1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2011 Intel Corporation 4 * 5 * Authors: 6 * Eric Anholt <eric@anholt.net> 7 */ 8 9 #include <linux/delay.h> 10 #include <linux/i2c.h> 11 12 #include <drm/drm_plane_helper.h> 13 14 #include "framebuffer.h" 15 #include "gma_display.h" 16 #include "power.h" 17 #include "psb_drv.h" 18 #include "psb_intel_drv.h" 19 #include "psb_intel_reg.h" 20 21 #define INTEL_LIMIT_I9XX_SDVO_DAC 0 22 #define INTEL_LIMIT_I9XX_LVDS 1 23 24 static const struct gma_limit_t psb_intel_limits[] = { 25 { /* INTEL_LIMIT_I9XX_SDVO_DAC */ 26 .dot = {.min = 20000, .max = 400000}, 27 .vco = {.min = 1400000, .max = 2800000}, 28 .n = {.min = 1, .max = 6}, 29 .m = {.min = 70, .max = 120}, 30 .m1 = {.min = 8, .max = 18}, 31 .m2 = {.min = 3, .max = 7}, 32 .p = {.min = 5, .max = 80}, 33 .p1 = {.min = 1, .max = 8}, 34 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5}, 35 .find_pll = gma_find_best_pll, 36 }, 37 { /* INTEL_LIMIT_I9XX_LVDS */ 38 .dot = {.min = 20000, .max = 400000}, 39 .vco = {.min = 1400000, .max = 2800000}, 40 .n = {.min = 1, .max = 6}, 41 .m = {.min = 70, .max = 120}, 42 .m1 = {.min = 8, .max = 18}, 43 .m2 = {.min = 3, .max = 7}, 44 .p = {.min = 7, .max = 98}, 45 .p1 = {.min = 1, .max = 8}, 46 /* The single-channel range is 25-112Mhz, and dual-channel 47 * is 80-224Mhz. Prefer single channel as much as possible. 48 */ 49 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7}, 50 .find_pll = gma_find_best_pll, 51 }, 52 }; 53 54 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc, 55 int refclk) 56 { 57 const struct gma_limit_t *limit; 58 59 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 60 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; 61 else 62 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; 63 return limit; 64 } 65 66 static void psb_intel_clock(int refclk, struct gma_clock_t *clock) 67 { 68 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 69 clock->p = clock->p1 * clock->p2; 70 clock->vco = refclk * clock->m / (clock->n + 2); 71 clock->dot = clock->vco / clock->p; 72 } 73 74 /** 75 * Return the pipe currently connected to the panel fitter, 76 * or -1 if the panel fitter is not present or not in use 77 */ 78 static int psb_intel_panel_fitter_pipe(struct drm_device *dev) 79 { 80 u32 pfit_control; 81 82 pfit_control = REG_READ(PFIT_CONTROL); 83 84 /* See if the panel fitter is in use */ 85 if ((pfit_control & PFIT_ENABLE) == 0) 86 return -1; 87 /* Must be on PIPE 1 for PSB */ 88 return 1; 89 } 90 91 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc, 92 struct drm_display_mode *mode, 93 struct drm_display_mode *adjusted_mode, 94 int x, int y, 95 struct drm_framebuffer *old_fb) 96 { 97 struct drm_device *dev = crtc->dev; 98 struct drm_psb_private *dev_priv = dev->dev_private; 99 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 100 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 101 int pipe = gma_crtc->pipe; 102 const struct psb_offset *map = &dev_priv->regmap[pipe]; 103 int refclk; 104 struct gma_clock_t clock; 105 u32 dpll = 0, fp = 0, dspcntr, pipeconf; 106 bool ok, is_sdvo = false; 107 bool is_lvds = false, is_tv = false; 108 struct drm_mode_config *mode_config = &dev->mode_config; 109 struct drm_connector *connector; 110 const struct gma_limit_t *limit; 111 112 /* No scan out no play */ 113 if (crtc->primary->fb == NULL) { 114 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 115 return 0; 116 } 117 118 list_for_each_entry(connector, &mode_config->connector_list, head) { 119 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 120 121 if (!connector->encoder 122 || connector->encoder->crtc != crtc) 123 continue; 124 125 switch (gma_encoder->type) { 126 case INTEL_OUTPUT_LVDS: 127 is_lvds = true; 128 break; 129 case INTEL_OUTPUT_SDVO: 130 is_sdvo = true; 131 break; 132 case INTEL_OUTPUT_TVOUT: 133 is_tv = true; 134 break; 135 } 136 } 137 138 refclk = 96000; 139 140 limit = gma_crtc->clock_funcs->limit(crtc, refclk); 141 142 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 143 &clock); 144 if (!ok) { 145 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 146 adjusted_mode->clock, clock.dot); 