1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  */
20 
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 
32 struct psb_intel_clock_t {
33 	/* given values */
34 	int n;
35 	int m1, m2;
36 	int p1, p2;
37 	/* derived values */
38 	int dot;
39 	int vco;
40 	int m;
41 	int p;
42 };
43 
44 struct psb_intel_range_t {
45 	int min, max;
46 };
47 
48 struct psb_intel_p2_t {
49 	int dot_limit;
50 	int p2_slow, p2_fast;
51 };
52 
53 #define INTEL_P2_NUM		      2
54 
55 struct psb_intel_limit_t {
56 	struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57 	struct psb_intel_p2_t p2;
58 };
59 
60 #define I8XX_DOT_MIN		  25000
61 #define I8XX_DOT_MAX		 350000
62 #define I8XX_VCO_MIN		 930000
63 #define I8XX_VCO_MAX		1400000
64 #define I8XX_N_MIN		      3
65 #define I8XX_N_MAX		     16
66 #define I8XX_M_MIN		     96
67 #define I8XX_M_MAX		    140
68 #define I8XX_M1_MIN		     18
69 #define I8XX_M1_MAX		     26
70 #define I8XX_M2_MIN		      6
71 #define I8XX_M2_MAX		     16
72 #define I8XX_P_MIN		      4
73 #define I8XX_P_MAX		    128
74 #define I8XX_P1_MIN		      2
75 #define I8XX_P1_MAX		     33
76 #define I8XX_P1_LVDS_MIN	      1
77 #define I8XX_P1_LVDS_MAX	      6
78 #define I8XX_P2_SLOW		      4
79 #define I8XX_P2_FAST		      2
80 #define I8XX_P2_LVDS_SLOW	      14
81 #define I8XX_P2_LVDS_FAST	      14	/* No fast option */
82 #define I8XX_P2_SLOW_LIMIT	 165000
83 
84 #define I9XX_DOT_MIN		  20000
85 #define I9XX_DOT_MAX		 400000
86 #define I9XX_VCO_MIN		1400000
87 #define I9XX_VCO_MAX		2800000
88 #define I9XX_N_MIN		      3
89 #define I9XX_N_MAX		      8
90 #define I9XX_M_MIN		     70
91 #define I9XX_M_MAX		    120
92 #define I9XX_M1_MIN		     10
93 #define I9XX_M1_MAX		     20
94 #define I9XX_M2_MIN		      5
95 #define I9XX_M2_MAX		      9
96 #define I9XX_P_SDVO_DAC_MIN	      5
97 #define I9XX_P_SDVO_DAC_MAX	     80
98 #define I9XX_P_LVDS_MIN		      7
99 #define I9XX_P_LVDS_MAX		     98
100 #define I9XX_P1_MIN		      1
101 #define I9XX_P1_MAX		      8
102 #define I9XX_P2_SDVO_DAC_SLOW		     10
103 #define I9XX_P2_SDVO_DAC_FAST		      5
104 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
105 #define I9XX_P2_LVDS_SLOW		     14
106 #define I9XX_P2_LVDS_FAST		      7
107 #define I9XX_P2_LVDS_SLOW_LIMIT		 112000
108 
109 #define INTEL_LIMIT_I8XX_DVO_DAC    0
110 #define INTEL_LIMIT_I8XX_LVDS	    1
111 #define INTEL_LIMIT_I9XX_SDVO_DAC   2
112 #define INTEL_LIMIT_I9XX_LVDS	    3
113 
114 static const struct psb_intel_limit_t psb_intel_limits[] = {
115 	{			/* INTEL_LIMIT_I8XX_DVO_DAC */
116 	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117 	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118 	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119 	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120 	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121 	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122 	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123 	 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124 	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125 		.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
126 	 },
127 	{			/* INTEL_LIMIT_I8XX_LVDS */
128 	 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129 	 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130 	 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131 	 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132 	 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133 	 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134 	 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135 	 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136 	 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137 		.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
138 	 },
139 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
140 	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141 	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142 	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143 	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144 	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145 	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146 	 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147 	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148 	 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149 		.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150 		I9XX_P2_SDVO_DAC_FAST},
151 	 },
152 	{			/* INTEL_LIMIT_I9XX_LVDS */
153 	 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154 	 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155 	 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156 	 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157 	 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158 	 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159 	 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160 	 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161 	 /* The single-channel range is 25-112Mhz, and dual-channel
162 	  * is 80-224Mhz.  Prefer single channel as much as possible.
163 	  */
164 	 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165 		.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
166 	 },
167 };
168 
169 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
170 {
171 	const struct psb_intel_limit_t *limit;
172 
173 	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175 	else
176 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177 	return limit;
178 }
179 
180 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
181 
182 static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
183 {
184 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185 	clock->p = clock->p1 * clock->p2;
186 	clock->vco = refclk * clock->m / (clock->n + 2);
187 	clock->dot = clock->vco / clock->p;
188 }
189 
190 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
191 
192 static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
193 {
194 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195 	clock->p = clock->p1 * clock->p2;
196 	clock->vco = refclk * clock->m / (clock->n + 2);
197 	clock->dot = clock->vco / clock->p;
198 }
199 
200 static void psb_intel_clock(struct drm_device *dev, int refclk,
201 			struct psb_intel_clock_t *clock)
202 {
203 	return i9xx_clock(refclk, clock);
204 }
205 
206 /**
207  * Returns whether any output on the specified pipe is of the specified type
208  */
209 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
210 {
211 	struct drm_device *dev = crtc->dev;
212 	struct drm_mode_config *mode_config = &dev->mode_config;
213 	struct drm_connector *l_entry;
214 
215 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217 			struct psb_intel_encoder *psb_intel_encoder =
218 					psb_intel_attached_encoder(l_entry);
219 			if (psb_intel_encoder->type == type)
220 				return true;
221 		}
222 	}
223 	return false;
224 }
225 
226 #define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
227 /**
228  * Returns whether the given set of divisors are valid for a given refclk with
229  * the given connectors.
