1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 
12 #include <drm/drm_modeset_helper.h>
13 #include <drm/drm_modeset_helper_vtables.h>
14 
15 #include "framebuffer.h"
16 #include "gem.h"
17 #include "gma_display.h"
18 #include "power.h"
19 #include "psb_drv.h"
20 #include "psb_intel_drv.h"
21 #include "psb_intel_reg.h"
22 
23 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
24 #define INTEL_LIMIT_I9XX_LVDS	    1
25 
26 static const struct gma_limit_t psb_intel_limits[] = {
27 	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
28 	 .dot = {.min = 20000, .max = 400000},
29 	 .vco = {.min = 1400000, .max = 2800000},
30 	 .n = {.min = 1, .max = 6},
31 	 .m = {.min = 70, .max = 120},
32 	 .m1 = {.min = 8, .max = 18},
33 	 .m2 = {.min = 3, .max = 7},
34 	 .p = {.min = 5, .max = 80},
35 	 .p1 = {.min = 1, .max = 8},
36 	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
37 	 .find_pll = gma_find_best_pll,
38 	 },
39 	{			/* INTEL_LIMIT_I9XX_LVDS */
40 	 .dot = {.min = 20000, .max = 400000},
41 	 .vco = {.min = 1400000, .max = 2800000},
42 	 .n = {.min = 1, .max = 6},
43 	 .m = {.min = 70, .max = 120},
44 	 .m1 = {.min = 8, .max = 18},
45 	 .m2 = {.min = 3, .max = 7},
46 	 .p = {.min = 7, .max = 98},
47 	 .p1 = {.min = 1, .max = 8},
48 	 /* The single-channel range is 25-112Mhz, and dual-channel
49 	  * is 80-224Mhz.  Prefer single channel as much as possible.
50 	  */
51 	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
52 	 .find_pll = gma_find_best_pll,
53 	 },
54 };
55 
56 static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
57 						 int refclk)
58 {
59 	const struct gma_limit_t *limit;
60 
61 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
62 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
63 	else
64 		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
65 	return limit;
66 }
67 
68 static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
69 {
70 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
71 	clock->p = clock->p1 * clock->p2;
72 	clock->vco = refclk * clock->m / (clock->n + 2);
73 	clock->dot = clock->vco / clock->p;
74 }
75 
76 /*
77  * Return the pipe currently connected to the panel fitter,
78  * or -1 if the panel fitter is not present or not in use
79  */
80 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
81 {
82 	u32 pfit_control;
83 
84 	pfit_control = REG_READ(PFIT_CONTROL);
85 
86 	/* See if the panel fitter is in use */
87 	if ((pfit_control & PFIT_ENABLE) == 0)
88 		return -1;
89 	/* Must be on PIPE 1 for PSB */
90 	return 1;
91 }
92 
93 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
94 			       struct drm_display_mode *mode,
95 			       struct drm_display_mode *adjusted_mode,
96 			       int x, int y,
97 			       struct drm_framebuffer *old_fb)
98 {
99 	struct drm_device *dev = crtc->dev;
100 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
101 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
102 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
103 	int pipe = gma_crtc->pipe;
104 	const struct psb_offset *map = &dev_priv->regmap[pipe];
105 	int refclk;
106 	struct gma_clock_t clock;
107 	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
108 	bool ok, is_sdvo = false;
109 	bool is_lvds = false, is_tv = false;
110 	struct drm_connector_list_iter conn_iter;
111 	struct drm_connector *connector;
112 	const struct gma_limit_t *limit;
113 
114 	/* No scan out no play */
115 	if (crtc->primary->fb == NULL) {
116 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
117 		return 0;
118 	}
119 
120 	drm_connector_list_iter_begin(dev, &conn_iter);
121 	drm_for_each_connector_iter(connector, &conn_iter) {
122 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
123 
124 		if (!connector->encoder
125 		    || connector->encoder->crtc != crtc)
126 			continue;
127 
128 		switch (gma_encoder->type) {
129 		case INTEL_OUTPUT_LVDS:
130 			is_lvds = true;
131 			break;
132 		case INTEL_OUTPUT_SDVO:
133 			is_sdvo = true;
134 			break;
135 		case INTEL_OUTPUT_TVOUT:
136 			is_tv = true;
137 			break;
138 		}
139 
140 		break;
141 	}
142 	drm_connector_list_iter_end(&conn_iter);
143 
144 	refclk = 96000;
145 
