1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 
32 struct psb_intel_clock_t {
33 	/* given values */
34 	int n;
35 	int m1, m2;
36 	int p1, p2;
37 	/* derived values */
38 	int dot;
39 	int vco;
40 	int m;
41 	int p;
42 };
43 
44 struct psb_intel_range_t {
45 	int min, max;
46 };
47 
48 struct psb_intel_p2_t {
49 	int dot_limit;
50 	int p2_slow, p2_fast;
51 };
52 
53 struct psb_intel_limit_t {
54 	struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
55 	struct psb_intel_p2_t p2;
56 };
57 
58 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
59 #define INTEL_LIMIT_I9XX_LVDS	    1
60 
61 static const struct psb_intel_limit_t psb_intel_limits[] = {
62 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
63 	 .dot = {.min = 20000, .max = 400000},
64 	 .vco = {.min = 1400000, .max = 2800000},
65 	 .n = {.min = 1, .max = 6},
66 	 .m = {.min = 70, .max = 120},
67 	 .m1 = {.min = 8, .max = 18},
68 	 .m2 = {.min = 3, .max = 7},
69 	 .p = {.min = 5, .max = 80},
70 	 .p1 = {.min = 1, .max = 8},
71 	 .p2 = {.dot_limit = 200000,
72 		.p2_slow = 10, .p2_fast = 5},
73 	 },
74 	{			/* INTEL_LIMIT_I9XX_LVDS */
75 	 .dot = {.min = 20000, .max = 400000},
76 	 .vco = {.min = 1400000, .max = 2800000},
77 	 .n = {.min = 1, .max = 6},
78 	 .m = {.min = 70, .max = 120},
79 	 .m1 = {.min = 8, .max = 18},
80 	 .m2 = {.min = 3, .max = 7},
81 	 .p = {.min = 7, .max = 98},
82 	 .p1 = {.min = 1, .max = 8},
83 	 /* The single-channel range is 25-112Mhz, and dual-channel
84 	  * is 80-224Mhz.  Prefer single channel as much as possible.
85 	  */
86 	 .p2 = {.dot_limit = 112000,
87 		.p2_slow = 14, .p2_fast = 7},
88 	 },
89 };
90 
91 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
92 {
93 	const struct psb_intel_limit_t *limit;
94 
95 	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
96 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
97 	else
98 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
99 	return limit;
100 }
101 
102 static void psb_intel_clock(int refclk, struct psb_intel_clock_t *clock)
103 {
104 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
105 	clock->p = clock->p1 * clock->p2;
106 	clock->vco = refclk * clock->m / (clock->n + 2);
107 	clock->dot = clock->vco / clock->p;
108 }
109 
110 /**
111  * Returns whether any output on the specified pipe is of the specified type
112  */
113 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
114 {
115 	struct drm_device *dev = crtc->dev;
116 	struct drm_mode_config *mode_config = &dev->mode_config;
117 	struct drm_connector *l_entry;
118 
119 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
120 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
121 			struct psb_intel_encoder *psb_intel_encoder =
122 					psb_intel_attached_encoder(l_entry);
123 			if (psb_intel_encoder->type == type)
124 				return true;
125 		}
126 	}
127 	return false;
128 }
129 
130 #define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
131 /**
132  * Returns whether the given set of divisors are valid for a given refclk with
133  * the given connectors.
134  */
135 
136 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
137 			       struct psb_intel_clock_t *clock)
138 {
139 	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
140 
141 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
142 		INTELPllInvalid("p1 out of range\n");
143 	if (clock->p < limit->p.min || limit->p.max < clock->p)
144 		INTELPllInvalid("p out of range\n");
145 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
146 		INTELPllInvalid("m2 out of range\n");
147 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
148 		INTELPllInvalid("m1 out of range\n");
149 	if (clock->m1 <= clock->m2)
150 		INTELPllInvalid("m1 <= m2\n");
151 	if (clock->m < limit->m.min || limit->m.max < clock->m)
152 		INTELPllInvalid("m out of range\n");
153 	if (clock->n < limit->n.min || limit->n.max < clock->n)
154 		INTELPllInvalid("n out of range\n");
155 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
156 		INTELPllInvalid("vco out of range\n");
157 	/* XXX: We may need to be checking "Dot clock"
158 	 * depending on the multiplier, connector, etc.,
159 	 * rather than just a single range.
160 	 */
161 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
162 		INTELPllInvalid("dot out of range\n");
163 
164 	return true;
165 }
166 
167 /**
168  * Returns a set of divisors for the desired target clock with the given
169  * refclk, or FALSE.  The returned values represent the clock equation:
170  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
171  */
172 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
173 				int refclk,
174 				struct psb_intel_clock_t *best_clock)
175 {
176 	struct drm_device *dev = crtc->dev;
177 	struct psb_intel_clock_t clock;
178 	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
179 	int err = target;
180 
181 	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
182 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
183 		/*
184 		 * For LVDS, if the panel is on, just rely on its current
185 		 * settings for dual-channel.  We haven't figured out how to
186 		 * reliably set up different single/dual channel state, if we
187 		 * even can.
