1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007, Intel Corporation. 4 * All Rights Reserved. 5 * 6 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> 7 * Alan Cox <alan@linux.intel.com> 8 */ 9 10 #include <linux/shmem_fs.h> 11 12 #include <asm/set_memory.h> 13 14 #include "blitter.h" 15 #include "psb_drv.h" 16 17 18 /* 19 * GTT resource allocator - manage page mappings in GTT space 20 */ 21 22 /** 23 * psb_gtt_mask_pte - generate GTT pte entry 24 * @pfn: page number to encode 25 * @type: type of memory in the GTT 26 * 27 * Set the GTT entry for the appropriate memory type. 28 */ 29 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) 30 { 31 uint32_t mask = PSB_PTE_VALID; 32 33 /* Ensure we explode rather than put an invalid low mapping of 34 a high mapping page into the gtt */ 35 BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); 36 37 if (type & PSB_MMU_CACHED_MEMORY) 38 mask |= PSB_PTE_CACHED; 39 if (type & PSB_MMU_RO_MEMORY) 40 mask |= PSB_PTE_RO; 41 if (type & PSB_MMU_WO_MEMORY) 42 mask |= PSB_PTE_WO; 43 44 return (pfn << PAGE_SHIFT) | mask; 45 } 46 47 /** 48 * psb_gtt_entry - find the GTT entries for a gtt_range 49 * @dev: our DRM device 50 * @r: our GTT range 51 * 52 * Given a gtt_range object return the GTT offset of the page table 53 * entries for this gtt_range 54 */ 55 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) 56 { 57 struct drm_psb_private *dev_priv = dev->dev_private; 58 unsigned long offset; 59 60 offset = r->resource.start - dev_priv->gtt_mem->start; 61 62 return dev_priv->gtt_map + (offset >> PAGE_SHIFT); 63 } 64 65 /** 66 * psb_gtt_insert - put an object into the GTT 67 * @dev: our DRM device 68 * @r: our GTT range 69 * @resume: on resume 70 * 71 * Take our preallocated GTT range and insert the GEM object into 72 * the GTT. This is protected via the gtt mutex which the caller 73 * must hold. 74 */ 75 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r, 76 int resume) 77 { 78 u32 __iomem *gtt_slot; 79 u32 pte; 80 struct page **pages; 81 int i; 82 83 if (r->pages == NULL) { 84 WARN_ON(1); 85 return -EINVAL; 86 } 87 88 WARN_ON(r->stolen); /* refcount these maybe ? */ 89 90 gtt_slot = psb_gtt_entry(dev, r); 91 pages = r->pages; 92 93 if (!resume) { 94 /* Make sure changes are visible to the GPU */ 95 set_pages_array_wc(pages, r->npage); 96 } 97 98 /* Write our page entries into the GTT itself */ 99 for (i = 0; i < r->npage; i++) { 100 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 101 PSB_MMU_CACHED_MEMORY); 102 iowrite32(pte, gtt_slot++); 103 } 104 105 /* Make sure all the entries are set before we return */ 106 ioread32(gtt_slot - 1); 107 108 return 0; 109 } 110 111 /** 112 * psb_gtt_remove - remove an object from the GTT 113 * @dev: our DRM device 114 * @r: our GTT range 115 * 116 * Remove a preallocated GTT range from the GTT. Overwrite all the 117 * page table entries with the dummy page. This is protected via the gtt 118 * mutex which the caller must hold. 119 */ 120 static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) 121 { 122 struct drm_psb_private *dev_priv = dev->dev_private; 123 u32 __iomem *gtt_slot; 124 u32 pte; 125 int i; 126 127 WARN_ON(r->stolen); 128 129 gtt_slot = psb_gtt_entry(dev, r); 130 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 131 PSB_MMU_CACHED_MEMORY); 132 133 for (i = 0; i < r->npage; i++) 134 iowrite32(pte, gtt_slot++); 135 ioread32(gtt_slot - 1); 136 set_pages_array_wb(r->pages, r->npage); 137 } 138 139 /** 140 * psb_gtt_attach_pages - attach and pin GEM pages 141 * @gt: the gtt range 142 * 143 * Pin and build an in kernel list of the pages that back our GEM object. 