1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 
23 #include <drm/drmP.h>
24 #include <drm/drm_plane_helper.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "gma_display.h"
30 #include "power.h"
31 
32 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
33 #define INTEL_LIMIT_I9XX_LVDS	    1
34 
35 static const struct gma_limit_t psb_intel_limits[] = {
36 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
37 	 .dot = {.min = 20000, .max = 400000},
38 	 .vco = {.min = 1400000, .max = 2800000},
39 	 .n = {.min = 1, .max = 6},
40 	 .m = {.min = 70, .max = 120},
41 	 .m1 = {.min = 8, .max = 18},
42 	 .m2 = {.min = 3, .max = 7},
43 	 .p = {.min = 5, .max = 80},
44 	 .p1 = {.min = 1, .max = 8},
45 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
46 	 .find_pll = gma_find_best_pll,
47 	 },
48 	{			/* INTEL_LIMIT_I9XX_LVDS */
49 	 .dot = {.min = 20000, .max = 400000},
50 	 .vco = {.min = 1400000, .max = 2800000},
51 	 .n = {.min = 1, .max = 6},
52 	 .m = {.min = 70, .max = 120},
53 	 .m1 = {.min = 8, .max = 18},
54 	 .m2 = {.min = 3, .max = 7},
55 	 .p = {.min = 7, .max = 98},
56 	 .p1 = {.min = 1, .max = 8},
57 	 /* The single-channel range is 25-112Mhz, and dual-channel
58 	  * is 80-224Mhz.  Prefer single channel as much as possible.
59 	  */
60 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
61 	 .find_pll = gma_find_best_pll,
62 	 },
63 };
64 
65 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
66 						 int refclk)
67 {
68 	const struct gma_limit_t *limit;
69 
70 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
71 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
72 	else
73 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
74 	return limit;
75 }
76 
77 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
78 {
79 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
80 	clock->p = clock->p1 * clock->p2;
81 	clock->vco = refclk * clock->m / (clock->n + 2);
82 	clock->dot = clock->vco / clock->p;
83 }
84 
85 /**
86  * Return the pipe currently connected to the panel fitter,
87  * or -1 if the panel fitter is not present or not in use
88  */
89 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
90 {
91 	u32 pfit_control;
92 
93 	pfit_control = REG_READ(PFIT_CONTROL);
94 
95 	/* See if the panel fitter is in use */
96 	if ((pfit_control & PFIT_ENABLE) == 0)
97 		return -1;
98 	/* Must be on PIPE 1 for PSB */
99 	return 1;
100 }
101 
102 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
103 			       struct drm_display_mode *mode,
104 			       struct drm_display_mode *adjusted_mode,
105 			       int x, int y,
106 			       struct drm_framebuffer *old_fb)
107 {
108 	struct drm_device *dev = crtc->dev;
109 	struct drm_psb_private *dev_priv = dev->dev_private;
110 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
111 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
112 	int pipe = gma_crtc->pipe;
113 	const struct psb_offset *map = &dev_priv->regmap[pipe];
114 	int refclk;
115 	struct gma_clock_t clock;
116 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
117 	bool ok, is_sdvo = false;
118 	bool is_lvds = false, is_tv = false;
119 	struct drm_mode_config *mode_config = &dev->mode_config;
120 	struct drm_connector *connector;
121 	const struct gma_limit_t *limit;
122 
123 	/* No scan out no play */
124 	if (crtc->primary->fb == NULL) {
125 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
126 		return 0;
127 	}
128 
129 	list_for_each_entry(connector, &mode_config->connector_list, head) {
130 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
131 
132 		if (!connector->encoder
133 		    || connector->encoder->crtc != crtc)
134 			continue;
135 
136 		switch (gma_encoder->type) {
137 		case INTEL_OUTPUT_LVDS:
138 			is_lvds = true;
139 			break;
140 		case INTEL_OUTPUT_SDVO:
141 			is_sdvo = true;
142 			break;
143 		case INTEL_OUTPUT_TVOUT:
144 			is_tv = true;
145 			break;
146 		}
147 	}
148 
149 	refclk = 96000;
150 
151 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
152 
153 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