188 		 */
189 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
190 		    LVDS_CLKB_POWER_UP)
191 			clock.p2 = limit->p2.p2_fast;
192 		else
193 			clock.p2 = limit->p2.p2_slow;
194 	} else {
195 		if (target < limit->p2.dot_limit)
196 			clock.p2 = limit->p2.p2_slow;
197 		else
198 			clock.p2 = limit->p2.p2_fast;
199 	}
200 
201 	memset(best_clock, 0, sizeof(*best_clock));
202 
203 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
204 	     clock.m1++) {
205 		for (clock.m2 = limit->m2.min;
206 		     clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
207 		     clock.m2++) {
208 			for (clock.n = limit->n.min;
209 			     clock.n <= limit->n.max; clock.n++) {
210 				for (clock.p1 = limit->p1.min;
211 				     clock.p1 <= limit->p1.max;
212 				     clock.p1++) {
213 					int this_err;
214 
215 					psb_intel_clock(refclk, &clock);
216 
217 					if (!psb_intel_PLL_is_valid
218 					    (crtc, &clock))
219 						continue;
220 
221 					this_err = abs(clock.dot - target);
222 					if (this_err < err) {
223 						*best_clock = clock;
224 						err = this_err;
225 					}
226 				}
227 			}
228 		}
229 	}
230 
231 	return err != target;
232 }
233 
234 void psb_intel_wait_for_vblank(struct drm_device *dev)
235 {
236 	/* Wait for 20ms, i.e. one cycle at 50hz. */
237 	mdelay(20);
238 }
239 
240 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
241 			    int x, int y, struct drm_framebuffer *old_fb)
242 {
243 	struct drm_device *dev = crtc->dev;
244 	struct drm_psb_private *dev_priv = dev->dev_private;
245 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
246 	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
247 	int pipe = psb_intel_crtc->pipe;
248 	const struct psb_offset *map = &dev_priv->regmap[pipe];
249 	unsigned long start, offset;
250 	u32 dspcntr;
251 	int ret = 0;
252 
253 	if (!gma_power_begin(dev, true))
254 		return 0;
255 
256 	/* no fb bound */
257 	if (!crtc->fb) {
258 		dev_dbg(dev->dev, "No FB bound\n");
259 		goto psb_intel_pipe_cleaner;
260 	}
261 
262 	/* We are displaying this buffer, make sure it is actually loaded
263 	   into the GTT */
264 	ret = psb_gtt_pin(psbfb->gtt);
265 	if (ret < 0)
266 		goto psb_intel_pipe_set_base_exit;
267 	start = psbfb->gtt->offset;
268 
269 	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
270 
271 	REG_WRITE(map->stride, crtc->fb->pitches[0]);
272 
273 	dspcntr = REG_READ(map->cntr);
274 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
275 
276 	switch (crtc->fb->bits_per_pixel) {
277 	case 8:
278 		dspcntr |= DISPPLANE_8BPP;
279 		break;
280 	case 16:
281 		if (crtc->fb->depth == 15)
282 			dspcntr |= DISPPLANE_15_16BPP;
283 		else
284 			dspcntr |= DISPPLANE_16BPP;
285 		break;
286 	case 24:
287 	case 32:
288 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
289 		break;
290 	default:
291 		dev_err(dev->dev, "Unknown color depth\n");
292 		ret = -EINVAL;
293 		psb_gtt_unpin(psbfb->gtt);
294 		goto psb_intel_pipe_set_base_exit;
295 	}
296 	REG_WRITE(map->cntr, dspcntr);
297 
298 	REG_WRITE(map->base, start + offset);
299 	REG_READ(map->base);
300 
301 psb_intel_pipe_cleaner:
302 	/* If there was a previous display we can now unpin it */
303 	if (old_fb)
304 		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
305 
306 psb_intel_pipe_set_base_exit:
307 	gma_power_end(dev);
308 	return ret;
309 }
310 
311 /**
312  * Sets the power management mode of the pipe and plane.
313  *
314  * This code should probably grow support for turning the cursor off and back
315  * on appropriately at the same time as we're turning the pipe off/on.
