xref: /openbmc/linux/drivers/gpu/drm/gma500/gma_display.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  *	Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/highmem.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_fourcc.h>
15 #include <drm/drm_vblank.h>
16 
17 #include "framebuffer.h"
18 #include "gma_display.h"
19 #include "psb_drv.h"
20 #include "psb_intel_drv.h"
21 #include "psb_intel_reg.h"
22 
23 /**
24  * Returns whether any output on the specified pipe is of the specified type
25  */
26 bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
27 {
28 	struct drm_device *dev = crtc->dev;
29 	struct drm_mode_config *mode_config = &dev->mode_config;
30 	struct drm_connector *l_entry;
31 
32 	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
33 		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
34 			struct gma_encoder *gma_encoder =
35 						gma_attached_encoder(l_entry);
36 			if (gma_encoder->type == type)
37 				return true;
38 		}
39 	}
40 
41 	return false;
42 }
43 
44 void gma_wait_for_vblank(struct drm_device *dev)
45 {
46 	/* Wait for 20ms, i.e. one cycle at 50hz. */
47 	mdelay(20);
48 }
49 
50 int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y,
51 		      struct drm_framebuffer *old_fb)
52 {
53 	struct drm_device *dev = crtc->dev;
54 	struct drm_psb_private *dev_priv = dev->dev_private;
55 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
56 	struct drm_framebuffer *fb = crtc->primary->fb;
57 	struct gtt_range *gtt;
58 	int pipe = gma_crtc->pipe;
59 	const struct psb_offset *map = &dev_priv->regmap[pipe];
60 	unsigned long start, offset;
61 	u32 dspcntr;
62 	int ret = 0;
63 
64 	if (!gma_power_begin(dev, true))
65 		return 0;
66 
67 	/* no fb bound */
68 	if (!fb) {
69 		dev_err(dev->dev, "No FB bound\n");
70 		goto gma_pipe_cleaner;
71 	}
72 
73 	gtt = to_gtt_range(fb->obj[0]);
74 
75 	/* We are displaying this buffer, make sure it is actually loaded
76 	   into the GTT */
77 	ret = psb_gtt_pin(gtt);
78 	if (ret < 0)
79 		goto gma_pipe_set_base_exit;
80 	start = gtt->offset;
81 	offset = y * fb->pitches[0] + x * fb->format->cpp[0];
82 
83 	REG_WRITE(map->stride, fb->pitches[0]);
84 
85 	dspcntr = REG_READ(map->cntr);
86 	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
87 
88 	switch (fb->format->cpp[0] * 8) {
89 	case 8:
90 		dspcntr |= DISPPLANE_8BPP;
91 		break;
92 	case 16:
93 		if (fb->format->depth == 15)
94 			dspcntr |= DISPPLANE_15_16BPP;
95 		else
96 			dspcntr |= DISPPLANE_16BPP;
97 		break;
98 	case 24:
99 	case 32:
100 		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
101 		break;
102 	default:
103 		dev_err(dev->dev, "Unknown color depth\n");
104 		ret = -EINVAL;
105 		goto gma_pipe_set_base_exit;
106 	}
107 	REG_WRITE(map->cntr, dspcntr);
108 
109 	dev_dbg(dev->dev,
110 		"Writing base %08lX %08lX %d %d\n", start, offset, x, y);
111 
112 	/* FIXME: Investigate whether this really is the base for psb and why
113 		  the linear offset is named base for the other chips. map->surf
114 		  should be the base and map->linoff the offset for all chips */
115 	if (IS_PSB(dev)) {
116 		REG_WRITE(map->base, offset + start);
117 		REG_READ(map->base);
118 	} else {
119 		REG_WRITE(map->base, offset);
120 		REG_READ(map->base);
121 		REG_WRITE(map->surf, start);
122 		REG_READ(map->surf);
123 	}
124 
125 gma_pipe_cleaner:
126 	/* If there was a previous display we can now unpin it */
127 	if (old_fb)
128 		psb_gtt_unpin(to_gtt_range(old_fb->obj[0]));
129 
130 gma_pipe_set_base_exit:
131 	gma_power_end(dev);
132 	return ret;
133 }
134 
135 /* Loads the palette/gamma unit for the CRTC with the prepared values */
136 void gma_crtc_load_lut(struct drm_crtc *crtc)
137 {
138 	struct drm_device *dev = crtc->dev;
139 	struct drm_psb_private *dev_priv = dev->dev_private;
