1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 
23 #include <drm/drmP.h>
24 #include "framebuffer.h"
25 #include "psb_drv.h"
26 #include "psb_intel_drv.h"
27 #include "psb_intel_reg.h"
28 #include "gma_display.h"
29 #include "power.h"
30 
31 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
32 #define INTEL_LIMIT_I9XX_LVDS	    1
33 
34 static const struct gma_limit_t psb_intel_limits[] = {
35 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
36 	 .dot = {.min = 20000, .max = 400000},
37 	 .vco = {.min = 1400000, .max = 2800000},
38 	 .n = {.min = 1, .max = 6},
39 	 .m = {.min = 70, .max = 120},
40 	 .m1 = {.min = 8, .max = 18},
41 	 .m2 = {.min = 3, .max = 7},
42 	 .p = {.min = 5, .max = 80},
43 	 .p1 = {.min = 1, .max = 8},
44 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
45 	 .find_pll = gma_find_best_pll,
46 	 },
47 	{			/* INTEL_LIMIT_I9XX_LVDS */
48 	 .dot = {.min = 20000, .max = 400000},
49 	 .vco = {.min = 1400000, .max = 2800000},
50 	 .n = {.min = 1, .max = 6},
51 	 .m = {.min = 70, .max = 120},
52 	 .m1 = {.min = 8, .max = 18},
53 	 .m2 = {.min = 3, .max = 7},
54 	 .p = {.min = 7, .max = 98},
55 	 .p1 = {.min = 1, .max = 8},
56 	 /* The single-channel range is 25-112Mhz, and dual-channel
57 	  * is 80-224Mhz.  Prefer single channel as much as possible.
58 	  */
59 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
60 	 .find_pll = gma_find_best_pll,
61 	 },
62 };
63 
64 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
65 						 int refclk)
66 {
67 	const struct gma_limit_t *limit;
68 
69 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
70 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
71 	else
72 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
73 	return limit;
74 }
75 
76 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
77 {
78 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
79 	clock->p = clock->p1 * clock->p2;
80 	clock->vco = refclk * clock->m / (clock->n + 2);
81 	clock->dot = clock->vco / clock->p;
82 }
83 
84 /**
85  * Return the pipe currently connected to the panel fitter,
86  * or -1 if the panel fitter is not present or not in use
87  */
88 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
89 {
90 	u32 pfit_control;
91 
92 	pfit_control = REG_READ(PFIT_CONTROL);
93 
94 	/* See if the panel fitter is in use */
95 	if ((pfit_control & PFIT_ENABLE) == 0)
96 		return -1;
97 	/* Must be on PIPE 1 for PSB */
98 	return 1;
99 }
100 
101 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
102 			       struct drm_display_mode *mode,
103 			       struct drm_display_mode *adjusted_mode,
104 			       int x, int y,
105 			       struct drm_framebuffer *old_fb)
106 {
107 	struct drm_device *dev = crtc->dev;
108 	struct drm_psb_private *dev_priv = dev->dev_private;
109 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
110 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
111 	int pipe = gma_crtc->pipe;
112 	const struct psb_offset *map = &dev_priv->regmap[pipe];
113 	int refclk;
114 	struct gma_clock_t clock;
115 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
116 	bool ok, is_sdvo = false;
117 	bool is_lvds = false, is_tv = false;
118 	struct drm_mode_config *mode_config = &dev->mode_config;
119 	struct drm_connector *connector;
120 	const struct gma_limit_t *limit;
121 
122 	/* No scan out no play */
123 	if (crtc->primary->fb == NULL) {
124 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
125 		return 0;
126 	}
127 
128 	list_for_each_entry(connector, &mode_config->connector_list, head) {
129 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
130 
131 		if (!connector->encoder
132 		    || connector->encoder->crtc != crtc)
133 			continue;
134 
135 		switch (gma_encoder->type) {
136 		case INTEL_OUTPUT_LVDS:
137 			is_lvds = true;
138 			break;
139 		case INTEL_OUTPUT_SDVO:
140 			is_sdvo = true;
141 			break;
142 		case INTEL_OUTPUT_TVOUT:
143 			is_tv = true;
144 			break;
145 		}
146 	}
147 
148 	refclk = 96000;
149 
150 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
151 
152 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
