xref: /openbmc/linux/drivers/gpu/drm/hisilicon/kirin/dw_drm_dsi.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * DesignWare MIPI DSI Host Controller v1.02 driver
3  *
4  * Copyright (c) 2016 Linaro Limited.
5  * Copyright (c) 2014-2016 Hisilicon Limited.
6  *
7  * Author:
8  *	Xinliang Liu <z.liuxinliang@hisilicon.com>
9  *	Xinliang Liu <xinliang.liu@linaro.org>
10  *	Xinwei Kong <kong.kongxinwei@hisilicon.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/component.h>
20 
21 #include <drm/drm_of.h>
22 #include <drm/drm_crtc_helper.h>
23 #include <drm/drm_mipi_dsi.h>
24 #include <drm/drm_encoder_slave.h>
25 #include <drm/drm_atomic_helper.h>
26 
27 #include "dw_dsi_reg.h"
28 
29 #define MAX_TX_ESC_CLK		10
30 #define ROUND(x, y)		((x) / (y) + \
31 				((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
32 #define PHY_REF_CLK_RATE	19200000
33 #define PHY_REF_CLK_PERIOD_PS	(1000000000 / (PHY_REF_CLK_RATE / 1000))
34 
35 #define encoder_to_dsi(encoder) \
36 	container_of(encoder, struct dw_dsi, encoder)
37 #define host_to_dsi(host) \
38 	container_of(host, struct dw_dsi, host)
39 
40 struct mipi_phy_params {
41 	u32 clk_t_lpx;
42 	u32 clk_t_hs_prepare;
43 	u32 clk_t_hs_zero;
44 	u32 clk_t_hs_trial;
45 	u32 clk_t_wakeup;
46 	u32 data_t_lpx;
47 	u32 data_t_hs_prepare;
48 	u32 data_t_hs_zero;
49 	u32 data_t_hs_trial;
50 	u32 data_t_ta_go;
51 	u32 data_t_ta_get;
52 	u32 data_t_wakeup;
53 	u32 hstx_ckg_sel;
54 	u32 pll_fbd_div5f;
55 	u32 pll_fbd_div1f;
56 	u32 pll_fbd_2p;
57 	u32 pll_enbwt;
58 	u32 pll_fbd_p;
59 	u32 pll_fbd_s;
60 	u32 pll_pre_div1p;
61 	u32 pll_pre_p;
62 	u32 pll_vco_750M;
63 	u32 pll_lpf_rs;
64 	u32 pll_lpf_cs;
65 	u32 clklp2hs_time;
66 	u32 clkhs2lp_time;
67 	u32 lp2hs_time;
68 	u32 hs2lp_time;
69 	u32 clk_to_data_delay;
70 	u32 data_to_clk_delay;
71 	u32 lane_byte_clk_kHz;
72 	u32 clk_division;
73 };
74 
75 struct dsi_hw_ctx {
76 	void __iomem *base;
77 	struct clk *pclk;
78 };
79 
80 struct dw_dsi {
81 	struct drm_encoder encoder;
82 	struct drm_bridge *bridge;
83 	struct mipi_dsi_host host;
84 	struct drm_display_mode cur_mode;
85 	struct dsi_hw_ctx *ctx;
86 	struct mipi_phy_params phy;
87 
88 	u32 lanes;
89 	enum mipi_dsi_pixel_format format;
90 	unsigned long mode_flags;
91 	bool enable;
92 };
93 
94 struct dsi_data {
95 	struct dw_dsi dsi;
96 	struct dsi_hw_ctx ctx;
97 };
98 
99 struct dsi_phy_range {
100 	u32 min_range_kHz;
101 	u32 max_range_kHz;
102 	u32 pll_vco_750M;
103 	u32 hstx_ckg_sel;
104 };
105 
106 static const struct dsi_phy_range dphy_range_info[] = {
107 	{   46875,    62500,   1,    7 },
108 	{   62500,    93750,   0,    7 },
109 	{   93750,   125000,   1,    6 },
110 	{  125000,   187500,   0,    6 },
111 	{  187500,   250000,   1,    5 },
112 	{  250000,   375000,   0,    5 },
113 	{  375000,   500000,   1,    4 },
114 	{  500000,   750000,   0,    4 },
115 	{  750000,  1000000,   1,    0 },
116 	{ 1000000,  1500000,   0,    0 }
117 };
118 
119 static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
120 {
121 	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
122 	u32 tmp_kHz = req_kHz;
123 	u32 i = 0;
124 	u32 q_pll = 1;
125 	u32 m_pll = 0;
126 	u32 n_pll = 0;
127 	u32 r_pll = 1;
128 	u32 m_n = 0;
129 	u32 m_n_int = 0;
130 	u32 f_kHz = 0;
131 	u64 temp;
132 
133 	/*
134 	 * Find a rate >= req_kHz.