230  */
231 
232 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233 			       struct psb_intel_clock_t *clock)
234 {
235 	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
236 
237 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238 		INTELPllInvalid("p1 out of range\n");
239 	if (clock->p < limit->p.min || limit->p.max < clock->p)
240 		INTELPllInvalid("p out of range\n");
241 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242 		INTELPllInvalid("m2 out of range\n");
243 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244 		INTELPllInvalid("m1 out of range\n");
245 	if (clock->m1 <= clock->m2)
246 		INTELPllInvalid("m1 <= m2\n");
247 	if (clock->m < limit->m.min || limit->m.max < clock->m)
248 		INTELPllInvalid("m out of range\n");
249 	if (clock->n < limit->n.min || limit->n.max < clock->n)
250 		INTELPllInvalid("n out of range\n");
251 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252 		INTELPllInvalid("vco out of range\n");
253 	/* XXX: We may need to be checking "Dot clock"
254 	 * depending on the multiplier, connector, etc.,
255 	 * rather than just a single range.
256 	 */
257 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258 		INTELPllInvalid("dot out of range\n");
259 
260 	return true;
261 }
262 
263 /**
264  * Returns a set of divisors for the desired target clock with the given
265  * refclk, or FALSE.  The returned values represent the clock equation:
266  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
267  */
268 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269 				int refclk,
270 				struct psb_intel_clock_t *best_clock)
271 {
272 	struct drm_device *dev = crtc->dev;
273 	struct psb_intel_clock_t clock;
274 	const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275 	int err = target;
276 
277 	if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
279 		/*
280 		 * For LVDS, if the panel is on, just rely on its current
281 		 * settings for dual-channel.  We haven't figured out how to
282 		 * reliably set up different single/dual channel state, if we
283 		 * even can.
284 		 */
285 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286 		    LVDS_CLKB_POWER_UP)
287 			clock.p2 = limit->p2.p2_fast;
288 		else
289 			clock.p2 = limit->p2.p2_slow;
290 	} else {
291 		if (target < limit->p2.dot_limit)
292 			clock.p2 = limit->p2.p2_slow;
293 		else
294 			clock.p2 = limit->p2.p2_fast;
295 	}
296 
297 	memset(best_clock, 0, sizeof(*best_clock));
298 
299 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300 	     clock.m1++) {
301 		for (clock.m2 = limit->m2.min;
302 		     clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303 		     clock.m2++) {
304 			for (clock.n = limit->n.min;
305 			     clock.n <= limit->n.max; clock.n++) {
306 				for (clock.p1 = limit->p1.min;
307 				     clock.p1 <= limit->p1.max;
308 				     clock.p1++) {
309 					int this_err;
310 
311 					psb_intel_clock(dev, refclk, &clock);
312 
313 					if (!psb_intel_PLL_is_valid
314 					    (crtc, &clock))
315 						continue;
316 
317 					this_err = abs(clock.dot - target);
318 					if (this_err < err) {
319 						*best_clock = clock;
320 						err = this_err;
321 					}
322 				}
323 			}
324 		}
325 	}
326 
327 	return err != target;
328 }
329 
330 void psb_intel_wait_for_vblank(struct drm_device *dev)
331 {
332 	/* Wait for 20ms, i.e. one cycle at 50hz. */
333 	mdelay(20);
334 }
335 
336 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337 			    int x, int y, struct drm_framebuffer *old_fb)
338 {
339 	struct drm_device *dev = crtc->dev;
340 	struct drm_psb_private *dev_priv = dev->dev_private;
341 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342 	struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343 	int pipe = psb_intel_crtc->pipe;
344 	const struct psb_offset *map = &dev_priv->regmap[pipe];
345 	unsigned long start, offset;
346 	u32 dspcntr;
347 	int ret = 0;
348 
349 	if (!gma_power_begin(dev, true))
350 		return 0;
351 
352 	/* no fb bound */
353 	if (!crtc->fb) {
354 		dev_dbg(dev->dev, "No FB bound\n");
355 		goto psb_intel_pipe_cleaner;
356 	}
357 
358 	/* We are displaying this buffer, make sure it is actually loaded
359 	   into the GTT */
360 	ret = psb_gtt_pin(psbfb->gtt);
361 	if (ret < 0)
362 		goto psb_intel_pipe_set_base_exit;
363 	start = psbfb->gtt->offset;
364 
365 	offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
366 
367 	REG_WRITE(map->stride, crtc->fb->pitches[0]);
368 
369 	dspcntr = REG_READ(map->cntr);
370 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
371 
372 	switch (crtc->fb->bits_per_pixel) {
373 	case 8:
374 		dspcntr |= DISPPLANE_8BPP;
375 		break;
376 	case 16:
377 		if (crtc->fb->depth == 15)
378 			dspcntr |= DISPPLANE_15_16BPP;
379 		else
380 			dspcntr |= DISPPLANE_16BPP;
381 		break;
382 	case 24:
383 	case 32:
384 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
385 		break;
386 	default:
387 		dev_err(dev->dev, "Unknown color depth\n");
388 		ret = -EINVAL;
389 		psb_gtt_unpin(psbfb->gtt);
390 		goto psb_intel_pipe_set_base_exit;
391 	}
392 	REG_WRITE(map->cntr, dspcntr);
393 
394 	REG_WRITE(map->base, start + offset);
395 	REG_READ(map->base);
396 
397 psb_intel_pipe_cleaner:
398 	/* If there was a previous display we can now unpin it */
399 	if (old_fb)
400 		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
401 
402 psb_intel_pipe_set_base_exit:
403 	gma_power_end(dev);
404 	return ret;
405 }
406 
407 /**
408  * Sets the power management mode of the pipe and plane.