154 				 &clock);
155 	if (!ok) {
156 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
157 			  adjusted_mode->clock, clock.dot);
158 		return 0;
159 	}
160 
161 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
162 
163 	dpll = DPLL_VGA_MODE_DIS;
164 	if (is_lvds) {
165 		dpll |= DPLLB_MODE_LVDS;
166 		dpll |= DPLL_DVO_HIGH_SPEED;
167 	} else
168 		dpll |= DPLLB_MODE_DAC_SERIAL;
169 	if (is_sdvo) {
170 		int sdvo_pixel_multiply =
171 			    adjusted_mode->clock / mode->clock;
172 		dpll |= DPLL_DVO_HIGH_SPEED;
173 		dpll |=
174 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
175 	}
176 
177 	/* compute bitmask from p1 value */
178 	dpll |= (1 << (clock.p1 - 1)) << 16;
179 	switch (clock.p2) {
180 	case 5:
181 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
182 		break;
183 	case 7:
184 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
185 		break;
186 	case 10:
187 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
188 		break;
189 	case 14:
190 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
191 		break;
192 	}
193 
194 	if (is_tv) {
195 		/* XXX: just matching BIOS for now */
196 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
197 		dpll |= 3;
198 	}
199 	dpll |= PLL_REF_INPUT_DREFCLK;
200 
201 	/* setup pipeconf */
202 	pipeconf = REG_READ(map->conf);
203 
204 	/* Set up the display plane register */
205 	dspcntr = DISPPLANE_GAMMA_ENABLE;
206 
207 	if (pipe == 0)
208 		dspcntr |= DISPPLANE_SEL_PIPE_A;
209 	else
210 		dspcntr |= DISPPLANE_SEL_PIPE_B;
211 
212 	dspcntr |= DISPLAY_PLANE_ENABLE;
213 	pipeconf |= PIPEACONF_ENABLE;
214 	dpll |= DPLL_VCO_ENABLE;
215 
216 
217 	/* Disable the panel fitter if it was on our pipe */
218 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
219 		REG_WRITE(PFIT_CONTROL, 0);
220 
221 	drm_mode_debug_printmodeline(mode);
222 
223 	if (dpll & DPLL_VCO_ENABLE) {
224 		REG_WRITE(map->fp0, fp);
225 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
226 		REG_READ(map->dpll);
227 		udelay(150);
228 	}
229 
230 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
231 	 * This is an exception to the general rule that mode_set doesn't turn
232 	 * things on.
233 	 */
234 	if (is_lvds) {
235 		u32 lvds = REG_READ(LVDS);
236 
237 		lvds &= ~LVDS_PIPEB_SELECT;
238 		if (pipe == 1)
239 			lvds |= LVDS_PIPEB_SELECT;
240 
241 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
242 		/* Set the B0-B3 data pairs corresponding to
243 		 * whether we're going to
244 		 * set the DPLLs for dual-channel mode or not.
245 		 */
246 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
247 		if (clock.p2 == 7)
248 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
249 
250 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
251 		 * appropriately here, but we need to look more
252 		 * thoroughly into how panels behave in the two modes.
253 		 */
254 
255 		REG_WRITE(LVDS, lvds);
256 		REG_READ(LVDS);
257 	}
258 
259 	REG_WRITE(map->fp0, fp);
260 	REG_WRITE(map->dpll, dpll);
261 	REG_READ(map->dpll);
262 	/* Wait for the clocks to stabilize. */
263 	udelay(150);
264 
265 	/* write it again -- the BIOS does, after all */
266 	REG_WRITE(map->dpll, dpll);
267 
268 	REG_READ(map->dpll);
269 	/* Wait for the clocks to stabilize. */
270 	udelay(150);
271 
272 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
273 		  ((adjusted_mode->crtc_htotal - 1) << 16));
274 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
275 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
276 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
277 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
278 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
279 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
280 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
281 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
282 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
283 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
284 	/* pipesrc and dspsize control the size that is scaled from,
285 	 * which should always be the user's requested size.
