1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 
12 #include <drm/drm_plane_helper.h>
13 
14 #include "framebuffer.h"
15 #include "gem.h"
16 #include "gma_display.h"
17 #include "power.h"
18 #include "psb_drv.h"
19 #include "psb_intel_drv.h"
20 #include "psb_intel_reg.h"
21 
22 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
23 #define INTEL_LIMIT_I9XX_LVDS	    1
24 
25 static const struct gma_limit_t psb_intel_limits[] = {
26 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
27 	 .dot = {.min = 20000, .max = 400000},
28 	 .vco = {.min = 1400000, .max = 2800000},
29 	 .n = {.min = 1, .max = 6},
30 	 .m = {.min = 70, .max = 120},
31 	 .m1 = {.min = 8, .max = 18},
32 	 .m2 = {.min = 3, .max = 7},
33 	 .p = {.min = 5, .max = 80},
34 	 .p1 = {.min = 1, .max = 8},
35 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
36 	 .find_pll = gma_find_best_pll,
37 	 },
38 	{			/* INTEL_LIMIT_I9XX_LVDS */
39 	 .dot = {.min = 20000, .max = 400000},
40 	 .vco = {.min = 1400000, .max = 2800000},
41 	 .n = {.min = 1, .max = 6},
42 	 .m = {.min = 70, .max = 120},
43 	 .m1 = {.min = 8, .max = 18},
44 	 .m2 = {.min = 3, .max = 7},
45 	 .p = {.min = 7, .max = 98},
46 	 .p1 = {.min = 1, .max = 8},
47 	 /* The single-channel range is 25-112Mhz, and dual-channel
48 	  * is 80-224Mhz.  Prefer single channel as much as possible.
49 	  */
50 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
51 	 .find_pll = gma_find_best_pll,
52 	 },
53 };
54 
55 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
56 						 int refclk)
57 {
58 	const struct gma_limit_t *limit;
59 
60 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
61 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
62 	else
63 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
64 	return limit;
65 }
66 
67 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
68 {
69 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
70 	clock->p = clock->p1 * clock->p2;
71 	clock->vco = refclk * clock->m / (clock->n + 2);
72 	clock->dot = clock->vco / clock->p;
73 }
74 
75 /*
76  * Return the pipe currently connected to the panel fitter,
77  * or -1 if the panel fitter is not present or not in use
78  */
79 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
80 {
81 	u32 pfit_control;
82 
83 	pfit_control = REG_READ(PFIT_CONTROL);
84 
85 	/* See if the panel fitter is in use */
86 	if ((pfit_control & PFIT_ENABLE) == 0)
87 		return -1;
88 	/* Must be on PIPE 1 for PSB */
89 	return 1;
90 }
91 
92 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
93 			       struct drm_display_mode *mode,
94 			       struct drm_display_mode *adjusted_mode,
95 			       int x, int y,
96 			       struct drm_framebuffer *old_fb)
97 {
98 	struct drm_device *dev = crtc->dev;
99 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
100 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
101 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
102 	int pipe = gma_crtc->pipe;
103 	const struct psb_offset *map = &dev_priv->regmap[pipe];
104 	int refclk;
105 	struct gma_clock_t clock;
106 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
107 	bool ok, is_sdvo = false;
108 	bool is_lvds = false, is_tv = false;
109 	struct drm_connector_list_iter conn_iter;
110 	struct drm_connector *connector;
111 	const struct gma_limit_t *limit;
112 
113 	/* No scan out no play */
114 	if (crtc->primary->fb == NULL) {
115 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
116 		return 0;
117 	}
118 
119 	drm_connector_list_iter_begin(dev, &conn_iter);
120 	drm_for_each_connector_iter(connector, &conn_iter) {
121 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
122 
123 		if (!connector->encoder
124 		    || connector->encoder->crtc != crtc)
125 			continue;
126 
127 		switch (gma_encoder->type) {
128 		case INTEL_OUTPUT_LVDS:
129 			is_lvds = true;
130 			break;
131 		case INTEL_OUTPUT_SDVO:
132 			is_sdvo = true;
133 			break;
134 		case INTEL_OUTPUT_TVOUT:
135 			is_tv = true;
136 			break;
137 		}
138 
139 		break;
140 	}
141 	drm_connector_list_iter_end(&conn_iter);
142 
143 	refclk = 96000;
144 
145 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
