1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  *	Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
20  */
21 
22 #include <drm/drmP.h>
23 #include "gma_display.h"
24 #include "psb_intel_drv.h"
25 #include "psb_intel_reg.h"
26 #include "psb_drv.h"
27 #include "framebuffer.h"
28 
29 /**
30  * Returns whether any output on the specified pipe is of the specified type
31  */
32 bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
33 {
34 	struct drm_device *dev = crtc->dev;
35 	struct drm_mode_config *mode_config = &dev->mode_config;
36 	struct drm_connector *l_entry;
37 
38 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
39 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
40 			struct gma_encoder *gma_encoder =
41 						gma_attached_encoder(l_entry);
42 			if (gma_encoder->type == type)
43 				return true;
44 		}
45 	}
46 
47 	return false;
48 }
49 
50 void gma_wait_for_vblank(struct drm_device *dev)
51 {
52 	/* Wait for 20ms, i.e. one cycle at 50hz. */
53 	mdelay(20);
54 }
55 
56 int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
57 		      struct drm_framebuffer *old_fb)
58 {
59 	struct drm_device *dev = crtc->dev;
60 	struct drm_psb_private *dev_priv = dev->dev_private;
61 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
62 	struct drm_framebuffer *fb = crtc->primary->fb;
63 	struct psb_framebuffer *psbfb = to_psb_fb(fb);
64 	int pipe = gma_crtc->pipe;
65 	const struct psb_offset *map = &dev_priv->regmap[pipe];
66 	unsigned long start, offset;
67 	u32 dspcntr;
68 	int ret = 0;
69 
70 	if (!gma_power_begin(dev, true))
71 		return 0;
72 
73 	/* no fb bound */
74 	if (!fb) {
75 		dev_err(dev->dev, "No FB bound\n");
76 		goto gma_pipe_cleaner;
77 	}
78 
79 	/* We are displaying this buffer, make sure it is actually loaded
80 	   into the GTT */
81 	ret = psb_gtt_pin(psbfb->gtt);
82 	if (ret < 0)
83 		goto gma_pipe_set_base_exit;
84 	start = psbfb->gtt->offset;
85 	offset = y * fb->pitches[0] + x * fb->format->cpp[0];
86 
87 	REG_WRITE(map->stride, fb->pitches[0]);
88 
89 	dspcntr = REG_READ(map->cntr);
90 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
91 
92 	switch (fb->format->cpp[0] * 8) {
93 	case 8:
94 		dspcntr |= DISPPLANE_8BPP;
95 		break;
96 	case 16:
97 		if (fb->format->depth == 15)
98 			dspcntr |= DISPPLANE_15_16BPP;
99 		else
100 			dspcntr |= DISPPLANE_16BPP;
101 		break;
102 	case 24:
103 	case 32:
104 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
105 		break;
106 	default:
107 		dev_err(dev->dev, "Unknown color depth\n");
108 		ret = -EINVAL;
109 		goto gma_pipe_set_base_exit;
110 	}
111 	REG_WRITE(map->cntr, dspcntr);
112 
113 	dev_dbg(dev->dev,
114 		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
115 
116 	/* FIXME: Investigate whether this really is the base for psb and why
117 		  the linear offset is named base for the other chips. map->surf
118 		  should be the base and map->linoff the offset for all chips */
119 	if (IS_PSB(dev)) {
120 		REG_WRITE(map->base, offset + start);
121 		REG_READ(map->base);
122 	} else {
123 		REG_WRITE(map->base, offset);
124 		REG_READ(map->base);
125 		REG_WRITE(map->surf, start);
126 		REG_READ(map->surf);
127 	}
128 
129 gma_pipe_cleaner:
130 	/* If there was a previous display we can now unpin it */
131 	if (old_fb)
132 		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
133 
134 gma_pipe_set_base_exit:
135 	gma_power_end(dev);
136 	return ret;
137 }
138 
139 /* Loads the palette/gamma unit for the CRTC with the prepared values */
140 void gma_crtc_load_lut(struct drm_crtc *crtc)
141 {
142 	struct drm_device *dev = crtc->dev;
143 	struct drm_psb_private *dev_priv = dev->dev_private;
144 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
145 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
