1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include <drm/drm_dp_helper.h>
38 
39 #define _wait_for(COND, MS, W) ({ \
40         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
41         int ret__ = 0;                                                  \
42         while (! (COND)) {                                              \
43                 if (time_after(jiffies, timeout__)) {                   \
44                         ret__ = -ETIMEDOUT;                             \
45                         break;                                          \
46                 }                                                       \
47                 if (W && !in_dbg_master()) msleep(W);                   \
48         }                                                               \
49         ret__;                                                          \
50 })
51 
52 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
53 
54 #define DP_LINK_STATUS_SIZE	6
55 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
56 
57 #define DP_LINK_CONFIGURATION_SIZE	9
58 
59 #define CDV_FAST_LINK_TRAIN	1
60 
61 struct cdv_intel_dp {
62 	uint32_t output_reg;
63 	uint32_t DP;
64 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
65 	bool has_audio;
66 	int force_audio;
67 	uint32_t color_range;
68 	uint8_t link_bw;
69 	uint8_t lane_count;
70 	uint8_t dpcd[4];
71 	struct psb_intel_encoder *encoder;
72 	struct i2c_adapter adapter;
73 	struct i2c_algo_dp_aux_data algo;
74 	uint8_t	train_set[4];
75 	uint8_t link_status[DP_LINK_STATUS_SIZE];
76 	int panel_power_up_delay;
77 	int panel_power_down_delay;
78 	int panel_power_cycle_delay;
79 	int backlight_on_delay;
80 	int backlight_off_delay;
81 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
82 	bool panel_on;
83 };
84 
85 struct ddi_regoff {
86 	uint32_t	PreEmph1;
87 	uint32_t	PreEmph2;
88 	uint32_t	VSwing1;
89 	uint32_t	VSwing2;
90 	uint32_t	VSwing3;
91 	uint32_t	VSwing4;
92 	uint32_t	VSwing5;
93 };
94 
95 static struct ddi_regoff ddi_DP_train_table[] = {
96 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
97 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
98 	.VSwing5 = 0x8158,},
99 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
100 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
101 	.VSwing5 = 0x8258,},
102 };
103 
104 static uint32_t dp_vswing_premph_table[] = {
105         0x55338954,	0x4000,
106         0x554d8954,	0x2000,
107         0x55668954,	0,
108         0x559ac0d4,	0x6000,
109 };
110 /**
111  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
112  * @intel_dp: DP struct
113  *
114  * If a CPU or PCH DP output is attached to an eDP panel, this function
115  * will return true, and false otherwise.
116  */
117 static bool is_edp(struct psb_intel_encoder *encoder)
118 {
119 	return encoder->type == INTEL_OUTPUT_EDP;
120 }
121 
122 
123 static void cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder);
124 static void cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder);
125 static void cdv_intel_dp_link_down(struct psb_intel_encoder *encoder);
126 
127 static int
128 cdv_intel_dp_max_lane_count(struct psb_intel_encoder *encoder)
129 {
130 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
131 	int max_lane_count = 4;
132 
133 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
134 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
135 		switch (max_lane_count) {
136 		case 1: case 2: case 4:
137 			break;
138 		default:
139 			max_lane_count = 4;
140 		}
141 	}
142 	return max_lane_count;
143 }
144 
145 static int
146 cdv_intel_dp_max_link_bw(struct psb_intel_encoder *encoder)
147 {
148 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
149 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
150 
151 	switch (max_link_bw) {
152 	case DP_LINK_BW_1_62:
153 	case DP_LINK_BW_2_7:
154 		break;
155 	default:
156 		max_link_bw = DP_LINK_BW_1_62;
157 		break;
158 	}
159 	return max_link_bw;
160 }
161 
162 static int
163 cdv_intel_dp_link_clock(uint8_t link_bw)
164 {
165 	if (link_bw == DP_LINK_BW_2_7)
166 		return 270000;
167 	else
168 		return 162000;
169 }
170 
171 static int
172 cdv_intel_dp_link_required(int pixel_clock, int bpp)
173 {
174 	return (pixel_clock * bpp + 7) / 8;
175 }
176 
177 static int
178 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
179 {
180 	return (max_link_clock * max_lanes * 19) / 20;
181 }
182 
183 static void cdv_intel_edp_panel_vdd_on(struct psb_intel_encoder *intel_encoder)
184 {
185 	struct drm_device *dev = intel_encoder->base.dev;
186 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
187 	u32 pp;
188 
189 	if (intel_dp->panel_on) {
190 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
191 		return;
192 	}
193 	DRM_DEBUG_KMS("\n");
194 
195 	pp = REG_READ(PP_CONTROL);
196 
197 	pp |= EDP_FORCE_VDD;
198 	REG_WRITE(PP_CONTROL, pp);
199 	REG_READ(PP_CONTROL);
200 	msleep(intel_dp->panel_power_up_delay);
201 }
202 
203 static void cdv_intel_edp_panel_vdd_off(struct psb_intel_encoder *intel_encoder)
204 {
205 	struct drm_device *dev = intel_encoder->base.dev;
206 	u32 pp;
207 
208 	DRM_DEBUG_KMS("\n");
209 	pp = REG_READ(PP_CONTROL);
210 
211 	pp &= ~EDP_FORCE_VDD;
212 	REG_WRITE(PP_CONTROL, pp);
213 	REG_READ(PP_CONTROL);
214 
215 }
216 