135 	 */
136 	do {
137 		f_kHz = tmp_kHz;
138 
139 		for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
140 			if (f_kHz >= dphy_range_info[i].min_range_kHz &&
141 			    f_kHz <= dphy_range_info[i].max_range_kHz)
142 				break;
143 
144 		if (i == ARRAY_SIZE(dphy_range_info)) {
145 			DRM_ERROR("%dkHz out of range\n", f_kHz);
146 			return 0;
147 		}
148 
149 		phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
150 		phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;
151 
152 		if (phy->hstx_ckg_sel <= 7 &&
153 		    phy->hstx_ckg_sel >= 4)
154 			q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);
155 
156 		temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
157 		m_n_int = temp / (u64)1000000000;
158 		m_n = (temp % (u64)1000000000) / (u64)100000000;
159 
160 		if (m_n_int % 2 == 0) {
161 			if (m_n * 6 >= 50) {
162 				n_pll = 2;
163 				m_pll = (m_n_int + 1) * n_pll;
164 			} else if (m_n * 6 >= 30) {
165 				n_pll = 3;
166 				m_pll = m_n_int * n_pll + 2;
167 			} else {
168 				n_pll = 1;
169 				m_pll = m_n_int * n_pll;
170 			}
171 		} else {
172 			if (m_n * 6 >= 50) {
173 				n_pll = 1;
174 				m_pll = (m_n_int + 1) * n_pll;
175 			} else if (m_n * 6 >= 30) {
176 				n_pll = 1;
177 				m_pll = (m_n_int + 1) * n_pll;
178 			} else if (m_n * 6 >= 10) {
179 				n_pll = 3;
180 				m_pll = m_n_int * n_pll + 1;
181 			} else {
182 				n_pll = 2;
183 				m_pll = m_n_int * n_pll;
184 			}
185 		}
186 
187 		if (n_pll == 1) {
188 			phy->pll_fbd_p = 0;
189 			phy->pll_pre_div1p = 1;
190 		} else {
191 			phy->pll_fbd_p = n_pll;
192 			phy->pll_pre_div1p = 0;
193 		}
194 
195 		if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
196 			r_pll = 0x10 >> (7 - phy->pll_fbd_2p);
197 
198 		if (m_pll == 2) {
199 			phy->pll_pre_p = 0;
200 			phy->pll_fbd_s = 0;
201 			phy->pll_fbd_div1f = 0;
202 			phy->pll_fbd_div5f = 1;
203 		} else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
204 			phy->pll_pre_p = m_pll / (2 * r_pll);
205 			phy->pll_fbd_s = 0;
206 			phy->pll_fbd_div1f = 1;
207 			phy->pll_fbd_div5f = 0;
208 		} else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
209 			if (((m_pll / (2 * r_pll)) % 2) == 0) {
210 				phy->pll_pre_p =
211 					(m_pll / (2 * r_pll)) / 2 - 1;
212 				phy->pll_fbd_s =
213 					(m_pll / (2 * r_pll)) % 2 + 2;
214 			} else {
215 				phy->pll_pre_p =
216 					(m_pll / (2 * r_pll)) / 2;
217 				phy->pll_fbd_s =
218 					(m_pll / (2 * r_pll)) % 2;
219 			}
220 			phy->pll_fbd_div1f = 0;
221 			phy->pll_fbd_div5f = 0;
222 		} else {
223 			phy->pll_pre_p = 0;
224 			phy->pll_fbd_s = 0;
225 			phy->pll_fbd_div1f = 0;
226 			phy->pll_fbd_div5f = 1;
227 		}
228 
229 		f_kHz = (u64)1000000000 * (u64)m_pll /
230 			((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
231 
232 		if (f_kHz >= req_kHz)
233 			break;
234 
235 		tmp_kHz += 10;
236 
237 	} while (true);
238 
239 	return f_kHz;
240 }
241 
242 static void dsi_get_phy_params(u32 phy_req_kHz,
243 			       struct mipi_phy_params *phy)
244 {
245 	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
246 	u32 phy_rate_kHz;
247 	u32 ui;
248 
249 	memset(phy, 0, sizeof(*phy));
250 
251 	phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
252 	if (!phy_rate_kHz)
253 		return;
254 
255 	ui = 1000000 / phy_rate_kHz;
256 
257 	phy->clk_t_lpx = ROUND(50, 8 * ui);
