1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  *	Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
20  */
21 
22 #include <drm/drmP.h>
23 #include "gma_display.h"
24 #include "psb_intel_drv.h"
25 #include "psb_intel_reg.h"
26 #include "psb_drv.h"
27 #include "framebuffer.h"
28 
29 /**
30  * Returns whether any output on the specified pipe is of the specified type
31  */
32 bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
33 {
34 	struct drm_device *dev = crtc->dev;
35 	struct drm_mode_config *mode_config = &dev->mode_config;
36 	struct drm_connector *l_entry;
37 
38 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
39 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
40 			struct gma_encoder *gma_encoder =
41 						gma_attached_encoder(l_entry);
42 			if (gma_encoder->type == type)
43 				return true;
44 		}
45 	}
46 
47 	return false;
48 }
49 
50 void gma_wait_for_vblank(struct drm_device *dev)
51 {
52 	/* Wait for 20ms, i.e. one cycle at 50hz. */
53 	mdelay(20);
54 }
55 
56 int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
57 		      struct drm_framebuffer *old_fb)
58 {
59 	struct drm_device *dev = crtc->dev;
60 	struct drm_psb_private *dev_priv = dev->dev_private;
61 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
62 	struct psb_framebuffer *psbfb = to_psb_fb(crtc->primary->fb);
63 	int pipe = gma_crtc->pipe;
64 	const struct psb_offset *map = &dev_priv->regmap[pipe];
65 	unsigned long start, offset;
66 	u32 dspcntr;
67 	int ret = 0;
68 
69 	if (!gma_power_begin(dev, true))
70 		return 0;
71 
72 	/* no fb bound */
73 	if (!crtc->primary->fb) {
74 		dev_err(dev->dev, "No FB bound\n");
75 		goto gma_pipe_cleaner;
76 	}
77 
78 	/* We are displaying this buffer, make sure it is actually loaded
79 	   into the GTT */
80 	ret = psb_gtt_pin(psbfb->gtt);
81 	if (ret < 0)
82 		goto gma_pipe_set_base_exit;
83 	start = psbfb->gtt->offset;
84 	offset = y * crtc->primary->fb->pitches[0] + x * (crtc->primary->fb->bits_per_pixel / 8);
85 
86 	REG_WRITE(map->stride, crtc->primary->fb->pitches[0]);
87 
88 	dspcntr = REG_READ(map->cntr);
89 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
90 
91 	switch (crtc->primary->fb->bits_per_pixel) {
92 	case 8:
93 		dspcntr |= DISPPLANE_8BPP;
94 		break;
95 	case 16:
96 		if (crtc->primary->fb->depth == 15)
97 			dspcntr |= DISPPLANE_15_16BPP;
98 		else
99 			dspcntr |= DISPPLANE_16BPP;
100 		break;
101 	case 24:
102 	case 32:
103 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
104 		break;
105 	default:
106 		dev_err(dev->dev, "Unknown color depth\n");
107 		ret = -EINVAL;
108 		goto gma_pipe_set_base_exit;
109 	}
110 	REG_WRITE(map->cntr, dspcntr);
111 
112 	dev_dbg(dev->dev,
113 		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
114 
115 	/* FIXME: Investigate whether this really is the base for psb and why
116 		  the linear offset is named base for the other chips. map->surf
117 		  should be the base and map->linoff the offset for all chips */
118 	if (IS_PSB(dev)) {
119 		REG_WRITE(map->base, offset + start);
120 		REG_READ(map->base);
121 	} else {
122 		REG_WRITE(map->base, offset);
123 		REG_READ(map->base);
124 		REG_WRITE(map->surf, start);
125 		REG_READ(map->surf);
126 	}
127 
128 gma_pipe_cleaner:
129 	/* If there was a previous display we can now unpin it */
130 	if (old_fb)
131 		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
132 
133 gma_pipe_set_base_exit:
134 	gma_power_end(dev);
135 	return ret;
136 }
137 
138 /* Loads the palette/gamma unit for the CRTC with the prepared values */
139 void gma_crtc_load_lut(struct drm_crtc *crtc)
140 {
141 	struct drm_device *dev = crtc->dev;
142 	struct drm_psb_private *dev_priv = dev->dev_private;
143 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
144 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