140 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
141 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
142 	int palreg = map->palette;
143 	u16 *r, *g, *b;
144 	int i;
145 
146 	/* The clocks have to be on to load the palette. */
147 	if (!crtc->enabled)
148 		return;
149 
150 	r = crtc->gamma_store;
151 	g = r + crtc->gamma_size;
152 	b = g + crtc->gamma_size;
153 
154 	if (gma_power_begin(dev, false)) {
155 		for (i = 0; i < 256; i++) {
156 			REG_WRITE(palreg + 4 * i,
157 				  (((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
158 				  (((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
159 				  ((*b++ >> 8) + gma_crtc->lut_adj[i]));
160 		}
161 		gma_power_end(dev);
162 	} else {
163 		for (i = 0; i < 256; i++) {
164 			/* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */
165 			dev_priv->regs.pipe[0].palette[i] =
166 				(((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) |
167 				(((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) |
168 				((*b++ >> 8) + gma_crtc->lut_adj[i]);
169 		}
170 
171 	}
172 }
173 
174 int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue,
175 		       u32 size,
176 		       struct drm_modeset_acquire_ctx *ctx)
177 {
178 	gma_crtc_load_lut(crtc);
179 
180 	return 0;
181 }
182 
183 /**
184  * Sets the power management mode of the pipe and plane.
185  *
186  * This code should probably grow support for turning the cursor off and back
187  * on appropriately at the same time as we're turning the pipe off/on.
188  */
189 void gma_crtc_dpms(struct drm_crtc *crtc, int mode)
190 {
191 	struct drm_device *dev = crtc->dev;
192 	struct drm_psb_private *dev_priv = dev->dev_private;
193 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
194 	int pipe = gma_crtc->pipe;
195 	const struct psb_offset *map = &dev_priv->regmap[pipe];
196 	u32 temp;
197 
198 	/* XXX: When our outputs are all unaware of DPMS modes other than off
199 	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
200 	 */
201 
202 	if (IS_CDV(dev))
203 		dev_priv->ops->disable_sr(dev);
204 
205 	switch (mode) {
206 	case DRM_MODE_DPMS_ON:
207 	case DRM_MODE_DPMS_STANDBY:
208 	case DRM_MODE_DPMS_SUSPEND:
209 		if (gma_crtc->active)
210 			break;
211 
212 		gma_crtc->active = true;
213 
214 		/* Enable the DPLL */
215 		temp = REG_READ(map->dpll);
216 		if ((temp & DPLL_VCO_ENABLE) == 0) {
217 			REG_WRITE(map->dpll, temp);
218 			REG_READ(map->dpll);
219 			/* Wait for the clocks to stabilize. */
220 			udelay(150);
221 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
222 			REG_READ(map->dpll);
223 			/* Wait for the clocks to stabilize. */
224 			udelay(150);
225 			REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
226 			REG_READ(map->dpll);
227 			/* Wait for the clocks to stabilize. */
228 			udelay(150);
229 		}
230 
231 		/* Enable the plane */
232 		temp = REG_READ(map->cntr);
233 		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
234 			REG_WRITE(map->cntr,
235 				  temp | DISPLAY_PLANE_ENABLE);
236 			/* Flush the plane changes */
237 			REG_WRITE(map->base, REG_READ(map->base));
238 		}
239 
240 		udelay(150);
241 
242 		/* Enable the pipe */
243 		temp = REG_READ(map->conf);
244 		if ((temp & PIPEACONF_ENABLE) == 0)
245 			REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
246 
247 		temp = REG_READ(map->status);
248 		temp &= ~(0xFFFF);
249 		temp |= PIPE_FIFO_UNDERRUN;
250 		REG_WRITE(map->status, temp);
251 		REG_READ(map->status);
252 
253 		gma_crtc_load_lut(crtc);
254 
255 		/* Give the overlay scaler a chance to enable
256 		 * if it's on this pipe */
257 		/* psb_intel_crtc_dpms_video(crtc, true); TODO */
258 		break;
259 	case DRM_MODE_DPMS_OFF:
260 		if (!gma_crtc->active)
261 			break;
262 
263 		gma_crtc->active = false;
264 
265 		/* Give the overlay scaler a chance to disable