144 * While we hold this the pages cannot be swapped out. This is protected 145 * via the gtt mutex which the caller must hold. 146 */ 147 static int psb_gtt_attach_pages(struct gtt_range *gt) 148 { 149 struct page **pages; 150 151 WARN_ON(gt->pages); 152 153 pages = drm_gem_get_pages(>->gem); 154 if (IS_ERR(pages)) 155 return PTR_ERR(pages); 156 157 gt->npage = gt->gem.size / PAGE_SIZE; 158 gt->pages = pages; 159 160 return 0; 161 } 162 163 /** 164 * psb_gtt_detach_pages - attach and pin GEM pages 165 * @gt: the gtt range 166 * 167 * Undo the effect of psb_gtt_attach_pages. At this point the pages 168 * must have been removed from the GTT as they could now be paged out 169 * and move bus address. This is protected via the gtt mutex which the 170 * caller must hold. 171 */ 172 static void psb_gtt_detach_pages(struct gtt_range *gt) 173 { 174 drm_gem_put_pages(>->gem, gt->pages, true, false); 175 gt->pages = NULL; 176 } 177 178 /** 179 * psb_gtt_pin - pin pages into the GTT 180 * @gt: range to pin 181 * 182 * Pin a set of pages into the GTT. The pins are refcounted so that 183 * multiple pins need multiple unpins to undo. 184 * 185 * Non GEM backed objects treat this as a no-op as they are always GTT 186 * backed objects. 187 */ 188 int psb_gtt_pin(struct gtt_range *gt) 189 { 190 int ret = 0; 191 struct drm_device *dev = gt->gem.dev; 192 struct drm_psb_private *dev_priv = dev->dev_private; 193 u32 gpu_base = dev_priv->gtt.gatt_start; 194 195 mutex_lock(&dev_priv->gtt_mutex); 196 197 if (gt->in_gart == 0 && gt->stolen == 0) { 198 ret = psb_gtt_attach_pages(gt); 199 if (ret < 0) 200 goto out; 201 ret = psb_gtt_insert(dev, gt, 0); 202 if (ret < 0) { 203 psb_gtt_detach_pages(gt); 204 goto out; 205 } 206 psb_mmu_insert_pages(psb_mmu_get_default_pd(dev_priv->mmu), 207 gt->pages, (gpu_base + gt->offset), 208 gt->npage, 0, 0, PSB_MMU_CACHED_MEMORY); 209 } 210 gt->in_gart++; 211 out: 212 mutex_unlock(&dev_priv->gtt_mutex); 213 return ret; 214 } 215 216 /** 217 * psb_gtt_unpin - Drop a GTT pin requirement 218 * @gt: range to pin 219 * 220 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object 221 * will be removed from the GTT which will also drop the page references 222 * and allow the VM to clean up or page stuff. 223 * 224 * Non GEM backed objects treat this as a no-op as they are always GTT 225 * backed objects. 226 */ 227 void psb_gtt_unpin(struct gtt_range *gt) 228 { 229 struct drm_device *dev = gt->gem.dev; 230 struct drm_psb_private *dev_priv = dev->dev_private; 231 u32 gpu_base = dev_priv->gtt.gatt_start; 232 int ret; 233 234 /* While holding the gtt_mutex no new blits can be initiated */ 235 mutex_lock(&dev_priv->gtt_mutex); 236 237 /* Wait for any possible usage of the memory to be finished */ 238 ret = gma_blt_wait_idle(dev_priv); 239 if (ret) { 240 DRM_ERROR("Failed to idle the blitter, unpin failed!"); 241 goto out; 242 } 243 244 WARN_ON(!gt->in_gart); 245 246 gt->in_gart--; 247 if (gt->in_gart == 0 && gt->stolen == 0) { 248 psb_mmu_remove_pages(psb_mmu_get_default_pd(dev_priv->mmu), 249 (gpu_base + gt->offset), gt->npage, 0, 0); 250 psb_gtt_remove(dev, gt); 251 psb_gtt_detach_pages(gt); 252 } 253 254 out: 255 mutex_unlock(&dev_priv->gtt_mutex); 256 } 257 258 /* 259 * GTT resource allocator - allocate and manage GTT address space 260 */ 261 262 /** 263 * psb_gtt_alloc_range - allocate GTT address space 264 * @dev: Our DRM device 265 * @len: length (bytes) of address space required 266 * @name: resource name 267 * @backed: resource should be backed by stolen pages 268 * @align: requested alignment 269 * 270 * Ask the kernel core to find us a suitable range of addresses 271 * to use for a GTT mapping. 