145 	int palreg = map->palette;
146 	int i;
147 
148 	/* The clocks have to be on to load the palette. */
149 	if (!crtc->enabled)
150 		return;
151 
152 	if (gma_power_begin(dev, false)) {
153 		for (i = 0; i < 256; i++) {
154 			REG_WRITE(palreg + 4 * i,
155 				  ((gma_crtc->lut_r[i] +
156 				  gma_crtc->lut_adj[i]) << 16) |
157 				  ((gma_crtc->lut_g[i] +
158 				  gma_crtc->lut_adj[i]) << 8) |
159 				  (gma_crtc->lut_b[i] +
160 				  gma_crtc->lut_adj[i]));
161 		}
162 		gma_power_end(dev);
163 	} else {
164 		for (i = 0; i < 256; i++) {
165 			/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
166 			dev_priv->regs.pipe[0].palette[i] =
167 				  ((gma_crtc->lut_r[i] +
168 				  gma_crtc->lut_adj[i]) << 16) |
169 				  ((gma_crtc->lut_g[i] +
170 				  gma_crtc->lut_adj[i]) << 8) |
171 				  (gma_crtc->lut_b[i] +
172 				  gma_crtc->lut_adj[i]);
173 		}
174 
175 	}
176 }
177 
178 int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
179 		       u32 size)
180 {
181 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
182 	int i;
183 
184 	for (i = 0; i < size; i++) {
185 		gma_crtc->lut_r[i] = red[i] >> 8;
186 		gma_crtc->lut_g[i] = green[i] >> 8;
187 		gma_crtc->lut_b[i] = blue[i] >> 8;
188 	}
189 
190 	gma_crtc_load_lut(crtc);
191 
192 	return 0;
193 }
194 
195 /**
196  * Sets the power management mode of the pipe and plane.
197  *
198  * This code should probably grow support for turning the cursor off and back
199  * on appropriately at the same time as we're turning the pipe off/on.
200  */
201 void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
202 {
203 	struct drm_device *dev = crtc->dev;
204 	struct drm_psb_private *dev_priv = dev->dev_private;
205 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
206 	int pipe = gma_crtc->pipe;
207 	const struct psb_offset *map = &dev_priv->regmap[pipe];
208 	u32 temp;
209 
210 	/* XXX: When our outputs are all unaware of DPMS modes other than off
211 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
212 	 */
213 
214 	if (IS_CDV(dev))
215 		dev_priv->ops->disable_sr(dev);
216 
217 	switch (mode) {
218 	case DRM_MODE_DPMS_ON:
219 	case DRM_MODE_DPMS_STANDBY:
220 	case DRM_MODE_DPMS_SUSPEND:
221 		if (gma_crtc->active)
222 			break;
223 
224 		gma_crtc->active = true;
225 
226 		/* Enable the DPLL */
227 		temp = REG_READ(map->dpll);
228 		if ((temp & DPLL_VCO_ENABLE) == 0) {
229 			REG_WRITE(map->dpll, temp);
230 			REG_READ(map->dpll);
231 			/* Wait for the clocks to stabilize. */
232 			udelay(150);
233 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
234 			REG_READ(map->dpll);
235 			/* Wait for the clocks to stabilize. */
236 			udelay(150);
237 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
238 			REG_READ(map->dpll);
239 			/* Wait for the clocks to stabilize. */
240 			udelay(150);
241 		}
242 
243 		/* Enable the plane */
244 		temp = REG_READ(map->cntr);
245 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
246 			REG_WRITE(map->cntr,
247 				  temp | DISPLAY_PLANE_ENABLE);
248 			/* Flush the plane changes */
249 			REG_WRITE(map->base, REG_READ(map->base));
250 		}
251 
252 		udelay(150);
253 
254 		/* Enable the pipe */
255 		temp = REG_READ(map->conf);
256 		if ((temp & PIPEACONF_ENABLE) == 0)
257 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
258 
259 		temp = REG_READ(map->status);
260 		temp &= ~(0xFFFF);
261 		temp |= PIPE_FIFO_UNDERRUN;
262 		REG_WRITE(map->status, temp);
263 		REG_READ(map->status);
264 
265 		gma_crtc_load_lut(crtc);
266 
267 		/* Give the overlay scaler a chance to enable
268 		 * if it's on this pipe */
269 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
270 		break;
271 	case DRM_MODE_DPMS_OFF:
272 		if (!gma_crtc->active)
273 			break;
274 
275 		gma_crtc->active = false;