258 	phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;
259 
260 	phy->clk_t_hs_zero = ROUND(262, 8 * ui);
261 	phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
262 	phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
263 	if (phy->clk_t_wakeup > 0xff)
264 		phy->clk_t_wakeup = 0xff;
265 	phy->data_t_wakeup = phy->clk_t_wakeup;
266 	phy->data_t_lpx = phy->clk_t_lpx;
267 	phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
268 	phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
269 	phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
270 	phy->data_t_ta_go = 3;
271 	phy->data_t_ta_get = 4;
272 
273 	phy->pll_enbwt = 1;
274 	phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
275 	phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
276 	phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
277 	phy->hs2lp_time = phy->clkhs2lp_time;
278 	phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
279 	phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
280 				phy->clkhs2lp_time;
281 
282 	phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
283 	phy->clk_division =
284 		DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
285 }
286 
287 static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
288 {
289 	u32 val;
290 
291 	/*
292 	 * TODO: only support RGB888 now, to support more
293 	 */
294 	switch (format) {
295 	case MIPI_DSI_FMT_RGB888:
296 		val = DSI_24BITS_1;
297 		break;
298 	default:
299 		val = DSI_24BITS_1;
300 		break;
301 	}
302 
303 	return val;
304 }
305 
306 /*
307  * dsi phy reg write function
308  */
309 static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
310 {
311 	u32 reg_write = 0x10000 + reg;
312 
313 	/*
314 	 * latch reg first
315 	 */
316 	writel(reg_write, base + PHY_TST_CTRL1);
317 	writel(0x02, base + PHY_TST_CTRL0);
318 	writel(0x00, base + PHY_TST_CTRL0);
319 
320 	/*
321 	 * then latch value
322 	 */
323 	writel(val, base + PHY_TST_CTRL1);
324 	writel(0x02, base + PHY_TST_CTRL0);
325 	writel(0x00, base + PHY_TST_CTRL0);
326 }
327 
328 static void dsi_set_phy_timer(void __iomem *base,
329 			      struct mipi_phy_params *phy,
330 			      u32 lanes)
331 {
332 	u32 val;
333 
334 	/*
335 	 * Set lane value and phy stop wait time.
336 	 */
337 	val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
338 	writel(val, base + PHY_IF_CFG);
339 
340 	/*
341 	 * Set phy clk division.
342 	 */
343 	val = readl(base + CLKMGR_CFG) | phy->clk_division;
344 	writel(val, base + CLKMGR_CFG);
345 
346 	/*
347 	 * Set lp and hs switching params.
348 	 */
349 	dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
350 	dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
351 	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
352 		       phy->clkhs2lp_time);
353 	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
354 		       phy->clklp2hs_time);
355 	dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
356 		       phy->data_to_clk_delay);
357 	dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
358 		       phy->clk_to_data_delay);
359 }
360 
361 static void dsi_set_mipi_phy(void __iomem *base,
362 			     struct mipi_phy_params *phy,
363 			     u32 lanes)
364 {
365 	u32 delay_count;
366 	u32 val;
367 	u32 i;
368 
369 	/* phy timer setting */
370 	dsi_set_phy_timer(base, phy, lanes);
371 
372 	/*
373 	 * Reset to clean up phy tst params.