217 /* Returns true if the panel was already on when called */
218 static bool cdv_intel_edp_panel_on(struct psb_intel_encoder *intel_encoder)
219 {
220 	struct drm_device *dev = intel_encoder->base.dev;
221 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
222 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
223 
224 	if (intel_dp->panel_on)
225 		return true;
226 
227 	DRM_DEBUG_KMS("\n");
228 	pp = REG_READ(PP_CONTROL);
229 	pp &= ~PANEL_UNLOCK_MASK;
230 
231 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
232 	REG_WRITE(PP_CONTROL, pp);
233 	REG_READ(PP_CONTROL);
234 
235 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
236 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
237 		intel_dp->panel_on = false;
238 	} else
239 		intel_dp->panel_on = true;
240 	msleep(intel_dp->panel_power_up_delay);
241 
242 	return false;
243 }
244 
245 static void cdv_intel_edp_panel_off (struct psb_intel_encoder *intel_encoder)
246 {
247 	struct drm_device *dev = intel_encoder->base.dev;
248 	u32 pp, idle_off_mask = PP_ON ;
249 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
250 
251 	DRM_DEBUG_KMS("\n");
252 
253 	pp = REG_READ(PP_CONTROL);
254 
255 	if ((pp & POWER_TARGET_ON) == 0)
256 		return;
257 
258 	intel_dp->panel_on = false;
259 	pp &= ~PANEL_UNLOCK_MASK;
260 	/* ILK workaround: disable reset around power sequence */
261 
262 	pp &= ~POWER_TARGET_ON;
263 	pp &= ~EDP_FORCE_VDD;
264 	pp &= ~EDP_BLC_ENABLE;
265 	REG_WRITE(PP_CONTROL, pp);
266 	REG_READ(PP_CONTROL);
267 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
268 
269 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
270 		DRM_DEBUG_KMS("Error in turning off Panel\n");
271 	}
272 
273 	msleep(intel_dp->panel_power_cycle_delay);
274 	DRM_DEBUG_KMS("Over\n");
275 }
276 
277 static void cdv_intel_edp_backlight_on (struct psb_intel_encoder *intel_encoder)
278 {
279 	struct drm_device *dev = intel_encoder->base.dev;
280 	u32 pp;
281 
282 	DRM_DEBUG_KMS("\n");
283 	/*
284 	 * If we enable the backlight right away following a panel power
285 	 * on, we may see slight flicker as the panel syncs with the eDP
286 	 * link.  So delay a bit to make sure the image is solid before
287 	 * allowing it to appear.
288 	 */
289 	msleep(300);
290 	pp = REG_READ(PP_CONTROL);
291 
292 	pp |= EDP_BLC_ENABLE;
293 	REG_WRITE(PP_CONTROL, pp);
294 	gma_backlight_enable(dev);
295 }
296 
297 static void cdv_intel_edp_backlight_off (struct psb_intel_encoder *intel_encoder)
298 {
299 	struct drm_device *dev = intel_encoder->base.dev;
300 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
301 	u32 pp;
302 
303 	DRM_DEBUG_KMS("\n");
304 	gma_backlight_disable(dev);
305 	msleep(10);
306 	pp = REG_READ(PP_CONTROL);
307 
308 	pp &= ~EDP_BLC_ENABLE;
309 	REG_WRITE(PP_CONTROL, pp);
310 	msleep(intel_dp->backlight_off_delay);
311 }
312 
313 static int
314 cdv_intel_dp_mode_valid(struct drm_connector *connector,
315 		    struct drm_display_mode *mode)
316 {
317 	struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
318 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
319 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
320 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
321 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
322 
323 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
324 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
325 			return MODE_PANEL;
326 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
327 			return MODE_PANEL;
328 	}
329 
330 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
331 	   which are outside spec tolerances but somehow work by magic */
332 	if (!is_edp(encoder) &&
333 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
334 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
335 		return MODE_CLOCK_HIGH;
336 
337 	if (is_edp(encoder)) {
338 	    if (cdv_intel_dp_link_required(mode->clock, 24)
339 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
340 		return MODE_CLOCK_HIGH;
341 
342 	}
343 	if (mode->clock < 10000)
344 		return MODE_CLOCK_LOW;
345 
346 	return MODE_OK;
347 }
348 
349 static uint32_t
350 pack_aux(uint8_t *src, int src_bytes)
351 {
352 	int	i;
353 	uint32_t v = 0;
354 
355 	if (src_bytes > 4)
356 		src_bytes = 4;
357 	for (i = 0; i < src_bytes; i++)
358 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
359 	return v;
360 }
361 
362 static void
363 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
364 {
365 	int i;
366 	if (dst_bytes > 4)
367 		dst_bytes = 4;
368 	for (i = 0; i < dst_bytes; i++)
369 		dst[i] = src >> ((3-i) * 8);
370 }
371 
372 static int
373 cdv_intel_dp_aux_ch(struct psb_intel_encoder *encoder,
374 		uint8_t *send, int send_bytes,
375 		uint8_t *recv, int recv_size)
376 {
377 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
378 	uint32_t output_reg = intel_dp->output_reg;
379 	struct drm_device *dev = encoder->base.dev;
380 	uint32_t ch_ctl = output_reg + 0x10;
381 	uint32_t ch_data = ch_ctl + 4;
382 	int i;
383 	int recv_bytes;
384 	uint32_t status;
385 	uint32_t aux_clock_divider;
386 	int try, precharge;
387 
388 	/* The clock divider is based off the hrawclk,
389 	 * and would like to run at 2MHz. So, take the
390 	 * hrawclk value and divide by 2 and use that
391 	 * On CDV platform it uses 200MHz as hrawclk.