276 
277 		/* Give the overlay scaler a chance to disable
278 		 * if it's on this pipe */
279 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
280 
281 		/* Disable the VGA plane that we never use */
282 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
283 
284 		/* Turn off vblank interrupts */
285 		drm_crtc_vblank_off(crtc);
286 
287 		/* Wait for vblank for the disable to take effect */
288 		gma_wait_for_vblank(dev);
289 
290 		/* Disable plane */
291 		temp = REG_READ(map->cntr);
292 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
293 			REG_WRITE(map->cntr,
294 				  temp & ~DISPLAY_PLANE_ENABLE);
295 			/* Flush the plane changes */
296 			REG_WRITE(map->base, REG_READ(map->base));
297 			REG_READ(map->base);
298 		}
299 
300 		/* Disable pipe */
301 		temp = REG_READ(map->conf);
302 		if ((temp & PIPEACONF_ENABLE) != 0) {
303 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
304 			REG_READ(map->conf);
305 		}
306 
307 		/* Wait for vblank for the disable to take effect. */
308 		gma_wait_for_vblank(dev);
309 
310 		udelay(150);
311 
312 		/* Disable DPLL */
313 		temp = REG_READ(map->dpll);
314 		if ((temp & DPLL_VCO_ENABLE) != 0) {
315 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
316 			REG_READ(map->dpll);
317 		}
318 
319 		/* Wait for the clocks to turn off. */
320 		udelay(150);
321 		break;
322 	}
323 
324 	if (IS_CDV(dev))
325 		dev_priv->ops->update_wm(dev, crtc);
326 
327 	/* Set FIFO watermarks */
328 	REG_WRITE(DSPARB, 0x3F3E);
329 }
330 
331 int gma_crtc_cursor_set(struct drm_crtc *crtc,
332 			struct drm_file *file_priv,
333 			uint32_t handle,
334 			uint32_t width, uint32_t height)
335 {
336 	struct drm_device *dev = crtc->dev;
337 	struct drm_psb_private *dev_priv = dev->dev_private;
338 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
339 	int pipe = gma_crtc->pipe;
340 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
341 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
342 	uint32_t temp;
343 	size_t addr = 0;
344 	struct gtt_range *gt;
345 	struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
346 	struct drm_gem_object *obj;
347 	void *tmp_dst, *tmp_src;
348 	int ret = 0, i, cursor_pages;
349 
350 	/* If we didn't get a handle then turn the cursor off */
351 	if (!handle) {
352 		temp = CURSOR_MODE_DISABLE;
353 		if (gma_power_begin(dev, false)) {
354 			REG_WRITE(control, temp);
355 			REG_WRITE(base, 0);
356 			gma_power_end(dev);
357 		}
358 
359 		/* Unpin the old GEM object */
360 		if (gma_crtc->cursor_obj) {
361 			gt = container_of(gma_crtc->cursor_obj,
362 					  struct gtt_range, gem);
363 			psb_gtt_unpin(gt);
364 			drm_gem_object_unreference_unlocked(gma_crtc->cursor_obj);
365 			gma_crtc->cursor_obj = NULL;
366 		}
367 		return 0;
368 	}
369 
370 	/* Currently we only support 64x64 cursors */
371 	if (width != 64 || height != 64) {
372 		dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
373 		return -EINVAL;
374 	}
375 
376 	obj = drm_gem_object_lookup(file_priv, handle);
377 	if (!obj) {
378 		ret = -ENOENT;
379 		goto unlock;
380 	}
381 
382 	if (obj->size < width * height * 4) {
383 		dev_dbg(dev->dev, "Buffer is too small\n");
384 		ret = -ENOMEM;
385 		goto unref_cursor;
386 	}
387 
388 	gt = container_of(obj, struct gtt_range, gem);
389 
390 	/* Pin the memory into the GTT */
391 	ret = psb_gtt_pin(gt);
392 	if (ret) {
393 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
394 		goto unref_cursor;
395 	}
396 
397 	if (dev_priv->ops->cursor_needs_phys) {
398 		if (cursor_gt == NULL) {
399 			dev_err(dev->dev, "No hardware cursor mem available");
400 			ret = -ENOMEM;
401 			goto unref_cursor;
402 		}
403 
404 		/* Prevent overflow */
405 		if (gt->npage > 4)
406 			cursor_pages = 4;
407 		else
408 			cursor_pages = gt->npage;
