xref: /openbmc/linux/drivers/gpu/drm/gma500/gma_display.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Copyright © 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *	Eric Anholt <eric@anholt.net>
19  *	Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
20  */
21 
22 #include <drm/drmP.h>
23 #include "gma_display.h"
24 #include "psb_intel_drv.h"
25 #include "psb_intel_reg.h"
26 #include "psb_drv.h"
27 #include "framebuffer.h"
28 
29 /**
30  * Returns whether any output on the specified pipe is of the specified type
31  */
32 bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
33 {
34 	struct drm_device *dev = crtc->dev;
35 	struct drm_mode_config *mode_config = &dev->mode_config;
36 	struct drm_connector *l_entry;
37 
38 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
39 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
40 			struct gma_encoder *gma_encoder =
41 						gma_attached_encoder(l_entry);
42 			if (gma_encoder->type == type)
43 				return true;
44 		}
45 	}
46 
47 	return false;
48 }
49 
50 void gma_wait_for_vblank(struct drm_device *dev)
51 {
52 	/* Wait for 20ms, i.e. one cycle at 50hz. */
53 	mdelay(20);
54 }
55 
56 int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
57 		      struct drm_framebuffer *old_fb)
58 {
59 	struct drm_device *dev = crtc->dev;
60 	struct drm_psb_private *dev_priv = dev->dev_private;
61 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
62 	struct psb_framebuffer *psbfb = to_psb_fb(crtc->primary->fb);
63 	int pipe = gma_crtc->pipe;
64 	const struct psb_offset *map = &dev_priv->regmap[pipe];
65 	unsigned long start, offset;
66 	u32 dspcntr;
67 	int ret = 0;
68 
69 	if (!gma_power_begin(dev, true))
70 		return 0;
71 
72 	/* no fb bound */
73 	if (!crtc->primary->fb) {
74 		dev_err(dev->dev, "No FB bound\n");
75 		goto gma_pipe_cleaner;
76 	}
77 
78 	/* We are displaying this buffer, make sure it is actually loaded
79 	   into the GTT */
80 	ret = psb_gtt_pin(psbfb->gtt);
81 	if (ret < 0)
82 		goto gma_pipe_set_base_exit;
83 	start = psbfb->gtt->offset;
84 	offset = y * crtc->primary->fb->pitches[0] + x * (crtc->primary->fb->bits_per_pixel / 8);
85 
86 	REG_WRITE(map->stride, crtc->primary->fb->pitches[0]);
87 
88 	dspcntr = REG_READ(map->cntr);
89 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
90 
91 	switch (crtc->primary->fb->bits_per_pixel) {
92 	case 8:
93 		dspcntr |= DISPPLANE_8BPP;
94 		break;
95 	case 16:
96 		if (crtc->primary->fb->depth == 15)
97 			dspcntr |= DISPPLANE_15_16BPP;
98 		else
99 			dspcntr |= DISPPLANE_16BPP;
100 		break;
101 	case 24:
102 	case 32:
103 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
104 		break;
105 	default:
106 		dev_err(dev->dev, "Unknown color depth\n");
107 		ret = -EINVAL;
108 		goto gma_pipe_set_base_exit;
109 	}
110 	REG_WRITE(map->cntr, dspcntr);
111 
112 	dev_dbg(dev->dev,
113 		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
114 
115 	/* FIXME: Investigate whether this really is the base for psb and why
116 		  the linear offset is named base for the other chips. map->surf
117 		  should be the base and map->linoff the offset for all chips */
118 	if (IS_PSB(dev)) {
119 		REG_WRITE(map->base, offset + start);
120 		REG_READ(map->base);
121 	} else {
122 		REG_WRITE(map->base, offset);
123 		REG_READ(map->base);
124 		REG_WRITE(map->surf, start);
125 		REG_READ(map->surf);
126 	}
127 
128 gma_pipe_cleaner:
129 	/* If there was a previous display we can now unpin it */
130 	if (old_fb)
131 		psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
132 
133 gma_pipe_set_base_exit:
134 	gma_power_end(dev);
135 	return ret;
136 }
137 
138 /* Loads the palette/gamma unit for the CRTC with the prepared values */
139 void gma_crtc_load_lut(struct drm_crtc *crtc)
140 {
141 	struct drm_device *dev = crtc->dev;
142 	struct drm_psb_private *dev_priv = dev->dev_private;
143 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