147 return 0; 148 } 149 150 fp = clock.n << 16 | clock.m1 << 8 | clock.m2; 151 152 dpll = DPLL_VGA_MODE_DIS; 153 if (is_lvds) { 154 dpll |= DPLLB_MODE_LVDS; 155 dpll |= DPLL_DVO_HIGH_SPEED; 156 } else 157 dpll |= DPLLB_MODE_DAC_SERIAL; 158 if (is_sdvo) { 159 int sdvo_pixel_multiply = 160 adjusted_mode->clock / mode->clock; 161 dpll |= DPLL_DVO_HIGH_SPEED; 162 dpll |= 163 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; 164 } 165 166 /* compute bitmask from p1 value */ 167 dpll |= (1 << (clock.p1 - 1)) << 16; 168 switch (clock.p2) { 169 case 5: 170 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 171 break; 172 case 7: 173 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 174 break; 175 case 10: 176 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 177 break; 178 case 14: 179 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 180 break; 181 } 182 183 if (is_tv) { 184 /* XXX: just matching BIOS for now */ 185 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 186 dpll |= 3; 187 } 188 dpll |= PLL_REF_INPUT_DREFCLK; 189 190 /* setup pipeconf */ 191 pipeconf = REG_READ(map->conf); 192 193 /* Set up the display plane register */ 194 dspcntr = DISPPLANE_GAMMA_ENABLE; 195 196 if (pipe == 0) 197 dspcntr |= DISPPLANE_SEL_PIPE_A; 198 else 199 dspcntr |= DISPPLANE_SEL_PIPE_B; 200 201 dspcntr |= DISPLAY_PLANE_ENABLE; 202 pipeconf |= PIPEACONF_ENABLE; 203 dpll |= DPLL_VCO_ENABLE; 204 205 206 /* Disable the panel fitter if it was on our pipe */ 207 if (psb_intel_panel_fitter_pipe(dev) == pipe) 208 REG_WRITE(PFIT_CONTROL, 0); 209 210 drm_mode_debug_printmodeline(mode); 211 212 if (dpll & DPLL_VCO_ENABLE) { 213 REG_WRITE(map->fp0, fp); 214 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE); 215 REG_READ(map->dpll); 216 udelay(150); 217 } 218 219 /* The LVDS pin pair needs to be on before the DPLLs are enabled. 220 * This is an exception to the general rule that mode_set doesn't turn 221 * things on. 222 */ 223 if (is_lvds) { 224 u32 lvds = REG_READ(LVDS); 225 226 lvds &= ~LVDS_PIPEB_SELECT; 227 if (pipe == 1) 228 lvds |= LVDS_PIPEB_SELECT; 229 230 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; 231 /* Set the B0-B3 data pairs corresponding to 232 * whether we're going to 233 * set the DPLLs for dual-channel mode or not. 234 */ 235 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 236 if (clock.p2 == 7) 237 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 238 239 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 240 * appropriately here, but we need to look more 241 * thoroughly into how panels behave in the two modes. 242 */ 243 244 REG_WRITE(LVDS, lvds); 245 REG_READ(LVDS); 246 } 247 248 REG_WRITE(map->fp0, fp); 249 REG_WRITE(map->dpll, dpll); 250 REG_READ(map->dpll); 251 /* Wait for the clocks to stabilize. */ 252 udelay(150); 253 254 /* write it again -- the BIOS does, after all */ 255 REG_WRITE(map->dpll, dpll); 256 257 REG_READ(map->dpll); 258 /* Wait for the clocks to stabilize. */ 259 udelay(150); 260 261 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 262 ((adjusted_mode->crtc_htotal - 1) << 16)); 263 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 264 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 265 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 266 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 267 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 268 ((adjusted_mode->crtc_vtotal - 1) << 16)); 269 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 270 ((adjusted_mode->crtc_vblank_end - 1) << 16)); 271 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 272 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 273 /* pipesrc and dspsize control the size that is scaled from, 274 * which should always be the user's requested size. 275 */ 276 REG_WRITE(map->size, 277 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 278 REG_WRITE(map->pos, 0); 279 REG_WRITE(map->src, 280 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 281 REG_WRITE(map->conf, pipeconf); 282 REG_READ(map->conf); 283 284 gma_wait_for_vblank(dev); 285 286 REG_WRITE(map->cntr, dspcntr); 287 288 /* Flush the plane changes */ 289 