409 
410 		/* Copy the cursor to cursor mem */
411 		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
412 		for (i = 0; i < cursor_pages; i++) {
413 			tmp_src = kmap(gt->pages[i]);
414 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
415 			kunmap(gt->pages[i]);
416 			tmp_dst += PAGE_SIZE;
417 		}
418 
419 		addr = gma_crtc->cursor_addr;
420 	} else {
421 		addr = gt->offset;
422 		gma_crtc->cursor_addr = addr;
423 	}
424 
425 	temp = 0;
426 	/* set the pipe for the cursor */
427 	temp |= (pipe << 28);
428 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
429 
430 	if (gma_power_begin(dev, false)) {
431 		REG_WRITE(control, temp);
432 		REG_WRITE(base, addr);
433 		gma_power_end(dev);
434 	}
435 
436 	/* unpin the old bo */
437 	if (gma_crtc->cursor_obj) {
438 		gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
439 		psb_gtt_unpin(gt);
440 		drm_gem_object_unreference_unlocked(gma_crtc->cursor_obj);
441 	}
442 
443 	gma_crtc->cursor_obj = obj;
444 unlock:
445 	return ret;
446 
447 unref_cursor:
448 	drm_gem_object_unreference_unlocked(obj);
449 	return ret;
450 }
451 
452 int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
453 {
454 	struct drm_device *dev = crtc->dev;
455 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
456 	int pipe = gma_crtc->pipe;
457 	uint32_t temp = 0;
458 	uint32_t addr;
459 
460 	if (x < 0) {
461 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
462 		x = -x;
463 	}
464 	if (y < 0) {
465 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
466 		y = -y;
467 	}
468 
469 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
470 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
471 
472 	addr = gma_crtc->cursor_addr;
473 
474 	if (gma_power_begin(dev, false)) {
475 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
476 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
477 		gma_power_end(dev);
478 	}
479 	return 0;
480 }
481 
482 void gma_crtc_prepare(struct drm_crtc *crtc)
483 {
484 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
485 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
486 }
487 
488 void gma_crtc_commit(struct drm_crtc *crtc)
489 {
490 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
491 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
492 }
493 
494 void gma_crtc_disable(struct drm_crtc *crtc)
495 {
496 	struct gtt_range *gt;
497 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
498 
499 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
500 
501 	if (crtc->primary->fb) {
502 		gt = to_psb_fb(crtc->primary->fb)->gtt;
503 		psb_gtt_unpin(gt);
504 	}
505 }
506 
507 void gma_crtc_destroy(struct drm_crtc *crtc)
508 {
509 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
510 
511 	kfree(gma_crtc->crtc_state);
512 	drm_crtc_cleanup(crtc);
513 	kfree(gma_crtc);
514 }
515 
516 int gma_crtc_set_config(struct drm_mode_set *set)
517 {
518 	struct drm_device *dev = set->crtc->dev;
519 	struct drm_psb_private *dev_priv = dev->dev_private;
520 	int ret;
521 
522 	if (!dev_priv->rpm_enabled)
523 		return drm_crtc_helper_set_config(set);
524 
525 	pm_runtime_forbid(&dev->pdev->dev);
526 	ret = drm_crtc_helper_set_config(set);
527 	pm_runtime_allow(&dev->pdev->dev);
528 
529 	return ret;
530 }
531 
532 /**
533  * Save HW states of given crtc
534  */
535 void gma_crtc_save(struct drm_crtc *crtc)
536 {
537 	struct drm_device *dev = crtc->dev;
538 	struct drm_psb_private *dev_priv = dev->dev_private;
539 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
540 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
541 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
542 	uint32_t palette_reg;
543 	int i;
544 
545 	if (!crtc_state) {
546 		dev_err(dev->dev, "No CRTC state found\n");
547 		return;
548 	}
549 