409  *
410  * This code should probably grow support for turning the cursor off and back
411  * on appropriately at the same time as we're turning the pipe off/on.
412  */
413 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
414 {
415 	struct drm_device *dev = crtc->dev;
416 	struct drm_psb_private *dev_priv = dev->dev_private;
417 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
418 	int pipe = psb_intel_crtc->pipe;
419 	const struct psb_offset *map = &dev_priv->regmap[pipe];
420 	u32 temp;
421 
422 	/* XXX: When our outputs are all unaware of DPMS modes other than off
423 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
424 	 */
425 	switch (mode) {
426 	case DRM_MODE_DPMS_ON:
427 	case DRM_MODE_DPMS_STANDBY:
428 	case DRM_MODE_DPMS_SUSPEND:
429 		/* Enable the DPLL */
430 		temp = REG_READ(map->dpll);
431 		if ((temp & DPLL_VCO_ENABLE) == 0) {
432 			REG_WRITE(map->dpll, temp);
433 			REG_READ(map->dpll);
434 			/* Wait for the clocks to stabilize. */
435 			udelay(150);
436 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
437 			REG_READ(map->dpll);
438 			/* Wait for the clocks to stabilize. */
439 			udelay(150);
440 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
441 			REG_READ(map->dpll);
442 			/* Wait for the clocks to stabilize. */
443 			udelay(150);
444 		}
445 
446 		/* Enable the pipe */
447 		temp = REG_READ(map->conf);
448 		if ((temp & PIPEACONF_ENABLE) == 0)
449 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
450 
451 		/* Enable the plane */
452 		temp = REG_READ(map->cntr);
453 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
454 			REG_WRITE(map->cntr,
455 				  temp | DISPLAY_PLANE_ENABLE);
456 			/* Flush the plane changes */
457 			REG_WRITE(map->base, REG_READ(map->base));
458 		}
459 
460 		psb_intel_crtc_load_lut(crtc);
461 
462 		/* Give the overlay scaler a chance to enable
463 		 * if it's on this pipe */
464 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
465 		break;
466 	case DRM_MODE_DPMS_OFF:
467 		/* Give the overlay scaler a chance to disable
468 		 * if it's on this pipe */
469 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
470 
471 		/* Disable the VGA plane that we never use */
472 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
473 
474 		/* Disable display plane */
475 		temp = REG_READ(map->cntr);
476 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
477 			REG_WRITE(map->cntr,
478 				  temp & ~DISPLAY_PLANE_ENABLE);
479 			/* Flush the plane changes */
480 			REG_WRITE(map->base, REG_READ(map->base));
481 			REG_READ(map->base);
482 		}
483 
484 		/* Next, disable display pipes */
485 		temp = REG_READ(map->conf);
486 		if ((temp & PIPEACONF_ENABLE) != 0) {
487 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
488 			REG_READ(map->conf);
489 		}
490 
491 		/* Wait for vblank for the disable to take effect. */
492 		psb_intel_wait_for_vblank(dev);
493 
494 		temp = REG_READ(map->dpll);
495 		if ((temp & DPLL_VCO_ENABLE) != 0) {
496 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
497 			REG_READ(map->dpll);
498 		}
499 
500 		/* Wait for the clocks to turn off. */
501 		udelay(150);
502 		break;
503 	}
504 
505 	/*Set FIFO Watermarks*/
506 	REG_WRITE(DSPARB, 0x3F3E);
507 }
508 
509 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
510 {
511 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
512 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
513 }
514 
515 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
516 {
517 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
518 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
519 }
520 
521 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
522 {
523 	struct drm_encoder_helper_funcs *encoder_funcs =
524 	    encoder->helper_private;
525 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
526 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
527 }
528 
529 void psb_intel_encoder_commit(struct drm_encoder *encoder)
530 {
531 	struct drm_encoder_helper_funcs *encoder_funcs =
532 	    encoder->helper_private;
533 	/* lvds has its own version of commit see psb_intel_lvds_commit */
534 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
535 }
536 
537 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
538 {
539 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
540 
541 	drm_encoder_cleanup(encoder);
542 	kfree(intel_encoder);
543 }
544 
545 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
546 				  struct drm_display_mode *mode,
547 				  struct drm_display_mode *adjusted_mode)
548 {
549 	return true;
550 }
551 
552 
553 /**
554  * Return the pipe currently connected to the panel fitter,
555  * or -1 if the panel fitter is not present or not in use
556  */
557 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
558 {
559 	u32 pfit_control;
560 
561 	pfit_control = REG_READ(PFIT_CONTROL);
562 
563 	/* See if the panel fitter is in use */
564 	if ((pfit_control & PFIT_ENABLE) == 0)
565 		return -1;
566 	/* Must be on PIPE 1 for PSB */
567 	return 1;
568 }
569 
570 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
571 			       struct drm_display_mode *mode,
572 			       struct drm_display_mode *adjusted_mode,
573 			       int x, int y,
574 			       struct drm_framebuffer *old_fb)
575 {
576 	struct drm_device *dev = crtc->dev;