144 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
145 	int palreg = map->palette;
146 	int i;
147 
148 	/* The clocks have to be on to load the palette. */
149 	if (!crtc->enabled)
150 		return;
151 
152 	if (gma_power_begin(dev, false)) {
153 		for (i = 0; i < 256; i++) {
154 			REG_WRITE(palreg + 4 * i,
155 				  ((gma_crtc->lut_r[i] +
156 				  gma_crtc->lut_adj[i]) << 16) |
157 				  ((gma_crtc->lut_g[i] +
158 				  gma_crtc->lut_adj[i]) << 8) |
159 				  (gma_crtc->lut_b[i] +
160 				  gma_crtc->lut_adj[i]));
161 		}
162 		gma_power_end(dev);
163 	} else {
164 		for (i = 0; i < 256; i++) {
165 			/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
166 			dev_priv->regs.pipe[0].palette[i] =
167 				  ((gma_crtc->lut_r[i] +
168 				  gma_crtc->lut_adj[i]) << 16) |
169 				  ((gma_crtc->lut_g[i] +
170 				  gma_crtc->lut_adj[i]) << 8) |
171 				  (gma_crtc->lut_b[i] +
172 				  gma_crtc->lut_adj[i]);
173 		}
174 
175 	}
176 }
177 
178 void gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
179 			u32 start, u32 size)
180 {
181 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
182 	int i;
183 	int end = (start + size > 256) ? 256 : start + size;
184 
185 	for (i = start; i < end; i++) {
186 		gma_crtc->lut_r[i] = red[i] >> 8;
187 		gma_crtc->lut_g[i] = green[i] >> 8;
188 		gma_crtc->lut_b[i] = blue[i] >> 8;
189 	}
190 
191 	gma_crtc_load_lut(crtc);
192 }
193 
194 /**
195  * Sets the power management mode of the pipe and plane.
196  *
197  * This code should probably grow support for turning the cursor off and back
198  * on appropriately at the same time as we're turning the pipe off/on.
199  */
200 void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
201 {
202 	struct drm_device *dev = crtc->dev;
203 	struct drm_psb_private *dev_priv = dev->dev_private;
204 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
205 	int pipe = gma_crtc->pipe;
206 	const struct psb_offset *map = &dev_priv->regmap[pipe];
207 	u32 temp;
208 
209 	/* XXX: When our outputs are all unaware of DPMS modes other than off
210 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
211 	 */
212 
213 	if (IS_CDV(dev))
214 		dev_priv->ops->disable_sr(dev);
215 
216 	switch (mode) {
217 	case DRM_MODE_DPMS_ON:
218 	case DRM_MODE_DPMS_STANDBY:
219 	case DRM_MODE_DPMS_SUSPEND:
220 		if (gma_crtc->active)
221 			break;
222 
223 		gma_crtc->active = true;
224 
225 		/* Enable the DPLL */
226 		temp = REG_READ(map->dpll);
227 		if ((temp & DPLL_VCO_ENABLE) == 0) {
228 			REG_WRITE(map->dpll, temp);
229 			REG_READ(map->dpll);
230 			/* Wait for the clocks to stabilize. */
231 			udelay(150);
232 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
233 			REG_READ(map->dpll);
234 			/* Wait for the clocks to stabilize. */
235 			udelay(150);
236 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
237 			REG_READ(map->dpll);
238 			/* Wait for the clocks to stabilize. */
239 			udelay(150);
240 		}
241 
242 		/* Enable the plane */
243 		temp = REG_READ(map->cntr);
244 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
245 			REG_WRITE(map->cntr,
246 				  temp | DISPLAY_PLANE_ENABLE);
247 			/* Flush the plane changes */
248 			REG_WRITE(map->base, REG_READ(map->base));
249 		}
250 
251 		udelay(150);
252 
253 		/* Enable the pipe */
254 		temp = REG_READ(map->conf);
255 		if ((temp & PIPEACONF_ENABLE) == 0)
256 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
257 
258 		temp = REG_READ(map->status);
259 		temp &= ~(0xFFFF);
260 		temp |= PIPE_FIFO_UNDERRUN;
261 		REG_WRITE(map->status, temp);
262 		REG_READ(map->status);
263 
264 		gma_crtc_load_lut(crtc);
265 
266 		/* Give the overlay scaler a chance to enable
267 		 * if it's on this pipe */
268 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
269 		break;
270 	case DRM_MODE_DPMS_OFF:
271 		if (!gma_crtc->active)
272 			break;
273 
274 		gma_crtc->active = false;
275 
276 		/* Give the overlay scaler a chance to disable
