1 /* 2 * Copyright (c) 2007, Intel Corporation. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 17 * 18 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com> 19 * Alan Cox <alan@linux.intel.com> 20 */ 21 22 #include <drm/drmP.h> 23 #include <linux/shmem_fs.h> 24 #include "psb_drv.h" 25 26 27 /* 28 * GTT resource allocator - manage page mappings in GTT space 29 */ 30 31 /** 32 * psb_gtt_mask_pte - generate GTT pte entry 33 * @pfn: page number to encode 34 * @type: type of memory in the GTT 35 * 36 * Set the GTT entry for the appropriate memory type. 37 */ 38 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) 39 { 40 uint32_t mask = PSB_PTE_VALID; 41 42 /* Ensure we explode rather than put an invalid low mapping of 43 a high mapping page into the gtt */ 44 BUG_ON(pfn & ~(0xFFFFFFFF >> PAGE_SHIFT)); 45 46 if (type & PSB_MMU_CACHED_MEMORY) 47 mask |= PSB_PTE_CACHED; 48 if (type & PSB_MMU_RO_MEMORY) 49 mask |= PSB_PTE_RO; 50 if (type & PSB_MMU_WO_MEMORY) 51 mask |= PSB_PTE_WO; 52 53 return (pfn << PAGE_SHIFT) | mask; 54 } 55 56 /** 57 * psb_gtt_entry - find the GTT entries for a gtt_range 58 * @dev: our DRM device 59 * @r: our GTT range 60 * 61 * Given a gtt_range object return the GTT offset of the page table 62 * entries for this gtt_range 63 */ 64 static u32 __iomem *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) 65 { 66 struct drm_psb_private *dev_priv = dev->dev_private; 67 unsigned long offset; 68 69 offset = r->resource.start - dev_priv->gtt_mem->start; 70 71 return dev_priv->gtt_map + (offset >> PAGE_SHIFT); 72 } 73 74 /** 75 * psb_gtt_insert - put an object into the GTT 76 * @dev: our DRM device 77 * @r: our GTT range 78 * 79 * Take our preallocated GTT range and insert the GEM object into 80 * the GTT. This is protected via the gtt mutex which the caller 81 * must hold. 82 */ 83 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r, 84 int resume) 85 { 86 u32 __iomem *gtt_slot; 87 u32 pte; 88 struct page **pages; 89 int i; 90 91 if (r->pages == NULL) { 92 WARN_ON(1); 93 return -EINVAL; 94 } 95 96 WARN_ON(r->stolen); /* refcount these maybe ? */ 97 98 gtt_slot = psb_gtt_entry(dev, r); 99 pages = r->pages; 100 101 if (!resume) { 102 /* Make sure changes are visible to the GPU */ 103 set_pages_array_wc(pages, r->npage); 104 } 105 106 /* Write our page entries into the GTT itself */ 107 for (i = r->roll; i < r->npage; i++) { 108 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 109 iowrite32(pte, gtt_slot++); 110 } 111 for (i = 0; i < r->roll; i++) { 112 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 113 iowrite32(pte, gtt_slot++); 114 } 115 /* Make sure all the entries are set before we return */ 116 ioread32(gtt_slot - 1); 117 118 return 0; 119 } 120 121 /** 122 * psb_gtt_remove - remove an object from the GTT 123 * @dev: our DRM device 124 * @r: our GTT range 125 * 126 * Remove a preallocated GTT range from the GTT. Overwrite all the 127 * page table entries with the dummy page. This is protected via the gtt 128 * mutex which the caller must hold. 129 */ 130 static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) 131 { 132 struct drm_psb_private *dev_priv = dev->dev_private; 133 u32 __iomem *gtt_slot; 134 u32 pte; 135 int i; 136 137 WARN_ON(r->stolen); 138 139 gtt_slot = psb_gtt_entry(dev, r); 140 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 0); 141 142 for (i = 0; i < r->npage; i++) 143 iowrite32(pte, gtt_slot++); 144 ioread32(gtt_slot - 1); 145 set_pages_array_wb(r->pages, r->npage); 146 } 147 148 /** 149 * psb_gtt_roll - set scrolling position 150 * @dev: our DRM device 151 * @r: the gtt mapping we are using 152 * @roll: roll offset 153 * 154 * Roll an existing pinned mapping by moving the pages through the GTT. 155 * This allows us to implement hardware scrolling on the consoles without 156 * a 2D engine 157 */ 158 void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll) 159 { 