1 /* 2 * Copyright (c) 2007, Intel Corporation. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 17 * 18 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> 19 * Alan Cox <alan@linux.intel.com> 20 */ 21 22 #include <drm/drmP.h> 23 #include <linux/shmem_fs.h> 24 #include "psb_drv.h" 25 #include "blitter.h" 26 27 28 /* 29 * GTT resource allocator - manage page mappings in GTT space 30 */ 31 32 /** 33 * psb_gtt_mask_pte - generate GTT pte entry 34 * @pfn: page number to encode 35 * @type: type of memory in the GTT 36 * 37 * Set the GTT entry for the appropriate memory type. 38 */ 39 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) 40 { 41 uint32_t mask = PSB_PTE_VALID; 42 43 /* Ensure we explode rather than put an invalid low mapping of 44 a high mapping page into the gtt */ 45 BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); 46 47 if (type & PSB_MMU_CACHED_MEMORY) 48 mask |= PSB_PTE_CACHED; 49 if (type & PSB_MMU_RO_MEMORY) 50 mask |= PSB_PTE_RO; 51 if (type & PSB_MMU_WO_MEMORY) 52 mask |= PSB_PTE_WO; 53 54 return (pfn << PAGE_SHIFT) | mask; 55 } 56 57 /** 58 * psb_gtt_entry - find the GTT entries for a gtt_range 59 * @dev: our DRM device 60 * @r: our GTT range 61 * 62 * Given a gtt_range object return the GTT offset of the page table 63 * entries for this gtt_range 64 */ 65 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) 66 { 67 struct drm_psb_private *dev_priv = dev->dev_private; 68 unsigned long offset; 69 70 offset = r->resource.start - dev_priv->gtt_mem->start; 71 72 return dev_priv->gtt_map + (offset >> PAGE_SHIFT); 73 } 74 75 /** 76 * psb_gtt_insert - put an object into the GTT 77 * @dev: our DRM device 78 * @r: our GTT range 79 * 80 * Take our preallocated GTT range and insert the GEM object into 81 * the GTT. This is protected via the gtt mutex which the caller 82 * must hold. 83 */ 84 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r, 85 int resume) 86 { 87 u32 __iomem *gtt_slot; 88 u32 pte; 89 struct page **pages; 90 int i; 91 92 if (r->pages == NULL) { 93 WARN_ON(1); 94 return -EINVAL; 95 } 96 97 WARN_ON(r->stolen); /* refcount these maybe ? */ 98 99 gtt_slot = psb_gtt_entry(dev, r); 100 pages = r->pages; 101 102 if (!resume) { 103 /* Make sure changes are visible to the GPU */ 104 set_pages_array_wc(pages, r->npage); 105 } 106 107 /* Write our page entries into the GTT itself */ 108 for (i = r->roll; i < r->npage; i++) { 109 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 110 PSB_MMU_CACHED_MEMORY); 111 iowrite32(pte, gtt_slot++); 112 } 113 for (i = 0; i < r->roll; i++) { 114 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 115 PSB_MMU_CACHED_MEMORY); 116 iowrite32(pte, gtt_slot++); 117 } 118 /* Make sure all the entries are set before we return */ 119 ioread32(gtt_slot - 1); 120 121 return 0; 122 } 123 124 /** 125 * psb_gtt_remove - remove an object from the GTT 126 * @dev: our DRM device 127 * @r: our GTT range 128 * 129 * Remove a preallocated GTT range from the GTT. Overwrite all the 130 * page table entries with the dummy page. This is protected via the gtt 131 * mutex which the caller must hold. 132 */ 133 void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) 134 { 135 struct drm_psb_private *dev_priv = dev->dev_private; 136 u32 __iomem *gtt_slot; 137 u32 pte; 138 int i; 139 140 WARN_ON(r->stolen); 141 142 gtt_slot = psb_gtt_entry(dev, r); 143 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 144 PSB_MMU_CACHED_MEMORY); 145 146 for (i = 0; i < r->npage; i++) 147 iowrite32(pte, gtt_slot++); 148 ioread32(gtt_slot - 1); 149 set_pages_array_wb(r->pages, r->npage); 150 } 151 152 /** 153 * psb_gtt_roll - set scrolling position 154 * @dev: our DRM device 155 * @r: the gtt mapping we are using 156 * @roll: roll offset 157 * 158 * Roll an existing pinned mapping by moving the pages through the GTT. 159 * This allows us to implement hardware scrolling on the consoles without 160 * a 2D engine 161 */ 162 void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll) 163 { 164 u32 __iomem *gtt_slot; 165 u32 pte; 166 int i; 167 168 if (roll >= r->npage) { 169 WARN_ON(1); 170 return; 171 } 172 173 r->roll = roll; 174 175 /* Not currently in the GTT - no worry we will write the mapping at 176 the right position when it gets pinned */ 177 if (!r->stolen && !r->in_gart) 178 return; 179 180 gtt_slot = psb_gtt_entry(dev, r); 181 182 for (i = r->roll; i < r->npage; i++) { 183 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 184 PSB_MMU_CACHED_MEMORY); 185 iowrite32(pte, gtt_slot++); 186 } 187 for (i = 0; i < r->roll; i++) { 188 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 189 PSB_MMU_CACHED_MEMORY); 190 iowrite32(pte, gtt_slot++); 191 } 192 ioread32(gtt_slot - 1); 193 } 194 195 /** 196 * psb_gtt_attach_pages - attach and pin GEM pages 197 * @gt: the gtt range 198 * 199 * Pin and build an in kernel list of the pages that back our GEM object. 200 * While we hold this the pages cannot be swapped out. This is protected 201 * via the gtt mutex which the caller must hold. 202 */ 203 static int psb_gtt_attach_pages(struct gtt_range *gt) 204 { 205 struct page **pages; 206 207 WARN_ON(gt->pages); 208 209 pages = drm_gem_get_pages(>->gem); 210 if (IS_ERR(pages)) 211 return PTR_ERR(pages); 212 213 gt->npage = gt->gem.size / PAGE_SIZE; 214 gt->pages = pages; 215 216 return 0; 217 } 218 219 /** 220 * psb_gtt_detach_pages - attach and pin GEM pages 221 * @gt: the gtt range 222 * 223 * Undo the effect of psb_gtt_attach_pages. At this point the pages 224 * must have been removed from the GTT as they could now be paged out 225 * and move bus address. This is protected via the gtt mutex which the 226 * caller must hold. 227 */ 228 static void psb_gtt_detach_pages(struct gtt_range *gt) 229 { 230 drm_gem_put_pages(>->gem, gt->pages, true, false); 231 gt->pages = NULL; 232 } 233 234 /** 235 * psb_gtt_pin - pin pages into the GTT 236 * @gt: range to pin 237 * 238 * Pin a set of pages into the GTT. The pins are refcounted so that 239 * multiple pins need multiple unpins to undo. 240 * 241 * Non GEM backed objects treat this as a no-op as they are always GTT 242 * backed objects. 243 */ 244 int psb_gtt_pin(struct gtt_range *gt) 245 { 246 int ret = 0; 247 struct drm_device *dev = gt->gem.dev; 248 struct drm_psb_private *dev_priv = dev->dev_private; 249 u32 gpu_base = dev_priv->gtt.gatt_start; 250 251 mutex_lock(&dev_priv->gtt_mutex); 252 253 if (gt->in_gart == 0 && gt->stolen == 0) { 254 ret = psb_gtt_attach_pages(gt); 255 if (ret < 0) 256 goto out; 257 ret = psb_gtt_insert(dev, gt, 0); 258 if (ret < 0) { 259 psb_gtt_detach_pages(gt); 260 goto out; 261 } 262 psb_mmu_insert_pages(psb_mmu_get_default_pd(dev_priv->mmu), 263 gt->pages, (gpu_base + gt->offset), 264 gt->npage, 0, 0, PSB_MMU_CACHED_MEMORY); 265 } 266 gt->in_gart++; 267 out: 268 mutex_unlock(&dev_priv->gtt_mutex); 269 return ret; 270 } 271 272 /** 273 * psb_gtt_unpin - Drop a GTT pin requirement 274 * @gt: range to pin 275 * 276 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object 277 * will be removed from the GTT which will also drop the page references 278 * and allow the VM to clean up or page stuff. 279 * 280 * Non GEM backed objects treat this as a no-op as they are always GTT 281 * backed objects. 282 */ 283 void psb_gtt_unpin(struct gtt_range *gt) 284 { 285 struct drm_device *dev = gt->gem.dev; 286 struct drm_psb_private *dev_priv = dev->dev_private; 287 u32 gpu_base = dev_priv->gtt.gatt_start; 288 int ret; 289 290 /* While holding the gtt_mutex no new blits can be initiated */ 291 mutex_lock(&dev_priv->gtt_mutex); 292 293 /* Wait for any possible usage of the memory to be finished */ 294 ret = gma_blt_wait_idle(dev_priv); 295 if (ret) { 296 DRM_ERROR("Failed to idle the blitter, unpin failed!"); 297 goto out; 298 } 299 300 WARN_ON(!gt->in_gart); 301 302 gt->in_gart--; 303 if (gt->in_gart == 0 && gt->stolen == 0) { 304 psb_mmu_remove_pages(psb_mmu_get_default_pd(dev_priv->mmu), 305 (gpu_base + gt->offset), gt->npage, 0, 0); 306 psb_gtt_remove(dev, gt); 307 psb_gtt_detach_pages(gt); 308 } 309 310 out: 311 mutex_unlock(&dev_priv->gtt_mutex); 312 } 313 314 /* 315 * GTT resource allocator - allocate and manage GTT address space 316 */ 317 318 /** 319 * psb_gtt_alloc_range - allocate GTT address space 320 * @dev: Our DRM device 321 * @len: length (bytes) of address space required 322 * @name: resource name 323 * @backed: resource should be backed by stolen pages 324 * 325 * Ask the kernel core to find us a suitable range of addresses 326 * to use for a GTT mapping. 