146 	int palreg = map->palette;
147 	int i;
148 
149 	/* The clocks have to be on to load the palette. */
150 	if (!crtc->enabled)
151 		return;
152 
153 	if (gma_power_begin(dev, false)) {
154 		for (i = 0; i < 256; i++) {
155 			REG_WRITE(palreg + 4 * i,
156 				  ((gma_crtc->lut_r[i] +
157 				  gma_crtc->lut_adj[i]) << 16) |
158 				  ((gma_crtc->lut_g[i] +
159 				  gma_crtc->lut_adj[i]) << 8) |
160 				  (gma_crtc->lut_b[i] +
161 				  gma_crtc->lut_adj[i]));
162 		}
163 		gma_power_end(dev);
164 	} else {
165 		for (i = 0; i < 256; i++) {
166 			/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
167 			dev_priv->regs.pipe[0].palette[i] =
168 				  ((gma_crtc->lut_r[i] +
169 				  gma_crtc->lut_adj[i]) << 16) |
170 				  ((gma_crtc->lut_g[i] +
171 				  gma_crtc->lut_adj[i]) << 8) |
172 				  (gma_crtc->lut_b[i] +
173 				  gma_crtc->lut_adj[i]);
174 		}
175 
176 	}
177 }
178 
179 int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
180 		       u32 size)
181 {
182 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
183 	int i;
184 
185 	for (i = 0; i < size; i++) {
186 		gma_crtc->lut_r[i] = red[i] >> 8;
187 		gma_crtc->lut_g[i] = green[i] >> 8;
188 		gma_crtc->lut_b[i] = blue[i] >> 8;
189 	}
190 
191 	gma_crtc_load_lut(crtc);
192 
193 	return 0;
194 }
195 
196 /**
197  * Sets the power management mode of the pipe and plane.
198  *
199  * This code should probably grow support for turning the cursor off and back
200  * on appropriately at the same time as we're turning the pipe off/on.
201  */
202 void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
203 {
204 	struct drm_device *dev = crtc->dev;
205 	struct drm_psb_private *dev_priv = dev->dev_private;
206 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
207 	int pipe = gma_crtc->pipe;
208 	const struct psb_offset *map = &dev_priv->regmap[pipe];
209 	u32 temp;
210 
211 	/* XXX: When our outputs are all unaware of DPMS modes other than off
212 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
213 	 */
214 
215 	if (IS_CDV(dev))
216 		dev_priv->ops->disable_sr(dev);
217 
218 	switch (mode) {
219 	case DRM_MODE_DPMS_ON:
220 	case DRM_MODE_DPMS_STANDBY:
221 	case DRM_MODE_DPMS_SUSPEND:
222 		if (gma_crtc->active)
223 			break;
224 
225 		gma_crtc->active = true;
226 
227 		/* Enable the DPLL */
228 		temp = REG_READ(map->dpll);
229 		if ((temp & DPLL_VCO_ENABLE) == 0) {
230 			REG_WRITE(map->dpll, temp);
231 			REG_READ(map->dpll);
232 			/* Wait for the clocks to stabilize. */
233 			udelay(150);
234 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
235 			REG_READ(map->dpll);
236 			/* Wait for the clocks to stabilize. */
237 			udelay(150);
238 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
239 			REG_READ(map->dpll);
240 			/* Wait for the clocks to stabilize. */
241 			udelay(150);
242 		}
243 
244 		/* Enable the plane */
245 		temp = REG_READ(map->cntr);
246 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
247 			REG_WRITE(map->cntr,
248 				  temp | DISPLAY_PLANE_ENABLE);
249 			/* Flush the plane changes */
250 			REG_WRITE(map->base, REG_READ(map->base));
251 		}
252 
253 		udelay(150);
254 
255 		/* Enable the pipe */
256 		temp = REG_READ(map->conf);
257 		if ((temp & PIPEACONF_ENABLE) == 0)
258 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
259 
260 		temp = REG_READ(map->status);
261 		temp &= ~(0xFFFF);
262 		temp |= PIPE_FIFO_UNDERRUN;
263 		REG_WRITE(map->status, temp);
264 		REG_READ(map->status);
265 
266 		gma_crtc_load_lut(crtc);
267 
268 		/* Give the overlay scaler a chance to enable
269 		 * if it's on this pipe */
270 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
271 		break;
272 	case DRM_MODE_DPMS_OFF:
273 		if (!gma_crtc->active)
274 			break;
275 
276 		gma_crtc->active = false;
277 