160 u32 __iomem *gtt_slot; 161 u32 pte; 162 int i; 163 164 if (roll >= r->npage) { 165 WARN_ON(1); 166 return; 167 } 168 169 r->roll = roll; 170 171 /* Not currently in the GTT - no worry we will write the mapping at 172 the right position when it gets pinned */ 173 if (!r->stolen && !r->in_gart) 174 return; 175 176 gtt_slot = psb_gtt_entry(dev, r); 177 178 for (i = r->roll; i < r->npage; i++) { 179 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 180 iowrite32(pte, gtt_slot++); 181 } 182 for (i = 0; i < r->roll; i++) { 183 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); 184 iowrite32(pte, gtt_slot++); 185 } 186 ioread32(gtt_slot - 1); 187 } 188 189 /** 190 * psb_gtt_attach_pages - attach and pin GEM pages 191 * @gt: the gtt range 192 * 193 * Pin and build an in kernel list of the pages that back our GEM object. 194 * While we hold this the pages cannot be swapped out. This is protected 195 * via the gtt mutex which the caller must hold. 196 */ 197 static int psb_gtt_attach_pages(struct gtt_range *gt) 198 { 199 struct page **pages; 200 201 WARN_ON(gt->pages); 202 203 pages = drm_gem_get_pages(>->gem, 0); 204 if (IS_ERR(pages)) 205 return PTR_ERR(pages); 206 207 gt->pages = pages; 208 209 return 0; 210 } 211 212 /** 213 * psb_gtt_detach_pages - attach and pin GEM pages 214 * @gt: the gtt range 215 * 216 * Undo the effect of psb_gtt_attach_pages. At this point the pages 217 * must have been removed from the GTT as they could now be paged out 218 * and move bus address. This is protected via the gtt mutex which the 219 * caller must hold. 220 */ 221 static void psb_gtt_detach_pages(struct gtt_range *gt) 222 { 223 drm_gem_put_pages(>->gem, gt->pages, true, false); 224 gt->pages = NULL; 225 } 226 227 /** 228 * psb_gtt_pin - pin pages into the GTT 229 * @gt: range to pin 230 * 231 * Pin a set of pages into the GTT. The pins are refcounted so that 232 * multiple pins need multiple unpins to undo. 233 * 234 * Non GEM backed objects treat this as a no-op as they are always GTT 235 * backed objects. 236 */ 237 int psb_gtt_pin(struct gtt_range *gt) 238 { 239 int ret = 0; 240 struct drm_device *dev = gt->gem.dev; 241 struct drm_psb_private *dev_priv = dev->dev_private; 242 243 mutex_lock(&dev_priv->gtt_mutex); 244 245 if (gt->in_gart == 0 && gt->stolen == 0) { 246 ret = psb_gtt_attach_pages(gt); 247 if (ret < 0) 248 goto out; 249 ret = psb_gtt_insert(dev, gt, 0); 250 if (ret < 0) { 251 psb_gtt_detach_pages(gt); 252 goto out; 253 } 254 } 255 gt->in_gart++; 256 out: 257 mutex_unlock(&dev_priv->gtt_mutex); 258 return ret; 259 } 260 261 /** 262 * psb_gtt_unpin - Drop a GTT pin requirement 263 * @gt: range to pin 264 * 265 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object 266 * will be removed from the GTT which will also drop the page references 267 * and allow the VM to clean up or page stuff. 268 * 269 * Non GEM backed objects treat this as a no-op as they are always GTT 270 * backed objects. 271 */ 272 void psb_gtt_unpin(struct gtt_range *gt) 273 { 274 struct drm_device *dev = gt->gem.dev; 275 struct drm_psb_private *dev_priv = dev->dev_private; 276 277 mutex_lock(&dev_priv->gtt_mutex); 278 279 WARN_ON(!gt->in_gart); 280 281 gt->in_gart--; 282 if (gt->in_gart == 0 && gt->stolen == 0) { 283 psb_gtt_remove(dev, gt); 284 psb_gtt_detach_pages(gt); 285 } 286 mutex_unlock(&dev_priv->gtt_mutex); 287 } 288 289 /* 290 * GTT resource allocator - allocate and manage GTT address space 291 */ 292 293 /** 294 * psb_gtt_alloc_range - allocate GTT address space 295 * @dev: Our DRM device 296 * @len: length (bytes) of address space required 297 * @name: resource name 298 * @backed: resource should be backed by stolen pages 299 * 300 * Ask the kernel core to find us a suitable range of addresses 301 * to use for a GTT mapping. 