316  */
317 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
318 {
319 	struct drm_device *dev = crtc->dev;
320 	struct drm_psb_private *dev_priv = dev->dev_private;
321 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
322 	int pipe = psb_intel_crtc->pipe;
323 	const struct psb_offset *map = &dev_priv->regmap[pipe];
324 	u32 temp;
325 
326 	/* XXX: When our outputs are all unaware of DPMS modes other than off
327 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
328 	 */
329 	switch (mode) {
330 	case DRM_MODE_DPMS_ON:
331 	case DRM_MODE_DPMS_STANDBY:
332 	case DRM_MODE_DPMS_SUSPEND:
333 		/* Enable the DPLL */
334 		temp = REG_READ(map->dpll);
335 		if ((temp & DPLL_VCO_ENABLE) == 0) {
336 			REG_WRITE(map->dpll, temp);
337 			REG_READ(map->dpll);
338 			/* Wait for the clocks to stabilize. */
339 			udelay(150);
340 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
341 			REG_READ(map->dpll);
342 			/* Wait for the clocks to stabilize. */
343 			udelay(150);
344 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
345 			REG_READ(map->dpll);
346 			/* Wait for the clocks to stabilize. */
347 			udelay(150);
348 		}
349 
350 		/* Enable the pipe */
351 		temp = REG_READ(map->conf);
352 		if ((temp & PIPEACONF_ENABLE) == 0)
353 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
354 
355 		/* Enable the plane */
356 		temp = REG_READ(map->cntr);
357 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
358 			REG_WRITE(map->cntr,
359 				  temp | DISPLAY_PLANE_ENABLE);
360 			/* Flush the plane changes */
361 			REG_WRITE(map->base, REG_READ(map->base));
362 		}
363 
364 		psb_intel_crtc_load_lut(crtc);
365 
366 		/* Give the overlay scaler a chance to enable
367 		 * if it's on this pipe */
368 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
369 		break;
370 	case DRM_MODE_DPMS_OFF:
371 		/* Give the overlay scaler a chance to disable
372 		 * if it's on this pipe */
373 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
374 
375 		/* Disable the VGA plane that we never use */
376 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
377 
378 		/* Disable display plane */
379 		temp = REG_READ(map->cntr);
380 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
381 			REG_WRITE(map->cntr,
382 				  temp & ~DISPLAY_PLANE_ENABLE);
383 			/* Flush the plane changes */
384 			REG_WRITE(map->base, REG_READ(map->base));
385 			REG_READ(map->base);
386 		}
387 
388 		/* Next, disable display pipes */
389 		temp = REG_READ(map->conf);
390 		if ((temp & PIPEACONF_ENABLE) != 0) {
391 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
392 			REG_READ(map->conf);
393 		}
394 
395 		/* Wait for vblank for the disable to take effect. */
396 		psb_intel_wait_for_vblank(dev);
397 
398 		temp = REG_READ(map->dpll);
399 		if ((temp & DPLL_VCO_ENABLE) != 0) {
400 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
401 			REG_READ(map->dpll);
402 		}
403 
404 		/* Wait for the clocks to turn off. */
405 		udelay(150);
406 		break;
407 	}
408 
409 	/*Set FIFO Watermarks*/
410 	REG_WRITE(DSPARB, 0x3F3E);
411 }
412 
413 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
414 {
415 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
416 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
417 }
418 
419 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
420 {
421 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
422 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
423 }
424 
425 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
426 {
427 	struct drm_encoder_helper_funcs *encoder_funcs =
428 	    encoder->helper_private;
429 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
430 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
431 }
432 
433 void psb_intel_encoder_commit(struct drm_encoder *encoder)
434 {
435 	struct drm_encoder_helper_funcs *encoder_funcs =
436 	    encoder->helper_private;
437 	/* lvds has its own version of commit see psb_intel_lvds_commit */
438 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
439 }
440 
441 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
442 {
443 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
444 
445 	drm_encoder_cleanup(encoder);
446 	kfree(intel_encoder);
447 }
448 
449 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
450 				  const struct drm_display_mode *mode,
451 				  struct drm_display_mode *adjusted_mode)
452 {
453 	return true;
454 }
455 
456 
457 /**
458  * Return the pipe currently connected to the panel fitter,
459  * or -1 if the panel fitter is not present or not in use
460  */
461 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
462 {
463 	u32 pfit_control;
464 
465 	pfit_control = REG_READ(PFIT_CONTROL);
466 
467 	/* See if the panel fitter is in use */
468 	if ((pfit_control & PFIT_ENABLE) == 0)
469 		return -1;
470 	/* Must be on PIPE 1 for PSB */
471 	return 1;
472 }
473 
474 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
475 			       struct drm_display_mode *mode,
476 			       struct drm_display_mode *adjusted_mode,
477 			       int x, int y,
478 			       struct drm_framebuffer *old_fb)
479 {
480 	struct drm_device *dev = crtc->dev;
481 	struct drm_psb_private *dev_priv = dev->dev_private;
482 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
