1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2011 Intel Corporation 4 * 5 * Authors: 6 * Eric Anholt <eric@anholt.net> 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/i2c.h> 11 12 #include <drm/drm_plane_helper.h> 13 14 #include "framebuffer.h" 15 #include "gem.h" 16 #include "gma_display.h" 17 #include "power.h" 18 #include "psb_drv.h" 19 #include "psb_intel_drv.h" 20 #include "psb_intel_reg.h" 21 22 #define INTEL_LIMIT_I9XX_SDVO_DAC 0 23 #define INTEL_LIMIT_I9XX_LVDS 1 24 25 static const struct gma_limit_t psb_intel_limits[] = { 26 { /* INTEL_LIMIT_I9XX_SDVO_DAC */ 27 .dot = {.min = 20000, .max = 400000}, 28 .vco = {.min = 1400000, .max = 2800000}, 29 .n = {.min = 1, .max = 6}, 30 .m = {.min = 70, .max = 120}, 31 .m1 = {.min = 8, .max = 18}, 32 .m2 = {.min = 3, .max = 7}, 33 .p = {.min = 5, .max = 80}, 34 .p1 = {.min = 1, .max = 8}, 35 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5}, 36 .find_pll = gma_find_best_pll, 37 }, 38 { /* INTEL_LIMIT_I9XX_LVDS */ 39 .dot = {.min = 20000, .max = 400000}, 40 .vco = {.min = 1400000, .max = 2800000}, 41 .n = {.min = 1, .max = 6}, 42 .m = {.min = 70, .max = 120}, 43 .m1 = {.min = 8, .max = 18}, 44 .m2 = {.min = 3, .max = 7}, 45 .p = {.min = 7, .max = 98}, 46 .p1 = {.min = 1, .max = 8}, 47 /* The single-channel range is 25-112Mhz, and dual-channel 48 * is 80-224Mhz. Prefer single channel as much as possible. 49 */ 50 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7}, 51 .find_pll = gma_find_best_pll, 52 }, 53 }; 54 55 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc, 56 int refclk) 57 { 58 const struct gma_limit_t *limit; 59 60 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 61 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; 62 else 63 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; 64 return limit; 65 } 66 67 static void psb_intel_clock(int refclk, struct gma_clock_t *clock) 68 { 69 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 70 clock->p = clock->p1 * clock->p2; 71 clock->vco = refclk * clock->m / (clock->n + 2); 72 clock->dot = clock->vco / clock->p; 73 } 74 75 /* 76 * Return the pipe currently connected to the panel fitter, 77 * or -1 if the panel fitter is not present or not in use 78 */ 79 static int psb_intel_panel_fitter_pipe(struct drm_device *dev) 80 { 81 u32 pfit_control; 82 83 pfit_control = REG_READ(PFIT_CONTROL); 84 85 /* See if the panel fitter is in use */ 86 if ((pfit_control & PFIT_ENABLE) == 0) 87 return -1; 88 /* Must be on PIPE 1 for PSB */ 89 return 1; 90 } 91 92 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc, 93 struct drm_display_mode *mode, 94 struct drm_display_mode *adjusted_mode, 95 int x, int y, 96 struct drm_framebuffer *old_fb) 97 { 98 struct drm_device *dev = crtc->dev; 99 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 100 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 101 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 102 int pipe = gma_crtc->pipe; 103 const struct psb_offset *map = &dev_priv->regmap[pipe]; 104 int refclk; 105 struct gma_clock_t clock; 106 u32 dpll = 0, fp = 0, dspcntr, pipeconf; 107 bool ok, is_sdvo = false; 108 bool is_lvds = false, is_tv = false; 109 struct drm_connector_list_iter conn_iter; 110 struct drm_connector *connector; 111 const struct gma_limit_t *limit; 112 113 /* No scan out no play */ 114 if (crtc->primary->fb == NULL) { 115 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 116 return 0; 117 } 118 119 drm_connector_list_iter_begin(dev, &conn_iter); 120 drm_for_each_connector_iter(connector, &conn_iter) { 121 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 122 123 if (!connector->encoder 124 || connector->encoder->crtc != crtc) 125 continue; 126 127 switch (gma_encoder->type) { 128 case INTEL_OUTPUT_LVDS: 129 is_lvds = true; 130 break; 131 case INTEL_OUTPUT_SDVO: 132 is_sdvo = true; 133 break; 134 case INTEL_OUTPUT_TVOUT: 135 is_tv = true; 136 break; 137 } 138 } 139 drm_connector_list_iter_end(&conn_iter); 140 141 refclk = 96000; 142 143 limit = gma_crtc->clock_funcs->limit(crtc, refclk); 144 145 