1 /* 2 * Copyright (c) 2007, Intel Corporation. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 17 * 18 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> 19 * Alan Cox <alan@linux.intel.com> 20 */ 21 22 #include <drm/drmP.h> 23 #include <linux/shmem_fs.h> 24 #include "psb_drv.h" 25 26 27 /* 28 * GTT resource allocator - manage page mappings in GTT space 29 */ 30 31 /** 32 * psb_gtt_mask_pte - generate GTT pte entry 33 * @pfn: page number to encode 34 * @type: type of memory in the GTT 35 * 36 * Set the GTT entry for the appropriate memory type. 37 */ 38 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) 39 { 40 uint32_t mask = PSB_PTE_VALID; 41 42 /* Ensure we explode rather than put an invalid low mapping of 43 a high mapping page into the gtt */ 44 BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); 45 46 if (type & PSB_MMU_CACHED_MEMORY) 47 mask |= PSB_PTE_CACHED; 48 if (type & PSB_MMU_RO_MEMORY) 49 mask |= PSB_PTE_RO; 50 if (type & PSB_MMU_WO_MEMORY) 51 mask |= PSB_PTE_WO; 52 53 return (pfn << PAGE_SHIFT) | mask; 54 } 55 56 /** 57 * psb_gtt_entry - find the GTT entries for a gtt_range 58 * @dev: our DRM device 59 * @r: our GTT range 60 * 61 * Given a gtt_range object return the GTT offset of the page table 62 * entries for this gtt_range 63 */ 64 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) 65 { 66 struct drm_psb_private *dev_priv = dev->dev_private; 67 unsigned long offset; 68 69 offset = r->resource.start - dev_priv->gtt_mem->start; 70 71 return dev_priv->gtt_map + (offset >> PAGE_SHIFT); 72 } 73 74 /** 75 * psb_gtt_insert - put an object into the GTT 76 * @dev: our DRM device 77 * @r: our GTT range 78 * 79 * Take our preallocated GTT range and insert the GEM object into 80 * the GTT. This is protected via the gtt mutex which the caller 81 * must hold. 82 */ 83 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r) 84 { 85 u32 __iomem *gtt_slot; 86 u32 pte; 87 struct page **pages; 88 int i; 89 90 if (r->pages == NULL) { 91 WARN_ON(1); 92 return -EINVAL; 93 } 94 95 WARN_ON(r->stolen); /* refcount these maybe ? */ 96 97 gtt_slot = psb_gtt_entry(dev, r); 98 pages = r->pages; 99 100 /* Make sure changes are visible to the GPU */ 101 set_pages_array_wc(pages, r->npage); 102 103 /* Write our page entries into the GTT itself */ 104 for (i = r->roll; i < r->npage; i++) { 105 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 106 iowrite32(pte, gtt_slot++); 107 } 108 for (i = 0; i < r->roll; i++) { 109 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 110 iowrite32(pte, gtt_slot++); 111 } 112 /* Make sure all the entries are set before we return */ 113 ioread32(gtt_slot - 1); 114 115 return 0; 116 } 117 118 /** 119 * psb_gtt_remove - remove an object from the GTT 120 * @dev: our DRM device 121 * @r: our GTT range 122 * 123 * Remove a preallocated GTT range from the GTT. Overwrite all the 124 * page table entries with the dummy page. This is protected via the gtt 125 * mutex which the caller must hold. 126 */ 127 static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) 128 { 129 struct drm_psb_private *dev_priv = dev->dev_private; 130 u32 __iomem *gtt_slot; 131 u32 pte; 132 int i; 133 134 WARN_ON(r->stolen); 135 136 gtt_slot = psb_gtt_entry(dev, r); 137 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 0); 138 139 for (i = 0; i < r->npage; i++) 140 iowrite32(pte, gtt_slot++); 141 ioread32(gtt_slot - 1); 142 set_pages_array_wb(r->pages, r->npage); 143 } 144 145 /** 146 * psb_gtt_roll - set scrolling position 147 * @dev: our DRM device 148 * @r: the gtt mapping we are using 149 * @roll: roll offset 150 * 151 * Roll an existing pinned mapping by moving the pages through the GTT. 152 * This allows us to implement hardware scrolling on the consoles without 153 * a 2D engine 154 */ 155 void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll) 