483 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
484 	int pipe = psb_intel_crtc->pipe;
485 	const struct psb_offset *map = &dev_priv->regmap[pipe];
486 	int refclk;
487 	struct psb_intel_clock_t clock;
488 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
489 	bool ok, is_sdvo = false;
490 	bool is_lvds = false, is_tv = false;
491 	struct drm_mode_config *mode_config = &dev->mode_config;
492 	struct drm_connector *connector;
493 
494 	/* No scan out no play */
495 	if (crtc->fb == NULL) {
496 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
497 		return 0;
498 	}
499 
500 	list_for_each_entry(connector, &mode_config->connector_list, head) {
501 		struct psb_intel_encoder *psb_intel_encoder =
502 					psb_intel_attached_encoder(connector);
503 
504 		if (!connector->encoder
505 		    || connector->encoder->crtc != crtc)
506 			continue;
507 
508 		switch (psb_intel_encoder->type) {
509 		case INTEL_OUTPUT_LVDS:
510 			is_lvds = true;
511 			break;
512 		case INTEL_OUTPUT_SDVO:
513 			is_sdvo = true;
514 			break;
515 		case INTEL_OUTPUT_TVOUT:
516 			is_tv = true;
517 			break;
518 		}
519 	}
520 
521 	refclk = 96000;
522 
523 	ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
524 				 &clock);
525 	if (!ok) {
526 		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
527 		return 0;
528 	}
529 
530 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
531 
532 	dpll = DPLL_VGA_MODE_DIS;
533 	if (is_lvds) {
534 		dpll |= DPLLB_MODE_LVDS;
535 		dpll |= DPLL_DVO_HIGH_SPEED;
536 	} else
537 		dpll |= DPLLB_MODE_DAC_SERIAL;
538 	if (is_sdvo) {
539 		int sdvo_pixel_multiply =
540 			    adjusted_mode->clock / mode->clock;
541 		dpll |= DPLL_DVO_HIGH_SPEED;
542 		dpll |=
543 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
544 	}
545 
546 	/* compute bitmask from p1 value */
547 	dpll |= (1 << (clock.p1 - 1)) << 16;
548 	switch (clock.p2) {
549 	case 5:
550 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
551 		break;
552 	case 7:
553 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
554 		break;
555 	case 10:
556 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
557 		break;
558 	case 14:
559 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
560 		break;
561 	}
562 
563 	if (is_tv) {
564 		/* XXX: just matching BIOS for now */
565 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
566 		dpll |= 3;
567 	}
568 	dpll |= PLL_REF_INPUT_DREFCLK;
569 
570 	/* setup pipeconf */
571 	pipeconf = REG_READ(map->conf);
572 
573 	/* Set up the display plane register */
574 	dspcntr = DISPPLANE_GAMMA_ENABLE;
575 
576 	if (pipe == 0)
577 		dspcntr |= DISPPLANE_SEL_PIPE_A;
578 	else
579 		dspcntr |= DISPPLANE_SEL_PIPE_B;
580 
581 	dspcntr |= DISPLAY_PLANE_ENABLE;
582 	pipeconf |= PIPEACONF_ENABLE;
583 	dpll |= DPLL_VCO_ENABLE;
584 
585 
586 	/* Disable the panel fitter if it was on our pipe */
587 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
588 		REG_WRITE(PFIT_CONTROL, 0);
589 
590 	drm_mode_debug_printmodeline(mode);
591 
592 	if (dpll & DPLL_VCO_ENABLE) {
593 		REG_WRITE(map->fp0, fp);
594 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
595 		REG_READ(map->dpll);
596 		udelay(150);
597 	}
598 
599 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
600 	 * This is an exception to the general rule that mode_set doesn't turn
601 	 * things on.
602 	 */
603 	if (is_lvds) {
604 		u32 lvds = REG_READ(LVDS);
605 
606 		lvds &= ~LVDS_PIPEB_SELECT;
607 		if (pipe == 1)
608 			lvds |= LVDS_PIPEB_SELECT;
609 
610 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
611 		/* Set the B0-B3 data pairs corresponding to
612 		 * whether we're going to
613 		 * set the DPLLs for dual-channel mode or not.
614 		 */
615 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
616 		if (clock.p2 == 7)
617 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
618 
619 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
620 		 * appropriately here, but we need to look more
621 		 * thoroughly into how panels behave in the two modes.
622 		 */
623 
624 		REG_WRITE(LVDS, lvds);
625 		REG_READ(LVDS);
626 	}
627 
628 	REG_WRITE(map->fp0, fp);
629 	REG_WRITE(map->dpll, dpll);
630 	REG_READ(map->dpll);
631 	/* Wait for the clocks to stabilize. */
632 	udelay(150);
633 
634 	/* write it again -- the BIOS does, after all */
635 	REG_WRITE(map->dpll, dpll);
636 
637 	REG_READ(map->dpll);
638 	/* Wait for the clocks to stabilize. */
639 	udelay(150);
640 
641 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
642 		  ((adjusted_mode->crtc_htotal - 1) << 16));
643 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
644 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
645 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
646 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
647 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
648 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
649 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
650 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
651 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
652 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
653 	/* pipesrc and dspsize control the size that is scaled from,
654 	 * which should always be the user's requested size.