266 		 * if it's on this pipe */
267 		/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
268 
269 		/* Disable the VGA plane that we never use */
270 		REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
271 
272 		/* Turn off vblank interrupts */
273 		drm_crtc_vblank_off(crtc);
274 
275 		/* Wait for vblank for the disable to take effect */
276 		gma_wait_for_vblank(dev);
277 
278 		/* Disable plane */
279 		temp = REG_READ(map->cntr);
280 		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
281 			REG_WRITE(map->cntr,
282 				  temp & ~DISPLAY_PLANE_ENABLE);
283 			/* Flush the plane changes */
284 			REG_WRITE(map->base, REG_READ(map->base));
285 			REG_READ(map->base);
286 		}
287 
288 		/* Disable pipe */
289 		temp = REG_READ(map->conf);
290 		if ((temp & PIPEACONF_ENABLE) != 0) {
291 			REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
292 			REG_READ(map->conf);
293 		}
294 
295 		/* Wait for vblank for the disable to take effect. */
296 		gma_wait_for_vblank(dev);
297 
298 		udelay(150);
299 
300 		/* Disable DPLL */
301 		temp = REG_READ(map->dpll);
302 		if ((temp & DPLL_VCO_ENABLE) != 0) {
303 			REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
304 			REG_READ(map->dpll);
305 		}
306 
307 		/* Wait for the clocks to turn off. */
308 		udelay(150);
309 		break;
310 	}
311 
312 	if (IS_CDV(dev))
313 		dev_priv->ops->update_wm(dev, crtc);
314 
315 	/* Set FIFO watermarks */
316 	REG_WRITE(DSPARB, 0x3F3E);
317 }
318 
319 int gma_crtc_cursor_set(struct drm_crtc *crtc,
320 			struct drm_file *file_priv,
321 			uint32_t handle,
322 			uint32_t width, uint32_t height)
323 {
324 	struct drm_device *dev = crtc->dev;
325 	struct drm_psb_private *dev_priv = dev->dev_private;
326 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
327 	int pipe = gma_crtc->pipe;
328 	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
329 	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
330 	uint32_t temp;
331 	size_t addr = 0;
332 	struct gtt_range *gt;
333 	struct gtt_range *cursor_gt = gma_crtc->cursor_gt;
334 	struct drm_gem_object *obj;
335 	void *tmp_dst, *tmp_src;
336 	int ret = 0, i, cursor_pages;
337 
338 	/* If we didn't get a handle then turn the cursor off */
339 	if (!handle) {
340 		temp = CURSOR_MODE_DISABLE;
341 		if (gma_power_begin(dev, false)) {
342 			REG_WRITE(control, temp);
343 			REG_WRITE(base, 0);
344 			gma_power_end(dev);
345 		}
346 
347 		/* Unpin the old GEM object */
348 		if (gma_crtc->cursor_obj) {
349 			gt = container_of(gma_crtc->cursor_obj,
350 					  struct gtt_range, gem);
351 			psb_gtt_unpin(gt);
352 			drm_gem_object_put_unlocked(gma_crtc->cursor_obj);
353 			gma_crtc->cursor_obj = NULL;
354 		}
355 		return 0;
356 	}
357 
358 	/* Currently we only support 64x64 cursors */
359 	if (width != 64 || height != 64) {
360 		dev_dbg(dev->dev, "We currently only support 64x64 cursors\n");
361 		return -EINVAL;
362 	}
363 
364 	obj = drm_gem_object_lookup(file_priv, handle);
365 	if (!obj) {
366 		ret = -ENOENT;
367 		goto unlock;
368 	}
369 
370 	if (obj->size < width * height * 4) {
371 		dev_dbg(dev->dev, "Buffer is too small\n");
372 		ret = -ENOMEM;
373 		goto unref_cursor;
374 	}
375 
376 	gt = container_of(obj, struct gtt_range, gem);
377 
378 	/* Pin the memory into the GTT */
379 	ret = psb_gtt_pin(gt);
380 	if (ret) {
381 		dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
382 		goto unref_cursor;
383 	}
384 
385 	if (dev_priv->ops->cursor_needs_phys) {
386 		if (cursor_gt == NULL) {
387 			dev_err(dev->dev, "No hardware cursor mem available");
388 			ret = -ENOMEM;
389 			goto unref_cursor;
390 		}
391 
392 		/* Prevent overflow */
393 		if (gt->npage > 4)
394 			cursor_pages = 4;
395 		else
396 			cursor_pages = gt->npage;
397 
398 		/* Copy the cursor to cursor mem */