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 146 &clock); 147 if (!ok) { 148 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 149 adjusted_mode->clock, clock.dot); 150 return 0; 151 } 152 153 fp = clock.n << 16 | clock.m1 << 8 | clock.m2; 154 155 dpll = DPLL_VGA_MODE_DIS; 156 if (is_lvds) { 157 dpll |= DPLLB_MODE_LVDS; 158 dpll |= DPLL_DVO_HIGH_SPEED; 159 } else 160 dpll |= DPLLB_MODE_DAC_SERIAL; 161 if (is_sdvo) { 162 int sdvo_pixel_multiply = 163 adjusted_mode->clock / mode->clock; 164 dpll |= DPLL_DVO_HIGH_SPEED; 165 dpll |= 166 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; 167 } 168 169 /* compute bitmask from p1 value */ 170 dpll |= (1 << (clock.p1 - 1)) << 16; 171 switch (clock.p2) { 172 case 5: 173 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 174 break; 175 case 7: 176 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 177 break; 178 case 10: 179 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 180 break; 181 case 14: 182 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 183 break; 184 } 185 186 if (is_tv) { 187 /* XXX: just matching BIOS for now */ 188 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 189 dpll |= 3; 190 } 191 dpll |= PLL_REF_INPUT_DREFCLK; 192 193 /* setup pipeconf */ 194 pipeconf = REG_READ(map->conf); 195 196 /* Set up the display plane register */ 197 dspcntr = DISPPLANE_GAMMA_ENABLE; 198 199 if (pipe == 0) 200 dspcntr |= DISPPLANE_SEL_PIPE_A; 201 else 202 dspcntr |= DISPPLANE_SEL_PIPE_B; 203 204 dspcntr |= DISPLAY_PLANE_ENABLE; 205 pipeconf |= PIPEACONF_ENABLE; 206 dpll |= DPLL_VCO_ENABLE; 207 208 209 /* Disable the panel fitter if it was on our pipe */ 210 if (psb_intel_panel_fitter_pipe(dev) == pipe) 211 REG_WRITE(PFIT_CONTROL, 0); 212 213 drm_mode_debug_printmodeline(mode); 214 215 if (dpll & DPLL_VCO_ENABLE) { 216 REG_WRITE(map->fp0, fp); 217 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE); 218 REG_READ(map->dpll); 219 udelay(150); 220 } 221 222 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 223 * This is an exception to the general rule that mode_set doesn't turn 224 * things on. 225 */ 226 if (is_lvds) { 227 u32 lvds = REG_READ(LVDS); 228 229 lvds &= ~LVDS_PIPEB_SELECT; 230 if (pipe == 1) 231 lvds |= LVDS_PIPEB_SELECT; 232 233 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; 234 /* Set the B0-B3 data pairs corresponding to 235 * whether we're going to 236 * set the DPLLs for dual-channel mode or not. 237 */ 238 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 239 if (clock.p2 == 7) 240 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 241 242 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 243 * appropriately here, but we need to look more 244 * thoroughly into how panels behave in the two modes. 245 */ 246 247 REG_WRITE(LVDS, lvds); 248 REG_READ(LVDS); 249 } 250 251 REG_WRITE(map->fp0, fp); 252 REG_WRITE(map->dpll, dpll); 253 REG_READ(map->dpll); 254 /* Wait for the clocks to stabilize. */ 255 udelay(150); 256 257 /* write it again -- the BIOS does, after all */ 258 REG_WRITE(map->dpll, dpll); 259 260 REG_READ(map->dpll); 261 /* Wait for the clocks to stabilize. */ 262 udelay(150); 263 264 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 265 ((adjusted_mode->crtc_htotal - 1) << 16)); 266 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 267 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 268 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 269 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 270 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 271 ((adjusted_mode->crtc_vtotal - 1) << 16)); 272 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 273 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 274 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 275 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 276 /* pipesrc and dspsize control the size that is scaled from, 277 * which should always be the user's requested size. 278 */ 279 REG_WRITE(map->size, 280 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 281 REG_WRITE(map->pos, 0); 282 REG_WRITE(map->src, 283 