1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/i2c.h>
10 
11 #include <drm/drmP.h>
12 #include <drm/drm_plane_helper.h>
13 #include "framebuffer.h"
14 #include "psb_drv.h"
15 #include "psb_intel_drv.h"
16 #include "psb_intel_reg.h"
17 #include "gma_display.h"
18 #include "power.h"
19 
20 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
21 #define INTEL_LIMIT_I9XX_LVDS	    1
22 
23 static const struct gma_limit_t psb_intel_limits[] = {
24 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
25 	 .dot = {.min = 20000, .max = 400000},
26 	 .vco = {.min = 1400000, .max = 2800000},
27 	 .n = {.min = 1, .max = 6},
28 	 .m = {.min = 70, .max = 120},
29 	 .m1 = {.min = 8, .max = 18},
30 	 .m2 = {.min = 3, .max = 7},
31 	 .p = {.min = 5, .max = 80},
32 	 .p1 = {.min = 1, .max = 8},
33 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
34 	 .find_pll = gma_find_best_pll,
35 	 },
36 	{			/* INTEL_LIMIT_I9XX_LVDS */
37 	 .dot = {.min = 20000, .max = 400000},
38 	 .vco = {.min = 1400000, .max = 2800000},
39 	 .n = {.min = 1, .max = 6},
40 	 .m = {.min = 70, .max = 120},
41 	 .m1 = {.min = 8, .max = 18},
42 	 .m2 = {.min = 3, .max = 7},
43 	 .p = {.min = 7, .max = 98},
44 	 .p1 = {.min = 1, .max = 8},
45 	 /* The single-channel range is 25-112Mhz, and dual-channel
46 	  * is 80-224Mhz.  Prefer single channel as much as possible.
47 	  */
48 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
49 	 .find_pll = gma_find_best_pll,
50 	 },
51 };
52 
53 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
54 						 int refclk)
55 {
56 	const struct gma_limit_t *limit;
57 
58 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
59 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
60 	else
61 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
62 	return limit;
63 }
64 
65 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
66 {
67 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
68 	clock->p = clock->p1 * clock->p2;
69 	clock->vco = refclk * clock->m / (clock->n + 2);
70 	clock->dot = clock->vco / clock->p;
71 }
72 
73 /**
74  * Return the pipe currently connected to the panel fitter,
75  * or -1 if the panel fitter is not present or not in use
76  */
77 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
78 {
79 	u32 pfit_control;
80 
81 	pfit_control = REG_READ(PFIT_CONTROL);
82 
83 	/* See if the panel fitter is in use */
84 	if ((pfit_control & PFIT_ENABLE) == 0)
85 		return -1;
86 	/* Must be on PIPE 1 for PSB */
87 	return 1;
88 }
89 
90 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
91 			       struct drm_display_mode *mode,
92 			       struct drm_display_mode *adjusted_mode,
93 			       int x, int y,
94 			       struct drm_framebuffer *old_fb)
95 {
96 	struct drm_device *dev = crtc->dev;
97 	struct drm_psb_private *dev_priv = dev->dev_private;
98 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
99 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
100 	int pipe = gma_crtc->pipe;
101 	const struct psb_offset *map = &dev_priv->regmap[pipe];
102 	int refclk;
103 	struct gma_clock_t clock;
104 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
105 	bool ok, is_sdvo = false;
106 	bool is_lvds = false, is_tv = false;
107 	struct drm_mode_config *mode_config = &dev->mode_config;
108 	struct drm_connector *connector;
109 	const struct gma_limit_t *limit;
110 
111 	/* No scan out no play */
112 	if (crtc->primary->fb == NULL) {
113 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
114 		return 0;
115 	}
116 
117 	list_for_each_entry(connector, &mode_config->connector_list, head) {
118 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
119 
120 		if (!connector->encoder
121 		    || connector->encoder->crtc != crtc)
122 			continue;
123 
124 		switch (gma_encoder->type) {
125 		case INTEL_OUTPUT_LVDS:
126 			is_lvds = true;
127 			break;
128 		case INTEL_OUTPUT_SDVO:
129 			is_sdvo = true;
130 			break;
131 		case INTEL_OUTPUT_TVOUT:
132 			is_tv = true;
133 			break;
134 		}
135 	}
136 
137 	refclk = 96000;
138 
139 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
140 