655 	 */
656 	REG_WRITE(map->size,
657 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
658 	REG_WRITE(map->pos, 0);
659 	REG_WRITE(map->src,
660 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
661 	REG_WRITE(map->conf, pipeconf);
662 	REG_READ(map->conf);
663 
664 	psb_intel_wait_for_vblank(dev);
665 
666 	REG_WRITE(map->cntr, dspcntr);
667 
668 	/* Flush the plane changes */
669 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
670 
671 	psb_intel_wait_for_vblank(dev);
672 
673 	return 0;
674 }
675 
676 /** Loads the palette/gamma unit for the CRTC with the prepared values */
677 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
678 {
679 	struct drm_device *dev = crtc->dev;
680 	struct drm_psb_private *dev_priv = dev->dev_private;
681 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
682 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
683 	int palreg = map->palette;
684 	int i;
685 
686 	/* The clocks have to be on to load the palette. */
687 	if (!crtc->enabled)
688 		return;
689 
690 	switch (psb_intel_crtc->pipe) {
691 	case 0:
692 	case 1:
693 		break;
694 	default:
695 		dev_err(dev->dev, "Illegal Pipe Number.\n");
696 		return;
697 	}
698 
699 	if (gma_power_begin(dev, false)) {
700 		for (i = 0; i < 256; i++) {
701 			REG_WRITE(palreg + 4 * i,
702 				  ((psb_intel_crtc->lut_r[i] +
703 				  psb_intel_crtc->lut_adj[i]) << 16) |
704 				  ((psb_intel_crtc->lut_g[i] +
705 				  psb_intel_crtc->lut_adj[i]) << 8) |
706 				  (psb_intel_crtc->lut_b[i] +
707 				  psb_intel_crtc->lut_adj[i]));
708 		}
709 		gma_power_end(dev);
710 	} else {
711 		for (i = 0; i < 256; i++) {
712 			dev_priv->regs.pipe[0].palette[i] =
713 				  ((psb_intel_crtc->lut_r[i] +
714 				  psb_intel_crtc->lut_adj[i]) << 16) |
715 				  ((psb_intel_crtc->lut_g[i] +
716 				  psb_intel_crtc->lut_adj[i]) << 8) |
717 				  (psb_intel_crtc->lut_b[i] +
718 				  psb_intel_crtc->lut_adj[i]);
719 		}
720 
721 	}
722 }
723 
724 /**
725  * Save HW states of giving crtc
726  */
727 static void psb_intel_crtc_save(struct drm_crtc *crtc)
728 {
729 	struct drm_device *dev = crtc->dev;
730 	struct drm_psb_private *dev_priv = dev->dev_private;
731 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
732 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
733 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
734 	uint32_t paletteReg;
735 	int i;
736 
737 	if (!crtc_state) {
738 		dev_err(dev->dev, "No CRTC state found\n");
739 		return;
740 	}
741 
742 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
743 	crtc_state->savePIPECONF = REG_READ(map->conf);
744 	crtc_state->savePIPESRC = REG_READ(map->src);
745 	crtc_state->saveFP0 = REG_READ(map->fp0);
746 	crtc_state->saveFP1 = REG_READ(map->fp1);
747 	crtc_state->saveDPLL = REG_READ(map->dpll);
748 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
749 	crtc_state->saveHBLANK = REG_READ(map->hblank);
750 	crtc_state->saveHSYNC = REG_READ(map->hsync);
751 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
752 	crtc_state->saveVBLANK = REG_READ(map->vblank);
753 	crtc_state->saveVSYNC = REG_READ(map->vsync);
754 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
755 
756 	/*NOTE: DSPSIZE DSPPOS only for psb*/
757 	crtc_state->saveDSPSIZE = REG_READ(map->size);
758 	crtc_state->saveDSPPOS = REG_READ(map->pos);
759 
760 	crtc_state->saveDSPBASE = REG_READ(map->base);
761 
762 	paletteReg = map->palette;
763 	for (i = 0; i < 256; ++i)
764 		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
765 }
766 
767 /**
768  * Restore HW states of giving crtc
769  */
770 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
771 {
772 	struct drm_device *dev = crtc->dev;
773 	struct drm_psb_private *dev_priv = dev->dev_private;
774 	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
775 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
776 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
777 	uint32_t paletteReg;
778 	int i;
779 
780 	if (!crtc_state) {
781 		dev_err(dev->dev, "No crtc state\n");
782 		return;
783 	}
784 
785 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
786 		REG_WRITE(map->dpll,
787 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
788 		REG_READ(map->dpll);
789 		udelay(150);
790 	}
791 
792 	REG_WRITE(map->fp0, crtc_state->saveFP0);
793 	REG_READ(map->fp0);
794 
795 	REG_WRITE(map->fp1, crtc_state->saveFP1);
796 	REG_READ(map->fp1);
797 
798 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
799 	REG_READ(map->dpll);
800 	udelay(150);
801 
802 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
803 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
804 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
805 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
806 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
807 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
808 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
809 
810 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
811 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
812 
813 	REG_WRITE(map->src, crtc_state->savePIPESRC);
814 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
815 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
816 
817 	psb_intel_wait_for_vblank(dev);
818 
819 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
820 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
821 
822 	psb_intel_wait_for_vblank(dev);
823 
824 	paletteReg = map->palette;
825 	for (i = 0; i < 256; ++i)
826 		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
827 }
828 
829 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
830 				 struct drm_file *file_priv,
831 				 uint32_t handle,
832 				 uint32_t width, uint32_t height)
833 {
834 	struct drm_device *dev = crtc->dev;
835 	struct drm_psb_private *dev_priv = dev->dev_private;
836 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
837 	int pipe = psb_intel_crtc->pipe;
838 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
839 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
840 	uint32_t temp;
841 	size_t addr = 0;
842 	struct gtt_range *gt;
843 	struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
844 	struct drm_gem_object *obj;
845 	void *tmp_dst, *tmp_src;
846 	int ret, i, cursor_pages;
847 
848 	/* if we want to turn of the cursor ignore width and height */
849 	if (!handle) {
850 		/* turn off the cursor */
851 		temp = CURSOR_MODE_DISABLE;
852 
853 		if (gma_power_begin(dev, false)) {
854 			REG_WRITE(control, temp);
855 			REG_WRITE(base, 0);