327 * 328 * Returns a gtt_range structure describing the object, or NULL on 329 * error. On successful return the resource is both allocated and marked 330 * as in use. 331 */ 332 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, 333 const char *name, int backed, u32 align) 334 { 335 struct drm_psb_private *dev_priv = dev->dev_private; 336 struct gtt_range *gt; 337 struct resource *r = dev_priv->gtt_mem; 338 int ret; 339 unsigned long start, end; 340 341 if (backed) { 342 /* The start of the GTT is the stolen pages */ 343 start = r->start; 344 end = r->start + dev_priv->gtt.stolen_size - 1; 345 } else { 346 /* The rest we will use for GEM backed objects */ 347 start = r->start + dev_priv->gtt.stolen_size; 348 end = r->end; 349 } 350 351 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); 352 if (gt == NULL) 353 return NULL; 354 gt->resource.name = name; 355 gt->stolen = backed; 356 gt->in_gart = backed; 357 gt->roll = 0; 358 /* Ensure this is set for non GEM objects */ 359 gt->gem.dev = dev; 360 ret = allocate_resource(dev_priv->gtt_mem, >->resource, 361 len, start, end, align, NULL, NULL); 362 if (ret == 0) { 363 gt->offset = gt->resource.start - r->start; 364 return gt; 365 } 366 kfree(gt); 367 return NULL; 368 } 369 370 /** 371 * psb_gtt_free_range - release GTT address space 372 * @dev: our DRM device 373 * @gt: a mapping created with psb_gtt_alloc_range 374 * 375 * Release a resource that was allocated with psb_gtt_alloc_range. If the 376 * object has been pinned by mmap users we clean this up here currently. 377 */ 378 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) 379 { 380 /* Undo the mmap pin if we are destroying the object */ 381 if (gt->mmapping) { 382 psb_gtt_unpin(gt); 383 gt->mmapping = 0; 384 } 385 WARN_ON(gt->in_gart && !gt->stolen); 386 release_resource(>->resource); 387 kfree(gt); 388 } 389 390 static void psb_gtt_alloc(struct drm_device *dev) 391 { 392 struct drm_psb_private *dev_priv = dev->dev_private; 393 init_rwsem(&dev_priv->gtt.sem); 394 } 395 396 void psb_gtt_takedown(struct drm_device *dev) 397 { 398 struct drm_psb_private *dev_priv = dev->dev_private; 399 400 if (dev_priv->gtt_map) { 401 iounmap(dev_priv->gtt_map); 402 dev_priv->gtt_map = NULL; 403 } 404 if (dev_priv->gtt_initialized) { 405 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 406 dev_priv->gmch_ctrl); 407 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); 408 (void) PSB_RVDC32(PSB_PGETBL_CTL); 409 } 410 if (dev_priv->vram_addr) 411 iounmap(dev_priv->gtt_map); 412 } 413 414 int psb_gtt_init(struct drm_device *dev, int resume) 415 { 416 struct drm_psb_private *dev_priv = dev->dev_private; 417 unsigned gtt_pages; 418 unsigned long stolen_size, vram_stolen_size; 419 unsigned i, num_pages; 420 unsigned pfn_base; 421 struct psb_gtt *pg; 422 423 int ret = 0; 424 uint32_t pte; 425 426 if (!resume) { 427 mutex_init(&dev_priv->gtt_mutex); 428 mutex_init(&dev_priv->mmap_mutex); 429 psb_gtt_alloc(dev); 430 } 431 432 pg = &dev_priv->gtt; 433 434 /* Enable the GTT */ 435 pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); 436 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 437 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); 438 439 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); 440 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); 441 (void) PSB_RVDC32(PSB_PGETBL_CTL); 442 443 /* The root resource we allocate address space from */ 444 dev_priv->gtt_initialized = 1; 445 446 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; 447 448 /* 449 * The video mmu has a hw bug when accessing 0x0D0000000. 