272 * 273 * Returns a gtt_range structure describing the object, or NULL on 274 * error. On successful return the resource is both allocated and marked 275 * as in use. 276 */ 277 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, 278 const char *name, int backed, u32 align) 279 { 280 struct drm_psb_private *dev_priv = dev->dev_private; 281 struct gtt_range *gt; 282 struct resource *r = dev_priv->gtt_mem; 283 int ret; 284 unsigned long start, end; 285 286 if (backed) { 287 /* The start of the GTT is the stolen pages */ 288 start = r->start; 289 end = r->start + dev_priv->gtt.stolen_size - 1; 290 } else { 291 /* The rest we will use for GEM backed objects */ 292 start = r->start + dev_priv->gtt.stolen_size; 293 end = r->end; 294 } 295 296 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); 297 if (gt == NULL) 298 return NULL; 299 gt->resource.name = name; 300 gt->stolen = backed; 301 gt->in_gart = backed; 302 /* Ensure this is set for non GEM objects */ 303 gt->gem.dev = dev; 304 ret = allocate_resource(dev_priv->gtt_mem, >->resource, 305 len, start, end, align, NULL, NULL); 306 if (ret == 0) { 307 gt->offset = gt->resource.start - r->start; 308 return gt; 309 } 310 kfree(gt); 311 return NULL; 312 } 313 314 /** 315 * psb_gtt_free_range - release GTT address space 316 * @dev: our DRM device 317 * @gt: a mapping created with psb_gtt_alloc_range 318 * 319 * Release a resource that was allocated with psb_gtt_alloc_range. If the 320 * object has been pinned by mmap users we clean this up here currently. 321 */ 322 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) 323 { 324 /* Undo the mmap pin if we are destroying the object */ 325 if (gt->mmapping) { 326 psb_gtt_unpin(gt); 327 gt->mmapping = 0; 328 } 329 WARN_ON(gt->in_gart && !gt->stolen); 330 release_resource(>->resource); 331 kfree(gt); 332 } 333 334 static void psb_gtt_alloc(struct drm_device *dev) 335 { 336 struct drm_psb_private *dev_priv = dev->dev_private; 337 init_rwsem(&dev_priv->gtt.sem); 338 } 339 340 void psb_gtt_takedown(struct drm_device *dev) 341 { 342 struct drm_psb_private *dev_priv = dev->dev_private; 343 struct pci_dev *pdev = to_pci_dev(dev->dev); 344 345 if (dev_priv->gtt_map) { 346 iounmap(dev_priv->gtt_map); 347 dev_priv->gtt_map = NULL; 348 } 349 if (dev_priv->gtt_initialized) { 350 pci_write_config_word(pdev, PSB_GMCH_CTRL, 351 dev_priv->gmch_ctrl); 352 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); 353 (void) PSB_RVDC32(PSB_PGETBL_CTL); 354 } 355 if (dev_priv->vram_addr) 356 iounmap(dev_priv->gtt_map); 357 } 358 359 int psb_gtt_init(struct drm_device *dev, int resume) 360 { 361 struct drm_psb_private *dev_priv = dev->dev_private; 362 struct pci_dev *pdev = to_pci_dev(dev->dev); 363 unsigned gtt_pages; 364 unsigned long stolen_size, vram_stolen_size; 365 unsigned i, num_pages; 366 unsigned pfn_base; 367 struct psb_gtt *pg; 368 369 int ret = 0; 370 uint32_t pte; 371 372 if (!resume) { 373 mutex_init(&dev_priv->gtt_mutex); 374 mutex_init(&dev_priv->mmap_mutex); 375 psb_gtt_alloc(dev); 376 } 377 378 pg = &dev_priv->gtt; 379 380 /* Enable the GTT */ 381 pci_read_config_word(pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); 382 pci_write_config_word(pdev, PSB_GMCH_CTRL, 383 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); 384 385 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); 386 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); 387 (void) PSB_RVDC32(PSB_PGETBL_CTL); 388 389 /* The root resource we allocate address space from */ 390 dev_priv->gtt_initialized = 1; 391 392 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; 393 394 /* 395 * The video mmu has a hw bug when accessing 0x0D0000000. 