399 		tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
400 		for (i = 0; i < cursor_pages; i++) {
401 			tmp_src = kmap(gt->pages[i]);
402 			memcpy(tmp_dst, tmp_src, PAGE_SIZE);
403 			kunmap(gt->pages[i]);
404 			tmp_dst += PAGE_SIZE;
405 		}
406 
407 		addr = gma_crtc->cursor_addr;
408 	} else {
409 		addr = gt->offset;
410 		gma_crtc->cursor_addr = addr;
411 	}
412 
413 	temp = 0;
414 	/* set the pipe for the cursor */
415 	temp |= (pipe << 28);
416 	temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
417 
418 	if (gma_power_begin(dev, false)) {
419 		REG_WRITE(control, temp);
420 		REG_WRITE(base, addr);
421 		gma_power_end(dev);
422 	}
423 
424 	/* unpin the old bo */
425 	if (gma_crtc->cursor_obj) {
426 		gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem);
427 		psb_gtt_unpin(gt);
428 		drm_gem_object_put_unlocked(gma_crtc->cursor_obj);
429 	}
430 
431 	gma_crtc->cursor_obj = obj;
432 unlock:
433 	return ret;
434 
435 unref_cursor:
436 	drm_gem_object_put_unlocked(obj);
437 	return ret;
438 }
439 
440 int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
441 {
442 	struct drm_device *dev = crtc->dev;
443 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
444 	int pipe = gma_crtc->pipe;
445 	uint32_t temp = 0;
446 	uint32_t addr;
447 
448 	if (x < 0) {
449 		temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
450 		x = -x;
451 	}
452 	if (y < 0) {
453 		temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
454 		y = -y;
455 	}
456 
457 	temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
458 	temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
459 
460 	addr = gma_crtc->cursor_addr;
461 
462 	if (gma_power_begin(dev, false)) {
463 		REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
464 		REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
465 		gma_power_end(dev);
466 	}
467 	return 0;
468 }
469 
470 void gma_crtc_prepare(struct drm_crtc *crtc)
471 {
472 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
473 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
474 }
475 
476 void gma_crtc_commit(struct drm_crtc *crtc)
477 {
478 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
479 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
480 }
481 
482 void gma_crtc_disable(struct drm_crtc *crtc)
483 {
484 	struct gtt_range *gt;
485 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
486 
487 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
488 
489 	if (crtc->primary->fb) {
490 		gt = to_gtt_range(crtc->primary->fb->obj[0]);
491 		psb_gtt_unpin(gt);
492 	}
493 }
494 
495 void gma_crtc_destroy(struct drm_crtc *crtc)
496 {
497 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
498 
499 	kfree(gma_crtc->crtc_state);
500 	drm_crtc_cleanup(crtc);
501 	kfree(gma_crtc);
502 }
503 
504 int gma_crtc_set_config(struct drm_mode_set *set,
505 			struct drm_modeset_acquire_ctx *ctx)
506 {
507 	struct drm_device *dev = set->crtc->dev;
508 	struct drm_psb_private *dev_priv = dev->dev_private;
509 	int ret;
510 
511 	if (!dev_priv->rpm_enabled)
512 		return drm_crtc_helper_set_config(set, ctx);
513 
514 	pm_runtime_forbid(&dev->pdev->dev);
515 	ret = drm_crtc_helper_set_config(set, ctx);
516 	pm_runtime_allow(&dev->pdev->dev);
517 
518 	return ret;
519 }
520 
521 /**
522  * Save HW states of given crtc
523  */
524 void gma_crtc_save(struct drm_crtc *crtc)
525 {
526 	struct drm_device *dev = crtc->dev;
527 	struct drm_psb_private *dev_priv = dev->dev_private;
528 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
529 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
530 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
531 	uint32_t palette_reg;
532 	int i;
533 
534 	if (!crtc_state) {
535 		dev_err(dev->dev, "No CRTC state found\n");
536 		return;
537 	}
538 