277 		 * if it's on this pipe */
278 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
279 
280 		/* Disable the VGA plane that we never use */
281 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
282 
283 		/* Turn off vblank interrupts */
284 		drm_vblank_off(dev, pipe);
285 
286 		/* Wait for vblank for the disable to take effect */
287 		gma_wait_for_vblank(dev);
288 
289 		/* Disable plane */
290 		temp = REG_READ(map->cntr);
291 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
292 			REG_WRITE(map->cntr,
293 				  temp & ~DISPLAY_PLANE_ENABLE);
294 			/* Flush the plane changes */
295 			REG_WRITE(map->base, REG_READ(map->base));
296 			REG_READ(map->base);
297 		}
298 
299 		/* Disable pipe */
300 		temp = REG_READ(map->conf);
301 		if ((temp & PIPEACONF_ENABLE) != 0) {
302 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
303 			REG_READ(map->conf);
304 		}
305 
306 		/* Wait for vblank for the disable to take effect. */
307 		gma_wait_for_vblank(dev);
308 
309 		udelay(150);
310 
311 		/* Disable DPLL */
312 		temp = REG_READ(map->dpll);
313 		if ((temp & DPLL_VCO_ENABLE) != 0) {
314 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
315 			REG_READ(map->dpll);
316 		}
317 
318 		/* Wait for the clocks to turn off. */
319 		udelay(150);
320 		break;
321 	}
322 
323 	if (IS_CDV(dev))
324 		dev_priv->ops->update_wm(dev, crtc);
325 
326 	/* Set FIFO watermarks */
327 	REG_WRITE(DSPARB, 0x3F3E);
328 }
329 
330 int gma_crtc_cursor_set(struct drm_crtc *crtc,
331 			struct drm_file *file_priv,
332 			uint32_t handle,
333 			uint32_t width, uint32_t height)
334 {
335 	struct drm_device *dev = crtc->dev;
336 	struct drm_psb_private *dev_priv = dev->dev_private;
337 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
338 	int pipe = gma_crtc->pipe;
339 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
340 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
341 	uint32_t temp;
342 	size_t addr = 0;
343 	struct gtt_range *gt;
344 	struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
345 	struct drm_gem_object *obj;
346 	void *tmp_dst, *tmp_src;
347 	int ret = 0, i, cursor_pages;
348 
349 	/* If we didn't get a handle then turn the cursor off */
350 	if (!handle) {
351 		temp = CURSOR_MODE_DISABLE;
352 		mutex_lock(&dev->struct_mutex);
353 
354 		if (gma_power_begin(dev, false)) {
355 			REG_WRITE(control, temp);
356 			REG_WRITE(base, 0);
357 			gma_power_end(dev);
358 		}
359 
360 		/* Unpin the old GEM object */
361 		if (gma_crtc->cursor_obj) {
362 			gt = container_of(gma_crtc->cursor_obj,
363 					  struct gtt_range, gem);
364 			psb_gtt_unpin(gt);
365 			drm_gem_object_unreference(gma_crtc->cursor_obj);
366 			gma_crtc->cursor_obj = NULL;
367 		}
368 
369 		mutex_unlock(&dev->struct_mutex);
370 		return 0;
371 	}
372 
373 	/* Currently we only support 64x64 cursors */
374 	if (width != 64 || height != 64) {
375 		dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
376 		return -EINVAL;
377 	}
378 
379 	mutex_lock(&dev->struct_mutex);
380 	obj = drm_gem_object_lookup(dev, file_priv, handle);
381 	if (!obj) {
382 		ret = -ENOENT;
383 		goto unlock;
384 	}
385 
386 	if (obj->size < width * height * 4) {
387 		dev_dbg(dev->dev, "Buffer is too small\n");
388 		ret = -ENOMEM;
389 		goto unref_cursor;
390 	}
391 
392 	gt = container_of(obj, struct gtt_range, gem);
393 
394 	/* Pin the memory into the GTT */
395 	ret = psb_gtt_pin(gt);
396 	if (ret) {
397 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
398 		goto unref_cursor;
399 	}
400 
401 	if (dev_priv->ops->cursor_needs_phys) {
402 		if (cursor_gt == NULL) {
403 			dev_err(dev->dev, "No hardware cursor mem available");
404 			ret = -ENOMEM;
405 			goto unref_cursor;
406 		}
407 
408 		/* Prevent overflow */
409 		if (gt->npage > 4)
410 			cursor_pages = 4;
411 		else
412 			cursor_pages = gt->npage;
413 
414 		/* Copy the cursor to cursor mem */