856 			gma_power_end(dev);
857 		}
858 
859 		/* Unpin the old GEM object */
860 		if (psb_intel_crtc->cursor_obj) {
861 			gt = container_of(psb_intel_crtc->cursor_obj,
862 							struct gtt_range, gem);
863 			psb_gtt_unpin(gt);
864 			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
865 			psb_intel_crtc->cursor_obj = NULL;
866 		}
867 
868 		return 0;
869 	}
870 
871 	/* Currently we only support 64x64 cursors */
872 	if (width != 64 || height != 64) {
873 		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
874 		return -EINVAL;
875 	}
876 
877 	obj = drm_gem_object_lookup(dev, file_priv, handle);
878 	if (!obj)
879 		return -ENOENT;
880 
881 	if (obj->size < width * height * 4) {
882 		dev_dbg(dev->dev, "buffer is to small\n");
883 		return -ENOMEM;
884 	}
885 
886 	gt = container_of(obj, struct gtt_range, gem);
887 
888 	/* Pin the memory into the GTT */
889 	ret = psb_gtt_pin(gt);
890 	if (ret) {
891 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
892 		return ret;
893 	}
894 
895 	if (dev_priv->ops->cursor_needs_phys) {
896 		if (cursor_gt == NULL) {
897 			dev_err(dev->dev, "No hardware cursor mem available");
898 			return -ENOMEM;
899 		}
900 
901 		/* Prevent overflow */
902 		if (gt->npage > 4)
903 			cursor_pages = 4;
904 		else
905 			cursor_pages = gt->npage;
906 
907 		/* Copy the cursor to cursor mem */
908 		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
909 		for (i = 0; i < cursor_pages; i++) {
910 			tmp_src = kmap(gt->pages[i]);
911 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
912 			kunmap(gt->pages[i]);
913 			tmp_dst += PAGE_SIZE;
914 		}
915 
916 		addr = psb_intel_crtc->cursor_addr;
917 	} else {
918 		addr = gt->offset;      /* Or resource.start ??? */
919 		psb_intel_crtc->cursor_addr = addr;
920 	}
921 
922 	temp = 0;
923 	/* set the pipe for the cursor */
924 	temp |= (pipe << 28);
925 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
926 
927 	if (gma_power_begin(dev, false)) {
928 		REG_WRITE(control, temp);
929 		REG_WRITE(base, addr);
930 		gma_power_end(dev);
931 	}
932 
933 	/* unpin the old bo */
934 	if (psb_intel_crtc->cursor_obj) {
935 		gt = container_of(psb_intel_crtc->cursor_obj,
936 							struct gtt_range, gem);
937 		psb_gtt_unpin(gt);
938 		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
939 		psb_intel_crtc->cursor_obj = obj;
940 	}
941 	return 0;
942 }
943 
944 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
945 {
946 	struct drm_device *dev = crtc->dev;
947 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
948 	int pipe = psb_intel_crtc->pipe;
949 	uint32_t temp = 0;
950 	uint32_t addr;
951 
952 
953 	if (x < 0) {
954 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
955 		x = -x;
956 	}
957 	if (y < 0) {
958 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
959 		y = -y;
960 	}
961 
962 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
963 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
964 
965 	addr = psb_intel_crtc->cursor_addr;
966 
967 	if (gma_power_begin(dev, false)) {
968 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
969 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
970 		gma_power_end(dev);
971 	}
972 	return 0;
973 }
974 
975 static void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
976 			 u16 *green, u16 *blue, uint32_t type, uint32_t size)
977 {
978 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
979 	int i;
980 
981 	if (size != 256)
982 		return;
983 
984 	for (i = 0; i < 256; i++) {
985 		psb_intel_crtc->lut_r[i] = red[i] >> 8;
986 		psb_intel_crtc->lut_g[i] = green[i] >> 8;
987 		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
988 	}
989 
990 	psb_intel_crtc_load_lut(crtc);
991 }
992 
993 static int psb_crtc_set_config(struct drm_mode_set *set)
994 {
995 	int ret;
996 	struct drm_device *dev = set->crtc->dev;
997 	struct drm_psb_private *dev_priv = dev->dev_private;
998 
999 	if (!dev_priv->rpm_enabled)
1000 		return drm_crtc_helper_set_config(set);
1001 
1002 	pm_runtime_forbid(&dev->pdev->dev);
1003 	ret = drm_crtc_helper_set_config(set);
1004 	pm_runtime_allow(&dev->pdev->dev);
1005 	return ret;
1006 }
1007 
1008 /* Returns the clock of the currently programmed mode of the given pipe. */
1009 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1010 				struct drm_crtc *crtc)
1011 {
1012 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1013 	struct drm_psb_private *dev_priv = dev->dev_private;
1014 	int pipe = psb_intel_crtc->pipe;
1015 	const struct psb_offset *map = &dev_priv->regmap[pipe];
1016 	u32 dpll;
1017 	u32 fp;
1018 	struct psb_intel_clock_t clock;
1019 	bool is_lvds;
1020 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1021 
1022 	if (gma_power_begin(dev, false)) {
1023 		dpll = REG_READ(map->dpll);
1024 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1025 			fp = REG_READ(map->fp0);
1026 		else
1027 			fp = REG_READ(map->fp1);
1028 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1029 		gma_power_end(dev);
1030 	} else {
1031 		dpll = p->dpll;
1032 
1033 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1034 			fp = p->fp0;
1035 		else
1036 		        fp = p->fp1;
1037 
1038 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1039 								LVDS_PORT_EN);
1040 	}
1041 
1042 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1043 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1044 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1045 
1046 	if (is_lvds) {
1047 		clock.p1 =
1048 		    ffs((dpll &
1049 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1050 			DPLL_FPA01_P1_POST_DIV_SHIFT);
1051 		clock.p2 = 14;
1052 
1053 		if ((dpll & PLL_REF_INPUT_MASK) ==
1054 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1055 			/* XXX: might not be 66MHz */
1056 			psb_intel_clock(66000, &clock);
1057 		} else
1058 			psb_intel_clock(48000, &clock);
1059 	} else {
1060 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1061 			clock.p1 = 2;
1062 		else {
1063 			clock.p1 =
1064 			    ((dpll &
1065 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1066 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1067 		}
1068 		if (dpll & PLL_P2_DIVIDE_BY_4)
1069 			clock.p2 = 4;
1070 		else
1071 			clock.p2 = 2;
1072 
1073 		psb_intel_clock(48000, &clock);
1074 	}
1075 
1076 	/* XXX: It would be nice to validate the clocks, but we can't reuse
1077 	 * i830PllIsValid() because it relies on the xf86_config connector
1078 	 * configuration being accurate, which it isn't necessarily.