450 * Make gatt start at 0x0e000,0000. This doesn't actually 451 * matter for us but may do if the video acceleration ever 452 * gets opened up. 453 */ 454 pg->mmu_gatt_start = 0xE0000000; 455 456 pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE); 457 gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE) 458 >> PAGE_SHIFT; 459 /* CDV doesn't report this. In which case the system has 64 gtt pages */ 460 if (pg->gtt_start == 0 || gtt_pages == 0) { 461 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); 462 gtt_pages = 64; 463 pg->gtt_start = dev_priv->pge_ctl; 464 } 465 466 pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE); 467 pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE) 468 >> PAGE_SHIFT; 469 dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE]; 470 471 if (pg->gatt_pages == 0 || pg->gatt_start == 0) { 472 static struct resource fudge; /* Preferably peppermint */ 473 /* This can occur on CDV systems. Fudge it in this case. 474 We really don't care what imaginary space is being allocated 475 at this point */ 476 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); 477 pg->gatt_start = 0x40000000; 478 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; 479 /* This is a little confusing but in fact the GTT is providing 480 a view from the GPU into memory and not vice versa. As such 481 this is really allocating space that is not the same as the 482 CPU address space on CDV */ 483 fudge.start = 0x40000000; 484 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; 485 fudge.name = "fudge"; 486 fudge.flags = IORESOURCE_MEM; 487 dev_priv->gtt_mem = &fudge; 488 } 489 490 pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base); 491 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base 492 - PAGE_SIZE; 493 494 stolen_size = vram_stolen_size; 495 496 dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", 497 dev_priv->stolen_base, vram_stolen_size / 1024); 498 499 if (resume && (gtt_pages != pg->gtt_pages) && 500 (stolen_size != pg->stolen_size)) { 501 dev_err(dev->dev, "GTT resume error.\n"); 502 ret = -EINVAL; 503 goto out_err; 504 } 505 506 pg->gtt_pages = gtt_pages; 507 pg->stolen_size = stolen_size; 508 dev_priv->vram_stolen_size = vram_stolen_size; 509 510 /* 511 * Map the GTT and the stolen memory area 512 */ 513 if (!resume) 514 dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start, 515 gtt_pages << PAGE_SHIFT); 516 if (!dev_priv->gtt_map) { 517 dev_err(dev->dev, "Failure to map gtt.\n"); 518 ret = -ENOMEM; 519 goto out_err; 520 } 521 522 if (!resume) 523 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, 524 stolen_size); 525 526 if (!dev_priv->vram_addr) { 527 dev_err(dev->dev, "Failure to map stolen base.\n"); 528 ret = -ENOMEM; 529 goto out_err; 530 } 531 532 /* 533 * Insert vram stolen pages into the GTT 534 */ 535 536 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; 537 num_pages = vram_stolen_size >> PAGE_SHIFT; 538 dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", 539 num_pages, pfn_base << PAGE_SHIFT, 0); 540 for (i = 0; i < num_pages; ++i) { 541 pte = psb_gtt_mask_pte(pfn_base + i, PSB_MMU_CACHED_MEMORY); 542 iowrite32(pte, dev_priv->gtt_map + i); 543 } 544 545 /* 546 * Init rest of GTT to the scratch page to avoid accidents or scribbles 547 */ 548 549 pfn_base = page_to_pfn(dev_priv->scratch_page); 550 pte = psb_gtt_mask_pte(pfn_base, PSB_MMU_CACHED_MEMORY); 551 for (; i < gtt_pages; ++i) 552 iowrite32(pte, dev_priv->gtt_map + i); 553 554 (void) ioread32(dev_priv->gtt_map + i - 1); 555 return 0; 556 557 out_err: 558 psb_gtt_takedown(dev); 559 return ret; 560 } 561 562 int psb_gtt_restore(struct drm_device *dev) 563 { 564 struct drm_psb_private *dev_priv = dev->dev_private; 565 struct resource *r = dev_priv->gtt_mem->child; 566 struct gtt_range *range; 567 unsigned int restored = 0, total = 0, size = 0; 568 569 /* On resume, the gtt_mutex is already initialized */ 570 mutex_lock(&dev_priv->gtt_mutex); 571 psb_gtt_init(dev, 1); 572 573 while (r != NULL) { 574 range = container_of(r, struct gtt_range, resource); 575 if (range->pages) { 576 psb_gtt_insert(dev, range, 1); 577 size += range->resource.end - range->resource.start; 578 restored++; 579 } 580 r = r->sibling; 581 total++; 582 } 583 mutex_unlock(&dev_priv->gtt_mutex); 584 DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored, 585 total, (size / 1024)); 586 587 return 0; 588 } 589