392 	 *
393 	 */
394 	aux_clock_divider = 200 / 2;
395 
396 	precharge = 4;
397 	if (is_edp(encoder))
398 		precharge = 10;
399 
400 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
401 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
402 			  REG_READ(ch_ctl));
403 		return -EBUSY;
404 	}
405 
406 	/* Must try at least 3 times according to DP spec */
407 	for (try = 0; try < 5; try++) {
408 		/* Load the send data into the aux channel data registers */
409 		for (i = 0; i < send_bytes; i += 4)
410 			REG_WRITE(ch_data + i,
411 				   pack_aux(send + i, send_bytes - i));
412 
413 		/* Send the command and wait for it to complete */
414 		REG_WRITE(ch_ctl,
415 			   DP_AUX_CH_CTL_SEND_BUSY |
416 			   DP_AUX_CH_CTL_TIME_OUT_400us |
417 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
418 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
419 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
420 			   DP_AUX_CH_CTL_DONE |
421 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
422 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
423 		for (;;) {
424 			status = REG_READ(ch_ctl);
425 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
426 				break;
427 			udelay(100);
428 		}
429 
430 		/* Clear done status and any errors */
431 		REG_WRITE(ch_ctl,
432 			   status |
433 			   DP_AUX_CH_CTL_DONE |
434 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
435 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
436 		if (status & DP_AUX_CH_CTL_DONE)
437 			break;
438 	}
439 
440 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
441 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
442 		return -EBUSY;
443 	}
444 
445 	/* Check for timeout or receive error.
446 	 * Timeouts occur when the sink is not connected
447 	 */
448 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
449 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
450 		return -EIO;
451 	}
452 
453 	/* Timeouts occur when the device isn't connected, so they're
454 	 * "normal" -- don't fill the kernel log with these */
455 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
456 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
457 		return -ETIMEDOUT;
458 	}
459 
460 	/* Unload any bytes sent back from the other side */
461 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
462 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
463 	if (recv_bytes > recv_size)
464 		recv_bytes = recv_size;
465 
466 	for (i = 0; i < recv_bytes; i += 4)
467 		unpack_aux(REG_READ(ch_data + i),
468 			   recv + i, recv_bytes - i);
469 
470 	return recv_bytes;
471 }
472 
473 /* Write data to the aux channel in native mode */
474 static int
475 cdv_intel_dp_aux_native_write(struct psb_intel_encoder *encoder,
476 			  uint16_t address, uint8_t *send, int send_bytes)
477 {
478 	int ret;
479 	uint8_t	msg[20];
480 	int msg_bytes;
481 	uint8_t	ack;
482 
483 	if (send_bytes > 16)
484 		return -1;
485 	msg[0] = AUX_NATIVE_WRITE << 4;
486 	msg[1] = address >> 8;
487 	msg[2] = address & 0xff;
488 	msg[3] = send_bytes - 1;
489 	memcpy(&msg[4], send, send_bytes);
490 	msg_bytes = send_bytes + 4;
491 	for (;;) {
492 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
493 		if (ret < 0)
494 			return ret;
495 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
496 			break;
497 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
498 			udelay(100);
499 		else
500 			return -EIO;
501 	}
502 	return send_bytes;
503 }
504 
505 /* Write a single byte to the aux channel in native mode */
506 static int
507 cdv_intel_dp_aux_native_write_1(struct psb_intel_encoder *encoder,
508 			    uint16_t address, uint8_t byte)
509 {
510 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
511 }
512 
513 /* read bytes from a native aux channel */
514 static int
515 cdv_intel_dp_aux_native_read(struct psb_intel_encoder *encoder,
516 			 uint16_t address, uint8_t *recv, int recv_bytes)
517 {
518 	uint8_t msg[4];
519 	int msg_bytes;
520 	uint8_t reply[20];
521 	int reply_bytes;
522 	uint8_t ack;
523 	int ret;
524 
525 	msg[0] = AUX_NATIVE_READ << 4;
526 	msg[1] = address >> 8;
527 	msg[2] = address & 0xff;
528 	msg[3] = recv_bytes - 1;
529 
530 	msg_bytes = 4;
531 	reply_bytes = recv_bytes + 1;
532 
533 	for (;;) {
534 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
535 				      reply, reply_bytes);