539 	crtc_state->saveDSPCNTR = REG_READ(map->cntr);
540 	crtc_state->savePIPECONF = REG_READ(map->conf);
541 	crtc_state->savePIPESRC = REG_READ(map->src);
542 	crtc_state->saveFP0 = REG_READ(map->fp0);
543 	crtc_state->saveFP1 = REG_READ(map->fp1);
544 	crtc_state->saveDPLL = REG_READ(map->dpll);
545 	crtc_state->saveHTOTAL = REG_READ(map->htotal);
546 	crtc_state->saveHBLANK = REG_READ(map->hblank);
547 	crtc_state->saveHSYNC = REG_READ(map->hsync);
548 	crtc_state->saveVTOTAL = REG_READ(map->vtotal);
549 	crtc_state->saveVBLANK = REG_READ(map->vblank);
550 	crtc_state->saveVSYNC = REG_READ(map->vsync);
551 	crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
552 
553 	/* NOTE: DSPSIZE DSPPOS only for psb */
554 	crtc_state->saveDSPSIZE = REG_READ(map->size);
555 	crtc_state->saveDSPPOS = REG_READ(map->pos);
556 
557 	crtc_state->saveDSPBASE = REG_READ(map->base);
558 
559 	palette_reg = map->palette;
560 	for (i = 0; i < 256; ++i)
561 		crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2));
562 }
563 
564 /**
565  * Restore HW states of given crtc
566  */
567 void gma_crtc_restore(struct drm_crtc *crtc)
568 {
569 	struct drm_device *dev = crtc->dev;
570 	struct drm_psb_private *dev_priv = dev->dev_private;
571 	struct gma_crtc *gma_crtc =  to_gma_crtc(crtc);
572 	struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state;
573 	const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe];
574 	uint32_t palette_reg;
575 	int i;
576 
577 	if (!crtc_state) {
578 		dev_err(dev->dev, "No crtc state\n");
579 		return;
580 	}
581 
582 	if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
583 		REG_WRITE(map->dpll,
584 			crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
585 		REG_READ(map->dpll);
586 		udelay(150);
587 	}
588 
589 	REG_WRITE(map->fp0, crtc_state->saveFP0);
590 	REG_READ(map->fp0);
591 
592 	REG_WRITE(map->fp1, crtc_state->saveFP1);
593 	REG_READ(map->fp1);
594 
595 	REG_WRITE(map->dpll, crtc_state->saveDPLL);
596 	REG_READ(map->dpll);
597 	udelay(150);
598 
599 	REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
600 	REG_WRITE(map->hblank, crtc_state->saveHBLANK);
601 	REG_WRITE(map->hsync, crtc_state->saveHSYNC);
602 	REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
603 	REG_WRITE(map->vblank, crtc_state->saveVBLANK);
604 	REG_WRITE(map->vsync, crtc_state->saveVSYNC);
605 	REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
606 
607 	REG_WRITE(map->size, crtc_state->saveDSPSIZE);
608 	REG_WRITE(map->pos, crtc_state->saveDSPPOS);
609 
610 	REG_WRITE(map->src, crtc_state->savePIPESRC);
611 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
612 	REG_WRITE(map->conf, crtc_state->savePIPECONF);
613 
614 	gma_wait_for_vblank(dev);
615 
616 	REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
617 	REG_WRITE(map->base, crtc_state->saveDSPBASE);
618 
619 	gma_wait_for_vblank(dev);
620 
621 	palette_reg = map->palette;
622 	for (i = 0; i < 256; ++i)
623 		REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]);
624 }
625 
626 void gma_encoder_prepare(struct drm_encoder *encoder)
627 {
628 	const struct drm_encoder_helper_funcs *encoder_funcs =
629 	    encoder->helper_private;
630 	/* lvds has its own version of prepare see psb_intel_lvds_prepare */
631 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
632 }
633 
634 void gma_encoder_commit(struct drm_encoder *encoder)
635 {
636 	const struct drm_encoder_helper_funcs *encoder_funcs =
637 	    encoder->helper_private;
638 	/* lvds has its own version of commit see psb_intel_lvds_commit */
639 	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
640 }
641 
642 void gma_encoder_destroy(struct drm_encoder *encoder)
643 {
644 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
645 
646 	drm_encoder_cleanup(encoder);
647 	kfree(intel_encoder);
648 }