577 	struct drm_psb_private *dev_priv = dev->dev_private;
578 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
579 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
580 	int pipe = psb_intel_crtc->pipe;
581 	const struct psb_offset *map = &dev_priv->regmap[pipe];
582 	int refclk;
583 	struct psb_intel_clock_t clock;
584 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
585 	bool ok, is_sdvo = false;
586 	bool is_lvds = false, is_tv = false;
587 	struct drm_mode_config *mode_config = &dev->mode_config;
588 	struct drm_connector *connector;
589 
590 	/* No scan out no play */
591 	if (crtc->fb == NULL) {
592 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
593 		return 0;
594 	}
595 
596 	list_for_each_entry(connector, &mode_config->connector_list, head) {
597 		struct psb_intel_encoder *psb_intel_encoder =
598 					psb_intel_attached_encoder(connector);
599 
600 		if (!connector->encoder
601 		    || connector->encoder->crtc != crtc)
602 			continue;
603 
604 		switch (psb_intel_encoder->type) {
605 		case INTEL_OUTPUT_LVDS:
606 			is_lvds = true;
607 			break;
608 		case INTEL_OUTPUT_SDVO:
609 			is_sdvo = true;
610 			break;
611 		case INTEL_OUTPUT_TVOUT:
612 			is_tv = true;
613 			break;
614 		}
615 	}
616 
617 	refclk = 96000;
618 
619 	ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
620 				 &clock);
621 	if (!ok) {
622 		dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
623 		return 0;
624 	}
625 
626 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
627 
628 	dpll = DPLL_VGA_MODE_DIS;
629 	if (is_lvds) {
630 		dpll |= DPLLB_MODE_LVDS;
631 		dpll |= DPLL_DVO_HIGH_SPEED;
632 	} else
633 		dpll |= DPLLB_MODE_DAC_SERIAL;
634 	if (is_sdvo) {
635 		int sdvo_pixel_multiply =
636 			    adjusted_mode->clock / mode->clock;
637 		dpll |= DPLL_DVO_HIGH_SPEED;
638 		dpll |=
639 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
640 	}
641 
642 	/* compute bitmask from p1 value */
643 	dpll |= (1 << (clock.p1 - 1)) << 16;
644 	switch (clock.p2) {
645 	case 5:
646 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
647 		break;
648 	case 7:
649 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
650 		break;
651 	case 10:
652 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
653 		break;
654 	case 14:
655 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
656 		break;
657 	}
658 
659 	if (is_tv) {
660 		/* XXX: just matching BIOS for now */
661 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
662 		dpll |= 3;
663 	}
664 	dpll |= PLL_REF_INPUT_DREFCLK;
665 
666 	/* setup pipeconf */
667 	pipeconf = REG_READ(map->conf);
668 
669 	/* Set up the display plane register */
670 	dspcntr = DISPPLANE_GAMMA_ENABLE;
671 
672 	if (pipe == 0)
673 		dspcntr |= DISPPLANE_SEL_PIPE_A;
674 	else
675 		dspcntr |= DISPPLANE_SEL_PIPE_B;
676 
677 	dspcntr |= DISPLAY_PLANE_ENABLE;
678 	pipeconf |= PIPEACONF_ENABLE;
679 	dpll |= DPLL_VCO_ENABLE;
680 
681 
682 	/* Disable the panel fitter if it was on our pipe */
683 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
684 		REG_WRITE(PFIT_CONTROL, 0);
685 
686 	drm_mode_debug_printmodeline(mode);
687 
688 	if (dpll & DPLL_VCO_ENABLE) {
689 		REG_WRITE(map->fp0, fp);
690 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
691 		REG_READ(map->dpll);
692 		udelay(150);
693 	}
694 
695 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
696 	 * This is an exception to the general rule that mode_set doesn't turn
697 	 * things on.
698 	 */
699 	if (is_lvds) {
700 		u32 lvds = REG_READ(LVDS);
701 
702 		lvds &= ~LVDS_PIPEB_SELECT;
703 		if (pipe == 1)
704 			lvds |= LVDS_PIPEB_SELECT;
705 
706 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
707 		/* Set the B0-B3 data pairs corresponding to
708 		 * whether we're going to
709 		 * set the DPLLs for dual-channel mode or not.
710 		 */
711 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
712 		if (clock.p2 == 7)
713 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
714 
715 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
716 		 * appropriately here, but we need to look more
717 		 * thoroughly into how panels behave in the two modes.
718 		 */
719 
720 		REG_WRITE(LVDS, lvds);
721 		REG_READ(LVDS);
722 	}
723 
724 	REG_WRITE(map->fp0, fp);
725 	REG_WRITE(map->dpll, dpll);
726 	REG_READ(map->dpll);
727 	/* Wait for the clocks to stabilize. */
728 	udelay(150);
729 
730 	/* write it again -- the BIOS does, after all */
731 	REG_WRITE(map->dpll, dpll);
732 
733 	REG_READ(map->dpll);
734 	/* Wait for the clocks to stabilize. */
735 	udelay(150);
736 
737 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
738 		  ((adjusted_mode->crtc_htotal - 1) << 16));
739 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
740 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
741 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
742 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
743 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
744 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
745 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
746 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
747 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
748 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
749 	/* pipesrc and dspsize control the size that is scaled from,
750 	 * which should always be the user's requested size.
