1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 
12 #include "framebuffer.h"
13 #include "gem.h"
14 #include "gma_display.h"
15 #include "power.h"
16 #include "psb_drv.h"
17 #include "psb_intel_drv.h"
18 #include "psb_intel_reg.h"
19 
20 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
21 #define INTEL_LIMIT_I9XX_LVDS	    1
22 
23 static const struct gma_limit_t psb_intel_limits[] = {
24 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
25 	 .dot = {.min = 20000, .max = 400000},
26 	 .vco = {.min = 1400000, .max = 2800000},
27 	 .n = {.min = 1, .max = 6},
28 	 .m = {.min = 70, .max = 120},
29 	 .m1 = {.min = 8, .max = 18},
30 	 .m2 = {.min = 3, .max = 7},
31 	 .p = {.min = 5, .max = 80},
32 	 .p1 = {.min = 1, .max = 8},
33 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
34 	 .find_pll = gma_find_best_pll,
35 	 },
36 	{			/* INTEL_LIMIT_I9XX_LVDS */
37 	 .dot = {.min = 20000, .max = 400000},
38 	 .vco = {.min = 1400000, .max = 2800000},
39 	 .n = {.min = 1, .max = 6},
40 	 .m = {.min = 70, .max = 120},
41 	 .m1 = {.min = 8, .max = 18},
42 	 .m2 = {.min = 3, .max = 7},
43 	 .p = {.min = 7, .max = 98},
44 	 .p1 = {.min = 1, .max = 8},
45 	 /* The single-channel range is 25-112Mhz, and dual-channel
46 	  * is 80-224Mhz.  Prefer single channel as much as possible.
47 	  */
48 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
49 	 .find_pll = gma_find_best_pll,
50 	 },
51 };
52 
53 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
54 						 int refclk)
55 {
56 	const struct gma_limit_t *limit;
57 
58 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
59 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
60 	else
61 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
62 	return limit;
63 }
64 
65 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
66 {
67 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
68 	clock->p = clock->p1 * clock->p2;
69 	clock->vco = refclk * clock->m / (clock->n + 2);
70 	clock->dot = clock->vco / clock->p;
71 }
72 
73 /*
74  * Return the pipe currently connected to the panel fitter,
75  * or -1 if the panel fitter is not present or not in use
76  */
77 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
78 {
79 	u32 pfit_control;
80 
81 	pfit_control = REG_READ(PFIT_CONTROL);
82 
83 	/* See if the panel fitter is in use */
84 	if ((pfit_control & PFIT_ENABLE) == 0)
85 		return -1;
86 	/* Must be on PIPE 1 for PSB */
87 	return 1;
88 }
89 
90 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
91 			       struct drm_display_mode *mode,
92 			       struct drm_display_mode *adjusted_mode,
93 			       int x, int y,
94 			       struct drm_framebuffer *old_fb)
95 {
96 	struct drm_device *dev = crtc->dev;
97 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
98 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
99 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
100 	int pipe = gma_crtc->pipe;
101 	const struct psb_offset *map = &dev_priv->regmap[pipe];
102 	int refclk;
103 	struct gma_clock_t clock;
104 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
105 	bool ok, is_sdvo = false;
106 	bool is_lvds = false, is_tv = false;
107 	struct drm_connector_list_iter conn_iter;
108 	struct drm_connector *connector;
109 	const struct gma_limit_t *limit;
110 
111 	/* No scan out no play */
112 	if (crtc->primary->fb == NULL) {
113 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
114 		return 0;
115 	}
116 
117 	drm_connector_list_iter_begin(dev, &conn_iter);
118 	drm_for_each_connector_iter(connector, &conn_iter) {
119 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
120 
121 		if (!connector->encoder
122 		    || connector->encoder->crtc != crtc)
123 			continue;
124 
125 		switch (gma_encoder->type) {
126 		case INTEL_OUTPUT_LVDS:
127 			is_lvds = true;
128 			break;
129 		case INTEL_OUTPUT_SDVO:
130 			is_sdvo = true;
131 			break;
132 		case INTEL_OUTPUT_TVOUT:
133 			is_tv = true;
134 			break;
135 		}
136 
137 		break;
138 	}
139 	drm_connector_list_iter_end(&conn_iter);
140 
141 	refclk = 96000;
142 
143 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
144 
