1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DesignWare MIPI DSI Host Controller v1.02 driver 4 * 5 * Copyright (c) 2016 Linaro Limited. 6 * Copyright (c) 2014-2016 HiSilicon Limited. 7 * 8 * Author: 9 * Xinliang Liu <z.liuxinliang@hisilicon.com> 10 * Xinliang Liu <xinliang.liu@linaro.org> 11 * Xinwei Kong <kong.kongxinwei@hisilicon.com> 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/component.h> 16 #include <linux/delay.h> 17 #include <linux/mod_devicetable.h> 18 #include <linux/module.h> 19 #include <linux/platform_device.h> 20 21 #include <drm/drm_atomic_helper.h> 22 #include <drm/drm_bridge.h> 23 #include <drm/drm_device.h> 24 #include <drm/drm_mipi_dsi.h> 25 #include <drm/drm_of.h> 26 #include <drm/drm_print.h> 27 #include <drm/drm_probe_helper.h> 28 #include <drm/drm_simple_kms_helper.h> 29 30 #include "dw_dsi_reg.h" 31 32 #define MAX_TX_ESC_CLK 10 33 #define ROUND(x, y) ((x) / (y) + \ 34 ((x) % (y) * 10 / (y) >= 5 ? 1 : 0)) 35 #define PHY_REF_CLK_RATE 19200000 36 #define PHY_REF_CLK_PERIOD_PS (1000000000 / (PHY_REF_CLK_RATE / 1000)) 37 38 #define encoder_to_dsi(encoder) \ 39 container_of(encoder, struct dw_dsi, encoder) 40 #define host_to_dsi(host) \ 41 container_of(host, struct dw_dsi, host) 42 43 struct mipi_phy_params { 44 u32 clk_t_lpx; 45 u32 clk_t_hs_prepare; 46 u32 clk_t_hs_zero; 47 u32 clk_t_hs_trial; 48 u32 clk_t_wakeup; 49 u32 data_t_lpx; 50 u32 data_t_hs_prepare; 51 u32 data_t_hs_zero; 52 u32 data_t_hs_trial; 53 u32 data_t_ta_go; 54 u32 data_t_ta_get; 55 u32 data_t_wakeup; 56 u32 hstx_ckg_sel; 57 u32 pll_fbd_div5f; 58 u32 pll_fbd_div1f; 59 u32 pll_fbd_2p; 60 u32 pll_enbwt; 61 u32 pll_fbd_p; 62 u32 pll_fbd_s; 63 u32 pll_pre_div1p; 64 u32 pll_pre_p; 65 u32 pll_vco_750M; 66 u32 pll_lpf_rs; 67 u32 pll_lpf_cs; 68 u32 clklp2hs_time; 69 u32 clkhs2lp_time; 70 u32 lp2hs_time; 71 u32 hs2lp_time; 72 u32 clk_to_data_delay; 73 u32 data_to_clk_delay; 74 u32 lane_byte_clk_kHz; 75 u32 clk_division; 76 }; 77 78 struct dsi_hw_ctx { 79 void __iomem *base; 80 struct clk *pclk; 81 }; 82 83 struct dw_dsi { 84 struct drm_encoder encoder; 85 struct device *dev; 86 struct mipi_dsi_host host; 87 struct drm_display_mode cur_mode; 88 struct dsi_hw_ctx *ctx; 89 struct mipi_phy_params phy; 90 91 u32 lanes; 92 enum mipi_dsi_pixel_format format; 93 unsigned long mode_flags; 94 bool enable; 95 }; 96 97 struct dsi_data { 98 struct dw_dsi dsi; 99 struct dsi_hw_ctx ctx; 100 }; 101 102 struct dsi_phy_range { 103 u32 min_range_kHz; 104 u32 max_range_kHz; 105 u32 pll_vco_750M; 106 u32 hstx_ckg_sel; 107 }; 108 109 static const struct dsi_phy_range dphy_range_info[] = { 110 { 46875, 62500, 1, 7 }, 111 { 62500, 93750, 0, 7 }, 112 { 93750, 125000, 1, 6 }, 113 { 125000, 187500, 0, 6 }, 114 { 187500, 250000, 1, 5 }, 115 { 250000, 375000, 0, 5 }, 116 { 375000, 500000, 1, 4 }, 117 { 500000, 750000, 0, 4 }, 118 { 750000, 1000000, 1, 0 }, 119 { 1000000, 1500000, 0, 0 } 120 }; 121 122 static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy) 123 { 124 u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS; 125 u32 tmp_kHz = req_kHz; 126 u32 i = 0; 127 u32 q_pll = 1; 128 u32 m_pll = 0; 129 u32 n_pll = 0; 130 u32 r_pll = 1; 131 u32 m_n = 0; 132 u32 m_n_int = 0; 133 u32 f_kHz = 0; 134 u64 temp; 135 136 /* 137 * Find a rate >= req_kHz. 138 */ 139 do { 140 f_kHz = tmp_kHz; 141 142 for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++) 143 if (f_kHz >= dphy_range_info[i].min_range_kHz && 144 f_kHz <= dphy_range_info[i].max_range_kHz) 145 break; 146 147 if (i == ARRAY_SIZE(dphy_range_info)) { 