153 				 &clock);
154 	if (!ok) {
155 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
156 			  adjusted_mode->clock, clock.dot);
157 		return 0;
158 	}
159 
160 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
161 
162 	dpll = DPLL_VGA_MODE_DIS;
163 	if (is_lvds) {
164 		dpll |= DPLLB_MODE_LVDS;
165 		dpll |= DPLL_DVO_HIGH_SPEED;
166 	} else
167 		dpll |= DPLLB_MODE_DAC_SERIAL;
168 	if (is_sdvo) {
169 		int sdvo_pixel_multiply =
170 			    adjusted_mode->clock / mode->clock;
171 		dpll |= DPLL_DVO_HIGH_SPEED;
172 		dpll |=
173 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
174 	}
175 
176 	/* compute bitmask from p1 value */
177 	dpll |= (1 << (clock.p1 - 1)) << 16;
178 	switch (clock.p2) {
179 	case 5:
180 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
181 		break;
182 	case 7:
183 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
184 		break;
185 	case 10:
186 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
187 		break;
188 	case 14:
189 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
190 		break;
191 	}
192 
193 	if (is_tv) {
194 		/* XXX: just matching BIOS for now */
195 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
196 		dpll |= 3;
197 	}
198 	dpll |= PLL_REF_INPUT_DREFCLK;
199 
200 	/* setup pipeconf */
201 	pipeconf = REG_READ(map->conf);
202 
203 	/* Set up the display plane register */
204 	dspcntr = DISPPLANE_GAMMA_ENABLE;
205 
206 	if (pipe == 0)
207 		dspcntr |= DISPPLANE_SEL_PIPE_A;
208 	else
209 		dspcntr |= DISPPLANE_SEL_PIPE_B;
210 
211 	dspcntr |= DISPLAY_PLANE_ENABLE;
212 	pipeconf |= PIPEACONF_ENABLE;
213 	dpll |= DPLL_VCO_ENABLE;
214 
215 
216 	/* Disable the panel fitter if it was on our pipe */
217 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
218 		REG_WRITE(PFIT_CONTROL, 0);
219 
220 	drm_mode_debug_printmodeline(mode);
221 
222 	if (dpll & DPLL_VCO_ENABLE) {
223 		REG_WRITE(map->fp0, fp);
224 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
225 		REG_READ(map->dpll);
226 		udelay(150);
227 	}
228 
229 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
230 	 * This is an exception to the general rule that mode_set doesn't turn
231 	 * things on.
232 	 */
233 	if (is_lvds) {
234 		u32 lvds = REG_READ(LVDS);
235 
236 		lvds &= ~LVDS_PIPEB_SELECT;
237 		if (pipe == 1)
238 			lvds |= LVDS_PIPEB_SELECT;
239 
240 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
241 		/* Set the B0-B3 data pairs corresponding to
242 		 * whether we're going to
243 		 * set the DPLLs for dual-channel mode or not.
244 		 */
245 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
246 		if (clock.p2 == 7)
247 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
248 
249 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
250 		 * appropriately here, but we need to look more
251 		 * thoroughly into how panels behave in the two modes.
252 		 */
253 
254 		REG_WRITE(LVDS, lvds);
255 		REG_READ(LVDS);
256 	}
257 
258 	REG_WRITE(map->fp0, fp);
259 	REG_WRITE(map->dpll, dpll);
260 	REG_READ(map->dpll);
261 	/* Wait for the clocks to stabilize. */
262 	udelay(150);
263 
264 	/* write it again -- the BIOS does, after all */
265 	REG_WRITE(map->dpll, dpll);
266 
267 	REG_READ(map->dpll);
268 	/* Wait for the clocks to stabilize. */
269 	udelay(150);
270 
271 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
272 		  ((adjusted_mode->crtc_htotal - 1) << 16));
273 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
274 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
275 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
276 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
277 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
278 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
279 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
280 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
281 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
282 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
283 	/* pipesrc and dspsize control the size that is scaled from,
284 	 * which should always be the user's requested size.