141 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
142 				 &clock);
143 	if (!ok) {
144 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
145 			  adjusted_mode->clock, clock.dot);
146 		return 0;
147 	}
148 
149 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
150 
151 	dpll = DPLL_VGA_MODE_DIS;
152 	if (is_lvds) {
153 		dpll |= DPLLB_MODE_LVDS;
154 		dpll |= DPLL_DVO_HIGH_SPEED;
155 	} else
156 		dpll |= DPLLB_MODE_DAC_SERIAL;
157 	if (is_sdvo) {
158 		int sdvo_pixel_multiply =
159 			    adjusted_mode->clock / mode->clock;
160 		dpll |= DPLL_DVO_HIGH_SPEED;
161 		dpll |=
162 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
163 	}
164 
165 	/* compute bitmask from p1 value */
166 	dpll |= (1 << (clock.p1 - 1)) << 16;
167 	switch (clock.p2) {
168 	case 5:
169 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
170 		break;
171 	case 7:
172 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
173 		break;
174 	case 10:
175 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
176 		break;
177 	case 14:
178 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
179 		break;
180 	}
181 
182 	if (is_tv) {
183 		/* XXX: just matching BIOS for now */
184 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
185 		dpll |= 3;
186 	}
187 	dpll |= PLL_REF_INPUT_DREFCLK;
188 
189 	/* setup pipeconf */
190 	pipeconf = REG_READ(map->conf);
191 
192 	/* Set up the display plane register */
193 	dspcntr = DISPPLANE_GAMMA_ENABLE;
194 
195 	if (pipe == 0)
196 		dspcntr |= DISPPLANE_SEL_PIPE_A;
197 	else
198 		dspcntr |= DISPPLANE_SEL_PIPE_B;
199 
200 	dspcntr |= DISPLAY_PLANE_ENABLE;
201 	pipeconf |= PIPEACONF_ENABLE;
202 	dpll |= DPLL_VCO_ENABLE;
203 
204 
205 	/* Disable the panel fitter if it was on our pipe */
206 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
207 		REG_WRITE(PFIT_CONTROL, 0);
208 
209 	drm_mode_debug_printmodeline(mode);
210 
211 	if (dpll & DPLL_VCO_ENABLE) {
212 		REG_WRITE(map->fp0, fp);
213 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
214 		REG_READ(map->dpll);
215 		udelay(150);
216 	}
217 
218 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
219 	 * This is an exception to the general rule that mode_set doesn't turn
220 	 * things on.
221 	 */
222 	if (is_lvds) {
223 		u32 lvds = REG_READ(LVDS);
224 
225 		lvds &= ~LVDS_PIPEB_SELECT;
226 		if (pipe == 1)
227 			lvds |= LVDS_PIPEB_SELECT;
228 
229 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
230 		/* Set the B0-B3 data pairs corresponding to
231 		 * whether we're going to
232 		 * set the DPLLs for dual-channel mode or not.
233 		 */
234 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
235 		if (clock.p2 == 7)
236 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
237 
238 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
239 		 * appropriately here, but we need to look more
240 		 * thoroughly into how panels behave in the two modes.
241 		 */
242 
243 		REG_WRITE(LVDS, lvds);
244 		REG_READ(LVDS);
245 	}
246 
247 	REG_WRITE(map->fp0, fp);
248 	REG_WRITE(map->dpll, dpll);
249 	REG_READ(map->dpll);
250 	/* Wait for the clocks to stabilize. */
251 	udelay(150);
252 
253 	/* write it again -- the BIOS does, after all */
254 	REG_WRITE(map->dpll, dpll);
255 
256 	REG_READ(map->dpll);
257 	/* Wait for the clocks to stabilize. */
258 	udelay(150);
259 
260 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
261 		  ((adjusted_mode->crtc_htotal - 1) << 16));
262 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
263 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
264 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
265 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
266 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
267 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
268 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
269 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
270 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
271 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
272 	/* pipesrc and dspsize control the size that is scaled from,
273 	 * which should always be the user's requested size.