148 DRM_ERROR("%dkHz out of range\n", f_kHz); 149 return 0; 150 } 151 152 phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M; 153 phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel; 154 155 if (phy->hstx_ckg_sel <= 7 && 156 phy->hstx_ckg_sel >= 4) 157 q_pll = 0x10 >> (7 - phy->hstx_ckg_sel); 158 159 temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps; 160 m_n_int = temp / (u64)1000000000; 161 m_n = (temp % (u64)1000000000) / (u64)100000000; 162 163 if (m_n_int % 2 == 0) { 164 if (m_n * 6 >= 50) { 165 n_pll = 2; 166 m_pll = (m_n_int + 1) * n_pll; 167 } else if (m_n * 6 >= 30) { 168 n_pll = 3; 169 m_pll = m_n_int * n_pll + 2; 170 } else { 171 n_pll = 1; 172 m_pll = m_n_int * n_pll; 173 } 174 } else { 175 if (m_n * 6 >= 50) { 176 n_pll = 1; 177 m_pll = (m_n_int + 1) * n_pll; 178 } else if (m_n * 6 >= 30) { 179 n_pll = 1; 180 m_pll = (m_n_int + 1) * n_pll; 181 } else if (m_n * 6 >= 10) { 182 n_pll = 3; 183 m_pll = m_n_int * n_pll + 1; 184 } else { 185 n_pll = 2; 186 m_pll = m_n_int * n_pll; 187 } 188 } 189 190 if (n_pll == 1) { 191 phy->pll_fbd_p = 0; 192 phy->pll_pre_div1p = 1; 193 } else { 194 phy->pll_fbd_p = n_pll; 195 phy->pll_pre_div1p = 0; 196 } 197 198 if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4) 199 r_pll = 0x10 >> (7 - phy->pll_fbd_2p); 200 201 if (m_pll == 2) { 202 phy->pll_pre_p = 0; 203 phy->pll_fbd_s = 0; 204 phy->pll_fbd_div1f = 0; 205 phy->pll_fbd_div5f = 1; 206 } else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) { 207 phy->pll_pre_p = m_pll / (2 * r_pll); 208 phy->pll_fbd_s = 0; 209 phy->pll_fbd_div1f = 1; 210 phy->pll_fbd_div5f = 0; 211 } else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) { 212 if (((m_pll / (2 * r_pll)) % 2) == 0) { 213 phy->pll_pre_p = 214 (m_pll / (2 * r_pll)) / 2 - 1; 215 phy->pll_fbd_s = 216 (m_pll / (2 * r_pll)) % 2 + 2; 217 } else { 218 phy->pll_pre_p = 219 (m_pll / (2 * r_pll)) / 2; 220 phy->pll_fbd_s = 221 (m_pll / (2 * r_pll)) % 2; 222 } 223 phy->pll_fbd_div1f = 0; 224 phy->pll_fbd_div5f = 0; 225 } else { 226 phy->pll_pre_p = 0; 227 phy->pll_fbd_s = 0; 228 phy->pll_fbd_div1f = 0; 229 phy->pll_fbd_div5f = 1; 230 } 231 232 f_kHz = (u64)1000000000 * (u64)m_pll / 233 ((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll); 234 235 if (f_kHz >= req_kHz) 236 break; 237 238 tmp_kHz += 10; 239 240 } while (true); 241 242 return f_kHz; 243 } 244 245 static void dsi_get_phy_params(u32 phy_req_kHz, 246 struct mipi_phy_params *phy) 247 { 248 u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS; 249 u32 phy_rate_kHz; 250 u32 ui; 251 252 memset(phy, 0, sizeof(*phy)); 253 254 phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy); 255 if (!phy_rate_kHz) 256 return; 257 258 ui = 1000000 / phy_rate_kHz; 259 260 phy->clk_t_lpx = ROUND(50, 8 * ui); 261 phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1; 262 263 phy->clk_t_hs_zero = ROUND(262, 8 * ui); 264 phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1); 265 phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1); 266 if (phy->clk_t_wakeup > 0xff) 267 phy->clk_t_wakeup = 0xff; 268 phy->data_t_wakeup = phy->clk_t_wakeup; 269 phy->data_t_lpx = phy->clk_t_lpx; 270 phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1; 271 phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui); 272 phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1); 273 phy->data_t_ta_go = 3; 274 phy->data_t_ta_get = 4; 275 276 phy->pll_enbwt = 1; 277 phy->clklp2hs_time = ROUND(407, 8 * ui) + 12; 278 phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui); 