374 	 */
375 	writel(0, base + PHY_RSTZ);
376 	writel(0, base + PHY_TST_CTRL0);
377 	writel(1, base + PHY_TST_CTRL0);
378 	writel(0, base + PHY_TST_CTRL0);
379 
380 	/*
381 	 * Clock lane timing control setting: TLPX, THS-PREPARE,
382 	 * THS-ZERO, THS-TRAIL, TWAKEUP.
383 	 */
384 	dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
385 	dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
386 	dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
387 	dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
388 	dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);
389 
390 	/*
391 	 * Data lane timing control setting: TLPX, THS-PREPARE,
392 	 * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
393 	 */
394 	for (i = 0; i < lanes; i++) {
395 		dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
396 		dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
397 				phy->data_t_hs_prepare);
398 		dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
399 		dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
400 		dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
401 		dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
402 		dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
403 	}
404 
405 	/*
406 	 * physical configuration: I, pll I, pll II, pll III,
407 	 * pll IV, pll V.
408 	 */
409 	dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
410 	val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
411 				(phy->pll_fbd_2p << 1) + phy->pll_enbwt;
412 	dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
413 	dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
414 	dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
415 	val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
416 	dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
417 	val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
418 		phy->pll_lpf_cs;
419 	dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);
420 
421 	writel(PHY_ENABLECLK, base + PHY_RSTZ);
422 	udelay(1);
423 	writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
424 	udelay(1);
425 	writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
426 	usleep_range(1000, 1500);
427 
428 	/*
429 	 * wait for phy's clock ready
430 	 */
431 	delay_count = 100;
432 	while (delay_count) {
433 		val = readl(base +  PHY_STATUS);
434 		if ((BIT(0) | BIT(2)) & val)
435 			break;
436 
437 		udelay(1);
438 		delay_count--;
439 	}
440 
441 	if (!delay_count)
442 		DRM_INFO("phylock and phystopstateclklane is not ready.\n");
443 }
444 
445 static void dsi_set_mode_timing(void __iomem *base,
446 				u32 lane_byte_clk_kHz,
447 				struct drm_display_mode *mode,
448 				enum mipi_dsi_pixel_format format)
449 {
450 	u32 hfp, hbp, hsw, vfp, vbp, vsw;
451 	u32 hline_time;
452 	u32 hsa_time;
453 	u32 hbp_time;
454 	u32 pixel_clk_kHz;
455 	int htot, vtot;
456 	u32 val;
457 	u64 tmp;
458 
459 	val = dsi_get_dpi_color_coding(format);
460 	writel(val, base + DPI_COLOR_CODING);
461 
462 	val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
463 	val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
464 	writel(val, base +  DPI_CFG_POL);
465 
466 	/*
467 	 * The DSI IP accepts vertical timing using lines as normal,
468 	 * but horizontal timing is a mixture of pixel-clocks for the
469 	 * active region and byte-lane clocks for the blanking-related
470 	 * timings.  hfp is specified as the total hline_time in byte-
471 	 * lane clocks minus hsa, hbp and active.