146 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
147 
148 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
149 				 &clock);
150 	if (!ok) {
151 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
152 			  adjusted_mode->clock, clock.dot);
153 		return 0;
154 	}
155 
156 	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
157 
158 	dpll = DPLL_VGA_MODE_DIS;
159 	if (is_lvds) {
160 		dpll |= DPLLB_MODE_LVDS;
161 		dpll |= DPLL_DVO_HIGH_SPEED;
162 	} else
163 		dpll |= DPLLB_MODE_DAC_SERIAL;
164 	if (is_sdvo) {
165 		int sdvo_pixel_multiply =
166 			    adjusted_mode->clock / mode->clock;
167 		dpll |= DPLL_DVO_HIGH_SPEED;
168 		dpll |=
169 		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
170 	}
171 
172 	/* compute bitmask from p1 value */
173 	dpll |= (1 << (clock.p1 - 1)) << 16;
174 	switch (clock.p2) {
175 	case 5:
176 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
177 		break;
178 	case 7:
179 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
180 		break;
181 	case 10:
182 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
183 		break;
184 	case 14:
185 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
186 		break;
187 	}
188 
189 	if (is_tv) {
190 		/* XXX: just matching BIOS for now */
191 /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
192 		dpll |= 3;
193 	}
194 	dpll |= PLL_REF_INPUT_DREFCLK;
195 
196 	/* setup pipeconf */
197 	pipeconf = REG_READ(map->conf);
198 
199 	/* Set up the display plane register */
200 	dspcntr = DISPPLANE_GAMMA_ENABLE;
201 
202 	if (pipe == 0)
203 		dspcntr |= DISPPLANE_SEL_PIPE_A;
204 	else
205 		dspcntr |= DISPPLANE_SEL_PIPE_B;
206 
207 	dspcntr |= DISPLAY_PLANE_ENABLE;
208 	pipeconf |= PIPEACONF_ENABLE;
209 	dpll |= DPLL_VCO_ENABLE;
210 
211 
212 	/* Disable the panel fitter if it was on our pipe */
213 	if (psb_intel_panel_fitter_pipe(dev) == pipe)
214 		REG_WRITE(PFIT_CONTROL, 0);
215 
216 	drm_mode_debug_printmodeline(mode);
217 
218 	if (dpll & DPLL_VCO_ENABLE) {
219 		REG_WRITE(map->fp0, fp);
220 		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
221 		REG_READ(map->dpll);
222 		udelay(150);
223 	}
224 
225 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
226 	 * This is an exception to the general rule that mode_set doesn't turn
227 	 * things on.
228 	 */
229 	if (is_lvds) {
230 		u32 lvds = REG_READ(LVDS);
231 
232 		lvds &= ~LVDS_PIPEB_SELECT;
233 		if (pipe == 1)
234 			lvds |= LVDS_PIPEB_SELECT;
235 
236 		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
237 		/* Set the B0-B3 data pairs corresponding to
238 		 * whether we're going to
239 		 * set the DPLLs for dual-channel mode or not.
240 		 */
241 		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
242 		if (clock.p2 == 7)
243 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
244 
245 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
246 		 * appropriately here, but we need to look more
247 		 * thoroughly into how panels behave in the two modes.
248 		 */
249 
250 		REG_WRITE(LVDS, lvds);
251 		REG_READ(LVDS);
252 	}
253 
254 	REG_WRITE(map->fp0, fp);
255 	REG_WRITE(map->dpll, dpll);
256 	REG_READ(map->dpll);
257 	/* Wait for the clocks to stabilize. */
258 	udelay(150);
259 
260 	/* write it again -- the BIOS does, after all */
261 	REG_WRITE(map->dpll, dpll);
262 
263 	REG_READ(map->dpll);
264 	/* Wait for the clocks to stabilize. */
265 	udelay(150);
266 
267 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
268 		  ((adjusted_mode->crtc_htotal - 1) << 16));
269 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
270 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
271 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
272 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
273 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
274 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
275 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
276 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
277 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
278 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
279 	/* pipesrc and dspsize control the size that is scaled from,
280 	 * which should always be the user's requested size.
