client;
1207 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1208 	cec_addr = 0x34 + (client->addr & 0x03);
1209 	priv->cec = i2c_new_dummy(client->adapter, cec_addr);
1210 	if (!priv->cec)
1211 		return -ENODEV;
1212 
1213 	priv->dpms = DRM_MODE_DPMS_OFF;
1214 
1215 	mutex_init(&priv->mutex);	/* protect the page access */
1216 	init_waitqueue_head(&priv->edid_delay_waitq);
1217 	setup_timer(&priv->edid_delay_timer, tda998x_edid_delay_done,
1218 		    (unsigned long)priv);
1219 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1220 
1221 	/* wake up the device: */
1222 	cec_write(priv, REG_CEC_ENAMODS,
1223 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1224 
1225 	tda998x_reset(priv);
1226 
1227 	/* read version: */
1228 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1229 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1230 	if (rev_lo < 0 || rev_hi < 0) {
1231 		ret = rev_lo < 0 ? rev_lo : rev_hi;
1232 		goto fail;
1233 	}
1234 
1235 	priv->rev = rev_lo | rev_hi << 8;
1236 
1237 	/* mask off feature bits: */
1238 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1239 
1240 	switch (priv->rev) {
1241 	case TDA9989N2:
1242 		dev_info(&client->dev, "found TDA9989 n2");
1243 		break;
1244 	case TDA19989:
1245 		dev_info(&client->dev, "found TDA19989");
1246 		break;
1247 	case TDA19989N2:
1248 		dev_info(&client->dev, "found TDA19989 n2");
1249 		break;
1250 	case TDA19988:
1251 		dev_info(&client->dev, "found TDA19988");
1252 		break;
1253 	default:
1254 		dev_err(&client->dev, "found unsupported device: %04x\n",
1255 			priv->rev);
1256 		goto fail;
1257 	}
1258 
1259 	/* after reset, enable DDC: */
1260 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1261 
1262 	/* set clock on DDC channel: */
1263 	reg_write(priv, REG_TX3, 39);
1264 
1265 	/* if necessary, disable multi-master: */
1266 	if (priv->rev == TDA19989)
1267 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1268 
1269 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1270 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1271 
1272 	/* initialize the optional IRQ */
1273 	if (client->irq) {
1274 		int irqf_trigger;
1275 
1276 		/* init read EDID waitqueue and HDP work */
1277 		init_waitqueue_head(&priv->wq_edid);
1278 
1279 		/* clear pending interrupts */
1280 		reg_read(priv, REG_INT_FLAGS_0);
1281 		reg_read(priv, REG_INT_FLAGS_1);
1282 		reg_read(priv, REG_INT_FLAGS_2);
1283 
1284 		irqf_trigger =
1285 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1286 		ret = request_threaded_irq(client->irq, NULL,
1287 					   tda998x_irq_thread,
1288 					   irqf_trigger | IRQF_ONESHOT,
1289 					   "tda998x", priv);
1290 		if (ret) {
1291 			dev_err(&client->dev,
1292 				"failed to request IRQ#%u: %d\n",
1293 				client->irq, ret);
1294 			goto fail;
1295 		}
1296 
1297 		/* enable HPD irq */
1298 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1299 	}
1300 
1301 	/* enable EDID read irq: */
1302 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1303 
1304 	if (!np)
1305 		return 0;		/* non-DT */
1306 
1307 	/* get the optional video properties */
1308 	ret = of_property_read_u32(np, "video-ports", &video);
1309 	if (ret == 0) {
1310 		priv->vip_cntrl_0 = video >> 16;
1311 		priv->vip_cntrl_1 = video >> 8;
1312 		priv->vip_cntrl_2 = video;
1313 	}
1314 
1315 	return 0;
1316 
1317 fail:
1318 	/* if encoder_init fails, the encoder slave is never registered,
1319 	 * so cleanup here:
1320 	 */
1321 	if (priv->cec)
1322 		i2c_unregister_device(priv->cec);
1323 	return -ENXIO;
1324 }
1325 
1326 static void tda998x_encoder_prepare(struct drm_encoder *encoder)
1327 {
1328 	tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
1329 }
1330 
1331 static void tda998x_encoder_commit(struct drm_encoder *encoder)
1332 {
1333 	tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
1334 }
1335 
1336 static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
1337 	.dpms = tda998x_encoder_dpms,
1338 	.prepare = tda998x_encoder_prepare,
1339 	.commit = tda998x_encoder_commit,
1340 	.mode_set = tda998x_encoder_mode_set,
1341 };
1342 
1343 static void tda998x_encoder_destroy(struct drm_encoder *encoder)
1344 {
1345 	struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
1346 
1347 	tda998x_destroy(priv);
1348 	drm_encoder_cleanup(encoder);
1349 }
1350 
1351 static const struct drm_encoder_funcs tda998x_encoder_funcs = {
1352 	.destroy = tda998x_encoder_destroy,
1353 };
1354 
1355 static struct drm_encoder *
1356 tda998x_connector_best_encoder(struct drm_connector *connector)
1357 {
1358 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1359 
1360 	return &priv->encoder;
1361 }
1362 
1363 static