550 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
551 	crtc_state->savePIPECONF = REG_READ(map->conf);
552 	crtc_state->savePIPESRC = REG_READ(map->src);
553 	crtc_state->saveFP0 = REG_READ(map->fp0);
554 	crtc_state->saveFP1 = REG_READ(map->fp1);
555 	crtc_state->saveDPLL = REG_READ(map->dpll);
556 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
557 	crtc_state->saveHBLANK = REG_READ(map->hblank);
558 	crtc_state->saveHSYNC = REG_READ(map->hsync);
559 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
560 	crtc_state->saveVBLANK = REG_READ(map->vblank);
561 	crtc_state->saveVSYNC = REG_READ(map->vsync);
562 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
563 
564 	/* NOTE: DSPSIZE DSPPOS only for psb */
565 	crtc_state->saveDSPSIZE = REG_READ(map->size);
566 	crtc_state->saveDSPPOS = REG_READ(map->pos);
567 
568 	crtc_state->saveDSPBASE = REG_READ(map->base);
569 
570 	palette_reg = map->palette;
571 	for (i = 0; i < 256; ++i)
572 		crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
573 }
574 
575 /**
576  * Restore HW states of given crtc
577  */
578 void gma_crtc_restore(struct drm_crtc *crtc)
579 {
580 	struct drm_device *dev = crtc->dev;
581 	struct drm_psb_private *dev_priv = dev->dev_private;
582 	struct gma_crtc *gma_crtc =  to_gma_crtc(crtc);
583 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
584 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
585 	uint32_t palette_reg;
586 	int i;
587 
588 	if (!crtc_state) {
589 		dev_err(dev->dev, "No crtc state\n");
590 		return;
591 	}
592 
593 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
594 		REG_WRITE(map->dpll,
595 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
596 		REG_READ(map->dpll);
597 		udelay(150);
598 	}
599 
600 	REG_WRITE(map->fp0, crtc_state->saveFP0);
601 	REG_READ(map->fp0);
602 
603 	REG_WRITE(map->fp1, crtc_state->saveFP1);
604 	REG_READ(map->fp1);
605 
606 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
607 	REG_READ(map->dpll);
608 	udelay(150);
609 
610 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
611 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
612 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
613 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
614 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
615 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
616 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
617 
618 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
619 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
620 
621 	REG_WRITE(map->src, crtc_state->savePIPESRC);
622 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
623 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
624 
625 	gma_wait_for_vblank(dev);
626 
627 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
628 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
629 
630 	gma_wait_for_vblank(dev);
631 
632 	palette_reg = map->palette;
633 	for (i = 0; i < 256; ++i)
634 		REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
635 }
636 
637 void gma_encoder_prepare(struct drm_encoder *encoder)
638 {
639 	const struct drm_encoder_helper_funcs *encoder_funcs =
640 	    encoder->helper_private;
641 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
642 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
643 }
644 
645 void gma_encoder_commit(struct drm_encoder *encoder)
646 {
647 	const struct drm_encoder_helper_funcs *encoder_funcs =
648 	    encoder->helper_private;
649 	/* lvds has its own version of commit see psb_intel_lvds_commit */
650 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
651 }
652 
653 void gma_encoder_destroy(struct drm_encoder *encoder)
654 {
655 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
656 
657 	drm_encoder_cleanup(encoder);
658 	kfree(intel_encoder);
659 }