145 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
146 				 &clock);
147 	if (!ok) {
148 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
149 			  adjusted_mode->clock, clock.dot);
150 		return 0;
151 	}
152 
153 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
154 
155 	dpll = DPLL_VGA_MODE_DIS;
156 	if (is_lvds) {
157 		dpll |= DPLLB_MODE_LVDS;
158 		dpll |= DPLL_DVO_HIGH_SPEED;
159 	} else
160 		dpll |= DPLLB_MODE_DAC_SERIAL;
161 	if (is_sdvo) {
162 		int sdvo_pixel_multiply =
163 			    adjusted_mode->clock / mode->clock;
164 		dpll |= DPLL_DVO_HIGH_SPEED;
165 		dpll |=
166 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
167 	}
168 
169 	/* compute bitmask from p1 value */
170 	dpll |= (1 << (clock.p1 - 1)) << 16;
171 	switch (clock.p2) {
172 	case 5:
173 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
174 		break;
175 	case 7:
176 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
177 		break;
178 	case 10:
179 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
180 		break;
181 	case 14:
182 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
183 		break;
184 	}
185 
186 	if (is_tv) {
187 		/* XXX: just matching BIOS for now */
188 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
189 		dpll |= 3;
190 	}
191 	dpll |= PLL_REF_INPUT_DREFCLK;
192 
193 	/* setup pipeconf */
194 	pipeconf = REG_READ(map->conf);
195 
196 	/* Set up the display plane register */
197 	dspcntr = DISPPLANE_GAMMA_ENABLE;
198 
199 	if (pipe == 0)
200 		dspcntr |= DISPPLANE_SEL_PIPE_A;
201 	else
202 		dspcntr |= DISPPLANE_SEL_PIPE_B;
203 
204 	dspcntr |= DISPLAY_PLANE_ENABLE;
205 	pipeconf |= PIPEACONF_ENABLE;
206 	dpll |= DPLL_VCO_ENABLE;
207 
208 
209 	/* Disable the panel fitter if it was on our pipe */
210 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
211 		REG_WRITE(PFIT_CONTROL, 0);
212 
213 	drm_mode_debug_printmodeline(mode);
214 
215 	if (dpll & DPLL_VCO_ENABLE) {
216 		REG_WRITE(map->fp0, fp);
217 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
218 		REG_READ(map->dpll);
219 		udelay(150);
220 	}
221 
222 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
223 	 * This is an exception to the general rule that mode_set doesn't turn
224 	 * things on.
225 	 */
226 	if (is_lvds) {
227 		u32 lvds = REG_READ(LVDS);
228 
229 		lvds &= ~LVDS_PIPEB_SELECT;
230 		if (pipe == 1)
231 			lvds |= LVDS_PIPEB_SELECT;
232 
233 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
234 		/* Set the B0-B3 data pairs corresponding to
235 		 * whether we're going to
236 		 * set the DPLLs for dual-channel mode or not.
237 		 */
238 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
239 		if (clock.p2 == 7)
240 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
241 
242 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
243 		 * appropriately here, but we need to look more
244 		 * thoroughly into how panels behave in the two modes.
245 		 */
246 
247 		REG_WRITE(LVDS, lvds);
248 		REG_READ(LVDS);
249 	}
250 
251 	REG_WRITE(map->fp0, fp);
252 	REG_WRITE(map->dpll, dpll);
253 	REG_READ(map->dpll);
254 	/* Wait for the clocks to stabilize. */
255 	udelay(150);
256 
257 	/* write it again -- the BIOS does, after all */
258 	REG_WRITE(map->dpll, dpll);
259 
260 	REG_READ(map->dpll);
261 	/* Wait for the clocks to stabilize. */
262 	udelay(150);
263 
264 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
265 		  ((adjusted_mode->crtc_htotal - 1) << 16));
266 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
267 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
268 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
269 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
270 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
271 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
272 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
273 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
274 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
275 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
276 	/* pipesrc and dspsize control the size that is scaled from,
277 	 * which should always be the user's requested size.