285 	 */
286 	REG_WRITE(map->size,
287 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
288 	REG_WRITE(map->pos, 0);
289 	REG_WRITE(map->src,
290 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
291 	REG_WRITE(map->conf, pipeconf);
292 	REG_READ(map->conf);
293 
294 	gma_wait_for_vblank(dev);
295 
296 	REG_WRITE(map->cntr, dspcntr);
297 
298 	/* Flush the plane changes */
299 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
300 
301 	gma_wait_for_vblank(dev);
302 
303 	return 0;
304 }
305 
306 /* Returns the clock of the currently programmed mode of the given pipe. */
307 static int psb_intel_crtc_clock_get(struct drm_device *dev,
308 				struct drm_crtc *crtc)
309 {
310 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
311 	struct drm_psb_private *dev_priv = dev->dev_private;
312 	int pipe = gma_crtc->pipe;
313 	const struct psb_offset *map = &dev_priv->regmap[pipe];
314 	u32 dpll;
315 	u32 fp;
316 	struct gma_clock_t clock;
317 	bool is_lvds;
318 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
319 
320 	if (gma_power_begin(dev, false)) {
321 		dpll = REG_READ(map->dpll);
322 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
323 			fp = REG_READ(map->fp0);
324 		else
325 			fp = REG_READ(map->fp1);
326 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
327 		gma_power_end(dev);
328 	} else {
329 		dpll = p->dpll;
330 
331 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
332 			fp = p->fp0;
333 		else
334 		        fp = p->fp1;
335 
336 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
337 								LVDS_PORT_EN);
338 	}
339 
340 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
341 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
342 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
343 
344 	if (is_lvds) {
345 		clock.p1 =
346 		    ffs((dpll &
347 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
348 			DPLL_FPA01_P1_POST_DIV_SHIFT);
349 		clock.p2 = 14;
350 
351 		if ((dpll & PLL_REF_INPUT_MASK) ==
352 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
353 			/* XXX: might not be 66MHz */
354 			psb_intel_clock(66000, &clock);
355 		} else
356 			psb_intel_clock(48000, &clock);
357 	} else {
358 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
359 			clock.p1 = 2;
360 		else {
361 			clock.p1 =
362 			    ((dpll &
363 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
364 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
365 		}
366 		if (dpll & PLL_P2_DIVIDE_BY_4)
367 			clock.p2 = 4;
368 		else
369 			clock.p2 = 2;
370 
371 		psb_intel_clock(48000, &clock);
372 	}
373 
374 	/* XXX: It would be nice to validate the clocks, but we can't reuse
375 	 * i830PllIsValid() because it relies on the xf86_config connector
376 	 * configuration being accurate, which it isn't necessarily.
377 	 */
378 
379 	return clock.dot;
380 }
381 
382 /** Returns the currently programmed mode of the given pipe. */
383 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
384 					     struct drm_crtc *crtc)
385 {
386 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
387 	int pipe = gma_crtc->pipe;
388 	struct drm_display_mode *mode;
389 	int htot;
390 	int hsync;
391 	int vtot;
392 	int vsync;
393 	struct drm_psb_private *dev_priv = dev->dev_private;
394 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
395 	const struct psb_offset *map = &dev_priv->regmap[pipe];
396 
397 	if (gma_power_begin(dev, false)) {
398 		htot = REG_READ(map->htotal);
399 		hsync = REG_READ(map->hsync);
400 		vtot = REG_READ(map->vtotal);
401 		vsync = REG_READ(map->vsync);
402 		gma_power_end(dev);
403 	} else {
404 		htot = p->htotal;
405 		hsync = p->hsync;
406 		vtot = p->vtotal;
407 		vsync = p->vsync;
408 	}
409 
410 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
411 	if (!mode)
412 		return NULL;
413 
414 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
415 	mode->hdisplay = (htot & 0xffff) + 1;
416 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
417 	mode->hsync_start = (hsync & 0xffff) + 1;
418 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
419 	mode->vdisplay = (vtot & 0xffff) + 1;
420 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
421 	mode->vsync_start = (vsync & 0xffff) + 1;
422 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
423 
424 	drm_mode_set_name(mode);
425 	drm_mode_set_crtcinfo(mode, 0);
426 
427 	return mode;
428 }
429 
430 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
431 	.dpms = gma_crtc_dpms,
432 	.mode_fixup = gma_crtc_mode_fixup,
433 	.mode_set = psb_intel_crtc_mode_set,
434 	.mode_set_base = gma_pipe_set_base,
435 	.prepare = gma_crtc_prepare,
436 	.commit = gma_crtc_commit,
437 	.disable = gma_crtc_disable,
438 };
439 
440 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
441 	.save = gma_crtc_save,
442 	.restore = gma_crtc_restore,
443 	.cursor_set = gma_crtc_cursor_set,
444 	.cursor_move = gma_crtc_cursor_move,
445 	.gamma_set = gma_crtc_gamma_set,
446 	.set_config = gma_crtc_set_config,
447 	.destroy = gma_crtc_destroy,
448 };
449 
450 const struct gma_clock_funcs psb_clock_funcs = {
451 	.clock = psb_intel_clock,
452 	.limit = psb_intel_limit,
453 	.pll_is_valid = gma_pll_is_valid,
454 };
455 
456 /*
457  * Set the default value of cursor control and base register
458  * to zero. This is a workaround for h/w defect on Oaktrail
459  */
460 static void psb_intel_cursor_init(struct drm_device *dev,
461 				  struct gma_crtc *gma_crtc)
462 {
463 	struct drm_psb_private *dev_priv = dev->dev_private;
464 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
465 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
466 	struct gtt_range *cursor_gt;
467 
468 	if (dev_priv->ops->cursor_needs_phys) {
469 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
470 		 * is enough for the 64 x 64 ARGB cursors we support.