415 		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
416 		for (i = 0; i < cursor_pages; i++) {
417 			tmp_src = kmap(gt->pages[i]);
418 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
419 			kunmap(gt->pages[i]);
420 			tmp_dst += PAGE_SIZE;
421 		}
422 
423 		addr = gma_crtc->cursor_addr;
424 	} else {
425 		addr = gt->offset;
426 		gma_crtc->cursor_addr = addr;
427 	}
428 
429 	temp = 0;
430 	/* set the pipe for the cursor */
431 	temp |= (pipe << 28);
432 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
433 
434 	if (gma_power_begin(dev, false)) {
435 		REG_WRITE(control, temp);
436 		REG_WRITE(base, addr);
437 		gma_power_end(dev);
438 	}
439 
440 	/* unpin the old bo */
441 	if (gma_crtc->cursor_obj) {
442 		gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
443 		psb_gtt_unpin(gt);
444 		drm_gem_object_unreference(gma_crtc->cursor_obj);
445 	}
446 
447 	gma_crtc->cursor_obj = obj;
448 unlock:
449 	mutex_unlock(&dev->struct_mutex);
450 	return ret;
451 
452 unref_cursor:
453 	drm_gem_object_unreference(obj);
454 	mutex_unlock(&dev->struct_mutex);
455 	return ret;
456 }
457 
458 int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
459 {
460 	struct drm_device *dev = crtc->dev;
461 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
462 	int pipe = gma_crtc->pipe;
463 	uint32_t temp = 0;
464 	uint32_t addr;
465 
466 	if (x < 0) {
467 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
468 		x = -x;
469 	}
470 	if (y < 0) {
471 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
472 		y = -y;
473 	}
474 
475 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
476 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
477 
478 	addr = gma_crtc->cursor_addr;
479 
480 	if (gma_power_begin(dev, false)) {
481 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
482 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
483 		gma_power_end(dev);
484 	}
485 	return 0;
486 }
487 
488 bool gma_encoder_mode_fixup(struct drm_encoder *encoder,
489 			    const struct drm_display_mode *mode,
490 			    struct drm_display_mode *adjusted_mode)
491 {
492 	return true;
493 }
494 
495 bool gma_crtc_mode_fixup(struct drm_crtc *crtc,
496 			 const struct drm_display_mode *mode,
497 			 struct drm_display_mode *adjusted_mode)
498 {
499 	return true;
500 }
501 
502 void gma_crtc_prepare(struct drm_crtc *crtc)
503 {
504 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
505 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
506 }
507 
508 void gma_crtc_commit(struct drm_crtc *crtc)
509 {
510 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
511 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
512 }
513 
514 void gma_crtc_disable(struct drm_crtc *crtc)
515 {
516 	struct gtt_range *gt;
517 	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
518 
519 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
520 
521 	if (crtc->primary->fb) {
522 		gt = to_psb_fb(crtc->primary->fb)->gtt;
523 		psb_gtt_unpin(gt);
524 	}
525 }
526 
527 void gma_crtc_destroy(struct drm_crtc *crtc)
528 {
529 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
530 
531 	kfree(gma_crtc->crtc_state);
532 	drm_crtc_cleanup(crtc);
533 	kfree(gma_crtc);
534 }
535 
536 int gma_crtc_set_config(struct drm_mode_set *set)
537 {
538 	struct drm_device *dev = set->crtc->dev;
539 	struct drm_psb_private *dev_priv = dev->dev_private;
540 	int ret;
541 
542 	if (!dev_priv->rpm_enabled)
543 		return drm_crtc_helper_set_config(set);
544 
545 	pm_runtime_forbid(&dev->pdev->dev);
546 	ret = drm_crtc_helper_set_config(set);
547 	pm_runtime_allow(&dev->pdev->dev);
548 
549 	return ret;
550 }
551 
552 /**
553  * Save HW states of given crtc
554  */
555 void gma_crtc_save(struct drm_crtc *crtc)
556 {
557 	struct drm_device *dev = crtc->dev;
558 	struct drm_psb_private *dev_priv = dev->dev_private;
559 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