281 	 */
282 	REG_WRITE(map->size,
283 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
284 	REG_WRITE(map->pos, 0);
285 	REG_WRITE(map->src,
286 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
287 	REG_WRITE(map->conf, pipeconf);
288 	REG_READ(map->conf);
289 
290 	gma_wait_for_vblank(dev);
291 
292 	REG_WRITE(map->cntr, dspcntr);
293 
294 	/* Flush the plane changes */
295 	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
296 
297 	gma_wait_for_vblank(dev);
298 
299 	return 0;
300 }
301 
302 /* Returns the clock of the currently programmed mode of the given pipe. */
303 static int psb_intel_crtc_clock_get(struct drm_device *dev,
304 				struct drm_crtc *crtc)
305 {
306 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
307 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
308 	int pipe = gma_crtc->pipe;
309 	const struct psb_offset *map = &dev_priv->regmap[pipe];
310 	u32 dpll;
311 	u32 fp;
312 	struct gma_clock_t clock;
313 	bool is_lvds;
314 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
315 
316 	if (gma_power_begin(dev, false)) {
317 		dpll = REG_READ(map->dpll);
318 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
319 			fp = REG_READ(map->fp0);
320 		else
321 			fp = REG_READ(map->fp1);
322 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
323 		gma_power_end(dev);
324 	} else {
325 		dpll = p->dpll;
326 
327 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
328 			fp = p->fp0;
329 		else
330 		        fp = p->fp1;
331 
332 		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
333 								LVDS_PORT_EN);
334 	}
335 
336 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
337 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
338 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
339 
340 	if (is_lvds) {
341 		clock.p1 =
342 		    ffs((dpll &
343 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
344 			DPLL_FPA01_P1_POST_DIV_SHIFT);
345 		clock.p2 = 14;
346 
347 		if ((dpll & PLL_REF_INPUT_MASK) ==
348 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
349 			/* XXX: might not be 66MHz */
350 			psb_intel_clock(66000, &clock);
351 		} else
352 			psb_intel_clock(48000, &clock);
353 	} else {
354 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
355 			clock.p1 = 2;
356 		else {
357 			clock.p1 =
358 			    ((dpll &
359 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
360 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
361 		}
362 		if (dpll & PLL_P2_DIVIDE_BY_4)
363 			clock.p2 = 4;
364 		else
365 			clock.p2 = 2;
366 
367 		psb_intel_clock(48000, &clock);
368 	}
369 
370 	/* XXX: It would be nice to validate the clocks, but we can't reuse
371 	 * i830PllIsValid() because it relies on the xf86_config connector
372 	 * configuration being accurate, which it isn't necessarily.
373 	 */
374 
375 	return clock.dot;
376 }
377 
378 /** Returns the currently programmed mode of the given pipe. */
379 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
380 					     struct drm_crtc *crtc)
381 {
382 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
383 	int pipe = gma_crtc->pipe;
384 	struct drm_display_mode *mode;
385 	int htot;
386 	int hsync;
387 	int vtot;
388 	int vsync;
389 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
390 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
391 	const struct psb_offset *map = &dev_priv->regmap[pipe];
392 
393 	if (gma_power_begin(dev, false)) {
394 		htot = REG_READ(map->htotal);
395 		hsync = REG_READ(map->hsync);
396 		vtot = REG_READ(map->vtotal);
397 		vsync = REG_READ(map->vsync);
398 		gma_power_end(dev);
399 	} else {
400 		htot = p->htotal;
401 		hsync = p->hsync;
402 		vtot = p->vtotal;
403 		vsync = p->vsync;
404 	}
405 
406 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
407 	if (!mode)
408 		return NULL;
409 
410 	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
411 	mode->hdisplay = (htot & 0xffff) + 1;
412 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
413 	mode->hsync_start = (hsync & 0xffff) + 1;
414 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
415 	mode->vdisplay = (vtot & 0xffff) + 1;
416 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
417 	mode->vsync_start = (vsync & 0xffff) + 1;
418 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
419 
420 	drm_mode_set_name(mode);
421 	drm_mode_set_crtcinfo(mode, 0);
422 
423 	return mode;
424 }
425 
426 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
427 	.dpms = gma_crtc_dpms,
428 	.mode_set = psb_intel_crtc_mode_set,
429 	.mode_set_base = gma_pipe_set_base,
430 	.prepare = gma_crtc_prepare,
431 	.commit = gma_crtc_commit,
432 	.disable = gma_crtc_disable,
433 };
434 
435 const struct gma_clock_funcs psb_clock_funcs = {
436 	.clock = psb_intel_clock,
437 	.limit = psb_intel_limit,
438 	.pll_is_valid = gma_pll_is_valid,
439 };
440 
441 /*
442  * Set the default value of cursor control and base register
443  * to zero. This is a workaround for h/w defect on Oaktrail
444  */
445 static void psb_intel_cursor_init(struct drm_device *dev,
446 				  struct gma_crtc *gma_crtc)
447 {
448 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
449 	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
450 	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
451 	struct psb_gem_object *cursor_pobj;
452 
453 	if (dev_priv->ops->cursor_needs_phys) {
454 		/* Allocate 4 pages of stolen mem for a hardware cursor. That
455 		 * is enough for the 64 x 64 ARGB cursors we support.