286 	 */
287 	REG_WRITE(map->size,
288 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
289 	REG_WRITE(map->pos, 0);
290 	REG_WRITE(map->src,
291 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
292 	REG_WRITE(map->conf, pipeconf);
293 	REG_READ(map->conf);
294 
295 	gma_wait_for_vblank(dev);
296 
297 	REG_WRITE(map->cntr, dspcntr);
298 
299 	/* Flush the plane changes */
300 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
301 
302 	gma_wait_for_vblank(dev);
303 
304 	return 0;
305 }
306 
307 /* Returns the clock of the currently programmed mode of the given pipe. */
308 static int psb_intel_crtc_clock_get(struct drm_device *dev,
309 				struct drm_crtc *crtc)
310 {
311 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
312 	struct drm_psb_private *dev_priv = dev->dev_private;
313 	int pipe = gma_crtc->pipe;
314 	const struct psb_offset *map = &dev_priv->regmap[pipe];
315 	u32 dpll;
316 	u32 fp;
317 	struct gma_clock_t clock;
318 	bool is_lvds;
319 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
320 
321 	if (gma_power_begin(dev, false)) {
322 		dpll = REG_READ(map->dpll);
323 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
324 			fp = REG_READ(map->fp0);
325 		else
326 			fp = REG_READ(map->fp1);
327 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
328 		gma_power_end(dev);
329 	} else {
330 		dpll = p->dpll;
331 
332 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
333 			fp = p->fp0;
334 		else
335 		        fp = p->fp1;
336 
337 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
338 								LVDS_PORT_EN);
339 	}
340 
341 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
342 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
343 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
344 
345 	if (is_lvds) {
346 		clock.p1 =
347 		    ffs((dpll &
348 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
349 			DPLL_FPA01_P1_POST_DIV_SHIFT);
350 		clock.p2 = 14;
351 
352 		if ((dpll & PLL_REF_INPUT_MASK) ==
353 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
354 			/* XXX: might not be 66MHz */
355 			psb_intel_clock(66000, &clock);
356 		} else
357 			psb_intel_clock(48000, &clock);
358 	} else {
359 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
360 			clock.p1 = 2;
361 		else {
362 			clock.p1 =
363 			    ((dpll &
364 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
365 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
366 		}
367 		if (dpll & PLL_P2_DIVIDE_BY_4)
368 			clock.p2 = 4;
369 		else
370 			clock.p2 = 2;
371 
372 		psb_intel_clock(48000, &clock);
373 	}
374 
375 	/* XXX: It would be nice to validate the clocks, but we can't reuse
376 	 * i830PllIsValid() because it relies on the xf86_config connector
377 	 * configuration being accurate, which it isn't necessarily.
378 	 */
379 
380 	return clock.dot;
381 }
382 
383 /** Returns the currently programmed mode of the given pipe. */
384 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
385 					     struct drm_crtc *crtc)
386 {
387 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
388 	int pipe = gma_crtc->pipe;
389 	struct drm_display_mode *mode;
390 	int htot;
391 	int hsync;
392 	int vtot;
393 	int vsync;
394 	struct drm_psb_private *dev_priv = dev->dev_private;
395 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
396 	const struct psb_offset *map = &dev_priv->regmap[pipe];
397 
398 	if (gma_power_begin(dev, false)) {
399 		htot = REG_READ(map->htotal);
400 		hsync = REG_READ(map->hsync);
401 		vtot = REG_READ(map->vtotal);
402 		vsync = REG_READ(map->vsync);
403 		gma_power_end(dev);
404 	} else {
405 		htot = p->htotal;
406 		hsync = p->hsync;
407 		vtot = p->vtotal;
408 		vsync = p->vsync;
409 	}
410 
411 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
412 	if (!mode)
413 		return NULL;
414 
415 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
416 	mode->hdisplay = (htot & 0xffff) + 1;
417 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
418 	mode->hsync_start = (hsync & 0xffff) + 1;
419 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
420 	mode->vdisplay = (vtot & 0xffff) + 1;
421 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
422 	mode->vsync_start = (vsync & 0xffff) + 1;
423 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
424 
425 	drm_mode_set_name(mode);
426 	drm_mode_set_crtcinfo(mode, 0);
427 
428 	return mode;
429 }
430 
431 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
432 	.dpms = gma_crtc_dpms,
433 	.mode_set = psb_intel_crtc_mode_set,
434 	.mode_set_base = gma_pipe_set_base,
435 	.prepare = gma_crtc_prepare,
436 	.commit = gma_crtc_commit,
437 	.disable = gma_crtc_disable,
438 };
439 
440 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
441 	.cursor_set = gma_crtc_cursor_set,
442 	.cursor_move = gma_crtc_cursor_move,
443 	.gamma_set = gma_crtc_gamma_set,
444 	.set_config = gma_crtc_set_config,
445 	.destroy = gma_crtc_destroy,
446 };
447 
448 const struct gma_clock_funcs psb_clock_funcs = {
449 	.clock = psb_intel_clock,
450 	.limit = psb_intel_limit,
451 	.pll_is_valid = gma_pll_is_valid,
452 };
453 
454 /*
455  * Set the default value of cursor control and base register
456  * to zero. This is a workaround for h/w defect on Oaktrail
457  */
458 static void psb_intel_cursor_init(struct drm_device *dev,
459 				  struct gma_crtc *gma_crtc)
460 {
461 	struct drm_psb_private *dev_priv = dev->dev_private;
462 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
463 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
464 	struct gtt_range *cursor_gt;
465 
466 	if (dev_priv->ops->cursor_needs_phys) {
467 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
468 		 * is enough for the 64 x 64 ARGB cursors we support.