471 		 */
472 		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
473 						PAGE_SIZE);
474 		if (!cursor_gt) {
475 			gma_crtc->cursor_gt = NULL;
476 			goto out;
477 		}
478 		gma_crtc->cursor_gt = cursor_gt;
479 		gma_crtc->cursor_addr = dev_priv->stolen_base +
480 							cursor_gt->offset;
481 	} else {
482 		gma_crtc->cursor_gt = NULL;
483 	}
484 
485 out:
486 	REG_WRITE(control[gma_crtc->pipe], 0);
487 	REG_WRITE(base[gma_crtc->pipe], 0);
488 }
489 
490 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
491 		     struct psb_intel_mode_device *mode_dev)
492 {
493 	struct drm_psb_private *dev_priv = dev->dev_private;
494 	struct gma_crtc *gma_crtc;
495 	int i;
496 	uint16_t *r_base, *g_base, *b_base;
497 
498 	/* We allocate a extra array of drm_connector pointers
499 	 * for fbdev after the crtc */
500 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
501 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
502 			GFP_KERNEL);
503 	if (gma_crtc == NULL)
504 		return;
505 
506 	gma_crtc->crtc_state =
507 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
508 	if (!gma_crtc->crtc_state) {
509 		dev_err(dev->dev, "Crtc state error: No memory\n");
510 		kfree(gma_crtc);
511 		return;
512 	}
513 
514 	/* Set the CRTC operations from the chip specific data */
515 	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
516 
517 	/* Set the CRTC clock functions from chip specific data */
518 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
519 
520 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
521 	gma_crtc->pipe = pipe;
522 	gma_crtc->plane = pipe;
523 
524 	r_base = gma_crtc->base.gamma_store;
525 	g_base = r_base + 256;
526 	b_base = g_base + 256;
527 	for (i = 0; i < 256; i++) {
528 		gma_crtc->lut_r[i] = i;
529 		gma_crtc->lut_g[i] = i;
530 		gma_crtc->lut_b[i] = i;
531 		r_base[i] = i << 8;
532 		g_base[i] = i << 8;
533 		b_base[i] = i << 8;
534 
535 		gma_crtc->lut_adj[i] = 0;
536 	}
537 
538 	gma_crtc->mode_dev = mode_dev;
539 	gma_crtc->cursor_addr = 0;
540 
541 	drm_crtc_helper_add(&gma_crtc->base,
542 						dev_priv->ops->crtc_helper);
543 
544 	/* Setup the array of drm_connector pointer array */
545 	gma_crtc->mode_set.crtc = &gma_crtc->base;
546 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
547 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
548 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
549 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
550 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
551 	gma_crtc->mode_set.num_connectors = 0;
552 	psb_intel_cursor_init(dev, gma_crtc);
553 
554 	/* Set to true so that the pipe is forced off on initial config. */
555 	gma_crtc->active = true;
556 }
557 
558 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
559 {
560 	struct drm_crtc *crtc = NULL;
561 
562 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
563 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
564 		if (gma_crtc->pipe == pipe)
565 			break;
566 	}
567 	return crtc;
568 }
569 
570 int gma_connector_clones(struct drm_device *dev, int type_mask)
571 {
572 	int index_mask = 0;
573 	struct drm_connector *connector;
574 	int entry = 0;
575 
576 	list_for_each_entry(connector, &dev->mode_config.connector_list,
577 			    head) {
578 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
579 		if (type_mask & (1 << gma_encoder->type))
580 			index_mask |= (1 << entry);
581 		entry++;
582 	}
583 	return index_mask;
584 }
585