278 		/* Give the overlay scaler a chance to disable
279 		 * if it's on this pipe */
280 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
281 
282 		/* Disable the VGA plane that we never use */
283 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
284 
285 		/* Turn off vblank interrupts */
286 		drm_crtc_vblank_off(crtc);
287 
288 		/* Wait for vblank for the disable to take effect */
289 		gma_wait_for_vblank(dev);
290 
291 		/* Disable plane */
292 		temp = REG_READ(map->cntr);
293 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
294 			REG_WRITE(map->cntr,
295 				  temp & ~DISPLAY_PLANE_ENABLE);
296 			/* Flush the plane changes */
297 			REG_WRITE(map->base, REG_READ(map->base));
298 			REG_READ(map->base);
299 		}
300 
301 		/* Disable pipe */
302 		temp = REG_READ(map->conf);
303 		if ((temp & PIPEACONF_ENABLE) != 0) {
304 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
305 			REG_READ(map->conf);
306 		}
307 
308 		/* Wait for vblank for the disable to take effect. */
309 		gma_wait_for_vblank(dev);
310 
311 		udelay(150);
312 
313 		/* Disable DPLL */
314 		temp = REG_READ(map->dpll);
315 		if ((temp & DPLL_VCO_ENABLE) != 0) {
316 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
317 			REG_READ(map->dpll);
318 		}
319 
320 		/* Wait for the clocks to turn off. */
321 		udelay(150);
322 		break;
323 	}
324 
325 	if (IS_CDV(dev))
326 		dev_priv->ops->update_wm(dev, crtc);
327 
328 	/* Set FIFO watermarks */
329 	REG_WRITE(DSPARB, 0x3F3E);
330 }
331 
332 int gma_crtc_cursor_set(struct drm_crtc *crtc,
333 			struct drm_file *file_priv,
334 			uint32_t handle,
335 			uint32_t width, uint32_t height)
336 {
337 	struct drm_device *dev = crtc->dev;
338 	struct drm_psb_private *dev_priv = dev->dev_private;
339 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
340 	int pipe = gma_crtc->pipe;
341 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
342 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
343 	uint32_t temp;
344 	size_t addr = 0;
345 	struct gtt_range *gt;
346 	struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
347 	struct drm_gem_object *obj;
348 	void *tmp_dst, *tmp_src;
349 	int ret = 0, i, cursor_pages;
350 
351 	/* If we didn't get a handle then turn the cursor off */
352 	if (!handle) {
353 		temp = CURSOR_MODE_DISABLE;
354 		if (gma_power_begin(dev, false)) {
355 			REG_WRITE(control, temp);
356 			REG_WRITE(base, 0);
357 			gma_power_end(dev);
358 		}
359 
360 		/* Unpin the old GEM object */
361 		if (gma_crtc->cursor_obj) {
362 			gt = container_of(gma_crtc->cursor_obj,
363 					  struct gtt_range, gem);
364 			psb_gtt_unpin(gt);
365 			drm_gem_object_unreference_unlocked(gma_crtc->cursor_obj);
366 			gma_crtc->cursor_obj = NULL;
367 		}
368 		return 0;
369 	}
370 
371 	/* Currently we only support 64x64 cursors */
372 	if (width != 64 || height != 64) {
373 		dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
374 		return -EINVAL;
375 	}
376 
377 	obj = drm_gem_object_lookup(file_priv, handle);
378 	if (!obj) {
379 		ret = -ENOENT;
380 		goto unlock;
381 	}
382 
383 	if (obj->size < width * height * 4) {
384 		dev_dbg(dev->dev, "Buffer is too small\n");
385 		ret = -ENOMEM;
386 		goto unref_cursor;
387 	}
388 
389 	gt = container_of(obj, struct gtt_range, gem);
390 
391 	/* Pin the memory into the GTT */
392 	ret = psb_gtt_pin(gt);
393 	if (ret) {
394 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
395 		goto unref_cursor;
396 	}
397 
398 	if (dev_priv->ops->cursor_needs_phys) {
399 		if (cursor_gt == NULL) {
400 			dev_err(dev->dev, "No hardware cursor mem available");
401 			ret = -ENOMEM;
402 			goto unref_cursor;
403 		}
404 
405 		/* Prevent overflow */
406 		if (gt->npage > 4)
407 			cursor_pages = 4;
408 		else
409 			cursor_pages = gt->npage;
410 