472 	 */
473 	pixel_clk_kHz = mode->clock;
474 	htot = mode->htotal;
475 	vtot = mode->vtotal;
476 	hfp = mode->hsync_start - mode->hdisplay;
477 	hbp = mode->htotal - mode->hsync_end;
478 	hsw = mode->hsync_end - mode->hsync_start;
479 	vfp = mode->vsync_start - mode->vdisplay;
480 	vbp = mode->vtotal - mode->vsync_end;
481 	vsw = mode->vsync_end - mode->vsync_start;
482 	if (vsw > 15) {
483 		DRM_DEBUG_DRIVER("vsw exceeded 15\n");
484 		vsw = 15;
485 	}
486 
487 	hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
488 	hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
489 	tmp = (u64)htot * (u64)lane_byte_clk_kHz;
490 	hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz);
491 
492 	/* all specified in byte-lane clocks */
493 	writel(hsa_time, base + VID_HSA_TIME);
494 	writel(hbp_time, base + VID_HBP_TIME);
495 	writel(hline_time, base + VID_HLINE_TIME);
496 
497 	writel(vsw, base + VID_VSA_LINES);
498 	writel(vbp, base + VID_VBP_LINES);
499 	writel(vfp, base + VID_VFP_LINES);
500 	writel(mode->vdisplay, base + VID_VACTIVE_LINES);
501 	writel(mode->hdisplay, base + VID_PKT_SIZE);
502 
503 	DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
504 			 htot, hfp, hbp, hsw);
505 	DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
506 			 vtot, vfp, vbp, vsw);
507 	DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
508 			 hsa_time, hbp_time, hline_time);
509 }
510 
511 static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
512 {
513 	u32 val;
514 	u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
515 		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
516 	u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
517 		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
518 	u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;
519 
520 	/*
521 	 * choose video mode type
522 	 */
523 	if ((flags & mode_mask) == non_burst_sync_pulse)
524 		val = DSI_NON_BURST_SYNC_PULSES;
525 	else if ((flags & mode_mask) == non_burst_sync_event)
526 		val = DSI_NON_BURST_SYNC_EVENTS;
527 	else
528 		val = DSI_BURST_SYNC_PULSES_1;
529 	writel(val, base + VID_MODE_CFG);
530 
531 	writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
532 	writel(DSI_VIDEO_MODE, base + MODE_CFG);
533 }
534 
535 static void dsi_mipi_init(struct dw_dsi *dsi)
536 {
537 	struct dsi_hw_ctx *ctx = dsi->ctx;
538 	struct mipi_phy_params *phy = &dsi->phy;
539 	struct drm_display_mode *mode = &dsi->cur_mode;
540 	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
541 	void __iomem *base = ctx->base;
542 	u32 dphy_req_kHz;
543 
544 	/*
545 	 * count phy params
546 	 */
547 	dphy_req_kHz = mode->clock * bpp / dsi->lanes;
548 	dsi_get_phy_params(dphy_req_kHz, phy);
549 
550 	/* reset Core */
551 	writel(RESET, base + PWR_UP);
552 
553 	/* set dsi phy params */
554 	dsi_set_mipi_phy(base, phy, dsi->lanes);
555 
556 	/* set dsi mode timing */
557 	dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);
558 
559 	/* set dsi video mode */
560 	dsi_set_video_mode(base, dsi->mode_flags);
561 
562 	/* dsi wake up */
563 	writel(POWERUP, base + PWR_UP);
564 
565 	DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
566 			 dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
567 }
568 
569 static void dsi_encoder_disable(struct drm_encoder *encoder)
570 {
571 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
572 	struct dsi_hw_ctx *ctx = dsi->ctx;
573 	void __iomem *base = ctx->base;
574 
575 	if (!dsi->enable)
576 		return;
577 
578 	writel(0, base + PWR_UP);
579 	writel(0, base + LPCLK_CTRL);
580 	writel(0, base + PHY_RSTZ);
581 	clk_disable_unprepare(ctx->pclk);
582 
583 	dsi->enable = false;
584 }
585 
586 static void dsi_encoder_enable(struct drm_encoder *encoder)
587 {
588 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
589 	struct dsi_hw_ctx *ctx = dsi->ctx;
590 	int ret;
591 
592 	if (dsi->enable)
593 		return;
594 
595 	ret = clk_prepare_enable(ctx->pclk);
596 	if (ret) {
597 		DRM_ERROR("fail to enable pclk: %d\n", ret);
598 		return;
599 	}
600 
601 	dsi_mipi_init(dsi);
602 
603 	dsi->enable = true;
604 }
605 
606 static enum drm_mode_status dsi_encoder_phy_mode_valid(
607 					struct drm_encoder *encoder,
608 					const struct drm_display_mode *mode)
609 {
610 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
611 	struct mipi_phy_params phy;
612 	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
613 	u32 req_kHz, act_kHz, lane_byte_clk_kHz;
614 
615 	/* Calculate the lane byte clk using the adjusted mode clk */
616 	memset(&phy, 0, sizeof(phy));
617 	req_kHz = mode->clock * bpp / dsi->lanes;
618 	act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
619 	lane_byte_clk_kHz = act_kHz / 8;
620 
621 	DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
622 			mode->hdisplay, mode->vdisplay, bpp,
623 			drm_mode_vrefresh(mode), mode->clock);
624 
625 	/*
626 	 * Make sure the adjusted mode clock and the lane byte clk
627 	 * have a common denominator base frequency
628 	 */
629 	if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
630 		DRM_DEBUG_DRIVER("OK!\n");
631 		return MODE_OK;
632 	}
633 
634 	DRM_DEBUG_DRIVER("BAD!\n");
635 	return MODE_BAD;
636 }
637 
638 static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
639 					const struct drm_display_mode *mode)
640 
641 {
642 	const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
643 	struct drm_crtc *crtc = NULL;
644 	struct drm_display_mode adj_mode;
645 	enum drm_mode_status ret;
646 
647 	/*
648 	 * The crtc might adjust the mode, so go through the
649 	 * possible crtcs (technically just one) and call
650 	 * mode_fixup to figure out the adjusted mode before we
651 	 * validate it.