302 * 303 * Returns a gtt_range structure describing the object, or NULL on 304 * error. On successful return the resource is both allocated and marked 305 * as in use. 306 */ 307 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, 308 const char *name, int backed) 309 { 310 struct drm_psb_private *dev_priv = dev->dev_private; 311 struct gtt_range *gt; 312 struct resource *r = dev_priv->gtt_mem; 313 int ret; 314 unsigned long start, end; 315 316 if (backed) { 317 /* The start of the GTT is the stolen pages */ 318 start = r->start; 319 end = r->start + dev_priv->gtt.stolen_size - 1; 320 } else { 321 /* The rest we will use for GEM backed objects */ 322 start = r->start + dev_priv->gtt.stolen_size; 323 end = r->end; 324 } 325 326 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); 327 if (gt == NULL) 328 return NULL; 329 gt->resource.name = name; 330 gt->stolen = backed; 331 gt->in_gart = backed; 332 gt->roll = 0; 333 /* Ensure this is set for non GEM objects */ 334 gt->gem.dev = dev; 335 ret = allocate_resource(dev_priv->gtt_mem, >->resource, 336 len, start, end, PAGE_SIZE, NULL, NULL); 337 if (ret == 0) { 338 gt->offset = gt->resource.start - r->start; 339 return gt; 340 } 341 kfree(gt); 342 return NULL; 343 } 344 345 /** 346 * psb_gtt_free_range - release GTT address space 347 * @dev: our DRM device 348 * @gt: a mapping created with psb_gtt_alloc_range 349 * 350 * Release a resource that was allocated with psb_gtt_alloc_range. If the 351 * object has been pinned by mmap users we clean this up here currently. 352 */ 353 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) 354 { 355 /* Undo the mmap pin if we are destroying the object */ 356 if (gt->mmapping) { 357 psb_gtt_unpin(gt); 358 gt->mmapping = 0; 359 } 360 WARN_ON(gt->in_gart && !gt->stolen); 361 release_resource(>->resource); 362 kfree(gt); 363 } 364 365 static void psb_gtt_alloc(struct drm_device *dev) 366 { 367 struct drm_psb_private *dev_priv = dev->dev_private; 368 init_rwsem(&dev_priv->gtt.sem); 369 } 370 371 void psb_gtt_takedown(struct drm_device *dev) 372 { 373 struct drm_psb_private *dev_priv = dev->dev_private; 374 375 if (dev_priv->gtt_map) { 376 iounmap(dev_priv->gtt_map); 377 dev_priv->gtt_map = NULL; 378 } 379 if (dev_priv->gtt_initialized) { 380 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 381 dev_priv->gmch_ctrl); 382 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); 383 (void) PSB_RVDC32(PSB_PGETBL_CTL); 384 } 385 if (dev_priv->vram_addr) 386 iounmap(dev_priv->gtt_map); 387 } 388 389 int psb_gtt_init(struct drm_device *dev, int resume) 390 { 391 struct drm_psb_private *dev_priv = dev->dev_private; 392 unsigned gtt_pages; 393 unsigned long stolen_size, vram_stolen_size; 394 unsigned i, num_pages; 395 unsigned pfn_base; 396 struct psb_gtt *pg; 397 398 int ret = 0; 399 uint32_t pte; 400 401 if (!resume) { 402 mutex_init(&dev_priv->gtt_mutex); 403 psb_gtt_alloc(dev); 404 } 405 406 pg = &dev_priv->gtt; 407 408 /* Enable the GTT */ 409 pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); 410 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, 411 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); 412 413 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); 414 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); 415 (void) PSB_RVDC32(PSB_PGETBL_CTL); 416 417 /* The root resource we allocate address space from */ 418 dev_priv->gtt_initialized = 1; 419 420 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; 421 422 /* 423 * The video mmu has a hw bug when accessing 0x0D0000000. 