660 
661 /* Currently there is only a 1:1 mapping of encoders and connectors */
662 struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
663 {
664 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
665 
666 	return &gma_encoder->base;
667 }
668 
669 void gma_connector_attach_encoder(struct gma_connector *connector,
670 				  struct gma_encoder *encoder)
671 {
672 	connector->encoder = encoder;
673 	drm_mode_connector_attach_encoder(&connector->base,
674 					  &encoder->base);
675 }
676 
677 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
678 
679 bool gma_pll_is_valid(struct drm_crtc *crtc,
680 		      const struct gma_limit_t *limit,
681 		      struct gma_clock_t *clock)
682 {
683 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
684 		GMA_PLL_INVALID("p1 out of range");
685 	if (clock->p < limit->p.min || limit->p.max < clock->p)
686 		GMA_PLL_INVALID("p out of range");
687 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
688 		GMA_PLL_INVALID("m2 out of range");
689 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
690 		GMA_PLL_INVALID("m1 out of range");
691 	/* On CDV m1 is always 0 */
692 	if (clock->m1 <= clock->m2 && clock->m1 != 0)
693 		GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
694 	if (clock->m < limit->m.min || limit->m.max < clock->m)
695 		GMA_PLL_INVALID("m out of range");
696 	if (clock->n < limit->n.min || limit->n.max < clock->n)
697 		GMA_PLL_INVALID("n out of range");
698 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
699 		GMA_PLL_INVALID("vco out of range");
700 	/* XXX: We may need to be checking "Dot clock"
701 	 * depending on the multiplier, connector, etc.,
702 	 * rather than just a single range.
703 	 */
704 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
705 		GMA_PLL_INVALID("dot out of range");
706 
707 	return true;
708 }
709 
710 bool gma_find_best_pll(const struct gma_limit_t *limit,
711 		       struct drm_crtc *crtc, int target, int refclk,
712 		       struct gma_clock_t *best_clock)
713 {
714 	struct drm_device *dev = crtc->dev;
715 	const struct gma_clock_funcs *clock_funcs =
716 						to_gma_crtc(crtc)->clock_funcs;
717 	struct gma_clock_t clock;
718 	int err = target;
719 
720 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
721 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
722 		/*
723 		 * For LVDS, if the panel is on, just rely on its current
724 		 * settings for dual-channel.  We haven't figured out how to
725 		 * reliably set up different single/dual channel state, if we
726 		 * even can.
727 		 */
728 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
729 		    LVDS_CLKB_POWER_UP)
730 			clock.p2 = limit->p2.p2_fast;
731 		else
732 			clock.p2 = limit->p2.p2_slow;
733 	} else {
734 		if (target < limit->p2.dot_limit)
735 			clock.p2 = limit->p2.p2_slow;
736 		else
737 			clock.p2 = limit->p2.p2_fast;
738 	}
739 
740 	memset(best_clock, 0, sizeof(*best_clock));
741 
742 	/* m1 is always 0 on CDV so the outmost loop will run just once */
743 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
744 		for (clock.m2 = limit->m2.min;
745 		     (clock.m2 < clock.m1 || clock.m1 == 0) &&
746 		      clock.m2 <= limit->m2.max; clock.m2++) {
747 			for (clock.n = limit->n.min;
748 			     clock.n <= limit->n.max; clock.n++) {
749 				for (clock.p1 = limit->p1.min;
750 				     clock.p1 <= limit->p1.max;
751 				     clock.p1++) {
752 					int this_err;
753 
754 					clock_funcs->clock(refclk, &clock);
755 
756 					if (!clock_funcs->pll_is_valid(crtc,
757 								limit, &clock))
758 						continue;
759 
760 					this_err = abs(clock.dot - target);
761 					if (this_err < err) {
762 						*best_clock = clock;
763 						err = this_err;
764 					}
765 				}
766 			}
767 		}
768 	}
769 
770 	return err != target;
771 }
772