156 { 157 u32 __iomem *gtt_slot; 158 u32 pte; 159 int i; 160 161 if (roll >= r->npage) { 162 WARN_ON(1); 163 return; 164 } 165 166 r->roll = roll; 167 168 /* Not currently in the GTT - no worry we will write the mapping at 169 the right position when it gets pinned */ 170 if (!r->stolen && !r->in_gart) 171 return; 172 173 gtt_slot = psb_gtt_entry(dev, r); 174 175 for (i = r->roll; i < r->npage; i++) { 176 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 177 iowrite32(pte, gtt_slot++); 178 } 179 for (i = 0; i < r->roll; i++) { 180 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 181 iowrite32(pte, gtt_slot++); 182 } 183 ioread32(gtt_slot - 1); 184 } 185 186 /** 187 * psb_gtt_attach_pages - attach and pin GEM pages 188 * @gt: the gtt range 189 * 190 * Pin and build an in kernel list of the pages that back our GEM object. 191 * While we hold this the pages cannot be swapped out. This is protected 192 * via the gtt mutex which the caller must hold. 193 */ 194 static int psb_gtt_attach_pages(struct gtt_range *gt) 195 { 196 struct inode *inode; 197 struct address_space *mapping; 198 int i; 199 struct page *p; 200 int pages = gt->gem.size / PAGE_SIZE; 201 202 WARN_ON(gt->pages); 203 204 /* This is the shared memory object that backs the GEM resource */ 205 inode = gt->gem.filp->f_path.dentry->d_inode; 206 mapping = inode->i_mapping; 207 208 gt->pages = kmalloc(pages * sizeof(struct page *), GFP_KERNEL); 209 if (gt->pages == NULL) 210 return -ENOMEM; 211 gt->npage = pages; 212 213 for (i = 0; i < pages; i++) { 214 p = shmem_read_mapping_page(mapping, i); 215 if (IS_ERR(p)) 216 goto err; 217 gt->pages[i] = p; 218 } 219 return 0; 220 221 err: 222 while (i--) 223 page_cache_release(gt->pages[i]); 224 kfree(gt->pages); 225 gt->pages = NULL; 226 return PTR_ERR(p); 227 } 228 229 /** 230 * psb_gtt_detach_pages - attach and pin GEM pages 231 * @gt: the gtt range 232 * 233 * Undo the effect of psb_gtt_attach_pages. At this point the pages 234 * must have been removed from the GTT as they could now be paged out 235 * and move bus address. This is protected via the gtt mutex which the 236 * caller must hold. 237 */ 238 static void psb_gtt_detach_pages(struct gtt_range *gt) 239 { 240 int i; 241 for (i = 0; i < gt->npage; i++) { 242 /* FIXME: do we need to force dirty */ 243 set_page_dirty(gt->pages[i]); 244 page_cache_release(gt->pages[i]); 245 } 246 kfree(gt->pages); 247 gt->pages = NULL; 248 } 249 250 /** 251 * psb_gtt_pin - pin pages into the GTT 252 * @gt: range to pin 253 * 254 * Pin a set of pages into the GTT. The pins are refcounted so that 255 * multiple pins need multiple unpins to undo. 256 * 257 * Non GEM backed objects treat this as a no-op as they are always GTT 258 * backed objects. 259 */ 260 int psb_gtt_pin(struct gtt_range *gt) 261 { 262 int ret = 0; 263 struct drm_device *dev = gt->gem.dev; 264 struct drm_psb_private *dev_priv = dev->dev_private; 265 266 mutex_lock(&dev_priv->gtt_mutex); 267 268 if (gt->in_gart == 0 && gt->stolen == 0) { 269 ret = psb_gtt_attach_pages(gt); 270 if (ret < 0) 271 goto out; 272 ret = psb_gtt_insert(dev, gt); 273 if (ret < 0) { 274 psb_gtt_detach_pages(gt); 275 goto out; 276 } 277 } 278 gt->in_gart++; 279 out: 280 mutex_unlock(&dev_priv->gtt_mutex); 281 return ret; 282 } 283 284 /** 285 * psb_gtt_unpin - Drop a GTT pin requirement 286 * @gt: range to pin 287 * 288 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object 289 * will be removed from the GTT which will also drop the page references 290 * and allow the VM to clean up or page stuff. 291 * 292 * Non GEM backed objects treat this as a no-op as they are always GTT 293 * backed objects. 