396 * Make gatt start at 0x0e000,0000. This doesn't actually 397 * matter for us but may do if the video acceleration ever 398 * gets opened up. 399 */ 400 pg->mmu_gatt_start = 0xE0000000; 401 402 pg->gtt_start = pci_resource_start(pdev, PSB_GTT_RESOURCE); 403 gtt_pages = pci_resource_len(pdev, PSB_GTT_RESOURCE) 404 >> PAGE_SHIFT; 405 /* CDV doesn't report this. In which case the system has 64 gtt pages */ 406 if (pg->gtt_start == 0 || gtt_pages == 0) { 407 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); 408 gtt_pages = 64; 409 pg->gtt_start = dev_priv->pge_ctl; 410 } 411 412 pg->gatt_start = pci_resource_start(pdev, PSB_GATT_RESOURCE); 413 pg->gatt_pages = pci_resource_len(pdev, PSB_GATT_RESOURCE) 414 >> PAGE_SHIFT; 415 dev_priv->gtt_mem = &pdev->resource[PSB_GATT_RESOURCE]; 416 417 if (pg->gatt_pages == 0 || pg->gatt_start == 0) { 418 static struct resource fudge; /* Preferably peppermint */ 419 /* This can occur on CDV systems. Fudge it in this case. 420 We really don't care what imaginary space is being allocated 421 at this point */ 422 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); 423 pg->gatt_start = 0x40000000; 424 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; 425 /* This is a little confusing but in fact the GTT is providing 426 a view from the GPU into memory and not vice versa. As such 427 this is really allocating space that is not the same as the 428 CPU address space on CDV */ 429 fudge.start = 0x40000000; 430 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; 431 fudge.name = "fudge"; 432 fudge.flags = IORESOURCE_MEM; 433 dev_priv->gtt_mem = &fudge; 434 } 435 436 pci_read_config_dword(pdev, PSB_BSM, &dev_priv->stolen_base); 437 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base 438 - PAGE_SIZE; 439 440 stolen_size = vram_stolen_size; 441 442 dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", 443 dev_priv->stolen_base, vram_stolen_size / 1024); 444 445 if (resume && (gtt_pages != pg->gtt_pages) && 446 (stolen_size != pg->stolen_size)) { 447 dev_err(dev->dev, "GTT resume error.\n"); 448 ret = -EINVAL; 449 goto out_err; 450 } 451 452 pg->gtt_pages = gtt_pages; 453 pg->stolen_size = stolen_size; 454 dev_priv->vram_stolen_size = vram_stolen_size; 455 456 /* 457 * Map the GTT and the stolen memory area 458 */ 459 if (!resume) 460 dev_priv->gtt_map = ioremap(pg->gtt_phys_start, 461 gtt_pages << PAGE_SHIFT); 462 if (!dev_priv->gtt_map) { 463 dev_err(dev->dev, "Failure to map gtt.\n"); 464 ret = -ENOMEM; 465 goto out_err; 466 } 467 468 if (!resume) 469 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, 470 stolen_size); 471 472 if (!dev_priv->vram_addr) { 473 dev_err(dev->dev, "Failure to map stolen base.\n"); 474 ret = -ENOMEM; 475 goto out_err; 476 } 477 478 /* 479 * Insert vram stolen pages into the GTT 480 */ 481 482 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; 483 num_pages = vram_stolen_size >> PAGE_SHIFT; 484 dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", 485 num_pages, pfn_base << PAGE_SHIFT, 0); 486 for (i = 0; i < num_pages; ++i) { 487 pte = psb_gtt_mask_pte(pfn_base + i, PSB_MMU_CACHED_MEMORY); 488 iowrite32(pte, dev_priv->gtt_map + i); 489 } 490 491 /* 492 * Init rest of GTT to the scratch page to avoid accidents or scribbles 493 */ 494 495 pfn_base = page_to_pfn(dev_priv->scratch_page); 496 pte = psb_gtt_mask_pte(pfn_base, PSB_MMU_CACHED_MEMORY); 497 for (; i < gtt_pages; ++i) 498 iowrite32(pte, dev_priv->gtt_map + i); 499 500 (void) ioread32(dev_priv->gtt_map + i - 1); 501 return 0; 502 503 out_err: 504 psb_gtt_takedown(dev); 505 return ret; 506 } 507 508 int psb_gtt_restore(struct drm_device *dev) 509 { 510 struct drm_psb_private *dev_priv = dev->dev_private; 511 struct resource *r = dev_priv->gtt_mem->child; 512 struct gtt_range *range; 513 unsigned int restored = 0, total = 0, size = 0; 514 515 /* On resume, the gtt_mutex is already initialized */ 516 mutex_lock(&dev_priv->gtt_mutex); 517 psb_gtt_init(dev, 1); 518 519 while (r != NULL) { 520 range = container_of(r, struct gtt_range, resource); 521 if (range->pages) { 522 psb_gtt_insert(dev, range, 1); 523 size += range->resource.end - range->resource.start; 524 restored++; 525 } 526 r = r->sibling; 527 total++; 528 } 529 mutex_unlock(&dev_priv->gtt_mutex); 530 DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored, 531 total, (size / 1024)); 532 533 return 0; 534 } 535