274 	 */
275 	REG_WRITE(map->size,
276 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
277 	REG_WRITE(map->pos, 0);
278 	REG_WRITE(map->src,
279 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
280 	REG_WRITE(map->conf, pipeconf);
281 	REG_READ(map->conf);
282 
283 	gma_wait_for_vblank(dev);
284 
285 	REG_WRITE(map->cntr, dspcntr);
286 
287 	/* Flush the plane changes */
288 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
289 
290 	gma_wait_for_vblank(dev);
291 
292 	return 0;
293 }
294 
295 /* Returns the clock of the currently programmed mode of the given pipe. */
296 static int psb_intel_crtc_clock_get(struct drm_device *dev,
297 				struct drm_crtc *crtc)
298 {
299 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
300 	struct drm_psb_private *dev_priv = dev->dev_private;
301 	int pipe = gma_crtc->pipe;
302 	const struct psb_offset *map = &dev_priv->regmap[pipe];
303 	u32 dpll;
304 	u32 fp;
305 	struct gma_clock_t clock;
306 	bool is_lvds;
307 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
308 
309 	if (gma_power_begin(dev, false)) {
310 		dpll = REG_READ(map->dpll);
311 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
312 			fp = REG_READ(map->fp0);
313 		else
314 			fp = REG_READ(map->fp1);
315 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
316 		gma_power_end(dev);
317 	} else {
318 		dpll = p->dpll;
319 
320 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
321 			fp = p->fp0;
322 		else
323 		        fp = p->fp1;
324 
325 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
326 								LVDS_PORT_EN);
327 	}
328 
329 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
330 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
331 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
332 
333 	if (is_lvds) {
334 		clock.p1 =
335 		    ffs((dpll &
336 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
337 			DPLL_FPA01_P1_POST_DIV_SHIFT);
338 		clock.p2 = 14;
339 
340 		if ((dpll & PLL_REF_INPUT_MASK) ==
341 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
342 			/* XXX: might not be 66MHz */
343 			psb_intel_clock(66000, &clock);
344 		} else
345 			psb_intel_clock(48000, &clock);
346 	} else {
347 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
348 			clock.p1 = 2;
349 		else {
350 			clock.p1 =
351 			    ((dpll &
352 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
353 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
354 		}
355 		if (dpll & PLL_P2_DIVIDE_BY_4)
356 			clock.p2 = 4;
357 		else
358 			clock.p2 = 2;
359 
360 		psb_intel_clock(48000, &clock);
361 	}
362 
363 	/* XXX: It would be nice to validate the clocks, but we can't reuse
364 	 * i830PllIsValid() because it relies on the xf86_config connector
365 	 * configuration being accurate, which it isn't necessarily.
366 	 */
367 
368 	return clock.dot;
369 }
370 
371 /** Returns the currently programmed mode of the given pipe. */
372 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
373 					     struct drm_crtc *crtc)
374 {
375 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
376 	int pipe = gma_crtc->pipe;
377 	struct drm_display_mode *mode;
378 	int htot;
379 	int hsync;
380 	int vtot;
381 	int vsync;
382 	struct drm_psb_private *dev_priv = dev->dev_private;
383 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
384 	const struct psb_offset *map = &dev_priv->regmap[pipe];
385 
386 	if (gma_power_begin(dev, false)) {
387 		htot = REG_READ(map->htotal);
388 		hsync = REG_READ(map->hsync);
389 		vtot = REG_READ(map->vtotal);
390 		vsync = REG_READ(map->vsync);
391 		gma_power_end(dev);
392 	} else {
393 		htot = p->htotal;
394 		hsync = p->hsync;
395 		vtot = p->vtotal;
396 		vsync = p->vsync;
397 	}
398 
399 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
400 	if (!mode)
401 		return NULL;
402 
403 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
404 	mode->hdisplay = (htot & 0xffff) + 1;
405 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
406 	mode->hsync_start = (hsync & 0xffff) + 1;
407 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
408 	mode->vdisplay = (vtot & 0xffff) + 1;
409 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
410 	mode->vsync_start = (vsync & 0xffff) + 1;
411 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
412 
413 	drm_mode_set_name(mode);
414 	drm_mode_set_crtcinfo(mode, 0);
415 
416 	return mode;
417 }
418 
419 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
420 	.dpms = gma_crtc_dpms,
421 	.mode_set = psb_intel_crtc_mode_set,
422 	.mode_set_base = gma_pipe_set_base,
423 	.prepare = gma_crtc_prepare,
424 	.commit = gma_crtc_commit,
425 	.disable = gma_crtc_disable,
426 };
427 
428 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
429 	.cursor_set = gma_crtc_cursor_set,
430 	.cursor_move = gma_crtc_cursor_move,
431 	.gamma_set = gma_crtc_gamma_set,
432 	.set_config = gma_crtc_set_config,
433 	.destroy = gma_crtc_destroy,
434 };
435 
436 const struct gma_clock_funcs psb_clock_funcs = {
437 	.clock = psb_intel_clock,
438 	.limit = psb_intel_limit,
439 	.pll_is_valid = gma_pll_is_valid,
440 };
441 
442 /*
443  * Set the default value of cursor control and base register
444  * to zero. This is a workaround for h/w defect on Oaktrail
445  */
446 static void psb_intel_cursor_init(struct drm_device *dev,
447 				  struct gma_crtc *gma_crtc)
448 {
449 	struct drm_psb_private *dev_priv = dev->dev_private;
450 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
451 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
452 	struct gtt_range *cursor_gt;
453 
454 	if (dev_priv->ops->cursor_needs_phys) {
455 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
456 		 * is enough for the 64 x 64 ARGB cursors we support.