294 */ 295 void psb_gtt_unpin(struct gtt_range *gt) 296 { 297 struct drm_device *dev = gt->gem.dev; 298 struct drm_psb_private *dev_priv = dev->dev_private; 299 300 mutex_lock(&dev_priv->gtt_mutex); 301 302 WARN_ON(!gt->in_gart); 303 304 gt->in_gart--; 305 if (gt->in_gart == 0 && gt->stolen == 0) { 306 psb_gtt_remove(dev, gt); 307 psb_gtt_detach_pages(gt); 308 } 309 mutex_unlock(&dev_priv->gtt_mutex); 310 } 311 312 /* 313 * GTT resource allocator - allocate and manage GTT address space 314 */ 315 316 /** 317 * psb_gtt_alloc_range - allocate GTT address space 318 * @dev: Our DRM device 319 * @len: length (bytes) of address space required 320 * @name: resource name 321 * @backed: resource should be backed by stolen pages 322 * 323 * Ask the kernel core to find us a suitable range of addresses 324 * to use for a GTT mapping. 325 * 326 * Returns a gtt_range structure describing the object, or NULL on 327 * error. On successful return the resource is both allocated and marked 328 * as in use. 329 */ 330 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, 331 const char *name, int backed) 332 { 333 struct drm_psb_private *dev_priv = dev->dev_private; 334 struct gtt_range *gt; 335 struct resource *r = dev_priv->gtt_mem; 336 int ret; 337 unsigned long start, end; 338 339 if (backed) { 340 /* The start of the GTT is the stolen pages */ 341 start = r->start; 342 end = r->start + dev_priv->gtt.stolen_size - 1; 343 } else { 344 /* The rest we will use for GEM backed objects */ 345 start = r->start + dev_priv->gtt.stolen_size; 346 end = r->end; 347 } 348 349 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); 350 if (gt == NULL) 351 return NULL; 352 gt->resource.name = name; 353 gt->stolen = backed; 354 gt->in_gart = backed; 355 gt->roll = 0; 356 /* Ensure this is set for non GEM objects */ 357 gt->gem.dev = dev; 358 ret = allocate_resource(dev_priv->gtt_mem, >->resource, 359 len, start, end, PAGE_SIZE, NULL, NULL); 360 if (ret == 0) { 361 gt->offset = gt->resource.start - r->start; 362 return gt; 363 } 364 kfree(gt); 365 return NULL; 366 } 367 368 /** 369 * psb_gtt_free_range - release GTT address space 370 * @dev: our DRM device 371 * @gt: a mapping created with psb_gtt_alloc_range 372 * 373 * Release a resource that was allocated with psb_gtt_alloc_range. If the 374 * object has been pinned by mmap users we clean this up here currently. 375 */ 376 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) 377 { 378 /* Undo the mmap pin if we are destroying the object */ 379 if (gt->mmapping) { 380 psb_gtt_unpin(gt); 381 gt->mmapping = 0; 382 } 383 WARN_ON(gt->in_gart && !gt->stolen); 384 release_resource(>->resource); 385 kfree(gt); 386 } 387 388 static void psb_gtt_alloc(struct drm_device *dev) 389 { 390 struct drm_psb_private *dev_priv = dev->dev_private; 391 init_rwsem(&dev_priv->gtt.sem); 392 } 393 394 void psb_gtt_takedown(struct drm_device *dev) 395 { 396 struct drm_psb_private *dev_priv = dev->dev_private; 397 398 if (dev_priv->gtt_map) { 399 iounmap(dev_priv->gtt_map); 400 dev_priv->gtt_map = NULL; 401 } 402 if (dev_priv->gtt_initialized) { 403 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 404 dev_priv->gmch_ctrl); 405 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); 406 (void) PSB_RVDC32(PSB_PGETBL_CTL); 407 } 408 if (dev_priv->vram_addr) 409 iounmap(dev_priv->gtt_map); 410 } 411 412 int psb_gtt_init(struct drm_device *dev, int resume) 413 { 414 struct drm_psb_private *dev_priv = dev->dev_private; 415 unsigned gtt_pages; 416 unsigned long stolen_size, vram_stolen_size; 417 unsigned i, num_pages; 418 unsigned pfn_base; 419 struct psb_gtt *pg; 420 421 int ret = 0; 422 uint32_t pte; 423 424 mutex_init(&dev_priv->gtt_mutex); 425 426 psb_gtt_alloc(dev); 427 pg = &dev_priv->gtt; 428 429 /* Enable the GTT */ 430 pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); 431 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 432 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); 433 434 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); 435 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); 436 (void) PSB_RVDC32(PSB_PGETBL_CTL); 437 438 /* The root resource we allocate address space from */ 439 dev_priv->gtt_initialized = 1; 440 441 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; 442 443 /* 444 * The video mmu has a hw bug when accessing 0x0D0000000. 