456 		 */
457 		cursor_pobj = psb_gem_create(dev, 4 * PAGE_SIZE, "cursor", true, PAGE_SIZE);
458 		if (IS_ERR(cursor_pobj)) {
459 			gma_crtc->cursor_pobj = NULL;
460 			goto out;
461 		}
462 		gma_crtc->cursor_pobj = cursor_pobj;
463 		gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_pobj->offset;
464 	} else {
465 		gma_crtc->cursor_pobj = NULL;
466 	}
467 
468 out:
469 	REG_WRITE(control[gma_crtc->pipe], 0);
470 	REG_WRITE(base[gma_crtc->pipe], 0);
471 }
472 
473 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
474 		     struct psb_intel_mode_device *mode_dev)
475 {
476 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
477 	struct gma_crtc *gma_crtc;
478 	int i;
479 
480 	/* We allocate a extra array of drm_connector pointers
481 	 * for fbdev after the crtc */
482 	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
483 			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
484 			GFP_KERNEL);
485 	if (gma_crtc == NULL)
486 		return;
487 
488 	gma_crtc->crtc_state =
489 		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
490 	if (!gma_crtc->crtc_state) {
491 		dev_err(dev->dev, "Crtc state error: No memory\n");
492 		kfree(gma_crtc);
493 		return;
494 	}
495 
496 	drm_crtc_init(dev, &gma_crtc->base, &gma_crtc_funcs);
497 
498 	/* Set the CRTC clock functions from chip specific data */
499 	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
500 
501 	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
502 	gma_crtc->pipe = pipe;
503 	gma_crtc->plane = pipe;
504 
505 	for (i = 0; i < 256; i++)
506 		gma_crtc->lut_adj[i] = 0;
507 
508 	gma_crtc->mode_dev = mode_dev;
509 	gma_crtc->cursor_addr = 0;
510 
511 	drm_crtc_helper_add(&gma_crtc->base,
512 						dev_priv->ops->crtc_helper);
513 
514 	/* Setup the array of drm_connector pointer array */
515 	gma_crtc->mode_set.crtc = &gma_crtc->base;
516 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
517 	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
518 	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
519 	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
520 	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
521 	gma_crtc->mode_set.num_connectors = 0;
522 	psb_intel_cursor_init(dev, gma_crtc);
523 
524 	/* Set to true so that the pipe is forced off on initial config. */
525 	gma_crtc->active = true;
526 }
527 
528 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
529 {
530 	struct drm_crtc *crtc;
531 
532 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
533 		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
534 
535 		if (gma_crtc->pipe == pipe)
536 			return crtc;
537 	}
538 	return NULL;
539 }
540 
541 int gma_connector_clones(struct drm_device *dev, int type_mask)
542 {
543 	struct drm_connector_list_iter conn_iter;
544 	struct drm_connector *connector;
545 	int index_mask = 0;
546 	int entry = 0;
547 
548 	drm_connector_list_iter_begin(dev, &conn_iter);
549 	drm_for_each_connector_iter(connector, &conn_iter) {
550 		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
551 		if (type_mask & (1 << gma_encoder->type))
552 			index_mask |= (1 << entry);
553 		entry++;
554 	}
555 	drm_connector_list_iter_end(&conn_iter);
556 
557 	return index_mask;
558 }
559