560 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
561 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
562 	uint32_t palette_reg;
563 	int i;
564 
565 	if (!crtc_state) {
566 		dev_err(dev->dev, "No CRTC state found\n");
567 		return;
568 	}
569 
570 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
571 	crtc_state->savePIPECONF = REG_READ(map->conf);
572 	crtc_state->savePIPESRC = REG_READ(map->src);
573 	crtc_state->saveFP0 = REG_READ(map->fp0);
574 	crtc_state->saveFP1 = REG_READ(map->fp1);
575 	crtc_state->saveDPLL = REG_READ(map->dpll);
576 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
577 	crtc_state->saveHBLANK = REG_READ(map->hblank);
578 	crtc_state->saveHSYNC = REG_READ(map->hsync);
579 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
580 	crtc_state->saveVBLANK = REG_READ(map->vblank);
581 	crtc_state->saveVSYNC = REG_READ(map->vsync);
582 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
583 
584 	/* NOTE: DSPSIZE DSPPOS only for psb */
585 	crtc_state->saveDSPSIZE = REG_READ(map->size);
586 	crtc_state->saveDSPPOS = REG_READ(map->pos);
587 
588 	crtc_state->saveDSPBASE = REG_READ(map->base);
589 
590 	palette_reg = map->palette;
591 	for (i = 0; i < 256; ++i)
592 		crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
593 }
594 
595 /**
596  * Restore HW states of given crtc
597  */
598 void gma_crtc_restore(struct drm_crtc *crtc)
599 {
600 	struct drm_device *dev = crtc->dev;
601 	struct drm_psb_private *dev_priv = dev->dev_private;
602 	struct gma_crtc *gma_crtc =  to_gma_crtc(crtc);
603 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
604 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
605 	uint32_t palette_reg;
606 	int i;
607 
608 	if (!crtc_state) {
609 		dev_err(dev->dev, "No crtc state\n");
610 		return;
611 	}
612 
613 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
614 		REG_WRITE(map->dpll,
615 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
616 		REG_READ(map->dpll);
617 		udelay(150);
618 	}
619 
620 	REG_WRITE(map->fp0, crtc_state->saveFP0);
621 	REG_READ(map->fp0);
622 
623 	REG_WRITE(map->fp1, crtc_state->saveFP1);
624 	REG_READ(map->fp1);
625 
626 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
627 	REG_READ(map->dpll);
628 	udelay(150);
629 
630 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
631 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
632 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
633 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
634 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
635 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
636 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
637 
638 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
639 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
640 
641 	REG_WRITE(map->src, crtc_state->savePIPESRC);
642 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
643 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
644 
645 	gma_wait_for_vblank(dev);
646 
647 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
648 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
649 
650 	gma_wait_for_vblank(dev);
651 
652 	palette_reg = map->palette;
653 	for (i = 0; i < 256; ++i)
654 		REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
655 }
656 
657 void gma_encoder_prepare(struct drm_encoder *encoder)
658 {
659 	struct drm_encoder_helper_funcs *encoder_funcs =
660 	    encoder->helper_private;
661 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
662 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
663 }
664 
665 void gma_encoder_commit(struct drm_encoder *encoder)
666 {
667 	struct drm_encoder_helper_funcs *encoder_funcs =
668 	    encoder->helper_private;
669 	/* lvds has its own version of commit see psb_intel_lvds_commit */
670 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
671 }
672 
673 void gma_encoder_destroy(struct drm_encoder *encoder)
674 {