536 		if (ret == 0)
537 			return -EPROTO;
538 		if (ret < 0)
539 			return ret;
540 		ack = reply[0];
541 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
542 			memcpy(recv, reply + 1, ret - 1);
543 			return ret - 1;
544 		}
545 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
546 			udelay(100);
547 		else
548 			return -EIO;
549 	}
550 }
551 
552 static int
553 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
554 		    uint8_t write_byte, uint8_t *read_byte)
555 {
556 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
557 	struct cdv_intel_dp *intel_dp = container_of(adapter,
558 						struct cdv_intel_dp,
559 						adapter);
560 	struct psb_intel_encoder *encoder = intel_dp->encoder;
561 	uint16_t address = algo_data->address;
562 	uint8_t msg[5];
563 	uint8_t reply[2];
564 	unsigned retry;
565 	int msg_bytes;
566 	int reply_bytes;
567 	int ret;
568 
569 	/* Set up the command byte */
570 	if (mode & MODE_I2C_READ)
571 		msg[0] = AUX_I2C_READ << 4;
572 	else
573 		msg[0] = AUX_I2C_WRITE << 4;
574 
575 	if (!(mode & MODE_I2C_STOP))
576 		msg[0] |= AUX_I2C_MOT << 4;
577 
578 	msg[1] = address >> 8;
579 	msg[2] = address;
580 
581 	switch (mode) {
582 	case MODE_I2C_WRITE:
583 		msg[3] = 0;
584 		msg[4] = write_byte;
585 		msg_bytes = 5;
586 		reply_bytes = 1;
587 		break;
588 	case MODE_I2C_READ:
589 		msg[3] = 0;
590 		msg_bytes = 4;
591 		reply_bytes = 2;
592 		break;
593 	default:
594 		msg_bytes = 3;
595 		reply_bytes = 1;
596 		break;
597 	}
598 
599 	for (retry = 0; retry < 5; retry++) {
600 		ret = cdv_intel_dp_aux_ch(encoder,
601 				      msg, msg_bytes,
602 				      reply, reply_bytes);
603 		if (ret < 0) {
604 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
605 			return ret;
606 		}
607 
608 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
609 		case AUX_NATIVE_REPLY_ACK:
610 			/* I2C-over-AUX Reply field is only valid
611 			 * when paired with AUX ACK.
612 			 */
613 			break;
614 		case AUX_NATIVE_REPLY_NACK:
615 			DRM_DEBUG_KMS("aux_ch native nack\n");
616 			return -EREMOTEIO;
617 		case AUX_NATIVE_REPLY_DEFER:
618 			udelay(100);
619 			continue;
620 		default:
621 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
622 				  reply[0]);
623 			return -EREMOTEIO;
624 		}
625 
626 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
627 		case AUX_I2C_REPLY_ACK:
628 			if (mode == MODE_I2C_READ) {
629 				*read_byte = reply[1];
630 			}
631 			return reply_bytes - 1;
632 		case AUX_I2C_REPLY_NACK:
633 			DRM_DEBUG_KMS("aux_i2c nack\n");
634 			return -EREMOTEIO;
635 		case AUX_I2C_REPLY_DEFER:
636 			DRM_DEBUG_KMS("aux_i2c defer\n");
637 			udelay(100);
638 			break;
639 		default:
640 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
641 			return -EREMOTEIO;
642 		}
643 	}
644 
645 	DRM_ERROR("too many retries, giving up\n");
646 	return -EREMOTEIO;
647 }
648 
649 static int
650 cdv_intel_dp_i2c_init(struct psb_intel_connector *connector, struct psb_intel_encoder *encoder, const char *name)
651 {
652 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
653 	int ret;
654 
655 	DRM_DEBUG_KMS("i2c_init %s\n", name);
656 
657 	intel_dp->algo.running = false;
658 	intel_dp->algo.address = 0;
659 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
660 
661 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
662 	intel_dp->adapter.owner = THIS_MODULE;
663 	intel_dp->adapter.class = I2C_CLASS_DDC;
664 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
665 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
666 	intel_dp->adapter.algo_data = &intel_dp->algo;
667 	intel_dp->adapter.dev.parent = &connector->base.kdev;
668 
669 	if (is_edp(encoder))
670 		cdv_intel_edp_panel_vdd_on(encoder);
671 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
672 	if (is_edp(encoder))
673 		cdv_intel_edp_panel_vdd_off(encoder);
674 
675 	return ret;
676 }
677 
678 void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
679 	struct drm_display_mode *adjusted_mode)
680 {
681 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
682 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
683 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
684 	adjusted_mode->htotal = fixed_mode->htotal;
685 
686 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
687 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