146 
147 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
148 				 &clock);
149 	if (!ok) {
150 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
151 			  adjusted_mode->clock, clock.dot);
152 		return 0;
153 	}
154 
155 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
156 
157 	dpll = DPLL_VGA_MODE_DIS;
158 	if (is_lvds) {
159 		dpll |= DPLLB_MODE_LVDS;
160 		dpll |= DPLL_DVO_HIGH_SPEED;
161 	} else
162 		dpll |= DPLLB_MODE_DAC_SERIAL;
163 	if (is_sdvo) {
164 		int sdvo_pixel_multiply =
165 			    adjusted_mode->clock / mode->clock;
166 		dpll |= DPLL_DVO_HIGH_SPEED;
167 		dpll |=
168 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
169 	}
170 
171 	/* compute bitmask from p1 value */
172 	dpll |= (1 << (clock.p1 - 1)) << 16;
173 	switch (clock.p2) {
174 	case 5:
175 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
176 		break;
177 	case 7:
178 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
179 		break;
180 	case 10:
181 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
182 		break;
183 	case 14:
184 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
185 		break;
186 	}
187 
188 	if (is_tv) {
189 		/* XXX: just matching BIOS for now */
190 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
191 		dpll |= 3;
192 	}
193 	dpll |= PLL_REF_INPUT_DREFCLK;
194 
195 	/* setup pipeconf */
196 	pipeconf = REG_READ(map->conf);
197 
198 	/* Set up the display plane register */
199 	dspcntr = DISPPLANE_GAMMA_ENABLE;
200 
201 	if (pipe == 0)
202 		dspcntr |= DISPPLANE_SEL_PIPE_A;
203 	else
204 		dspcntr |= DISPPLANE_SEL_PIPE_B;
205 
206 	dspcntr |= DISPLAY_PLANE_ENABLE;
207 	pipeconf |= PIPEACONF_ENABLE;
208 	dpll |= DPLL_VCO_ENABLE;
209 
210 
211 	/* Disable the panel fitter if it was on our pipe */
212 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
213 		REG_WRITE(PFIT_CONTROL, 0);
214 
215 	drm_mode_debug_printmodeline(mode);
216 
217 	if (dpll & DPLL_VCO_ENABLE) {
218 		REG_WRITE(map->fp0, fp);
219 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
220 		REG_READ(map->dpll);
221 		udelay(150);
222 	}
223 
224 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
225 	 * This is an exception to the general rule that mode_set doesn't turn
226 	 * things on.
227 	 */
228 	if (is_lvds) {
229 		u32 lvds = REG_READ(LVDS);
230 
231 		lvds &= ~LVDS_PIPEB_SELECT;
232 		if (pipe == 1)
233 			lvds |= LVDS_PIPEB_SELECT;
234 
235 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
236 		/* Set the B0-B3 data pairs corresponding to
237 		 * whether we're going to
238 		 * set the DPLLs for dual-channel mode or not.
239 		 */
240 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
241 		if (clock.p2 == 7)
242 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
243 
244 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
245 		 * appropriately here, but we need to look more
246 		 * thoroughly into how panels behave in the two modes.
247 		 */
248 
249 		REG_WRITE(LVDS, lvds);
250 		REG_READ(LVDS);
251 	}
252 
253 	REG_WRITE(map->fp0, fp);
254 	REG_WRITE(map->dpll, dpll);
255 	REG_READ(map->dpll);
256 	/* Wait for the clocks to stabilize. */
257 	udelay(150);
258 
259 	/* write it again -- the BIOS does, after all */
260 	REG_WRITE(map->dpll, dpll);
261 
262 	REG_READ(map->dpll);
263 	/* Wait for the clocks to stabilize. */
264 	udelay(150);
265 
266 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
267 		  ((adjusted_mode->crtc_htotal - 1) << 16));
268 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
269 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
270 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
271 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
272 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
273 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
274 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
275 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
276 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
277 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
278 	/* pipesrc and dspsize control the size that is scaled from,
279 	 * which should always be the user's requested size.