675 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
676 
677 	drm_encoder_cleanup(encoder);
678 	kfree(intel_encoder);
679 }
680 
681 /* Currently there is only a 1:1 mapping of encoders and connectors */
682 struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
683 {
684 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
685 
686 	return &gma_encoder->base;
687 }
688 
689 void gma_connector_attach_encoder(struct gma_connector *connector,
690 				  struct gma_encoder *encoder)
691 {
692 	connector->encoder = encoder;
693 	drm_mode_connector_attach_encoder(&connector->base,
694 					  &encoder->base);
695 }
696 
697 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
698 
699 bool gma_pll_is_valid(struct drm_crtc *crtc,
700 		      const struct gma_limit_t *limit,
701 		      struct gma_clock_t *clock)
702 {
703 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
704 		GMA_PLL_INVALID("p1 out of range");
705 	if (clock->p < limit->p.min || limit->p.max < clock->p)
706 		GMA_PLL_INVALID("p out of range");
707 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
708 		GMA_PLL_INVALID("m2 out of range");
709 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
710 		GMA_PLL_INVALID("m1 out of range");
711 	/* On CDV m1 is always 0 */
712 	if (clock->m1 <= clock->m2 && clock->m1 != 0)
713 		GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
714 	if (clock->m < limit->m.min || limit->m.max < clock->m)
715 		GMA_PLL_INVALID("m out of range");
716 	if (clock->n < limit->n.min || limit->n.max < clock->n)
717 		GMA_PLL_INVALID("n out of range");
718 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
719 		GMA_PLL_INVALID("vco out of range");
720 	/* XXX: We may need to be checking "Dot clock"
721 	 * depending on the multiplier, connector, etc.,
722 	 * rather than just a single range.
723 	 */
724 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
725 		GMA_PLL_INVALID("dot out of range");
726 
727 	return true;
728 }
729 
730 bool gma_find_best_pll(const struct gma_limit_t *limit,
731 		       struct drm_crtc *crtc, int target, int refclk,
732 		       struct gma_clock_t *best_clock)
733 {
734 	struct drm_device *dev = crtc->dev;
735 	const struct gma_clock_funcs *clock_funcs =
736 						to_gma_crtc(crtc)->clock_funcs;
737 	struct gma_clock_t clock;
738 	int err = target;
739 
740 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
741 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
742 		/*
743 		 * For LVDS, if the panel is on, just rely on its current
744 		 * settings for dual-channel.  We haven't figured out how to
745 		 * reliably set up different single/dual channel state, if we
746 		 * even can.
747 		 */
748 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
749 		    LVDS_CLKB_POWER_UP)
750 			clock.p2 = limit->p2.p2_fast;
751 		else
752 			clock.p2 = limit->p2.p2_slow;
753 	} else {
754 		if (target < limit->p2.dot_limit)
755 			clock.p2 = limit->p2.p2_slow;
756 		else
757 			clock.p2 = limit->p2.p2_fast;
758 	}
759 
760 	memset(best_clock, 0, sizeof(*best_clock));
761 
762 	/* m1 is always 0 on CDV so the outmost loop will run just once */
763 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
764 		for (clock.m2 = limit->m2.min;
765 		     (clock.m2 < clock.m1 || clock.m1 == 0) &&
766 		      clock.m2 <= limit->m2.max; clock.m2++) {
767 			for (clock.n = limit->n.min;
768 			     clock.n <= limit->n.max; clock.n++) {
769 				for (clock.p1 = limit->p1.min;
770 				     clock.p1 <= limit->p1.max;
771 				     clock.p1++) {
772 					int this_err;
773 
774 					clock_funcs->clock(refclk, &clock);
775 
776 					if (!clock_funcs->pll_is_valid(crtc,
777 								limit, &clock))
778 						continue;
779 
780 					this_err = abs(clock.dot - target);
781 					if (this_err < err) {
782 						*best_clock = clock;
783 						err = this_err;
784 					}
785 				}
786 			}
787 		}
788 	}
789 
790 	return err != target;
791 }
792