688 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
689 	adjusted_mode->vtotal = fixed_mode->vtotal;
690 
691 	adjusted_mode->clock = fixed_mode->clock;
692 
693 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
694 }
695 
696 static bool
697 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
698 		    struct drm_display_mode *adjusted_mode)
699 {
700 	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
701 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
702 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
703 	int lane_count, clock;
704 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
705 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
706 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
707 	int refclock = mode->clock;
708 	int bpp = 24;
709 
710 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
711 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
712 		refclock = intel_dp->panel_fixed_mode->clock;
713 		bpp = dev_priv->edp.bpp;
714 	}
715 
716 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
717 		for (clock = max_clock; clock >= 0; clock--) {
718 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
719 
720 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
721 				intel_dp->link_bw = bws[clock];
722 				intel_dp->lane_count = lane_count;
723 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
724 				DRM_DEBUG_KMS("Display port link bw %02x lane "
725 						"count %d clock %d\n",
726 				       intel_dp->link_bw, intel_dp->lane_count,
727 				       adjusted_mode->clock);
728 				return true;
729 			}
730 		}
731 	}
732 	if (is_edp(intel_encoder)) {
733 		/* okay we failed just pick the highest */
734 		intel_dp->lane_count = max_lane_count;
735 		intel_dp->link_bw = bws[max_clock];
736 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
737 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
738 			      "count %d clock %d\n",
739 			      intel_dp->link_bw, intel_dp->lane_count,
740 			      adjusted_mode->clock);
741 
742 		return true;
743 	}
744 	return false;
745 }
746 
747 struct cdv_intel_dp_m_n {
748 	uint32_t	tu;
749 	uint32_t	gmch_m;
750 	uint32_t	gmch_n;
751 	uint32_t	link_m;
752 	uint32_t	link_n;
753 };
754 
755 static void
756 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
757 {
758 	/*
759 	while (*num > 0xffffff || *den > 0xffffff) {
760 		*num >>= 1;
761 		*den >>= 1;
762 	}*/
763 	uint64_t value, m;
764 	m = *num;
765 	value = m * (0x800000);
766 	m = do_div(value, *den);
767 	*num = value;
768 	*den = 0x800000;
769 }
770 
771 static void
772 cdv_intel_dp_compute_m_n(int bpp,
773 		     int nlanes,
774 		     int pixel_clock,
775 		     int link_clock,
776 		     struct cdv_intel_dp_m_n *m_n)
777 {
778 	m_n->tu = 64;
779 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
780 	m_n->gmch_n = link_clock * nlanes;
781 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
782 	m_n->link_m = pixel_clock;
783 	m_n->link_n = link_clock;
784 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
785 }
786 
787 void
788 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
789 		 struct drm_display_mode *adjusted_mode)
790 {
791 	struct drm_device *dev = crtc->dev;
792 	struct drm_psb_private *dev_priv = dev->dev_private;
793 	struct drm_mode_config *mode_config = &dev->mode_config;
794 	struct drm_encoder *encoder;
795 	struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
796 	int lane_count = 4, bpp = 24;
797 	struct cdv_intel_dp_m_n m_n;
798 	int pipe = intel_crtc->pipe;
799 
800 	/*
801 	 * Find the lane count in the intel_encoder private
802 	 */
803 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
804 		struct psb_intel_encoder *intel_encoder;
805 		struct cdv_intel_dp *intel_dp;
806 
807 		if (encoder->crtc != crtc)
808 			continue;
809 
810 		intel_encoder = to_psb_intel_encoder(encoder);
811 		intel_dp = intel_encoder->dev_priv;
812 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
813 			lane_count = intel_dp->lane_count;
814 			break;
815 		} else if (is_edp(intel_encoder)) {
816 			lane_count = intel_dp->lane_count;
817 			bpp = dev_priv->edp.bpp;
818 			break;
819 		}
820 	}
821 
822 	/*
823 	 * Compute the GMCH and Link ratios. The '3' here is
824 	 * the number of bytes_per_pixel post-LUT, which we always
825 	 * set up for 8-bits of R/G/B, or 3 bytes total.