278 	 */
279 	REG_WRITE(map->size,
280 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
281 	REG_WRITE(map->pos, 0);
282 	REG_WRITE(map->src,
283 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
284 	REG_WRITE(map->conf, pipeconf);
285 	REG_READ(map->conf);
286 
287 	gma_wait_for_vblank(dev);
288 
289 	REG_WRITE(map->cntr, dspcntr);
290 
291 	/* Flush the plane changes */
292 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
293 
294 	gma_wait_for_vblank(dev);
295 
296 	return 0;
297 }
298 
299 /* Returns the clock of the currently programmed mode of the given pipe. */
300 static int psb_intel_crtc_clock_get(struct drm_device *dev,
301 				struct drm_crtc *crtc)
302 {
303 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
304 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
305 	int pipe = gma_crtc->pipe;
306 	const struct psb_offset *map = &dev_priv->regmap[pipe];
307 	u32 dpll;
308 	u32 fp;
309 	struct gma_clock_t clock;
310 	bool is_lvds;
311 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
312 
313 	if (gma_power_begin(dev, false)) {
314 		dpll = REG_READ(map->dpll);
315 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
316 			fp = REG_READ(map->fp0);
317 		else
318 			fp = REG_READ(map->fp1);
319 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
320 		gma_power_end(dev);
321 	} else {
322 		dpll = p->dpll;
323 
324 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
325 			fp = p->fp0;
326 		else
327 		        fp = p->fp1;
328 
329 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
330 								LVDS_PORT_EN);
331 	}
332 
333 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
334 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
335 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
336 
337 	if (is_lvds) {
338 		clock.p1 =
339 		    ffs((dpll &
340 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
341 			DPLL_FPA01_P1_POST_DIV_SHIFT);
342 		clock.p2 = 14;
343 
344 		if ((dpll & PLL_REF_INPUT_MASK) ==
345 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
346 			/* XXX: might not be 66MHz */
347 			psb_intel_clock(66000, &clock);
348 		} else
349 			psb_intel_clock(48000, &clock);
350 	} else {
351 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
352 			clock.p1 = 2;
353 		else {
354 			clock.p1 =
355 			    ((dpll &
356 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
357 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
358 		}
359 		if (dpll & PLL_P2_DIVIDE_BY_4)
360 			clock.p2 = 4;
361 		else
362 			clock.p2 = 2;
363 
364 		psb_intel_clock(48000, &clock);
365 	}
366 
367 	/* XXX: It would be nice to validate the clocks, but we can't reuse
368 	 * i830PllIsValid() because it relies on the xf86_config connector
369 	 * configuration being accurate, which it isn't necessarily.
370 	 */
371 
372 	return clock.dot;
373 }
374 
375 /** Returns the currently programmed mode of the given pipe. */
376 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
377 					     struct drm_crtc *crtc)
378 {
379 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
380 	int pipe = gma_crtc->pipe;
381 	struct drm_display_mode *mode;
382 	int htot;
383 	int hsync;
384 	int vtot;
385 	int vsync;
386 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
387 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
388 	const struct psb_offset *map = &dev_priv->regmap[pipe];
389 
390 	if (gma_power_begin(dev, false)) {
391 		htot = REG_READ(map->htotal);
392 		hsync = REG_READ(map->hsync);
393 		vtot = REG_READ(map->vtotal);
394 		vsync = REG_READ(map->vsync);
395 		gma_power_end(dev);
396 	} else {
397 		htot = p->htotal;
398 		hsync = p->hsync;
399 		vtot = p->vtotal;
400 		vsync = p->vsync;
401 	}
402 
403 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
404 	if (!mode)
405 		return NULL;
406 
407 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
408 	mode->hdisplay = (htot & 0xffff) + 1;
409 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
410 	mode->hsync_start = (hsync & 0xffff) + 1;
411 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
412 	mode->vdisplay = (vtot & 0xffff) + 1;
413 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
414 	mode->vsync_start = (vsync & 0xffff) + 1;
415 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
416 
417 	drm_mode_set_name(mode);
418 	drm_mode_set_crtcinfo(mode, 0);
419 
420 	return mode;
421 }
422 
423 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
424 	.dpms = gma_crtc_dpms,
425 	.mode_set = psb_intel_crtc_mode_set,
426 	.mode_set_base = gma_pipe_set_base,
427 	.prepare = gma_crtc_prepare,
428 	.commit = gma_crtc_commit,
429 	.disable = gma_crtc_disable,
430 };
431 
432 const struct gma_clock_funcs psb_clock_funcs = {
433 	.clock = psb_intel_clock,
434 	.limit = psb_intel_limit,
435 	.pll_is_valid = gma_pll_is_valid,
436 };
437 
438 /*
439  * Set the default value of cursor control and base register
440  * to zero. This is a workaround for h/w defect on Oaktrail
441  */
442 static void psb_intel_cursor_init(struct drm_device *dev,
443 				  struct gma_crtc *gma_crtc)
444 {
445 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
446 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
447 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
448 	struct psb_gem_object *cursor_pobj;
449 
450 	if (dev_priv->ops->cursor_needs_phys) {
451 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
452 		 * is enough for the 64 x 64 ARGB cursors we support.