751 	 */
752 	REG_WRITE(map->size,
753 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
754 	REG_WRITE(map->pos, 0);
755 	REG_WRITE(map->src,
756 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
757 	REG_WRITE(map->conf, pipeconf);
758 	REG_READ(map->conf);
759 
760 	psb_intel_wait_for_vblank(dev);
761 
762 	REG_WRITE(map->cntr, dspcntr);
763 
764 	/* Flush the plane changes */
765 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
766 
767 	psb_intel_wait_for_vblank(dev);
768 
769 	return 0;
770 }
771 
772 /** Loads the palette/gamma unit for the CRTC with the prepared values */
773 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
774 {
775 	struct drm_device *dev = crtc->dev;
776 	struct drm_psb_private *dev_priv = dev->dev_private;
777 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
778 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
779 	int palreg = map->palette;
780 	int i;
781 
782 	/* The clocks have to be on to load the palette. */
783 	if (!crtc->enabled)
784 		return;
785 
786 	switch (psb_intel_crtc->pipe) {
787 	case 0:
788 	case 1:
789 		break;
790 	default:
791 		dev_err(dev->dev, "Illegal Pipe Number.\n");
792 		return;
793 	}
794 
795 	if (gma_power_begin(dev, false)) {
796 		for (i = 0; i < 256; i++) {
797 			REG_WRITE(palreg + 4 * i,
798 				  ((psb_intel_crtc->lut_r[i] +
799 				  psb_intel_crtc->lut_adj[i]) << 16) |
800 				  ((psb_intel_crtc->lut_g[i] +
801 				  psb_intel_crtc->lut_adj[i]) << 8) |
802 				  (psb_intel_crtc->lut_b[i] +
803 				  psb_intel_crtc->lut_adj[i]));
804 		}
805 		gma_power_end(dev);
806 	} else {
807 		for (i = 0; i < 256; i++) {
808 			dev_priv->regs.pipe[0].palette[i] =
809 				  ((psb_intel_crtc->lut_r[i] +
810 				  psb_intel_crtc->lut_adj[i]) << 16) |
811 				  ((psb_intel_crtc->lut_g[i] +
812 				  psb_intel_crtc->lut_adj[i]) << 8) |
813 				  (psb_intel_crtc->lut_b[i] +
814 				  psb_intel_crtc->lut_adj[i]);
815 		}
816 
817 	}
818 }
819 
820 /**
821  * Save HW states of giving crtc
822  */
823 static void psb_intel_crtc_save(struct drm_crtc *crtc)
824 {
825 	struct drm_device *dev = crtc->dev;
826 	struct drm_psb_private *dev_priv = dev->dev_private;
827 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
828 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
829 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
830 	uint32_t paletteReg;
831 	int i;
832 
833 	if (!crtc_state) {
834 		dev_err(dev->dev, "No CRTC state found\n");
835 		return;
836 	}
837 
838 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
839 	crtc_state->savePIPECONF = REG_READ(map->conf);
840 	crtc_state->savePIPESRC = REG_READ(map->src);
841 	crtc_state->saveFP0 = REG_READ(map->fp0);
842 	crtc_state->saveFP1 = REG_READ(map->fp1);
843 	crtc_state->saveDPLL = REG_READ(map->dpll);
844 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
845 	crtc_state->saveHBLANK = REG_READ(map->hblank);
846 	crtc_state->saveHSYNC = REG_READ(map->hsync);
847 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
848 	crtc_state->saveVBLANK = REG_READ(map->vblank);
849 	crtc_state->saveVSYNC = REG_READ(map->vsync);
850 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
851 
852 	/*NOTE: DSPSIZE DSPPOS only for psb*/
853 	crtc_state->saveDSPSIZE = REG_READ(map->size);
854 	crtc_state->saveDSPPOS = REG_READ(map->pos);
855 
856 	crtc_state->saveDSPBASE = REG_READ(map->base);
857 
858 	paletteReg = map->palette;
859 	for (i = 0; i < 256; ++i)
860 		crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
861 }
862 
863 /**
864  * Restore HW states of giving crtc
865  */
866 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
867 {
868 	struct drm_device *dev = crtc->dev;
869 	struct drm_psb_private *dev_priv = dev->dev_private;
870 	struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
871 	struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
872 	const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
873 	uint32_t paletteReg;
874 	int i;
875 
876 	if (!crtc_state) {
877 		dev_err(dev->dev, "No crtc state\n");
878 		return;
879 	}
880 
881 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
882 		REG_WRITE(map->dpll,
883 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
884 		REG_READ(map->dpll);
885 		udelay(150);
886 	}
887 
888 	REG_WRITE(map->fp0, crtc_state->saveFP0);
889 	REG_READ(map->fp0);
890 
891 	REG_WRITE(map->fp1, crtc_state->saveFP1);
892 	REG_READ(map->fp1);
893 
894 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
895 	REG_READ(map->dpll);
896 	udelay(150);
897 
898 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
899 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
900 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
901 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
902 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
903 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
904 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
905 
906 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
907 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
908 
909 	REG_WRITE(map->src, crtc_state->savePIPESRC);
910 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
911 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
912 
913 	psb_intel_wait_for_vblank(dev);
914 
915 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
916 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
917 
918 	psb_intel_wait_for_vblank(dev);
919 
920 	paletteReg = map->palette;
921 	for (i = 0; i < 256; ++i)
922 		REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
923 }
924 