826 	 */
827 	cdv_intel_dp_compute_m_n(bpp, lane_count,
828 			     mode->clock, adjusted_mode->clock, &m_n);
829 
830 	{
831 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
832 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
833 			   m_n.gmch_m);
834 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
835 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
836 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
837 	}
838 }
839 
840 static void
841 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
842 		  struct drm_display_mode *adjusted_mode)
843 {
844 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
845 	struct drm_crtc *crtc = encoder->crtc;
846 	struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
847 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
848 	struct drm_device *dev = encoder->dev;
849 
850 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
851 	intel_dp->DP |= intel_dp->color_range;
852 
853 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
854 		intel_dp->DP |= DP_SYNC_HS_HIGH;
855 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
856 		intel_dp->DP |= DP_SYNC_VS_HIGH;
857 
858 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
859 
860 	switch (intel_dp->lane_count) {
861 	case 1:
862 		intel_dp->DP |= DP_PORT_WIDTH_1;
863 		break;
864 	case 2:
865 		intel_dp->DP |= DP_PORT_WIDTH_2;
866 		break;
867 	case 4:
868 		intel_dp->DP |= DP_PORT_WIDTH_4;
869 		break;
870 	}
871 	if (intel_dp->has_audio)
872 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
873 
874 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
875 	intel_dp->link_configuration[0] = intel_dp->link_bw;
876 	intel_dp->link_configuration[1] = intel_dp->lane_count;
877 
878 	/*
879 	 * Check for DPCD version > 1.1 and enhanced framing support
880 	 */
881 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
882 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
883 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
884 		intel_dp->DP |= DP_ENHANCED_FRAMING;
885 	}
886 
887 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
888 	if (intel_crtc->pipe == 1)
889 		intel_dp->DP |= DP_PIPEB_SELECT;
890 
891 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
892 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
893 	if (is_edp(intel_encoder)) {
894 		uint32_t pfit_control;
895 		cdv_intel_edp_panel_on(intel_encoder);
896 
897 		if (mode->hdisplay != adjusted_mode->hdisplay ||
898 			    mode->vdisplay != adjusted_mode->vdisplay)
899 			pfit_control = PFIT_ENABLE;
900 		else
901 			pfit_control = 0;
902 
903 		pfit_control |= intel_crtc->pipe << PFIT_PIPE_SHIFT;
904 
905 		REG_WRITE(PFIT_CONTROL, pfit_control);
906 	}
907 }
908 
909 
910 /* If the sink supports it, try to set the power state appropriately */
911 static void cdv_intel_dp_sink_dpms(struct psb_intel_encoder *encoder, int mode)
912 {
913 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
914 	int ret, i;
915 
916 	/* Should have a valid DPCD by this point */
917 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
918 		return;
919 
920 	if (mode != DRM_MODE_DPMS_ON) {
921 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
922 						  DP_SET_POWER_D3);
923 		if (ret != 1)
924 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
925 	} else {
926 		/*
927 		 * When turning on, we need to retry for 1ms to give the sink
928 		 * time to wake up.
929 		 */
930 		for (i = 0; i < 3; i++) {
931 			ret = cdv_intel_dp_aux_native_write_1(encoder,
932 							  DP_SET_POWER,
933 							  DP_SET_POWER_D0);
934 			if (ret == 1)
935 				break;
936 			udelay(1000);
937 		}
938 	}
939 }
940 
941 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
942 {
943 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
944 	int edp = is_edp(intel_encoder);
945 
946 	if (edp) {
947 		cdv_intel_edp_backlight_off(intel_encoder);
948 		cdv_intel_edp_panel_off(intel_encoder);
949 		cdv_intel_edp_panel_vdd_on(intel_encoder);
950         }
951 	/* Wake up the sink first */
952 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
953 	cdv_intel_dp_link_down(intel_encoder);
954 	if (edp)
955 		cdv_intel_edp_panel_vdd_off(intel_encoder);
956 }
957 
958 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
959 {
960 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
961 	int edp = is_edp(intel_encoder);
962 
963 	if (edp)
964 		cdv_intel_edp_panel_on(intel_encoder);
965 	cdv_intel_dp_start_link_train(intel_encoder);
966 	cdv_intel_dp_complete_link_train(intel_encoder);
967 	if (edp)
968 		cdv_intel_edp_backlight_on(intel_encoder);
969 }
970 
971 static void
972 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
973 {
974 	struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
975 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
976 	struct drm_device *dev = encoder->dev;
977 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
978 	int edp = is_edp(intel_encoder);
979 
980 	if (mode != DRM_MODE_DPMS_ON) {
981 		if (edp) {
982 			cdv_intel_edp_backlight_off(intel_encoder);
983 			cdv_intel_edp_panel_vdd_on(intel_encoder);
984 		}
985 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
986 		cdv_intel_dp_link_down(intel_encoder);
987 		if (edp) {
988 			cdv_intel_edp_panel_vdd_off(intel_encoder);
989 			cdv_intel_edp_panel_off(intel_encoder);
990 		}
991 	} else {
992         	if (edp)
993 			cdv_intel_edp_panel_on(intel_encoder);
994 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
995 		if (!(dp_reg & DP_PORT_EN)) {
996 			cdv_intel_dp_start_link_train(intel_encoder);
997 			cdv_intel_dp_complete_link_train(intel_encoder);
998 		}
999 		if (edp)
1000         		cdv_intel_edp_backlight_on(intel_encoder);
1001 	}
1002 }
1003 
1004 /*
1005  * Native read with retry for link status and receiver capability reads for
1006  * cases where the sink may still be asleep.
1007  */
1008 static bool
1009 cdv_intel_dp_aux_native_read_retry(struct psb_intel_encoder *encoder, uint16_t address,
1010 			       uint8_t *recv, int recv_bytes)
1011 {
1012 	int ret, i;
1013 
1014 	/*
1015 	 * Sinks are *supposed* to come up within 1ms from an off state,
1016 	 * but we're also supposed to retry 3 times per the spec.