469 		 */
470 		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
471 						PAGE_SIZE);
472 		if (!cursor_gt) {
473 			gma_crtc->cursor_gt = NULL;
474 			goto out;
475 		}
476 		gma_crtc->cursor_gt = cursor_gt;
477 		gma_crtc->cursor_addr = dev_priv->stolen_base +
478 							cursor_gt->offset;
479 	} else {
480 		gma_crtc->cursor_gt = NULL;
481 	}
482 
483 out:
484 	REG_WRITE(control[gma_crtc->pipe], 0);
485 	REG_WRITE(base[gma_crtc->pipe], 0);
486 }
487 
488 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
489 		     struct psb_intel_mode_device *mode_dev)
490 {
491 	struct drm_psb_private *dev_priv = dev->dev_private;
492 	struct gma_crtc *gma_crtc;
493 	int i;
494 
495 	/* We allocate a extra array of drm_connector pointers
496 	 * for fbdev after the crtc */
497 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
498 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
499 			GFP_KERNEL);
500 	if (gma_crtc == NULL)
501 		return;
502 
503 	gma_crtc->crtc_state =
504 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
505 	if (!gma_crtc->crtc_state) {
506 		dev_err(dev->dev, "Crtc state error: No memory\n");
507 		kfree(gma_crtc);
508 		return;
509 	}
510 
511 	/* Set the CRTC operations from the chip specific data */
512 	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
513 
514 	/* Set the CRTC clock functions from chip specific data */
515 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
516 
517 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
518 	gma_crtc->pipe = pipe;
519 	gma_crtc->plane = pipe;
520 
521 	for (i = 0; i < 256; i++)
522 		gma_crtc->lut_adj[i] = 0;
523 
524 	gma_crtc->mode_dev = mode_dev;
525 	gma_crtc->cursor_addr = 0;
526 
527 	drm_crtc_helper_add(&gma_crtc->base,
528 						dev_priv->ops->crtc_helper);
529 
530 	/* Setup the array of drm_connector pointer array */
531 	gma_crtc->mode_set.crtc = &gma_crtc->base;
532 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
533 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
534 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
535 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
536 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
537 	gma_crtc->mode_set.num_connectors = 0;
538 	psb_intel_cursor_init(dev, gma_crtc);
539 
540 	/* Set to true so that the pipe is forced off on initial config. */
541 	gma_crtc->active = true;
542 }
543 
544 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
545 {
546 	struct drm_crtc *crtc = NULL;
547 
548 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
549 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
550 		if (gma_crtc->pipe == pipe)
551 			break;
552 	}
553 	return crtc;
554 }
555 
556 int gma_connector_clones(struct drm_device *dev, int type_mask)
557 {
558 	int index_mask = 0;
559 	struct drm_connector *connector;
560 	int entry = 0;
561 
562 	list_for_each_entry(connector, &dev->mode_config.connector_list,
563 			    head) {
564 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
565 		if (type_mask & (1 << gma_encoder->type))
566 			index_mask |= (1 << entry);
567 		entry++;
568 	}
569 	return index_mask;
570 }
571