925 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
926 				 struct drm_file *file_priv,
927 				 uint32_t handle,
928 				 uint32_t width, uint32_t height)
929 {
930 	struct drm_device *dev = crtc->dev;
931 	struct drm_psb_private *dev_priv = dev->dev_private;
932 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
933 	int pipe = psb_intel_crtc->pipe;
934 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
935 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
936 	uint32_t temp;
937 	size_t addr = 0;
938 	struct gtt_range *gt;
939 	struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
940 	struct drm_gem_object *obj;
941 	void *tmp_dst, *tmp_src;
942 	int ret, i, cursor_pages;
943 
944 	/* if we want to turn of the cursor ignore width and height */
945 	if (!handle) {
946 		/* turn off the cursor */
947 		temp = CURSOR_MODE_DISABLE;
948 
949 		if (gma_power_begin(dev, false)) {
950 			REG_WRITE(control, temp);
951 			REG_WRITE(base, 0);
952 			gma_power_end(dev);
953 		}
954 
955 		/* Unpin the old GEM object */
956 		if (psb_intel_crtc->cursor_obj) {
957 			gt = container_of(psb_intel_crtc->cursor_obj,
958 							struct gtt_range, gem);
959 			psb_gtt_unpin(gt);
960 			drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
961 			psb_intel_crtc->cursor_obj = NULL;
962 		}
963 
964 		return 0;
965 	}
966 
967 	/* Currently we only support 64x64 cursors */
968 	if (width != 64 || height != 64) {
969 		dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
970 		return -EINVAL;
971 	}
972 
973 	obj = drm_gem_object_lookup(dev, file_priv, handle);
974 	if (!obj)
975 		return -ENOENT;
976 
977 	if (obj->size < width * height * 4) {
978 		dev_dbg(dev->dev, "buffer is to small\n");
979 		return -ENOMEM;
980 	}
981 
982 	gt = container_of(obj, struct gtt_range, gem);
983 
984 	/* Pin the memory into the GTT */
985 	ret = psb_gtt_pin(gt);
986 	if (ret) {
987 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
988 		return ret;
989 	}
990 
991 	if (dev_priv->ops->cursor_needs_phys) {
992 		if (cursor_gt == NULL) {
993 			dev_err(dev->dev, "No hardware cursor mem available");
994 			return -ENOMEM;
995 		}
996 
997 		/* Prevent overflow */
998 		if (gt->npage > 4)
999 			cursor_pages = 4;
1000 		else
1001 			cursor_pages = gt->npage;
1002 
1003 		/* Copy the cursor to cursor mem */
1004 		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
1005 		for (i = 0; i < cursor_pages; i++) {
1006 			tmp_src = kmap(gt->pages[i]);
1007 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
1008 			kunmap(gt->pages[i]);
1009 			tmp_dst += PAGE_SIZE;
1010 		}
1011 
1012 		addr = psb_intel_crtc->cursor_addr;
1013 	} else {
1014 		addr = gt->offset;      /* Or resource.start ??? */
1015 		psb_intel_crtc->cursor_addr = addr;
1016 	}
1017 
1018 	temp = 0;
1019 	/* set the pipe for the cursor */
1020 	temp |= (pipe << 28);
1021 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1022 
1023 	if (gma_power_begin(dev, false)) {
1024 		REG_WRITE(control, temp);
1025 		REG_WRITE(base, addr);
1026 		gma_power_end(dev);
1027 	}
1028 
1029 	/* unpin the old bo */
1030 	if (psb_intel_crtc->cursor_obj) {
1031 		gt = container_of(psb_intel_crtc->cursor_obj,
1032 							struct gtt_range, gem);
1033 		psb_gtt_unpin(gt);
1034 		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1035 		psb_intel_crtc->cursor_obj = obj;
1036 	}
1037 	return 0;
1038 }
1039 
1040 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1041 {
1042 	struct drm_device *dev = crtc->dev;
1043 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1044 	int pipe = psb_intel_crtc->pipe;
1045 	uint32_t temp = 0;
1046 	uint32_t addr;
1047 
1048 
1049 	if (x < 0) {
1050 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1051 		x = -x;
1052 	}
1053 	if (y < 0) {
1054 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1055 		y = -y;
1056 	}
1057 
1058 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1059 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1060 
1061 	addr = psb_intel_crtc->cursor_addr;
1062 
1063 	if (gma_power_begin(dev, false)) {
1064 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1065 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1066 		gma_power_end(dev);
1067 	}
1068 	return 0;
1069 }
1070 
1071 void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1072 			 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1073 {
1074 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1075 	int i;
1076 
1077 	if (size != 256)
1078 		return;
1079 
1080 	for (i = 0; i < 256; i++) {
1081 		psb_intel_crtc->lut_r[i] = red[i] >> 8;
1082 		psb_intel_crtc->lut_g[i] = green[i] >> 8;
1083 		psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1084 	}
1085 
1086 	psb_intel_crtc_load_lut(crtc);
1087 }
1088 
1089 static int psb_crtc_set_config(struct drm_mode_set *set)
1090 {
1091 	int ret;
1092 	struct drm_device *dev = set->crtc->dev;
1093 	struct drm_psb_private *dev_priv = dev->dev_private;
1094 
1095 	if (!dev_priv->rpm_enabled)
1096 		return drm_crtc_helper_set_config(set);
1097 
1098 	pm_runtime_forbid(&dev->pdev->dev);
1099 	ret = drm_crtc_helper_set_config(set);
1100 	pm_runtime_allow(&dev->pdev->dev);
1101 	return ret;
1102 }
1103 
1104 /* Returns the clock of the currently programmed mode of the given pipe. */
1105 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1106 				struct drm_crtc *crtc)
1107 {
1108 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1109 	struct drm_psb_private *dev_priv = dev->dev_private;
1110 	int pipe = psb_intel_crtc->pipe;
1111 	const struct psb_offset *map = &dev_priv->regmap[pipe];
1112 	u32 dpll;
1113 	u32 fp;