411 		/* Copy the cursor to cursor mem */
412 		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
413 		for (i = 0; i < cursor_pages; i++) {
414 			tmp_src = kmap(gt->pages[i]);
415 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
416 			kunmap(gt->pages[i]);
417 			tmp_dst += PAGE_SIZE;
418 		}
419 
420 		addr = gma_crtc->cursor_addr;
421 	} else {
422 		addr = gt->offset;
423 		gma_crtc->cursor_addr = addr;
424 	}
425 
426 	temp = 0;
427 	/* set the pipe for the cursor */
428 	temp |= (pipe << 28);
429 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
430 
431 	if (gma_power_begin(dev, false)) {
432 		REG_WRITE(control, temp);
433 		REG_WRITE(base, addr);
434 		gma_power_end(dev);
435 	}
436 
437 	/* unpin the old bo */
438 	if (gma_crtc->cursor_obj) {
439 		gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
440 		psb_gtt_unpin(gt);
441 		drm_gem_object_unreference_unlocked(gma_crtc->cursor_obj);
442 	}
443 
444 	gma_crtc->cursor_obj = obj;
445 unlock:
446 	return ret;
447 
448 unref_cursor:
449 	drm_gem_object_unreference_unlocked(obj);
450 	return ret;
451 }
452 
453 int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
454 {
455 	struct drm_device *dev = crtc->dev;
456 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
457 	int pipe = gma_crtc->pipe;
458 	uint32_t temp = 0;
459 	uint32_t addr;
460 
461 	if (x < 0) {
462 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
463 		x = -x;
464 	}
465 	if (y < 0) {
466 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
467 		y = -y;
468 	}
469 
470 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
471 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
472 
473 	addr = gma_crtc->cursor_addr;
474 
475 	if (gma_power_begin(dev, false)) {
476 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
477 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
478 		gma_power_end(dev);
479 	}
480 	return 0;
481 }
482 
483 void gma_crtc_prepare(struct drm_crtc *crtc)
484 {
485 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
486 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
487 }
488 
489 void gma_crtc_commit(struct drm_crtc *crtc)
490 {
491 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
492 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
493 }
494 
495 void gma_crtc_disable(struct drm_crtc *crtc)
496 {
497 	struct gtt_range *gt;
498 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
499 
500 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
501 
502 	if (crtc->primary->fb) {
503 		gt = to_psb_fb(crtc->primary->fb)->gtt;
504 		psb_gtt_unpin(gt);
505 	}
506 }
507 
508 void gma_crtc_destroy(struct drm_crtc *crtc)
509 {
510 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
511 
512 	kfree(gma_crtc->crtc_state);
513 	drm_crtc_cleanup(crtc);
514 	kfree(gma_crtc);
515 }
516 
517 int gma_crtc_set_config(struct drm_mode_set *set)
518 {
519 	struct drm_device *dev = set->crtc->dev;
520 	struct drm_psb_private *dev_priv = dev->dev_private;
521 	int ret;
522 
523 	if (!dev_priv->rpm_enabled)
524 		return drm_crtc_helper_set_config(set);
525 
526 	pm_runtime_forbid(&dev->pdev->dev);
527 	ret = drm_crtc_helper_set_config(set);
528 	pm_runtime_allow(&dev->pdev->dev);
529 
530 	return ret;
531 }
532 
533 /**
534  * Save HW states of given crtc
535  */
536 void gma_crtc_save(struct drm_crtc *crtc)
537 {
538 	struct drm_device *dev = crtc->dev;
539 	struct drm_psb_private *dev_priv = dev->dev_private;
540 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
541 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
542 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
543 	uint32_t palette_reg;
544 	int i;
545 
546 	if (!crtc_state) {
547 		dev_err(dev->dev, "No CRTC state found\n");
548 		return;
549 	}
550 
551 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