crtc_funcs->mode_set_base(crtc, x, y, old_fb); 290 291 gma_wait_for_vblank(dev); 292 293 return 0; 294 } 295 296 /* Returns the clock of the currently programmed mode of the given pipe. */ 297 static int psb_intel_crtc_clock_get(struct drm_device *dev, 298 struct drm_crtc *crtc) 299 { 300 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 301 struct drm_psb_private *dev_priv = dev->dev_private; 302 int pipe = gma_crtc->pipe; 303 const struct psb_offset *map = &dev_priv->regmap[pipe]; 304 u32 dpll; 305 u32 fp; 306 struct gma_clock_t clock; 307 bool is_lvds; 308 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 309 310 if (gma_power_begin(dev, false)) { 311 dpll = REG_READ(map->dpll); 312 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 313 fp = REG_READ(map->fp0); 314 else 315 fp = REG_READ(map->fp1); 316 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 317 gma_power_end(dev); 318 } else { 319 dpll = p->dpll; 320 321 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 322 fp = p->fp0; 323 else 324 fp = p->fp1; 325 326 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & 327 LVDS_PORT_EN); 328 } 329 330 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 331 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 332 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 333 334 if (is_lvds) { 335 clock.p1 = 336 ffs((dpll & 337 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 338 DPLL_FPA01_P1_POST_DIV_SHIFT); 339 clock.p2 = 14; 340 341 if ((dpll & PLL_REF_INPUT_MASK) == 342 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 343 /* XXX: might not be 66MHz */ 344 psb_intel_clock(66000, &clock); 345 } else 346 psb_intel_clock(48000, &clock); 347 } else { 348 if (dpll & PLL_P1_DIVIDE_BY_TWO) 349 clock.p1 = 2; 350 else { 351 clock.p1 = 352 ((dpll & 353 DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 354 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 355 } 356 if (dpll & PLL_P2_DIVIDE_BY_4) 357 clock.p2 = 4; 358 else 359 clock.p2 = 2; 360 361 psb_intel_clock(48000, &clock); 362 } 363 364 /* XXX: It would be nice to validate the clocks, but we can't reuse 365 * i830PllIsValid() because it relies on the xf86_config connector 366 * configuration being accurate, which it isn't necessarily. 367 */ 368 369 return clock.dot; 370 } 371 372 /** Returns the currently programmed mode of the given pipe. */ 373 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, 374 struct drm_crtc *crtc) 375 { 376 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 377 int pipe = gma_crtc->pipe; 378 struct drm_display_mode *mode; 379 int htot; 380 int hsync; 381 int vtot; 382 int vsync; 383 struct drm_psb_private *dev_priv = dev->dev_private; 384 struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 385 const struct psb_offset *map = &dev_priv->regmap[pipe]; 386 387 if (gma_power_begin(dev, false)) { 388 htot = REG_READ(map->htotal); 389 hsync = REG_READ(map->hsync); 390 vtot = REG_READ(map->vtotal); 391 vsync = REG_READ(map->vsync); 392 gma_power_end(dev); 393 } else { 394 htot = p->htotal; 395 hsync = p->hsync; 396 vtot = p->vtotal; 397 vsync = p->vsync; 398 } 399 400 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 401 if (!mode) 402 return NULL; 403 404 mode->clock = psb_intel_crtc_clock_get(dev, crtc); 405 mode->hdisplay = (htot & 0xffff) + 1; 406 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 407 mode->hsync_start = (hsync & 0xffff) + 1; 408 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 409 mode->vdisplay = (vtot & 0xffff) + 1; 410 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 411 mode->vsync_start = (vsync & 0xffff) + 1; 412 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 413 414 drm_mode_set_name(mode); 415 drm_mode_set_crtcinfo(mode, 0); 416 417 return mode; 418 } 419 420 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = { 421 .dpms = gma_crtc_dpms, 422 .mode_set = psb_intel_crtc_mode_set, 423 .mode_set_base = gma_pipe_set_base, 424 .prepare = gma_crtc_prepare, 425 .commit = gma_crtc_commit, 426 .disable = gma_crtc_disable, 427 }; 428 429 const struct drm_crtc_funcs psb_intel_crtc_funcs = { 430 .cursor_set = gma_crtc_cursor_set, 