1114 	struct psb_intel_clock_t clock;
1115 	bool is_lvds;
1116 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1117 
1118 	if (gma_power_begin(dev, false)) {
1119 		dpll = REG_READ(map->dpll);
1120 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1121 			fp = REG_READ(map->fp0);
1122 		else
1123 			fp = REG_READ(map->fp1);
1124 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1125 		gma_power_end(dev);
1126 	} else {
1127 		dpll = p->dpll;
1128 
1129 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1130 			fp = p->fp0;
1131 		else
1132 		        fp = p->fp1;
1133 
1134 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1135 								LVDS_PORT_EN);
1136 	}
1137 
1138 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1139 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1140 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1141 
1142 	if (is_lvds) {
1143 		clock.p1 =
1144 		    ffs((dpll &
1145 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1146 			DPLL_FPA01_P1_POST_DIV_SHIFT);
1147 		clock.p2 = 14;
1148 
1149 		if ((dpll & PLL_REF_INPUT_MASK) ==
1150 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1151 			/* XXX: might not be 66MHz */
1152 			i8xx_clock(66000, &clock);
1153 		} else
1154 			i8xx_clock(48000, &clock);
1155 	} else {
1156 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
1157 			clock.p1 = 2;
1158 		else {
1159 			clock.p1 =
1160 			    ((dpll &
1161 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1162 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1163 		}
1164 		if (dpll & PLL_P2_DIVIDE_BY_4)
1165 			clock.p2 = 4;
1166 		else
1167 			clock.p2 = 2;
1168 
1169 		i8xx_clock(48000, &clock);
1170 	}
1171 
1172 	/* XXX: It would be nice to validate the clocks, but we can't reuse
1173 	 * i830PllIsValid() because it relies on the xf86_config connector
1174 	 * configuration being accurate, which it isn't necessarily.
1175 	 */
1176 
1177 	return clock.dot;
1178 }
1179 
1180 /** Returns the currently programmed mode of the given pipe. */
1181 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1182 					     struct drm_crtc *crtc)
1183 {
1184 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1185 	int pipe = psb_intel_crtc->pipe;
1186 	struct drm_display_mode *mode;
1187 	int htot;
1188 	int hsync;
1189 	int vtot;
1190 	int vsync;
1191 	struct drm_psb_private *dev_priv = dev->dev_private;
1192 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1193 	const struct psb_offset *map = &dev_priv->regmap[pipe];
1194 
1195 	if (gma_power_begin(dev, false)) {
1196 		htot = REG_READ(map->htotal);
1197 		hsync = REG_READ(map->hsync);
1198 		vtot = REG_READ(map->vtotal);
1199 		vsync = REG_READ(map->vsync);
1200 		gma_power_end(dev);
1201 	} else {
1202 		htot = p->htotal;
1203 		hsync = p->hsync;
1204 		vtot = p->vtotal;
1205 		vsync = p->vsync;
1206 	}
1207 
1208 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1209 	if (!mode)
1210 		return NULL;
1211 
1212 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1213 	mode->hdisplay = (htot & 0xffff) + 1;
1214 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1215 	mode->hsync_start = (hsync & 0xffff) + 1;
1216 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1217 	mode->vdisplay = (vtot & 0xffff) + 1;
1218 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1219 	mode->vsync_start = (vsync & 0xffff) + 1;
1220 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1221 
1222 	drm_mode_set_name(mode);
1223 	drm_mode_set_crtcinfo(mode, 0);
1224 
1225 	return mode;
1226 }
1227 
1228 void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1229 {
1230 	struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1231 	struct gtt_range *gt;
1232 
1233 	/* Unpin the old GEM object */
1234 	if (psb_intel_crtc->cursor_obj) {
1235 		gt = container_of(psb_intel_crtc->cursor_obj,
1236 						struct gtt_range, gem);
1237 		psb_gtt_unpin(gt);
1238 		drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1239 		psb_intel_crtc->cursor_obj = NULL;
1240 	}
1241 
1242 	if (psb_intel_crtc->cursor_gt != NULL)
1243 		psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
1244 	kfree(psb_intel_crtc->crtc_state);
1245 	drm_crtc_cleanup(crtc);
1246 	kfree(psb_intel_crtc);
1247 }
1248 
1249 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1250 	.dpms = psb_intel_crtc_dpms,
1251 	.mode_fixup = psb_intel_crtc_mode_fixup,
1252 	.mode_set = psb_intel_crtc_mode_set,
1253 	.mode_set_base = psb_intel_pipe_set_base,
1254 	.prepare = psb_intel_crtc_prepare,
1255 	.commit = psb_intel_crtc_commit,
1256 };
1257 
1258 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1259 	.save = psb_intel_crtc_save,
1260 	.restore = psb_intel_crtc_restore,
1261 	.cursor_set = psb_intel_crtc_cursor_set,
1262 	.cursor_move = psb_intel_crtc_cursor_move,
1263 	.gamma_set = psb_intel_crtc_gamma_set,
1264 	.set_config = psb_crtc_set_config,
1265 	.destroy = psb_intel_crtc_destroy,
1266 };
1267 
1268 /*
1269  * Set the default value of cursor control and base register
1270  * to zero. This is a workaround for h/w defect on Oaktrail
1271  */
1272 static void psb_intel_cursor_init(struct drm_device *dev,
1273 				  struct psb_intel_crtc *psb_intel_crtc)
1274 {
1275 	struct drm_psb_private *dev_priv = dev->dev_private;
1276 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1277 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1278 	struct gtt_range *cursor_gt;
1279 
1280 	if (dev_priv->ops->cursor_needs_phys) {
1281 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
1282 		 * is enough for the 64 x 64 ARGB cursors we support.