652 	 */
653 	drm_for_each_crtc(crtc, encoder->dev) {
654 		/*
655 		 * reset adj_mode to the mode value each time,
656 		 * so we don't adjust the mode twice
657 		 */
658 		drm_mode_copy(&adj_mode, mode);
659 
660 		crtc_funcs = crtc->helper_private;
661 		if (crtc_funcs && crtc_funcs->mode_fixup)
662 			if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
663 				return MODE_BAD;
664 
665 		ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
666 		if (ret != MODE_OK)
667 			return ret;
668 	}
669 	return MODE_OK;
670 }
671 
672 static void dsi_encoder_mode_set(struct drm_encoder *encoder,
673 				 struct drm_display_mode *mode,
674 				 struct drm_display_mode *adj_mode)
675 {
676 	struct dw_dsi *dsi = encoder_to_dsi(encoder);
677 
678 	drm_mode_copy(&dsi->cur_mode, adj_mode);
679 }
680 
681 static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
682 				    struct drm_crtc_state *crtc_state,
683 				    struct drm_connector_state *conn_state)
684 {
685 	/* do nothing */
686 	return 0;
687 }
688 
689 static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
690 	.atomic_check	= dsi_encoder_atomic_check,
691 	.mode_valid	= dsi_encoder_mode_valid,
692 	.mode_set	= dsi_encoder_mode_set,
693 	.enable		= dsi_encoder_enable,
694 	.disable	= dsi_encoder_disable
695 };
696 
697 static const struct drm_encoder_funcs dw_encoder_funcs = {
698 	.destroy = drm_encoder_cleanup,
699 };
700 
701 static int dw_drm_encoder_init(struct device *dev,
702 			       struct drm_device *drm_dev,
703 			       struct drm_encoder *encoder)
704 {
705 	int ret;
706 	u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);
707 
708 	if (!crtc_mask) {
709 		DRM_ERROR("failed to find crtc mask\n");
710 		return -EINVAL;
711 	}
712 
713 	encoder->possible_crtcs = crtc_mask;
714 	ret = drm_encoder_init(drm_dev, encoder, &dw_encoder_funcs,
715 			       DRM_MODE_ENCODER_DSI, NULL);
716 	if (ret) {
717 		DRM_ERROR("failed to init dsi encoder\n");
718 		return ret;
719 	}
720 
721 	drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);
722 
723 	return 0;
724 }
725 
726 static int dsi_host_attach(struct mipi_dsi_host *host,
727 			   struct mipi_dsi_device *mdsi)
728 {
729 	struct dw_dsi *dsi = host_to_dsi(host);
730 
731 	if (mdsi->lanes < 1 || mdsi->lanes > 4) {
732 		DRM_ERROR("dsi device params invalid\n");
733 		return -EINVAL;
734 	}
735 
736 	dsi->lanes = mdsi->lanes;
737 	dsi->format = mdsi->format;
738 	dsi->mode_flags = mdsi->mode_flags;
739 
740 	return 0;
741 }
742 
743 static int dsi_host_detach(struct mipi_dsi_host *host,
744 			   struct mipi_dsi_device *mdsi)
745 {
746 	/* do nothing */
747 	return 0;
748 }
749 
750 static const struct mipi_dsi_host_ops dsi_host_ops = {
751 	.attach = dsi_host_attach,
752 	.detach = dsi_host_detach,
753 };
754 
755 static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
756 {
757 	struct mipi_dsi_host *host = &dsi->host;
758 	int ret;
759 
760 	host->dev = dev;
761 	host->ops = &dsi_host_ops;
762 	ret = mipi_dsi_host_register(host);
763 	if (ret) {
764 		DRM_ERROR("failed to register dsi host\n");
765 		return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
772 {
773 	struct drm_encoder *encoder = &dsi->encoder;
774 	struct drm_bridge *bridge = dsi->bridge;
775 	int ret;