431 .cursor_move = gma_crtc_cursor_move, 432 .gamma_set = gma_crtc_gamma_set, 433 .set_config = gma_crtc_set_config, 434 .destroy = gma_crtc_destroy, 435 .page_flip = gma_crtc_page_flip, 436 .enable_vblank = psb_enable_vblank, 437 .disable_vblank = psb_disable_vblank, 438 .get_vblank_counter = psb_get_vblank_counter, 439 }; 440 441 const struct gma_clock_funcs psb_clock_funcs = { 442 .clock = psb_intel_clock, 443 .limit = psb_intel_limit, 444 .pll_is_valid = gma_pll_is_valid, 445 }; 446 447 /* 448 * Set the default value of cursor control and base register 449 * to zero. This is a workaround for h/w defect on Oaktrail 450 */ 451 static void psb_intel_cursor_init(struct drm_device *dev, 452 struct gma_crtc *gma_crtc) 453 { 454 struct drm_psb_private *dev_priv = dev->dev_private; 455 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; 456 u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; 457 struct gtt_range *cursor_gt; 458 459 if (dev_priv->ops->cursor_needs_phys) { 460 /* Allocate 4 pages of stolen mem for a hardware cursor. That 461 * is enough for the 64 x 64 ARGB cursors we support. 462 */ 463 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1, 464 PAGE_SIZE); 465 if (!cursor_gt) { 466 gma_crtc->cursor_gt = NULL; 467 goto out; 468 } 469 gma_crtc->cursor_gt = cursor_gt; 470 gma_crtc->cursor_addr = dev_priv->stolen_base + 471 cursor_gt->offset; 472 } else { 473 gma_crtc->cursor_gt = NULL; 474 } 475 476 out: 477 REG_WRITE(control[gma_crtc->pipe], 0); 478 REG_WRITE(base[gma_crtc->pipe], 0); 479 } 480 481 void psb_intel_crtc_init(struct drm_device *dev, int pipe, 482 struct psb_intel_mode_device *mode_dev) 483 { 484 struct drm_psb_private *dev_priv = dev->dev_private; 485 struct gma_crtc *gma_crtc; 486 int i; 487 488 /* We allocate a extra array of drm_connector pointers 489 * for fbdev after the crtc */ 490 gma_crtc = kzalloc(sizeof(struct gma_crtc) + 491 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), 492 GFP_KERNEL); 493 if (gma_crtc == NULL) 494 return; 495 496 gma_crtc->crtc_state = 497 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); 498 if (!gma_crtc->crtc_state) { 499 dev_err(dev->dev, "Crtc state error: No memory\n"); 500 kfree(gma_crtc); 501 return; 502 } 503 504 /* Set the CRTC operations from the chip specific data */ 505 drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs); 506 507 /* Set the CRTC clock functions from chip specific data */ 508 gma_crtc->clock_funcs = dev_priv->ops->clock_funcs; 509 510 drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256); 511 gma_crtc->pipe = pipe; 512 gma_crtc->plane = pipe; 513 514 for (i = 0; i < 256; i++) 515 gma_crtc->lut_adj[i] = 0; 516 517 gma_crtc->mode_dev = mode_dev; 518 gma_crtc->cursor_addr = 0; 519 520 drm_crtc_helper_add(&gma_crtc->base, 521 dev_priv->ops->crtc_helper); 522 523 /* Setup the array of drm_connector pointer array */ 524 gma_crtc->mode_set.crtc = &gma_crtc->base; 525 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 526 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL); 527 dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base; 528 dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base; 529 gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1); 530 gma_crtc->mode_set.num_connectors = 0; 531 psb_intel_cursor_init(dev, gma_crtc); 532 533 /* Set to true so that the pipe is forced off on initial config. */ 534 gma_crtc->active = true; 535 } 536 537 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) 538 { 539 struct drm_crtc *crtc = NULL; 540 541 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 542 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 543 if (gma_crtc->pipe == pipe) 544 break; 545 } 546 return crtc; 547 } 548 549 int gma_connector_clones(struct drm_device *dev, int type_mask) 550 { 551 int index_mask = 0; 552 struct drm_connector *connector; 553 int entry = 0; 554 555 list_for_each_entry(connector, &dev->mode_config.connector_list, 556 head) { 557 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 558 if (type_mask & (1 << gma_encoder->type)) 559 index_mask |= (1 << entry); 560 entry++; 561 } 562 return index_mask; 563 } 564