1079 	 */
1080 
1081 	return clock.dot;
1082 }
1083 
1084 /** Returns the currently programmed mode of the given pipe. */
1085 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1086 					     struct drm_crtc *crtc)
1087 {
1088 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1089 	int pipe = psb_intel_crtc->pipe;
1090 	struct drm_display_mode *mode;
1091 	int htot;
1092 	int hsync;
1093 	int vtot;
1094 	int vsync;
1095 	struct drm_psb_private *dev_priv = dev->dev_private;
1096 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1097 	const struct psb_offset *map = &dev_priv->regmap[pipe];
1098 
1099 	if (gma_power_begin(dev, false)) {
1100 		htot = REG_READ(map->htotal);
1101 		hsync = REG_READ(map->hsync);
1102 		vtot = REG_READ(map->vtotal);
1103 		vsync = REG_READ(map->vsync);
1104 		gma_power_end(dev);
1105 	} else {
1106 		htot = p->htotal;
1107 		hsync = p->hsync;
1108 		vtot = p->vtotal;
1109 		vsync = p->vsync;
1110 	}
1111 
1112 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1113 	if (!mode)
1114 		return NULL;
1115 
1116 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1117 	mode->hdisplay = (htot & 0xffff) + 1;
1118 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1119 	mode->hsync_start = (hsync & 0xffff) + 1;
1120 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1121 	mode->vdisplay = (vtot & 0xffff) + 1;
1122 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1123 	mode->vsync_start = (vsync & 0xffff) + 1;
1124 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1125 
1126 	drm_mode_set_name(mode);
1127 	drm_mode_set_crtcinfo(mode, 0);
1128 
1129 	return mode;
1130 }
1131 
1132 static void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1133 {
1134 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1135 	struct gtt_range *gt;
1136 
1137 	/* Unpin the old GEM object */
1138 	if (psb_intel_crtc->cursor_obj) {
1139 		gt = container_of(psb_intel_crtc->cursor_obj,
1140 						struct gtt_range, gem);
1141 		psb_gtt_unpin(gt);
1142 		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1143 		psb_intel_crtc->cursor_obj = NULL;
1144 	}
1145 
1146 	if (psb_intel_crtc->cursor_gt != NULL)
1147 		psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
1148 	kfree(psb_intel_crtc->crtc_state);
1149 	drm_crtc_cleanup(crtc);
1150 	kfree(psb_intel_crtc);
1151 }
1152 
1153 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1154 	.dpms = psb_intel_crtc_dpms,
1155 	.mode_fixup = psb_intel_crtc_mode_fixup,
1156 	.mode_set = psb_intel_crtc_mode_set,
1157 	.mode_set_base = psb_intel_pipe_set_base,
1158 	.prepare = psb_intel_crtc_prepare,
1159 	.commit = psb_intel_crtc_commit,
1160 };
1161 
1162 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1163 	.save = psb_intel_crtc_save,
1164 	.restore = psb_intel_crtc_restore,
1165 	.cursor_set = psb_intel_crtc_cursor_set,
1166 	.cursor_move = psb_intel_crtc_cursor_move,
1167 	.gamma_set = psb_intel_crtc_gamma_set,
1168 	.set_config = psb_crtc_set_config,
1169 	.destroy = psb_intel_crtc_destroy,
1170 };
1171 
1172 /*
1173  * Set the default value of cursor control and base register
1174  * to zero. This is a workaround for h/w defect on Oaktrail
1175  */
1176 static void psb_intel_cursor_init(struct drm_device *dev,
1177 				  struct psb_intel_crtc *psb_intel_crtc)
1178 {
1179 	struct drm_psb_private *dev_priv = dev->dev_private;
1180 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1181 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1182 	struct gtt_range *cursor_gt;
1183 
1184 	if (dev_priv->ops->cursor_needs_phys) {
1185 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
1186 		 * is enough for the 64 x 64 ARGB cursors we support.