1017 	 */
1018 	for (i = 0; i < 3; i++) {
1019 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1020 					       recv_bytes);
1021 		if (ret == recv_bytes)
1022 			return true;
1023 		udelay(1000);
1024 	}
1025 
1026 	return false;
1027 }
1028 
1029 /*
1030  * Fetch AUX CH registers 0x202 - 0x207 which contain
1031  * link status information
1032  */
1033 static bool
1034 cdv_intel_dp_get_link_status(struct psb_intel_encoder *encoder)
1035 {
1036 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1037 	return cdv_intel_dp_aux_native_read_retry(encoder,
1038 					      DP_LANE0_1_STATUS,
1039 					      intel_dp->link_status,
1040 					      DP_LINK_STATUS_SIZE);
1041 }
1042 
1043 static uint8_t
1044 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1045 		     int r)
1046 {
1047 	return link_status[r - DP_LANE0_1_STATUS];
1048 }
1049 
1050 static uint8_t
1051 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1052 				 int lane)
1053 {
1054 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1055 	int	    s = ((lane & 1) ?
1056 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1057 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1058 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1059 
1060 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1061 }
1062 
1063 static uint8_t
1064 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1065 				      int lane)
1066 {
1067 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1068 	int	    s = ((lane & 1) ?
1069 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1070 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1071 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1072 
1073 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1074 }
1075 
1076 
1077 #if 0
1078 static char	*voltage_names[] = {
1079 	"0.4V", "0.6V", "0.8V", "1.2V"
1080 };
1081 static char	*pre_emph_names[] = {
1082 	"0dB", "3.5dB", "6dB", "9.5dB"
1083 };
1084 static char	*link_train_names[] = {
1085 	"pattern 1", "pattern 2", "idle", "off"
1086 };
1087 #endif
1088 
1089 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_1200
1090 /*
1091 static uint8_t
1092 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1093 {
1094 	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1095 	case DP_TRAIN_VOLTAGE_SWING_400:
1096 		return DP_TRAIN_PRE_EMPHASIS_6;
1097 	case DP_TRAIN_VOLTAGE_SWING_600:
1098 		return DP_TRAIN_PRE_EMPHASIS_6;
1099 	case DP_TRAIN_VOLTAGE_SWING_800:
1100 		return DP_TRAIN_PRE_EMPHASIS_3_5;
1101 	case DP_TRAIN_VOLTAGE_SWING_1200:
1102 	default:
1103 		return DP_TRAIN_PRE_EMPHASIS_0;
1104 	}
1105 }
1106 */
1107 static void
1108 cdv_intel_get_adjust_train(struct psb_intel_encoder *encoder)
1109 {
1110 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1111 	uint8_t v = 0;
1112 	uint8_t p = 0;
1113 	int lane;
1114 
1115 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1116 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1117 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1118 
1119 		if (this_v > v)
1120 			v = this_v;
1121 		if (this_p > p)
1122 			p = this_p;
1123 	}
1124 
1125 	if (v >= CDV_DP_VOLTAGE_MAX)
1126 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1127 
1128 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1129 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1130 
1131 	for (lane = 0; lane < 4; lane++)
1132 		intel_dp->train_set[lane] = v | p;
1133 }
1134 
1135 
1136 static uint8_t
1137 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1138 		      int lane)
1139 {
1140 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1141 	int s = (lane & 1) * 4;
1142 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1143 
1144 	return (l >> s) & 0xf;
1145 }
1146 
1147 /* Check for clock recovery is done on all channels */
1148 static bool
1149 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1150 {
1151 	int lane;
1152 	uint8_t lane_status;
1153 
1154 	for (lane = 0; lane < lane_count; lane++) {
1155 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1156 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1157 			return false;
1158 	}
1159 	return true;
1160 }
1161 
1162 /* Check to see if channel eq is done on all channels */
1163 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1164 			 DP_LANE_CHANNEL_EQ_DONE|\
1165 			 DP_LANE_SYMBOL_LOCKED)
1166 static bool
1167 cdv_intel_channel_eq_ok(struct psb_intel_encoder *encoder)
1168 {
1169 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1170 	uint8_t lane_align;
1171 	uint8_t lane_status;
1172 	int lane;
1173 
1174 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1175 					  DP_LANE_ALIGN_STATUS_UPDATED);
1176 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1177 		return false;
1178 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1179 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1180 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1181 			return false;
1182 	}
1183 	return true;
1184 }
1185 
1186 static bool
1187 cdv_intel_dp_set_link_train(struct psb_intel_encoder *encoder,
1188 			uint32_t dp_reg_value,
1189 			uint8_t dp_train_pat)
1190 {
1191 
1192 	struct drm_device *dev = encoder->base.dev;
1193 	int ret;
1194 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1195 
1196 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1197 	REG_READ(intel_dp->output_reg);
1198 
1199 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1200 				    DP_TRAINING_PATTERN_SET,
1201 				    dp_train_pat);
1202 
1203 	if (ret != 1) {
1204 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1205 				dp_train_pat);
1206 		return false;
1207 	}
1208 
1209 	return true;
1210 }
1211 
1212 
1213 static bool
1214 cdv_intel_dplink_set_level(struct psb_intel_encoder *encoder,
1215 			uint8_t dp_train_pat)
1216 {
1217 
1218 	int ret;
1219 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1220 