279 phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1; 280 phy->hs2lp_time = phy->clkhs2lp_time; 281 phy->clk_to_data_delay = 1 + phy->clklp2hs_time; 282 phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) + 283 phy->clkhs2lp_time; 284 285 phy->lane_byte_clk_kHz = phy_rate_kHz / 8; 286 phy->clk_division = 287 DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK); 288 } 289 290 static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format) 291 { 292 u32 val; 293 294 /* 295 * TODO: only support RGB888 now, to support more 296 */ 297 switch (format) { 298 case MIPI_DSI_FMT_RGB888: 299 val = DSI_24BITS_1; 300 break; 301 default: 302 val = DSI_24BITS_1; 303 break; 304 } 305 306 return val; 307 } 308 309 /* 310 * dsi phy reg write function 311 */ 312 static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val) 313 { 314 u32 reg_write = 0x10000 + reg; 315 316 /* 317 * latch reg first 318 */ 319 writel(reg_write, base + PHY_TST_CTRL1); 320 writel(0x02, base + PHY_TST_CTRL0); 321 writel(0x00, base + PHY_TST_CTRL0); 322 323 /* 324 * then latch value 325 */ 326 writel(val, base + PHY_TST_CTRL1); 327 writel(0x02, base + PHY_TST_CTRL0); 328 writel(0x00, base + PHY_TST_CTRL0); 329 } 330 331 static void dsi_set_phy_timer(void __iomem *base, 332 struct mipi_phy_params *phy, 333 u32 lanes) 334 { 335 u32 val; 336 337 /* 338 * Set lane value and phy stop wait time. 339 */ 340 val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8); 341 writel(val, base + PHY_IF_CFG); 342 343 /* 344 * Set phy clk division. 345 */ 346 val = readl(base + CLKMGR_CFG) | phy->clk_division; 347 writel(val, base + CLKMGR_CFG); 348 349 /* 350 * Set lp and hs switching params. 351 */ 352 dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time); 353 dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time); 354 dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10), 355 phy->clkhs2lp_time); 356 dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10), 357 phy->clklp2hs_time); 358 dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8), 359 phy->data_to_clk_delay); 360 dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8), 361 phy->clk_to_data_delay); 362 } 363 364 static void dsi_set_mipi_phy(void __iomem *base, 365 struct mipi_phy_params *phy, 366 u32 lanes) 367 { 368 u32 delay_count; 369 u32 val; 370 u32 i; 371 372 /* phy timer setting */ 373 dsi_set_phy_timer(base, phy, lanes); 374 375 /* 376 * Reset to clean up phy tst params. 377 */ 378 writel(0, base + PHY_RSTZ); 379 writel(0, base + PHY_TST_CTRL0); 380 writel(1, base + PHY_TST_CTRL0); 381 writel(0, base + PHY_TST_CTRL0); 382 383 /* 384 * Clock lane timing control setting: TLPX, THS-PREPARE, 385 * THS-ZERO, THS-TRAIL, TWAKEUP. 386 */ 387 dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx); 388 dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare); 389 dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero); 390 dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial); 391 dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup); 392 393 /* 394 * Data lane timing control setting: TLPX, THS-PREPARE, 395 * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP. 396 */ 397 for (i = 0; i < lanes; i++) { 398 dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx); 399 dsi_phy_tst_set(base, DATA_THS_PREPARE(i), 400 phy->data_t_hs_prepare); 401 dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero); 402 dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial); 403 dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go); 404 dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get); 405 dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup); 406 } 407 408 /* 409 * physical configuration: I, pll I, pll II, pll III, 410 * pll IV, pll V. 411 */ 412 dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel); 413 val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) + 414 (phy->pll_fbd_2p << 1) + phy->pll_enbwt; 415 dsi_phy_tst_set(base, PHY_CFG_PLL_I, val); 416 dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p); 417 dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s); 418 val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p; 419 dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val); 420 val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) + 421 phy->pll_lpf_cs; 422 dsi_phy_tst_set(base, PHY_CFG_PLL_V, val); 423 424 writel(PHY_ENABLECLK, base + PHY_RSTZ); 425 udelay(1); 426 writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ); 427 udelay(1); 428 writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ); 429 usleep_range(1000, 1500); 430 431 /* 432 * wait for phy's clock ready 433 */ 434 delay_count = 100; 435 while (delay_count) { 436 val = readl(base + PHY_STATUS); 437 if ((BIT(0) | BIT(2)) & val) 438 break; 439 440 udelay(1); 441 delay_count--; 442 } 443 444 if (!delay_count) 445 DRM_INFO("phylock and phystopstateclklane is not ready.\n"); 446 } 447 448 static void dsi_set_mode_timing(void __iomem *base, 449 u32 lane_byte_clk_kHz, 450 struct drm_display_mode *mode, 451 enum mipi_dsi_pixel_format format) 452 { 453 u32 hfp, hbp, hsw, vfp, vbp, vsw; 454 u32 hline_time; 455 u32 hsa_time; 456 u32 hbp_time; 457 u32 pixel_clk_kHz; 458 int htot, vtot; 459 u32 val; 460 u64 tmp; 461 462 val = dsi_get_dpi_color_coding(format); 463 writel(val, base + DPI_COLOR_CODING); 464 465 val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2; 466 val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1; 467 writel(val, base + DPI_CFG_POL); 468 469 /* 470 * The DSI IP accepts vertical timing using lines as normal, 471 * but horizontal timing is a mixture of pixel-clocks for the 472 * active region and byte-lane clocks for the blanking-related 473 * timings. hfp is specified as the total hline_time in byte- 474 * lane clocks minus hsa, hbp and active. 475 */ 476 pixel_clk_kHz = mode->clock; 477 htot = mode->htotal; 478 vtot = mode->vtotal; 479 hfp = mode->hsync_start - mode->hdisplay; 480 hbp = mode->htotal - mode->hsync_end; 481 hsw = mode->hsync_end - mode->hsync_start; 482 vfp = mode->vsync_start - mode->vdisplay; 483 vbp = mode->vtotal - mode->vsync_end; 484 vsw = mode->vsync_end - mode->vsync_start; 485 if (vsw > 15) { 486 DRM_DEBUG_DRIVER("vsw exceeded 15\n"); 487 vsw = 15; 488 } 489 490 hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz; 491 hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz; 492 tmp = (u64)htot * (u64)lane_byte_clk_kHz; 493 hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz); 494 495 /* all specified in byte-lane clocks */ 496 writel(hsa_time, base + VID_HSA_TIME); 497 writel(hbp_time, base + VID_HBP_TIME); 498 writel(hline_time, base + VID_HLINE_TIME); 499 500 writel(vsw, base + VID_VSA_LINES); 501 writel(vbp, base + VID_VBP_LINES); 502 writel(vfp, base + VID_VFP_LINES); 503 writel(mode->vdisplay, base + VID_VACTIVE_LINES); 504 writel(mode->hdisplay, base + VID_PKT_SIZE); 505 506 DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n", 507 htot, hfp, hbp, hsw); 508 DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n", 509 vtot, vfp, vbp, vsw); 510 DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n", 511 hsa_time, hbp_time, hline_time); 512 } 513 514 static void dsi_set_video_mode(void __iomem *base, unsigned long flags) 515 { 516 u32 val; 517 u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | 518 MIPI_DSI_MODE_VIDEO_SYNC_PULSE; 519 u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO | 520 MIPI_DSI_MODE_VIDEO_SYNC_PULSE; 521 u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO; 522 523 /* 524 * choose video mode type 525 */ 526 if ((flags & mode_mask) == non_burst_sync_pulse) 527 val = DSI_NON_BURST_SYNC_PULSES; 528 else if ((flags & mode_mask) == non_burst_sync_event) 529 val = DSI_NON_BURST_SYNC_EVENTS; 530 else 531 val = DSI_BURST_SYNC_PULSES_1; 532 writel(val, base + VID_MODE_CFG); 533 534 writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL); 535 writel(DSI_VIDEO_MODE, base + MODE_CFG); 536 } 537 538 static void dsi_mipi_init(struct dw_dsi *dsi) 539 { 540 struct dsi_hw_ctx *ctx = dsi->ctx; 541 struct mipi_phy_params *phy = &dsi->phy; 542 struct drm_display_mode *mode = &dsi->cur_mode; 543 u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); 544 void __iomem *base = ctx->base; 545 u32 dphy_req_kHz; 546 547 /* 548 * count phy params 549 */ 550 dphy_req_kHz = mode->clock * bpp / dsi->lanes; 551 dsi_get_phy_params(dphy_req_kHz, phy); 552 553 /* reset Core */ 554 writel(RESET, base + PWR_UP); 555 556 /* set dsi phy params */ 557 dsi_set_mipi_phy(base, phy, dsi->lanes); 558 559 /* set dsi mode timing */ 560 dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format); 561 562 /* set dsi video mode */ 563 dsi_set_video_mode(base, dsi->mode_flags); 564 565 /* dsi wake up */ 566 writel(POWERUP, base + PWR_UP); 567 568 DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n", 569 dsi->lanes, mode->clock, phy->lane_byte_clk_kHz); 570 } 571 572 static void dsi_encoder_disable(struct drm_encoder *encoder) 573 { 574 struct dw_dsi *dsi = encoder_to_dsi(encoder); 575 struct dsi_hw_ctx *ctx = dsi->ctx; 576 void __iomem *base = ctx->base; 577 578 if (!dsi->enable) 579 return; 580 581 writel(0, base + PWR_UP); 582 writel(0, base + LPCLK_CTRL); 583 writel(0, base + PHY_RSTZ); 584 clk_disable_unprepare(ctx->pclk); 585 586 dsi->enable = false; 587 } 588 589 static void dsi_encoder_enable(struct drm_encoder *encoder) 590 { 591 struct dw_dsi *dsi = encoder_to_dsi(encoder); 592 struct dsi_hw_ctx *ctx = dsi->ctx; 593 int ret; 594 595 if (dsi->enable) 596 return; 597 598 ret = clk_prepare_enable(ctx->pclk); 599 if (ret) { 600 DRM_ERROR("fail to enable pclk: %d\n", ret); 601 return; 602 } 603 604 dsi_mipi_init(dsi); 605 606 dsi->enable = true; 607 } 608 609 static enum drm_mode_status dsi_encoder_phy_mode_valid( 610 struct drm_encoder *encoder, 611 const struct drm_display_mode *mode) 612 { 613 struct dw_dsi *dsi = encoder_to_dsi(encoder); 614 struct mipi_phy_params phy; 615 u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); 616 u32 req_kHz, act_kHz, lane_byte_clk_kHz; 617 618 /* Calculate the lane byte clk using the adjusted mode clk */ 619 memset(&phy, 0, sizeof(phy)); 620 req_kHz = mode->clock * bpp / dsi->lanes; 621 act_kHz = dsi_calc_phy_rate(req_kHz, &phy); 622 lane_byte_clk_kHz = act_kHz / 8; 623 624 DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...", 625 mode->hdisplay, mode->vdisplay, bpp, 626 drm_mode_vrefresh(mode), mode->clock); 627 628 /* 629 * Make sure the adjusted mode clock and the lane byte clk 630 * have a common denominator base frequency 631 */ 632 if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) { 633 DRM_DEBUG_DRIVER("OK!