552 	crtc_state->savePIPECONF = REG_READ(map->conf);
553 	crtc_state->savePIPESRC = REG_READ(map->src);
554 	crtc_state->saveFP0 = REG_READ(map->fp0);
555 	crtc_state->saveFP1 = REG_READ(map->fp1);
556 	crtc_state->saveDPLL = REG_READ(map->dpll);
557 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
558 	crtc_state->saveHBLANK = REG_READ(map->hblank);
559 	crtc_state->saveHSYNC = REG_READ(map->hsync);
560 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
561 	crtc_state->saveVBLANK = REG_READ(map->vblank);
562 	crtc_state->saveVSYNC = REG_READ(map->vsync);
563 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
564 
565 	/* NOTE: DSPSIZE DSPPOS only for psb */
566 	crtc_state->saveDSPSIZE = REG_READ(map->size);
567 	crtc_state->saveDSPPOS = REG_READ(map->pos);
568 
569 	crtc_state->saveDSPBASE = REG_READ(map->base);
570 
571 	palette_reg = map->palette;
572 	for (i = 0; i < 256; ++i)
573 		crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
574 }
575 
576 /**
577  * Restore HW states of given crtc
578  */
579 void gma_crtc_restore(struct drm_crtc *crtc)
580 {
581 	struct drm_device *dev = crtc->dev;
582 	struct drm_psb_private *dev_priv = dev->dev_private;
583 	struct gma_crtc *gma_crtc =  to_gma_crtc(crtc);
584 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
585 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
586 	uint32_t palette_reg;
587 	int i;
588 
589 	if (!crtc_state) {
590 		dev_err(dev->dev, "No crtc state\n");
591 		return;
592 	}
593 
594 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
595 		REG_WRITE(map->dpll,
596 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
597 		REG_READ(map->dpll);
598 		udelay(150);
599 	}
600 
601 	REG_WRITE(map->fp0, crtc_state->saveFP0);
602 	REG_READ(map->fp0);
603 
604 	REG_WRITE(map->fp1, crtc_state->saveFP1);
605 	REG_READ(map->fp1);
606 
607 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
608 	REG_READ(map->dpll);
609 	udelay(150);
610 
611 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
612 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
613 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
614 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
615 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
616 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
617 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
618 
619 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
620 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
621 
622 	REG_WRITE(map->src, crtc_state->savePIPESRC);
623 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
624 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
625 
626 	gma_wait_for_vblank(dev);
627 
628 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
629 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
630 
631 	gma_wait_for_vblank(dev);
632 
633 	palette_reg = map->palette;
634 	for (i = 0; i < 256; ++i)
635 		REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
636 }
637 
638 void gma_encoder_prepare(struct drm_encoder *encoder)
639 {
640 	const struct drm_encoder_helper_funcs *encoder_funcs =
641 	    encoder->helper_private;
642 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
643 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
644 }
645 
646 void gma_encoder_commit(struct drm_encoder *encoder)
647 {
648 	const struct drm_encoder_helper_funcs *encoder_funcs =
649 	    encoder->helper_private;
650 	/* lvds has its own version of commit see psb_intel_lvds_commit */
651 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
652 }
653 
654 void gma_encoder_destroy(struct drm_encoder *encoder)
655 {
656 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
657 
658 	drm_encoder_cleanup(encoder);
659 	kfree(intel_encoder);
660 }
661 