424 * Make gatt start at 0x0e000,0000. This doesn't actually 425 * matter for us but may do if the video acceleration ever 426 * gets opened up. 427 */ 428 pg->mmu_gatt_start = 0xE0000000; 429 430 pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE); 431 gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE) 432 >> PAGE_SHIFT; 433 /* CDV doesn't report this. In which case the system has 64 gtt pages */ 434 if (pg->gtt_start == 0 || gtt_pages == 0) { 435 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); 436 gtt_pages = 64; 437 pg->gtt_start = dev_priv->pge_ctl; 438 } 439 440 pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE); 441 pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE) 442 >> PAGE_SHIFT; 443 dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE]; 444 445 if (pg->gatt_pages == 0 || pg->gatt_start == 0) { 446 static struct resource fudge; /* Preferably peppermint */ 447 /* This can occur on CDV systems. Fudge it in this case. 448 We really don't care what imaginary space is being allocated 449 at this point */ 450 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); 451 pg->gatt_start = 0x40000000; 452 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; 453 /* This is a little confusing but in fact the GTT is providing 454 a view from the GPU into memory and not vice versa. As such 455 this is really allocating space that is not the same as the 456 CPU address space on CDV */ 457 fudge.start = 0x40000000; 458 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; 459 fudge.name = "fudge"; 460 fudge.flags = IORESOURCE_MEM; 461 dev_priv->gtt_mem = &fudge; 462 } 463 464 pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base); 465 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base 466 - PAGE_SIZE; 467 468 stolen_size = vram_stolen_size; 469 470 dev_dbg(dev->dev, "Stolen memory base 0x%x, size %luK\n", 471 dev_priv->stolen_base, vram_stolen_size / 1024); 472 473 if (resume && (gtt_pages != pg->gtt_pages) && 474 (stolen_size != pg->stolen_size)) { 475 dev_err(dev->dev, "GTT resume error.\n"); 476 ret = -EINVAL; 477 goto out_err; 478 } 479 480 pg->gtt_pages = gtt_pages; 481 pg->stolen_size = stolen_size; 482 dev_priv->vram_stolen_size = vram_stolen_size; 483 484 /* 485 * Map the GTT and the stolen memory area 486 */ 487 if (!resume) 488 dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start, 489 gtt_pages << PAGE_SHIFT); 490 if (!dev_priv->gtt_map) { 491 dev_err(dev->dev, "Failure to map gtt.\n"); 492 ret = -ENOMEM; 493 goto out_err; 494 } 495 496 if (!resume) 497 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, 498 stolen_size); 499 if (!dev_priv->vram_addr) { 500 dev_err(dev->dev, "Failure to map stolen base.\n"); 501 ret = -ENOMEM; 502 goto out_err; 503 } 504 505 /* 506 * Insert vram stolen pages into the GTT 507 */ 508 509 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; 510 num_pages = vram_stolen_size >> PAGE_SHIFT; 511 dev_dbg(dev->dev, "Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", 512 num_pages, pfn_base << PAGE_SHIFT, 0); 513 for (i = 0; i < num_pages; ++i) { 514 pte = psb_gtt_mask_pte(pfn_base + i, 0); 515 iowrite32(pte, dev_priv->gtt_map + i); 516 } 517 518 /* 519 * Init rest of GTT to the scratch page to avoid accidents or scribbles 520 */ 521 522 pfn_base = page_to_pfn(dev_priv->scratch_page); 523 pte = psb_gtt_mask_pte(pfn_base, 0); 524 for (; i < gtt_pages; ++i) 525 iowrite32(pte, dev_priv->gtt_map + i); 526 527 (void) ioread32(dev_priv->gtt_map + i - 1); 528 return 0; 529 530 out_err: 531 psb_gtt_takedown(dev); 532 return ret; 533 } 534 535 int psb_gtt_restore(struct drm_device *dev) 536 { 537 struct drm_psb_private *dev_priv = dev->dev_private; 538 struct resource *r = dev_priv->gtt_mem->child; 539 struct gtt_range *range; 540 unsigned int restored = 0, total = 0, size = 0; 541 542 /* On resume, the gtt_mutex is already initialized */ 543 mutex_lock(&dev_priv->gtt_mutex); 544 psb_gtt_init(dev, 1); 545 546 while (r != NULL) { 547 range = container_of(r, struct gtt_range, resource); 548 if (range->pages) { 549 psb_gtt_insert(dev, range, 1); 550 size += range->resource.end - range->resource.start; 551 restored++; 552 } 553 r = r->sibling; 554 total++; 555 } 556 mutex_unlock(&dev_priv->gtt_mutex); 557 DRM_DEBUG_DRIVER("Restored %u of %u gtt ranges (%u KB)", restored, 558 total, (size / 1024)); 559 560 return 0; 561 } 562