\n"); 634 return MODE_OK; 635 } 636 637 DRM_DEBUG_DRIVER("BAD!\n"); 638 return MODE_BAD; 639 } 640 641 static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder, 642 const struct drm_display_mode *mode) 643 644 { 645 const struct drm_crtc_helper_funcs *crtc_funcs = NULL; 646 struct drm_crtc *crtc = NULL; 647 struct drm_display_mode adj_mode; 648 enum drm_mode_status ret; 649 650 /* 651 * The crtc might adjust the mode, so go through the 652 * possible crtcs (technically just one) and call 653 * mode_fixup to figure out the adjusted mode before we 654 * validate it. 655 */ 656 drm_for_each_crtc(crtc, encoder->dev) { 657 /* 658 * reset adj_mode to the mode value each time, 659 * so we don't adjust the mode twice 660 */ 661 drm_mode_init(&adj_mode, mode); 662 663 crtc_funcs = crtc->helper_private; 664 if (crtc_funcs && crtc_funcs->mode_fixup) 665 if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode)) 666 return MODE_BAD; 667 668 ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode); 669 if (ret != MODE_OK) 670 return ret; 671 } 672 return MODE_OK; 673 } 674 675 static void dsi_encoder_mode_set(struct drm_encoder *encoder, 676 struct drm_display_mode *mode, 677 struct drm_display_mode *adj_mode) 678 { 679 struct dw_dsi *dsi = encoder_to_dsi(encoder); 680 681 drm_mode_copy(&dsi->cur_mode, adj_mode); 682 } 683 684 static int dsi_encoder_atomic_check(struct drm_encoder *encoder, 685 struct drm_crtc_state *crtc_state, 686 struct drm_connector_state *conn_state) 687 { 688 /* do nothing */ 689 return 0; 690 } 691 692 static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = { 693 .atomic_check = dsi_encoder_atomic_check, 694 .mode_valid = dsi_encoder_mode_valid, 695 .mode_set = dsi_encoder_mode_set, 696 .enable = dsi_encoder_enable, 697 .disable = dsi_encoder_disable 698 }; 699 700 static int dw_drm_encoder_init(struct device *dev, 701 struct drm_device *drm_dev, 702 struct drm_encoder *encoder) 703 { 704 int ret; 705 u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node); 706 707 if (!crtc_mask) { 708 DRM_ERROR("failed to find crtc mask\n"); 709 return -EINVAL; 710 } 711 712 encoder->possible_crtcs = crtc_mask; 713 ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI); 714 if (ret) { 715 DRM_ERROR("failed to init dsi encoder\n"); 716 return ret; 717 } 718 719 drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs); 720 721 return 0; 722 } 723 724 static const struct component_ops dsi_ops; 725 static int dsi_host_attach(struct mipi_dsi_host *host, 726 struct mipi_dsi_device *mdsi) 727 { 728 struct dw_dsi *dsi = host_to_dsi(host); 729 struct device *dev = host->dev; 730 int ret; 731 732 if (mdsi->lanes < 1 || mdsi->lanes > 4) { 733 DRM_ERROR("dsi device params invalid\n"); 734 return -EINVAL; 735 } 736 737 dsi->lanes = mdsi->lanes; 738 dsi->format = mdsi->format; 739 dsi->mode_flags = mdsi->mode_flags; 740 741 ret = component_add(dev, &dsi_ops); 742 if (ret) 743 return ret; 744 745 return 0; 746 } 747 748 static int dsi_host_detach(struct mipi_dsi_host *host, 749 struct mipi_dsi_device *mdsi) 750 { 751 struct device *dev = host->dev; 752 753 component_del(dev, &dsi_ops); 754 755 return 0; 756 } 757 758 static const struct mipi_dsi_host_ops dsi_host_ops = { 759 .attach = dsi_host_attach, 760 .detach = dsi_host_detach, 761 }; 762 763 static int dsi_host_init(struct device *dev, struct dw_dsi *dsi) 764 { 765 struct mipi_dsi_host *host = &dsi->host; 