662 /* Currently there is only a 1:1 mapping of encoders and connectors */
663 struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
664 {
665 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
666 
667 	return &gma_encoder->base;
668 }
669 
670 void gma_connector_attach_encoder(struct gma_connector *connector,
671 				  struct gma_encoder *encoder)
672 {
673 	connector->encoder = encoder;
674 	drm_mode_connector_attach_encoder(&connector->base,
675 					  &encoder->base);
676 }
677 
678 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
679 
680 bool gma_pll_is_valid(struct drm_crtc *crtc,
681 		      const struct gma_limit_t *limit,
682 		      struct gma_clock_t *clock)
683 {
684 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
685 		GMA_PLL_INVALID("p1 out of range");
686 	if (clock->p < limit->p.min || limit->p.max < clock->p)
687 		GMA_PLL_INVALID("p out of range");
688 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
689 		GMA_PLL_INVALID("m2 out of range");
690 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
691 		GMA_PLL_INVALID("m1 out of range");
692 	/* On CDV m1 is always 0 */
693 	if (clock->m1 <= clock->m2 && clock->m1 != 0)
694 		GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
695 	if (clock->m < limit->m.min || limit->m.max < clock->m)
696 		GMA_PLL_INVALID("m out of range");
697 	if (clock->n < limit->n.min || limit->n.max < clock->n)
698 		GMA_PLL_INVALID("n out of range");
699 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
700 		GMA_PLL_INVALID("vco out of range");
701 	/* XXX: We may need to be checking "Dot clock"
702 	 * depending on the multiplier, connector, etc.,
703 	 * rather than just a single range.
704 	 */
705 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
706 		GMA_PLL_INVALID("dot out of range");
707 
708 	return true;
709 }
710 
711 bool gma_find_best_pll(const struct gma_limit_t *limit,
712 		       struct drm_crtc *crtc, int target, int refclk,
713 		       struct gma_clock_t *best_clock)
714 {
715 	struct drm_device *dev = crtc->dev;
716 	const struct gma_clock_funcs *clock_funcs =
717 						to_gma_crtc(crtc)->clock_funcs;
718 	struct gma_clock_t clock;
719 	int err = target;
720 
721 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
722 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
723 		/*
724 		 * For LVDS, if the panel is on, just rely on its current
725 		 * settings for dual-channel.  We haven't figured out how to
726 		 * reliably set up different single/dual channel state, if we
727 		 * even can.
728 		 */
729 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
730 		    LVDS_CLKB_POWER_UP)
731 			clock.p2 = limit->p2.p2_fast;
732 		else
733 			clock.p2 = limit->p2.p2_slow;
734 	} else {
735 		if (target < limit->p2.dot_limit)
736 			clock.p2 = limit->p2.p2_slow;
737 		else
738 			clock.p2 = limit->p2.p2_fast;
739 	}
740 
741 	memset(best_clock, 0, sizeof(*best_clock));
742 
743 	/* m1 is always 0 on CDV so the outmost loop will run just once */
744 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
745 		for (clock.m2 = limit->m2.min;
746 		     (clock.m2 < clock.m1 || clock.m1 == 0) &&
747 		      clock.m2 <= limit->m2.max; clock.m2++) {
748 			for (clock.n = limit->n.min;
749 			     clock.n <= limit->n.max; clock.n++) {
750 				for (clock.p1 = limit->p1.min;
751 				     clock.p1 <= limit->p1.max;
752 				     clock.p1++) {
753 					int this_err;
754 
755 					clock_funcs->clock(refclk, &clock);
756 
757 					if (!clock_funcs->pll_is_valid(crtc,
758 								limit, &clock))
759 						continue;
760 
761 					this_err = abs(clock.dot - target);
762 					if (this_err < err) {
763 						*best_clock = clock;
764 						err = this_err;
765 					}
766 				}
767 			}
768 		}
769 	}
770 
771 	return err != target;
772 }
773