457 		 */
458 		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
459 						PAGE_SIZE);
460 		if (!cursor_gt) {
461 			gma_crtc->cursor_gt = NULL;
462 			goto out;
463 		}
464 		gma_crtc->cursor_gt = cursor_gt;
465 		gma_crtc->cursor_addr = dev_priv->stolen_base +
466 							cursor_gt->offset;
467 	} else {
468 		gma_crtc->cursor_gt = NULL;
469 	}
470 
471 out:
472 	REG_WRITE(control[gma_crtc->pipe], 0);
473 	REG_WRITE(base[gma_crtc->pipe], 0);
474 }
475 
476 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
477 		     struct psb_intel_mode_device *mode_dev)
478 {
479 	struct drm_psb_private *dev_priv = dev->dev_private;
480 	struct gma_crtc *gma_crtc;
481 	int i;
482 
483 	/* We allocate a extra array of drm_connector pointers
484 	 * for fbdev after the crtc */
485 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
486 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
487 			GFP_KERNEL);
488 	if (gma_crtc == NULL)
489 		return;
490 
491 	gma_crtc->crtc_state =
492 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
493 	if (!gma_crtc->crtc_state) {
494 		dev_err(dev->dev, "Crtc state error: No memory\n");
495 		kfree(gma_crtc);
496 		return;
497 	}
498 
499 	/* Set the CRTC operations from the chip specific data */
500 	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
501 
502 	/* Set the CRTC clock functions from chip specific data */
503 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
504 
505 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
506 	gma_crtc->pipe = pipe;
507 	gma_crtc->plane = pipe;
508 
509 	for (i = 0; i < 256; i++)
510 		gma_crtc->lut_adj[i] = 0;
511 
512 	gma_crtc->mode_dev = mode_dev;
513 	gma_crtc->cursor_addr = 0;
514 
515 	drm_crtc_helper_add(&gma_crtc->base,
516 						dev_priv->ops->crtc_helper);
517 
518 	/* Setup the array of drm_connector pointer array */
519 	gma_crtc->mode_set.crtc = &gma_crtc->base;
520 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
521 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
522 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
523 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
524 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
525 	gma_crtc->mode_set.num_connectors = 0;
526 	psb_intel_cursor_init(dev, gma_crtc);
527 
528 	/* Set to true so that the pipe is forced off on initial config. */
529 	gma_crtc->active = true;
530 }
531 
532 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
533 {
534 	struct drm_crtc *crtc = NULL;
535 
536 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
537 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
538 		if (gma_crtc->pipe == pipe)
539 			break;
540 	}
541 	return crtc;
542 }
543 
544 int gma_connector_clones(struct drm_device *dev, int type_mask)
545 {
546 	int index_mask = 0;
547 	struct drm_connector *connector;
548 	int entry = 0;
549 
550 	list_for_each_entry(connector, &dev->mode_config.connector_list,
551 			    head) {
552 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
553 		if (type_mask & (1 << gma_encoder->type))
554 			index_mask |= (1 << entry);
555 		entry++;
556 	}
557 	return index_mask;
558 }
559