776 
777 	/* associate the bridge to dsi encoder */
778 	ret = drm_bridge_attach(encoder, bridge, NULL);
779 	if (ret) {
780 		DRM_ERROR("failed to attach external bridge\n");
781 		return ret;
782 	}
783 
784 	return 0;
785 }
786 
787 static int dsi_bind(struct device *dev, struct device *master, void *data)
788 {
789 	struct dsi_data *ddata = dev_get_drvdata(dev);
790 	struct dw_dsi *dsi = &ddata->dsi;
791 	struct drm_device *drm_dev = data;
792 	int ret;
793 
794 	ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
795 	if (ret)
796 		return ret;
797 
798 	ret = dsi_host_init(dev, dsi);
799 	if (ret)
800 		return ret;
801 
802 	ret = dsi_bridge_init(drm_dev, dsi);
803 	if (ret)
804 		return ret;
805 
806 	return 0;
807 }
808 
809 static void dsi_unbind(struct device *dev, struct device *master, void *data)
810 {
811 	/* do nothing */
812 }
813 
814 static const struct component_ops dsi_ops = {
815 	.bind	= dsi_bind,
816 	.unbind	= dsi_unbind,
817 };
818 
819 static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
820 {
821 	struct dsi_hw_ctx *ctx = dsi->ctx;
822 	struct device_node *np = pdev->dev.of_node;
823 	struct resource *res;
824 	int ret;
825 
826 	/*
827 	 * Get the endpoint node. In our case, dsi has one output port1
828 	 * to which the external HDMI bridge is connected.
829 	 */
830 	ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &dsi->bridge);
831 	if (ret)
832 		return ret;
833 
834 	ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
835 	if (IS_ERR(ctx->pclk)) {
836 		DRM_ERROR("failed to get pclk clock\n");
837 		return PTR_ERR(ctx->pclk);
838 	}
839 
840 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
841 	ctx->base = devm_ioremap_resource(&pdev->dev, res);
842 	if (IS_ERR(ctx->base)) {
843 		DRM_ERROR("failed to remap dsi io region\n");
844 		return PTR_ERR(ctx->base);
845 	}
846 
847 	return 0;
848 }
849 
850 static int dsi_probe(struct platform_device *pdev)
851 {
852 	struct dsi_data *data;
853 	struct dw_dsi *dsi;
854 	struct dsi_hw_ctx *ctx;
855 	int ret;
856 
857 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
858 	if (!data) {
859 		DRM_ERROR("failed to allocate dsi data.\n");
860 		return -ENOMEM;
861 	}
862 	dsi = &data->dsi;
863 	ctx = &data->ctx;
864 	dsi->ctx = ctx;
865 
866 	ret = dsi_parse_dt(pdev, dsi);
867 	if (ret)
868 		return ret;
869 
870 	platform_set_drvdata(pdev, data);
871 
872 	return component_add(&pdev->dev, &dsi_ops);
873 }
874 
875 static int dsi_remove(struct platform_device *pdev)
876 {
877 	component_del(&pdev->dev, &dsi_ops);
878 
879 	return 0;
880 }
881 
882 static const struct of_device_id dsi_of_match[] = {
883 	{.compatible = "hisilicon,hi6220-dsi"},
884 	{ }
885 };
886 MODULE_DEVICE_TABLE(of, dsi_of_match);
887 
888 static struct platform_driver dsi_driver = {
889 	.probe = dsi_probe,
890 	.remove = dsi_remove,
891 	.driver = {
892 		.name = "dw-dsi",
893 		.of_match_table = dsi_of_match,
894 	},
895 };
896 
897 module_platform_driver(dsi_driver);
898 
899 MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
900 MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
901 MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
902 MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
903 MODULE_LICENSE("GPL v2");
904