280 	 */
281 	REG_WRITE(map->size,
282 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
283 	REG_WRITE(map->pos, 0);
284 	REG_WRITE(map->src,
285 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
286 	REG_WRITE(map->conf, pipeconf);
287 	REG_READ(map->conf);
288 
289 	gma_wait_for_vblank(dev);
290 
291 	REG_WRITE(map->cntr, dspcntr);
292 
293 	/* Flush the plane changes */
294 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
295 
296 	gma_wait_for_vblank(dev);
297 
298 	return 0;
299 }
300 
301 /* Returns the clock of the currently programmed mode of the given pipe. */
302 static int psb_intel_crtc_clock_get(struct drm_device *dev,
303 				struct drm_crtc *crtc)
304 {
305 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
306 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
307 	int pipe = gma_crtc->pipe;
308 	const struct psb_offset *map = &dev_priv->regmap[pipe];
309 	u32 dpll;
310 	u32 fp;
311 	struct gma_clock_t clock;
312 	bool is_lvds;
313 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
314 
315 	if (gma_power_begin(dev, false)) {
316 		dpll = REG_READ(map->dpll);
317 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
318 			fp = REG_READ(map->fp0);
319 		else
320 			fp = REG_READ(map->fp1);
321 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
322 		gma_power_end(dev);
323 	} else {
324 		dpll = p->dpll;
325 
326 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
327 			fp = p->fp0;
328 		else
329 		        fp = p->fp1;
330 
331 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
332 								LVDS_PORT_EN);
333 	}
334 
335 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
336 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
337 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
338 
339 	if (is_lvds) {
340 		clock.p1 =
341 		    ffs((dpll &
342 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
343 			DPLL_FPA01_P1_POST_DIV_SHIFT);
344 		clock.p2 = 14;
345 
346 		if ((dpll & PLL_REF_INPUT_MASK) ==
347 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
348 			/* XXX: might not be 66MHz */
349 			psb_intel_clock(66000, &clock);
350 		} else
351 			psb_intel_clock(48000, &clock);
352 	} else {
353 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
354 			clock.p1 = 2;
355 		else {
356 			clock.p1 =
357 			    ((dpll &
358 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
359 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
360 		}
361 		if (dpll & PLL_P2_DIVIDE_BY_4)
362 			clock.p2 = 4;
363 		else
364 			clock.p2 = 2;
365 
366 		psb_intel_clock(48000, &clock);
367 	}
368 
369 	/* XXX: It would be nice to validate the clocks, but we can't reuse
370 	 * i830PllIsValid() because it relies on the xf86_config connector
371 	 * configuration being accurate, which it isn't necessarily.
372 	 */
373 
374 	return clock.dot;
375 }
376 
377 /** Returns the currently programmed mode of the given pipe. */
378 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
379 					     struct drm_crtc *crtc)
380 {
381 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
382 	int pipe = gma_crtc->pipe;
383 	struct drm_display_mode *mode;
384 	int htot;
385 	int hsync;
386 	int vtot;
387 	int vsync;
388 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
389 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
390 	const struct psb_offset *map = &dev_priv->regmap[pipe];
391 
392 	if (gma_power_begin(dev, false)) {
393 		htot = REG_READ(map->htotal);
394 		hsync = REG_READ(map->hsync);
395 		vtot = REG_READ(map->vtotal);
396 		vsync = REG_READ(map->vsync);
397 		gma_power_end(dev);
398 	} else {
399 		htot = p->htotal;
400 		hsync = p->hsync;
401 		vtot = p->vtotal;
402 		vsync = p->vsync;
403 	}
404 
405 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
406 	if (!mode)
407 		return NULL;
408 
409 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
410 	mode->hdisplay = (htot & 0xffff) + 1;
411 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
412 	mode->hsync_start = (hsync & 0xffff) + 1;
413 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
414 	mode->vdisplay = (vtot & 0xffff) + 1;
415 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
416 	mode->vsync_start = (vsync & 0xffff) + 1;
417 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
418 
419 	drm_mode_set_name(mode);
420 	drm_mode_set_crtcinfo(mode, 0);
421 
422 	return mode;
423 }
424 
425 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
426 	.dpms = gma_crtc_dpms,
427 	.mode_set = psb_intel_crtc_mode_set,
428 	.mode_set_base = gma_pipe_set_base,
429 	.prepare = gma_crtc_prepare,
430 	.commit = gma_crtc_commit,
431 	.disable = gma_crtc_disable,
432 };
433 
434 const struct gma_clock_funcs psb_clock_funcs = {
435 	.clock = psb_intel_clock,
436 	.limit = psb_intel_limit,
437 	.pll_is_valid = gma_pll_is_valid,
438 };
439 
440 /*
441  * Set the default value of cursor control and base register
442  * to zero. This is a workaround for h/w defect on Oaktrail
443  */
444 static void psb_intel_cursor_init(struct drm_device *dev,
445 				  struct gma_crtc *gma_crtc)
446 {
447 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
448 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
449 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
450 	struct psb_gem_object *cursor_pobj;
451 
452 	if (dev_priv->ops->cursor_needs_phys) {
453 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
454 		 * is enough for the 64 x 64 ARGB cursors we support.