445 * Make gatt start at 0x0e000,0000. This doesn't actually 446 * matter for us but may do if the video acceleration ever 447 * gets opened up. 448 */ 449 pg->mmu_gatt_start = 0xE0000000; 450 451 pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE); 452 gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE) 453 >> PAGE_SHIFT; 454 /* CDV doesn't report this. In which case the system has 64 gtt pages */ 455 if (pg->gtt_start == 0 || gtt_pages == 0) { 456 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); 457 gtt_pages = 64; 458 pg->gtt_start = dev_priv->pge_ctl; 459 } 460 461 pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE); 462 pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE) 463 >> PAGE_SHIFT; 464 dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE]; 465 466 if (pg->gatt_pages == 0 || pg->gatt_start == 0) { 467 static struct resource fudge; /* Preferably peppermint */ 468 /* This can occur on CDV systems. Fudge it in this case. 469 We really don't care what imaginary space is being allocated 470 at this point */ 471 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); 472 pg->gatt_start = 0x40000000; 473 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; 474 /* This is a little confusing but in fact the GTT is providing 475 a view from the GPU into memory and not vice versa. As such 476 this is really allocating space that is not the same as the 477 CPU address space on CDV */ 478 fudge.start = 0x40000000; 479 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; 480 fudge.name = "fudge"; 481 fudge.flags = IORESOURCE_MEM; 482 dev_priv->gtt_mem = &fudge; 483 } 484 485 pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base); 486 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base 487 - PAGE_SIZE; 488 489 stolen_size = vram_stolen_size; 490 491 dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", 492 dev_priv->stolen_base, vram_stolen_size / 1024); 493 494 if (resume && (gtt_pages != pg->gtt_pages) && 495 (stolen_size != pg->stolen_size)) { 496 dev_err(dev->dev, "GTT resume error.\n"); 497 ret = -EINVAL; 498 goto out_err; 499 } 500 501 pg->gtt_pages = gtt_pages; 502 pg->stolen_size = stolen_size; 503 dev_priv->vram_stolen_size = vram_stolen_size; 504 505 /* 506 * Map the GTT and the stolen memory area 507 */ 508 dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start, 509 gtt_pages << PAGE_SHIFT); 510 if (!dev_priv->gtt_map) { 511 dev_err(dev->dev, "Failure to map gtt.\n"); 512 ret = -ENOMEM; 513 goto out_err; 514 } 515 516 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, stolen_size); 517 if (!dev_priv->vram_addr) { 518 dev_err(dev->dev, "Failure to map stolen base.\n"); 519 ret = -ENOMEM; 520 goto out_err; 521 } 522 523 /* 524 * Insert vram stolen pages into the GTT 525 */ 526 527 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; 528 num_pages = vram_stolen_size >> PAGE_SHIFT; 529 dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", 530 num_pages, pfn_base << PAGE_SHIFT, 0); 531 for (i = 0; i < num_pages; ++i) { 532 pte = psb_gtt_mask_pte(pfn_base + i, 0); 533 iowrite32(pte, dev_priv->gtt_map + i); 534 } 535 536 /* 537 * Init rest of GTT to the scratch page to avoid accidents or scribbles 538 */ 539 540 pfn_base = page_to_pfn(dev_priv->scratch_page); 541 pte = psb_gtt_mask_pte(pfn_base, 0); 542 for (; i < gtt_pages; ++i) 543 iowrite32(pte, dev_priv->gtt_map + i); 544 545 (void) ioread32(dev_priv->gtt_map + i - 1); 546 return 0; 547 548 out_err: 549 psb_gtt_takedown(dev); 550 return ret; 551 } 552