1283 		 */
1284 		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
1285 		if (!cursor_gt) {
1286 			psb_intel_crtc->cursor_gt = NULL;
1287 			goto out;
1288 		}
1289 		psb_intel_crtc->cursor_gt = cursor_gt;
1290 		psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
1291 							cursor_gt->offset;
1292 	} else {
1293 		psb_intel_crtc->cursor_gt = NULL;
1294 	}
1295 
1296 out:
1297 	REG_WRITE(control[psb_intel_crtc->pipe], 0);
1298 	REG_WRITE(base[psb_intel_crtc->pipe], 0);
1299 }
1300 
1301 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1302 		     struct psb_intel_mode_device *mode_dev)
1303 {
1304 	struct drm_psb_private *dev_priv = dev->dev_private;
1305 	struct psb_intel_crtc *psb_intel_crtc;
1306 	int i;
1307 	uint16_t *r_base, *g_base, *b_base;
1308 
1309 	/* We allocate a extra array of drm_connector pointers
1310 	 * for fbdev after the crtc */
1311 	psb_intel_crtc =
1312 	    kzalloc(sizeof(struct psb_intel_crtc) +
1313 		    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1314 		    GFP_KERNEL);
1315 	if (psb_intel_crtc == NULL)
1316 		return;
1317 
1318 	psb_intel_crtc->crtc_state =
1319 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1320 	if (!psb_intel_crtc->crtc_state) {
1321 		dev_err(dev->dev, "Crtc state error: No memory\n");
1322 		kfree(psb_intel_crtc);
1323 		return;
1324 	}
1325 
1326 	/* Set the CRTC operations from the chip specific data */
1327 	drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1328 
1329 	drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1330 	psb_intel_crtc->pipe = pipe;
1331 	psb_intel_crtc->plane = pipe;
1332 
1333 	r_base = psb_intel_crtc->base.gamma_store;
1334 	g_base = r_base + 256;
1335 	b_base = g_base + 256;
1336 	for (i = 0; i < 256; i++) {
1337 		psb_intel_crtc->lut_r[i] = i;
1338 		psb_intel_crtc->lut_g[i] = i;
1339 		psb_intel_crtc->lut_b[i] = i;
1340 		r_base[i] = i << 8;
1341 		g_base[i] = i << 8;
1342 		b_base[i] = i << 8;
1343 
1344 		psb_intel_crtc->lut_adj[i] = 0;
1345 	}
1346 
1347 	psb_intel_crtc->mode_dev = mode_dev;
1348 	psb_intel_crtc->cursor_addr = 0;
1349 
1350 	drm_crtc_helper_add(&psb_intel_crtc->base,
1351 						dev_priv->ops->crtc_helper);
1352 
1353 	/* Setup the array of drm_connector pointer array */
1354 	psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1355 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1356 	       dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1357 	dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1358 							&psb_intel_crtc->base;
1359 	dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1360 							&psb_intel_crtc->base;
1361 	psb_intel_crtc->mode_set.connectors =
1362 	    (struct drm_connector **) (psb_intel_crtc + 1);
1363 	psb_intel_crtc->mode_set.num_connectors = 0;
1364 	psb_intel_cursor_init(dev, psb_intel_crtc);
1365 }
1366 
1367 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1368 				struct drm_file *file_priv)
1369 {
1370 	struct drm_psb_private *dev_priv = dev->dev_private;
1371 	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1372 	struct drm_mode_object *drmmode_obj;
1373 	struct psb_intel_crtc *crtc;
1374 
1375 	if (!dev_priv) {
1376 		dev_err(dev->dev, "called with no initialization\n");
1377 		return -EINVAL;
1378 	}
1379 
1380 	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1381 			DRM_MODE_OBJECT_CRTC);
1382 
1383 	if (!drmmode_obj) {
1384 		dev_err(dev->dev, "no such CRTC id\n");
1385 		return -EINVAL;
1386 	}
1387 
1388 	crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1389 	pipe_from_crtc_id->pipe = crtc->pipe;
1390 
1391 	return 0;
1392 }
1393 
1394 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1395 {
1396 	struct drm_crtc *crtc = NULL;
1397 
1398 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1399 		struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1400 		if (psb_intel_crtc->pipe == pipe)
1401 			break;
1402 	}
1403 	return crtc;
1404 }
1405 
1406 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1407 {
1408 	int index_mask = 0;
1409 	struct drm_connector *connector;
1410 	int entry = 0;
1411 
1412 	list_for_each_entry(connector, &dev->mode_config.connector_list,
1413 			    head) {
1414 		struct psb_intel_encoder *psb_intel_encoder =
1415 					psb_intel_attached_encoder(connector);
1416 		if (type_mask & (1 << psb_intel_encoder->type))
1417 			index_mask |= (1 << entry);
1418 		entry++;
1419 	}
1420 	return index_mask;
1421 }
1422 
1423 /* current intel driver doesn't take advantage of encoders
1424    always give back the encoder for the connector
1425 */
1426 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1427 {
1428 	struct psb_intel_encoder *psb_intel_encoder =
1429 					psb_intel_attached_encoder(connector);
1430 
1431 	return &psb_intel_encoder->base;
1432 }
1433 
1434 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1435 					struct psb_intel_encoder *encoder)
1436 {
1437 	connector->encoder = encoder;
1438 	drm_mode_connector_attach_encoder(&connector->base,
1439 					  &encoder->base);
1440 }
1441