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 284 REG_WRITE(map->conf, pipeconf); 285 REG_READ(map->conf); 286 287 gma_wait_for_vblank(dev); 288 289 REG_WRITE(map->cntr, dspcntr); 290 291 /* Flush the plane changes */ 292 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 293 294 gma_wait_for_vblank(dev); 295 296 return 0; 297 } 298 299 /* Returns the clock of the currently programmed mode of the given pipe. */ 300 static int psb_intel_crtc_clock_get(struct drm_device *dev, 301 struct drm_crtc *crtc) 302 { 303 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 304 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 305 int pipe = gma_crtc->pipe; 306 const struct psb_offset *map = &dev_priv->regmap[pipe]; 307 u32 dpll; 308 u32 fp; 309 struct gma_clock_t clock; 310 bool is_lvds; 311 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 312 313 if (gma_power_begin(dev, false)) { 314 dpll = REG_READ(map->dpll); 315 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 316 fp = REG_READ(map->fp0); 317 else 318 fp = REG_READ(map->fp1); 319 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 320 gma_power_end(dev); 321 } else { 322 dpll = p->dpll; 323 324 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 325 fp = p->fp0; 326 else 327 fp = p->fp1; 328 329 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & 330 LVDS_PORT_EN); 331 } 332 333 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 334 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 335 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 336 337 if (is_lvds) { 338 clock.p1 = 339 ffs((dpll & 340 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 341 DPLL_FPA01_P1_POST_DIV_SHIFT); 342 clock.p2 = 14; 343 344 if ((dpll & PLL_REF_INPUT_MASK) == 345 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 346 /* XXX: might not be 66MHz */ 347 psb_intel_clock(66000, &clock); 348 } else 349 psb_intel_clock(48000, &clock); 350 } else { 351 if (dpll & PLL_P1_DIVIDE_BY_TWO) 352 clock.p1 = 2; 353 else { 354 clock.p1 = 355 ((dpll & 356 DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 357 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 358 } 359 if (dpll & PLL_P2_DIVIDE_BY_4) 360 clock.p2 = 4; 361 else 362 clock.p2 = 2; 363 364 psb_intel_clock(48000, &clock); 365 } 366 367 /* XXX: It would be nice to validate the clocks, but we can't reuse 368 * i830PllIsValid() because it relies on the xf86_config connector 369 * configuration being accurate, which it isn't necessarily. 370 */ 371 372 return clock.dot; 373 } 374 375 /** Returns the currently programmed mode of the given pipe. */ 376 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, 377 struct drm_crtc *crtc) 378 { 379 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 380 int pipe = gma_crtc->pipe; 381 struct drm_display_mode *mode; 382 int htot; 383 int hsync; 384 int vtot; 385 int vsync; 386 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 387 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 388 const struct psb_offset *map = &dev_priv->regmap[pipe]; 389 390 if (gma_power_begin(dev, false)) { 391 htot = REG_READ(map->htotal); 392 hsync = REG_READ(map->hsync); 393 vtot = REG_READ(map->vtotal); 394 vsync = REG_READ(map->vsync); 395 gma_power_end(dev); 396 } else { 397 htot = p->htotal; 398 hsync = p->hsync; 399 vtot = p->vtotal; 400 vsync = p->vsync; 401 } 402 403 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 404 if (!mode) 405 return NULL; 406 407 mode->clock = psb_intel_crtc_clock_get(dev, crtc); 408 mode->hdisplay = (htot & 0xffff) + 1; 409 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 410 mode->hsync_start = (hsync & 0xffff) + 1; 411 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 412 mode->vdisplay = (vtot & 0xffff) + 1; 413 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 414 mode->vsync_start = (vsync & 0xffff) + 1; 415 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 416 417 drm_mode_set_name(mode); 418 drm_mode_set_crtcinfo(mode, 0); 419 420 return mode; 421 } 422 423 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = { 424 .dpms = gma_crtc_dpms, 425 .mode_set = psb_intel_crtc_mode_set, 426 .mode_set_base = gma_pipe_set_base, 427 .prepare = gma_crtc_prepare, 428 .commit = gma_crtc_commit, 429 .disable = gma_crtc_disable, 430 }; 431 432 const struct gma_clock_funcs psb_clock_funcs = { 433 .clock = psb_intel_clock, 434 .limit = psb_intel_limit, 435 .pll_is_valid = gma_pll_is_valid, 436 }; 437 438 /* 439 * Set the default value of cursor control and base register 440 * to zero. This is a workaround for h/w defect on Oaktrail 441 */ 442 static void psb_intel_cursor_init(struct drm_device *dev, 443 struct gma_crtc *gma_crtc) 444 { 445 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 446 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; 447 u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; 448 struct psb_gem_object *cursor_pobj; 449 450 if (dev_priv->ops->cursor_needs_phys) { 451 /* Allocate 4 pages of stolen mem for a hardware cursor. That 452 * is enough for the 64 x 64 ARGB cursors we support. 453 */ 454 cursor_pobj = psb_gem_create(dev, 4 * PAGE_SIZE, "cursor", true, PAGE_SIZE); 455 if (IS_ERR(cursor_pobj)) { 456 gma_crtc->cursor_pobj = NULL; 457 goto out; 458 } 459 gma_crtc->cursor_pobj = cursor_pobj; 460 gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_pobj->offset; 461 } else { 462 gma_crtc->cursor_pobj = NULL; 463 } 464 465 out: 466 REG_WRITE(control[gma_crtc->pipe], 0); 467 REG_WRITE(base[gma_crtc->pipe], 0); 468 } 469 470 void psb_intel_crtc_init(struct drm_device *dev, int pipe, 471 struct psb_intel_mode_device *mode_dev) 472 { 473 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 474 struct gma_crtc *gma_crtc; 475 int i; 476 477 /* We allocate a extra array of drm_connector pointers 478 * for fbdev after the crtc */ 479 gma_crtc = kzalloc(sizeof(struct gma_crtc) + 480 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), 481 GFP_KERNEL); 482 if (gma_crtc == NULL) 483 return; 484 485 gma_crtc->crtc_state = 486 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); 487 if (!gma_crtc->crtc_state) { 488 dev_err(dev->dev, "Crtc state error: No memory\n"); 489 kfree(gma_crtc); 490 return; 491 } 492 493 drm_crtc_init(dev, &gma_crtc->base, &gma_crtc_funcs); 494 495 /* Set the CRTC clock functions from chip specific data */ 496 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs; 497 498 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256); 499 gma_crtc->pipe = pipe; 500 gma_crtc->plane = pipe; 501 502 for (i = 0; i < 256; i++) 503 gma_crtc->lut_adj[i] = 0; 504 505 gma_crtc->mode_dev = mode_dev; 506 gma_crtc->cursor_addr = 0; 507 508 drm_crtc_helper_add(&gma_crtc->base, 509 dev_priv->ops->crtc_helper); 510 511 /* Setup the array of drm_connector pointer array */ 512 gma_crtc->mode_set.crtc = &gma_crtc->base; 513 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 514 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL); 515 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base; 516 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base; 517 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1); 518 gma_crtc->mode_set.num_connectors = 0; 519 psb_intel_cursor_init(dev, gma_crtc); 520 521 /* Set to true so that the pipe is forced off on initial config. */ 522 gma_crtc->active = true; 523 } 524 525 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) 526 { 527 struct drm_crtc *crtc; 528 529 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 530 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 531 532 if (gma_crtc->pipe == pipe) 533 return crtc; 534 } 535 return NULL; 536 } 537 538 int gma_connector_clones(struct drm_device *dev, int type_mask) 539 { 540 struct drm_connector_list_iter conn_iter; 541 struct drm_connector *connector; 542 int index_mask = 0; 543 int entry = 0; 544 545 drm_connector_list_iter_begin(dev, &conn_iter); 546 drm_for_each_connector_iter(connector, &conn_iter) { 547 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 548 if (type_mask & (1 << gma_encoder->type)) 549 index_mask |= (1 << entry); 550 entry++; 551 } 552 drm_connector_list_iter_end(&conn_iter); 553 554 return index_mask; 555 } 556