1364 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1365 	.get_modes = tda998x_connector_get_modes,
1366 	.mode_valid = tda998x_connector_mode_valid,
1367 	.best_encoder = tda998x_connector_best_encoder,
1368 };
1369 
1370 static void tda998x_connector_destroy(struct drm_connector *connector)
1371 {
1372 	drm_connector_unregister(connector);
1373 	drm_connector_cleanup(connector);
1374 }
1375 
1376 static int tda998x_connector_dpms(struct drm_connector *connector, int mode)
1377 {
1378 	if (drm_core_check_feature(connector->dev, DRIVER_ATOMIC))
1379 		return drm_atomic_helper_connector_dpms(connector, mode);
1380 	else
1381 		return drm_helper_connector_dpms(connector, mode);
1382 }
1383 
1384 static const struct drm_connector_funcs tda998x_connector_funcs = {
1385 	.dpms = tda998x_connector_dpms,
1386 	.reset = drm_atomic_helper_connector_reset,
1387 	.fill_modes = drm_helper_probe_single_connector_modes,
1388 	.detect = tda998x_connector_detect,
1389 	.destroy = tda998x_connector_destroy,
1390 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1391 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1392 };
1393 
1394 static int tda998x_bind(struct device *dev, struct device *master, void *data)
1395 {
1396 	struct tda998x_encoder_params *params = dev->platform_data;
1397 	struct i2c_client *client = to_i2c_client(dev);
1398 	struct drm_device *drm = data;
1399 	struct tda998x_priv *priv;
1400 	u32 crtcs = 0;
1401 	int ret;
1402 
1403 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1404 	if (!priv)
1405 		return -ENOMEM;
1406 
1407 	dev_set_drvdata(dev, priv);
1408 
1409 	if (dev->of_node)
1410 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1411 
1412 	/* If no CRTCs were found, fall back to our old behaviour */
1413 	if (crtcs == 0) {
1414 		dev_warn(dev, "Falling back to first CRTC\n");
1415 		crtcs = 1 << 0;
1416 	}
1417 
1418 	priv->connector.interlace_allowed = 1;
1419 	priv->encoder.possible_crtcs = crtcs;
1420 
1421 	ret = tda998x_create(client, priv);
1422 	if (ret)
1423 		return ret;
1424 
1425 	if (!dev->of_node && params)
1426 		tda998x_encoder_set_config(priv, params);
1427 
1428 	tda998x_encoder_set_polling(priv, &priv->connector);
1429 
1430 	drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
1431 	ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
1432 			       DRM_MODE_ENCODER_TMDS, NULL);
1433 	if (ret)
1434 		goto err_encoder;
1435 
1436 	drm_connector_helper_add(&priv->connector,
1437 				 &tda998x_connector_helper_funcs);
1438 	ret = drm_connector_init(drm, &priv->connector,
1439 				 &tda998x_connector_funcs,
1440 				 DRM_MODE_CONNECTOR_HDMIA);
1441 	if (ret)
1442 		goto err_connector;
1443 
1444 	ret = drm_connector_register(&priv->connector);
1445 	if (ret)
1446 		goto err_sysfs;
1447 
1448 	drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
1449 
1450 	return 0;
1451 
1452 err_sysfs:
1453 	drm_connector_cleanup(&priv->connector);
1454 err_connector:
1455 	drm_encoder_cleanup(&priv->encoder);
1456 err_encoder:
1457 	tda998x_destroy(priv);
1458 	return ret;
1459 }
1460 
1461 static void tda998x_unbind(struct device *dev, struct device *master,
1462 			   void *data)
1463 {
1464 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1465 
1466 	drm_connector_unregister(&priv->connector);
1467 	drm_connector_cleanup(&priv->connector);
1468 	drm_encoder_cleanup(&priv->encoder);
1469 	tda998x_destroy(priv);
1470 }
1471 
1472 static const struct component_ops tda998x_ops = {
1473 	.bind = tda998x_bind,
1474 	.unbind = tda998x_unbind,
1475 };
1476 
1477 static int
1478 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1479 {
1480 	return component_add(&client->dev, &tda998x_ops);
1481 }
1482 
1483 static int tda998x_remove(struct i2c_client *client)
1484 {
1485 	component_del(&client->dev, &tda998x_ops);
1486 	return 0;
1487 }
1488 
1489 #ifdef CONFIG_OF
1490 static const struct of_device_id tda998x_dt_ids[] = {
1491 	{ .compatible = "nxp,tda998x", },
1492 	{ }
1493 };
1494 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1495 #endif
1496 
1497 static struct i2c_device_id tda998x_ids[] = {
1498 	{ "tda998x", 0 },
1499 	{ }
1500 };
1501 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1502 
1503 static struct i2c_driver tda998x_driver = {
1504 	.probe = tda998x_probe,
1505 	.remove = tda998x_remove,
1506 	.driver = {
1507 		.name = "tda998x",
1508 		.of_match_table = of_match_ptr(tda998x_dt_ids),
1509 	},
1510 	.id_table = tda998x_ids,
1511 };
1512 
1513 module_i2c_driver(tda998x_driver);
1514 
1515 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1516 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1517 MODULE_LICENSE("GPL");
1518