649 
650 /* Currently there is only a 1:1 mapping of encoders and connectors */
651 struct drm_encoder *gma_best_encoder(struct drm_connector *connector)
652 {
653 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
654 
655 	return &gma_encoder->base;
656 }
657 
658 void gma_connector_attach_encoder(struct gma_connector *connector,
659 				  struct gma_encoder *encoder)
660 {
661 	connector->encoder = encoder;
662 	drm_connector_attach_encoder(&connector->base,
663 					  &encoder->base);
664 }
665 
666 #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }
667 
668 bool gma_pll_is_valid(struct drm_crtc *crtc,
669 		      const struct gma_limit_t *limit,
670 		      struct gma_clock_t *clock)
671 {
672 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
673 		GMA_PLL_INVALID("p1 out of range");
674 	if (clock->p < limit->p.min || limit->p.max < clock->p)
675 		GMA_PLL_INVALID("p out of range");
676 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
677 		GMA_PLL_INVALID("m2 out of range");
678 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
679 		GMA_PLL_INVALID("m1 out of range");
680 	/* On CDV m1 is always 0 */
681 	if (clock->m1 <= clock->m2 && clock->m1 != 0)
682 		GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
683 	if (clock->m < limit->m.min || limit->m.max < clock->m)
684 		GMA_PLL_INVALID("m out of range");
685 	if (clock->n < limit->n.min || limit->n.max < clock->n)
686 		GMA_PLL_INVALID("n out of range");
687 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
688 		GMA_PLL_INVALID("vco out of range");
689 	/* XXX: We may need to be checking "Dot clock"
690 	 * depending on the multiplier, connector, etc.,
691 	 * rather than just a single range.
692 	 */
693 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
694 		GMA_PLL_INVALID("dot out of range");
695 
696 	return true;
697 }
698 
699 bool gma_find_best_pll(const struct gma_limit_t *limit,
700 		       struct drm_crtc *crtc, int target, int refclk,
701 		       struct gma_clock_t *best_clock)
702 {
703 	struct drm_device *dev = crtc->dev;
704 	const struct gma_clock_funcs *clock_funcs =
705 						to_gma_crtc(crtc)->clock_funcs;
706 	struct gma_clock_t clock;
707 	int err = target;
708 
709 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
710 	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
711 		/*
712 		 * For LVDS, if the panel is on, just rely on its current
713 		 * settings for dual-channel.  We haven't figured out how to
714 		 * reliably set up different single/dual channel state, if we
715 		 * even can.
716 		 */
717 		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
718 		    LVDS_CLKB_POWER_UP)
719 			clock.p2 = limit->p2.p2_fast;
720 		else
721 			clock.p2 = limit->p2.p2_slow;
722 	} else {
723 		if (target < limit->p2.dot_limit)
724 			clock.p2 = limit->p2.p2_slow;
725 		else
726 			clock.p2 = limit->p2.p2_fast;
727 	}
728 
729 	memset(best_clock, 0, sizeof(*best_clock));
730 
731 	/* m1 is always 0 on CDV so the outmost loop will run just once */
732 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
733 		for (clock.m2 = limit->m2.min;
734 		     (clock.m2 < clock.m1 || clock.m1 == 0) &&
735 		      clock.m2 <= limit->m2.max; clock.m2++) {
736 			for (clock.n = limit->n.min;
737 			     clock.n <= limit->n.max; clock.n++) {
738 				for (clock.p1 = limit->p1.min;
739 				     clock.p1 <= limit->p1.max;
740 				     clock.p1++) {
741 					int this_err;
742 
743 					clock_funcs->clock(refclk, &clock);
744 
745 					if (!clock_funcs->pll_is_valid(crtc,
746 								limit, &clock))
747 						continue;
748 
749 					this_err = abs(clock.dot - target);
750 					if (this_err < err) {
751 						*best_clock = clock;
752 						err = this_err;
753 					}
754 				}
755 			}
756 		}
757 	}
758 
759 	return err != target;
760 }
761