1187 		 */
1188 		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
1189 		if (!cursor_gt) {
1190 			psb_intel_crtc->cursor_gt = NULL;
1191 			goto out;
1192 		}
1193 		psb_intel_crtc->cursor_gt = cursor_gt;
1194 		psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
1195 							cursor_gt->offset;
1196 	} else {
1197 		psb_intel_crtc->cursor_gt = NULL;
1198 	}
1199 
1200 out:
1201 	REG_WRITE(control[psb_intel_crtc->pipe], 0);
1202 	REG_WRITE(base[psb_intel_crtc->pipe], 0);
1203 }
1204 
1205 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1206 		     struct psb_intel_mode_device *mode_dev)
1207 {
1208 	struct drm_psb_private *dev_priv = dev->dev_private;
1209 	struct psb_intel_crtc *psb_intel_crtc;
1210 	int i;
1211 	uint16_t *r_base, *g_base, *b_base;
1212 
1213 	/* We allocate a extra array of drm_connector pointers
1214 	 * for fbdev after the crtc */
1215 	psb_intel_crtc =
1216 	    kzalloc(sizeof(struct psb_intel_crtc) +
1217 		    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1218 		    GFP_KERNEL);
1219 	if (psb_intel_crtc == NULL)
1220 		return;
1221 
1222 	psb_intel_crtc->crtc_state =
1223 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1224 	if (!psb_intel_crtc->crtc_state) {
1225 		dev_err(dev->dev, "Crtc state error: No memory\n");
1226 		kfree(psb_intel_crtc);
1227 		return;
1228 	}
1229 
1230 	/* Set the CRTC operations from the chip specific data */
1231 	drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1232 
1233 	drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1234 	psb_intel_crtc->pipe = pipe;
1235 	psb_intel_crtc->plane = pipe;
1236 
1237 	r_base = psb_intel_crtc->base.gamma_store;
1238 	g_base = r_base + 256;
1239 	b_base = g_base + 256;
1240 	for (i = 0; i < 256; i++) {
1241 		psb_intel_crtc->lut_r[i] = i;
1242 		psb_intel_crtc->lut_g[i] = i;
1243 		psb_intel_crtc->lut_b[i] = i;
1244 		r_base[i] = i << 8;
1245 		g_base[i] = i << 8;
1246 		b_base[i] = i << 8;
1247 
1248 		psb_intel_crtc->lut_adj[i] = 0;
1249 	}
1250 
1251 	psb_intel_crtc->mode_dev = mode_dev;
1252 	psb_intel_crtc->cursor_addr = 0;
1253 
1254 	drm_crtc_helper_add(&psb_intel_crtc->base,
1255 						dev_priv->ops->crtc_helper);
1256 
1257 	/* Setup the array of drm_connector pointer array */
1258 	psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1259 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1260 	       dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1261 	dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1262 							&psb_intel_crtc->base;
1263 	dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1264 							&psb_intel_crtc->base;
1265 	psb_intel_crtc->mode_set.connectors =
1266 	    (struct drm_connector **) (psb_intel_crtc + 1);
1267 	psb_intel_crtc->mode_set.num_connectors = 0;
1268 	psb_intel_cursor_init(dev, psb_intel_crtc);
1269 
1270 	/* Set to true so that the pipe is forced off on initial config. */
1271 	psb_intel_crtc->active = true;
1272 }
1273 
1274 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1275 				struct drm_file *file_priv)
1276 {
1277 	struct drm_psb_private *dev_priv = dev->dev_private;
1278 	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1279 	struct drm_mode_object *drmmode_obj;
1280 	struct psb_intel_crtc *crtc;
1281 
1282 	if (!dev_priv) {
1283 		dev_err(dev->dev, "called with no initialization\n");
1284 		return -EINVAL;
1285 	}
1286 
1287 	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1288 			DRM_MODE_OBJECT_CRTC);
1289 
1290 	if (!drmmode_obj) {
1291 		dev_err(dev->dev, "no such CRTC id\n");
1292 		return -EINVAL;
1293 	}
1294 
1295 	crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1296 	pipe_from_crtc_id->pipe = crtc->pipe;
1297 
1298 	return 0;
1299 }
1300 
1301 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1302 {
1303 	struct drm_crtc *crtc = NULL;
1304 
1305 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1306 		struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1307 		if (psb_intel_crtc->pipe == pipe)
1308 			break;
1309 	}
1310 	return crtc;
1311 }
1312 
1313 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1314 {
1315 	int index_mask = 0;
1316 	struct drm_connector *connector;
1317 	int entry = 0;
1318 
1319 	list_for_each_entry(connector, &dev->mode_config.connector_list,
1320 			    head) {
1321 		struct psb_intel_encoder *psb_intel_encoder =
1322 					psb_intel_attached_encoder(connector);
1323 		if (type_mask & (1 << psb_intel_encoder->type))
1324 			index_mask |= (1 << entry);
1325 		entry++;
1326 	}
1327 	return index_mask;
1328 }
1329 
1330 /* current intel driver doesn't take advantage of encoders
1331    always give back the encoder for the connector
1332 */
1333 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1334 {
1335 	struct psb_intel_encoder *psb_intel_encoder =
1336 					psb_intel_attached_encoder(connector);
1337 
1338 	return &psb_intel_encoder->base;
1339 }
1340 
1341 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1342 					struct psb_intel_encoder *encoder)
1343 {
1344 	connector->encoder = encoder;
1345 	drm_mode_connector_attach_encoder(&connector->base,
1346 					  &encoder->base);
1347 }
1348