453 		 */
454 		cursor_pobj = psb_gem_create(dev, 4 * PAGE_SIZE, "cursor", true, PAGE_SIZE);
455 		if (IS_ERR(cursor_pobj)) {
456 			gma_crtc->cursor_pobj = NULL;
457 			goto out;
458 		}
459 		gma_crtc->cursor_pobj = cursor_pobj;
460 		gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_pobj->offset;
461 	} else {
462 		gma_crtc->cursor_pobj = NULL;
463 	}
464 
465 out:
466 	REG_WRITE(control[gma_crtc->pipe], 0);
467 	REG_WRITE(base[gma_crtc->pipe], 0);
468 }
469 
470 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
471 		     struct psb_intel_mode_device *mode_dev)
472 {
473 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
474 	struct gma_crtc *gma_crtc;
475 	int i;
476 
477 	/* We allocate a extra array of drm_connector pointers
478 	 * for fbdev after the crtc */
479 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
480 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
481 			GFP_KERNEL);
482 	if (gma_crtc == NULL)
483 		return;
484 
485 	gma_crtc->crtc_state =
486 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
487 	if (!gma_crtc->crtc_state) {
488 		dev_err(dev->dev, "Crtc state error: No memory\n");
489 		kfree(gma_crtc);
490 		return;
491 	}
492 
493 	drm_crtc_init(dev, &gma_crtc->base, &gma_crtc_funcs);
494 
495 	/* Set the CRTC clock functions from chip specific data */
496 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
497 
498 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
499 	gma_crtc->pipe = pipe;
500 	gma_crtc->plane = pipe;
501 
502 	for (i = 0; i < 256; i++)
503 		gma_crtc->lut_adj[i] = 0;
504 
505 	gma_crtc->mode_dev = mode_dev;
506 	gma_crtc->cursor_addr = 0;
507 
508 	drm_crtc_helper_add(&gma_crtc->base,
509 						dev_priv->ops->crtc_helper);
510 
511 	/* Setup the array of drm_connector pointer array */
512 	gma_crtc->mode_set.crtc = &gma_crtc->base;
513 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
514 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
515 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
516 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
517 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
518 	gma_crtc->mode_set.num_connectors = 0;
519 	psb_intel_cursor_init(dev, gma_crtc);
520 
521 	/* Set to true so that the pipe is forced off on initial config. */
522 	gma_crtc->active = true;
523 }
524 
525 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
526 {
527 	struct drm_crtc *crtc;
528 
529 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
530 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
531 
532 		if (gma_crtc->pipe == pipe)
533 			return crtc;
534 	}
535 	return NULL;
536 }
537 
538 int gma_connector_clones(struct drm_device *dev, int type_mask)
539 {
540 	struct drm_connector_list_iter conn_iter;
541 	struct drm_connector *connector;
542 	int index_mask = 0;
543 	int entry = 0;
544 
545 	drm_connector_list_iter_begin(dev, &conn_iter);
546 	drm_for_each_connector_iter(connector, &conn_iter) {
547 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
548 		if (type_mask & (1 << gma_encoder->type))
549 			index_mask |= (1 << entry);
550 		entry++;
551 	}
552 	drm_connector_list_iter_end(&conn_iter);
553 
554 	return index_mask;
555 }
556