455 		 */
456 		cursor_pobj = psb_gem_create(dev, 4 * PAGE_SIZE, "cursor", true, PAGE_SIZE);
457 		if (IS_ERR(cursor_pobj)) {
458 			gma_crtc->cursor_pobj = NULL;
459 			goto out;
460 		}
461 		gma_crtc->cursor_pobj = cursor_pobj;
462 		gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_pobj->offset;
463 	} else {
464 		gma_crtc->cursor_pobj = NULL;
465 	}
466 
467 out:
468 	REG_WRITE(control[gma_crtc->pipe], 0);
469 	REG_WRITE(base[gma_crtc->pipe], 0);
470 }
471 
472 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
473 		     struct psb_intel_mode_device *mode_dev)
474 {
475 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
476 	struct gma_crtc *gma_crtc;
477 	int i;
478 
479 	/* We allocate a extra array of drm_connector pointers
480 	 * for fbdev after the crtc */
481 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
482 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
483 			GFP_KERNEL);
484 	if (gma_crtc == NULL)
485 		return;
486 
487 	gma_crtc->crtc_state =
488 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
489 	if (!gma_crtc->crtc_state) {
490 		dev_err(dev->dev, "Crtc state error: No memory\n");
491 		kfree(gma_crtc);
492 		return;
493 	}
494 
495 	drm_crtc_init(dev, &gma_crtc->base, &gma_crtc_funcs);
496 
497 	/* Set the CRTC clock functions from chip specific data */
498 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
499 
500 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
501 	gma_crtc->pipe = pipe;
502 	gma_crtc->plane = pipe;
503 
504 	for (i = 0; i < 256; i++)
505 		gma_crtc->lut_adj[i] = 0;
506 
507 	gma_crtc->mode_dev = mode_dev;
508 	gma_crtc->cursor_addr = 0;
509 
510 	drm_crtc_helper_add(&gma_crtc->base,
511 						dev_priv->ops->crtc_helper);
512 
513 	/* Setup the array of drm_connector pointer array */
514 	gma_crtc->mode_set.crtc = &gma_crtc->base;
515 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
516 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
517 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
518 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
519 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
520 	gma_crtc->mode_set.num_connectors = 0;
521 	psb_intel_cursor_init(dev, gma_crtc);
522 
523 	/* Set to true so that the pipe is forced off on initial config. */
524 	gma_crtc->active = true;
525 }
526 
527 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
528 {
529 	struct drm_crtc *crtc;
530 
531 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
532 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
533 
534 		if (gma_crtc->pipe == pipe)
535 			return crtc;
536 	}
537 	return NULL;
538 }
539 
540 int gma_connector_clones(struct drm_device *dev, int type_mask)
541 {
542 	struct drm_connector_list_iter conn_iter;
543 	struct drm_connector *connector;
544 	int index_mask = 0;
545 	int entry = 0;
546 
547 	drm_connector_list_iter_begin(dev, &conn_iter);
548 	drm_for_each_connector_iter(connector, &conn_iter) {
549 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
550 		if (type_mask & (1 << gma_encoder->type))
551 			index_mask |= (1 << entry);
552 		entry++;
553 	}
554 	drm_connector_list_iter_end(&conn_iter);
555 
556 	return index_mask;
557 }
558