766 int ret; 767 768 host->dev = dev; 769 host->ops = &dsi_host_ops; 770 ret = mipi_dsi_host_register(host); 771 if (ret) { 772 DRM_ERROR("failed to register dsi host\n"); 773 return ret; 774 } 775 776 return 0; 777 } 778 779 static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi) 780 { 781 struct drm_encoder *encoder = &dsi->encoder; 782 struct drm_bridge *bridge; 783 struct device_node *np = dsi->dev->of_node; 784 int ret; 785 786 /* 787 * Get the endpoint node. In our case, dsi has one output port1 788 * to which the external HDMI bridge is connected. 789 */ 790 ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &bridge); 791 if (ret) 792 return ret; 793 794 /* associate the bridge to dsi encoder */ 795 return drm_bridge_attach(encoder, bridge, NULL, 0); 796 } 797 798 static int dsi_bind(struct device *dev, struct device *master, void *data) 799 { 800 struct dsi_data *ddata = dev_get_drvdata(dev); 801 struct dw_dsi *dsi = &ddata->dsi; 802 struct drm_device *drm_dev = data; 803 int ret; 804 805 ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder); 806 if (ret) 807 return ret; 808 809 ret = dsi_bridge_init(drm_dev, dsi); 810 if (ret) 811 return ret; 812 813 return 0; 814 } 815 816 static void dsi_unbind(struct device *dev, struct device *master, void *data) 817 { 818 /* do nothing */ 819 } 820 821 static const struct component_ops dsi_ops = { 822 .bind = dsi_bind, 823 .unbind = dsi_unbind, 824 }; 825 826 static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi) 827 { 828 struct dsi_hw_ctx *ctx = dsi->ctx; 829 struct resource *res; 830 831 ctx->pclk = devm_clk_get(&pdev->dev, "pclk"); 832 if (IS_ERR(ctx->pclk)) { 833 DRM_ERROR("failed to get pclk clock\n"); 834 return PTR_ERR(ctx->pclk); 835 } 836 837 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 838 ctx->base = devm_ioremap_resource(&pdev->dev, res); 839 if (IS_ERR(ctx->base)) { 840 DRM_ERROR("failed to remap dsi io region\n"); 841 return PTR_ERR(ctx->base); 842 } 843 844 return 0; 845 } 846 847 static int dsi_probe(struct platform_device *pdev) 848 { 849 struct dsi_data *data; 850 struct dw_dsi *dsi; 851 struct dsi_hw_ctx *ctx; 852 int ret; 853 854 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); 855 if (!data) { 856 DRM_ERROR("failed to allocate dsi data.\n"); 857 return -ENOMEM; 858 } 859 dsi = &data->dsi; 860 ctx = &data->ctx; 861 dsi->ctx = ctx; 862 dsi->dev = &pdev->dev; 863 864 ret = dsi_parse_dt(pdev, dsi); 865 if (ret) 866 return ret; 867 868 platform_set_drvdata(pdev, data); 869 870 ret = dsi_host_init(&pdev->dev, dsi); 871 if (ret) 872 return ret; 873 874 return 0; 875 } 876 877 static int dsi_remove(struct platform_device *pdev) 878 { 879 struct dsi_data *data = platform_get_drvdata(pdev); 880 struct dw_dsi *dsi = &data->dsi; 881 882 mipi_dsi_host_unregister(&dsi->host); 883 884 return 0; 885 } 886 887 static const struct of_device_id dsi_of_match[] = { 888 {.compatible = "hisilicon,hi6220-dsi"}, 889 { } 890 }; 891 MODULE_DEVICE_TABLE(of, dsi_of_match); 892 893 static struct platform_driver dsi_driver = { 894 .probe = dsi_probe, 895 .remove = dsi_remove, 896 .driver = { 897 .name = "dw-dsi", 898 .of_match_table = dsi_of_match, 899 }, 900 }; 901 902 module_platform_driver(dsi_driver); 903 904 MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>"); 905 MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>"); 906 MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>"); 907 MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver"); 908 MODULE_LICENSE("GPL v2"); 909