1221 	ret = cdv_intel_dp_aux_native_write(encoder,
1222 					DP_TRAINING_LANE0_SET,
1223 					intel_dp->train_set,
1224 					intel_dp->lane_count);
1225 
1226 	if (ret != intel_dp->lane_count) {
1227 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1228 				intel_dp->train_set[0], intel_dp->lane_count);
1229 		return false;
1230 	}
1231 	return true;
1232 }
1233 
1234 static void
1235 cdv_intel_dp_set_vswing_premph(struct psb_intel_encoder *encoder, uint8_t signal_level)
1236 {
1237 	struct drm_device *dev = encoder->base.dev;
1238 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1239 	struct ddi_regoff *ddi_reg;
1240 	int vswing, premph, index;
1241 
1242 	if (intel_dp->output_reg == DP_B)
1243 		ddi_reg = &ddi_DP_train_table[0];
1244 	else
1245 		ddi_reg = &ddi_DP_train_table[1];
1246 
1247 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1248 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1249 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1250 
1251 	if (vswing + premph > 3)
1252 		return;
1253 #ifdef CDV_FAST_LINK_TRAIN
1254 	return;
1255 #endif
1256 	DRM_DEBUG_KMS("Test2\n");
1257 	//return ;
1258 	cdv_sb_reset(dev);
1259 	/* ;Swing voltage programming
1260         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1261 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1262 
1263 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1264 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1265 
1266 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1267 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1268 	 */
1269 	index = (vswing + premph) * 2;
1270 	if (premph == 1 && vswing == 1) {
1271 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1272 	} else
1273 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1274 
1275 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1276 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
1277 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1278 	else
1279 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1280 
1281 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1282 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1283 
1284 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1285 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1286 
1287 	/* ;Pre emphasis programming
1288 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1289 	 */
1290 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1291 
1292 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1293 	index = 2 * premph + 1;
1294 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1295 	return;
1296 }
1297 
1298 
1299 /* Enable corresponding port and start training pattern 1 */
1300 static void
1301 cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder)
1302 {
1303 	struct drm_device *dev = encoder->base.dev;
1304 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1305 	int i;
1306 	uint8_t voltage;
1307 	bool clock_recovery = false;
1308 	int tries;
1309 	u32 reg;
1310 	uint32_t DP = intel_dp->DP;
1311 
1312 	DP |= DP_PORT_EN;
1313 	DP &= ~DP_LINK_TRAIN_MASK;
1314 
1315 	reg = DP;
1316 	reg |= DP_LINK_TRAIN_PAT_1;
1317 	/* Enable output, wait for it to become active */
1318 	REG_WRITE(intel_dp->output_reg, reg);
1319 	REG_READ(intel_dp->output_reg);
1320 	psb_intel_wait_for_vblank(dev);
1321 
1322 	DRM_DEBUG_KMS("Link config\n");
1323 	/* Write the link configuration data */
1324 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1325 				  intel_dp->link_configuration,
1326 				  2);
1327 
1328 	memset(intel_dp->train_set, 0, 4);
1329 	voltage = 0;
1330 	tries = 0;
1331 	clock_recovery = false;
1332 
1333 	DRM_DEBUG_KMS("Start train\n");
1334 		reg = DP | DP_LINK_TRAIN_PAT_1;
1335 
1336 
1337 	for (;;) {
1338 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1339 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1340 				intel_dp->train_set[0],
1341 				intel_dp->link_configuration[0],
1342 				intel_dp->link_configuration[1]);
1343 
1344 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1345 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1346 		}
1347 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1348 		/* Set training pattern 1 */
1349 
1350 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1351 
1352 		udelay(200);
1353 		if (!cdv_intel_dp_get_link_status(encoder))
1354 			break;
1355 
1356 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1357 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1358 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1359 
1360 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1361 			DRM_DEBUG_KMS("PT1 train is done\n");
1362 			clock_recovery = true;
1363 			break;
1364 		}
1365 
1366 		/* Check to see if we've tried the max voltage */
1367 		for (i = 0; i < intel_dp->lane_count; i++)
1368 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1369 				break;
1370 		if (i == intel_dp->lane_count)
1371 			break;
1372 
1373 		/* Check to see if we've tried the same voltage 5 times */
1374 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1375 			++tries;
1376 			if (tries == 5)
1377 				break;
1378 		} else
1379 			tries = 0;
1380 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1381 
1382 		/* Compute new intel_dp->train_set as requested by target */
1383 		cdv_intel_get_adjust_train(encoder);
1384 
1385 	}
1386 
1387 	if (!clock_recovery) {
1388 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1389 	}
1390 
1391 	intel_dp->DP = DP;
1392 }
1393 
1394 static void
1395 cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder)
1396 {
1397 	struct drm_device *dev = encoder->base.dev;
1398 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1399 	bool channel_eq = false;
1400 	int tries, cr_tries;
1401 	u32 reg;
1402 	uint32_t DP = intel_dp->DP;
1403 
1404 	/* channel equalization */
1405 	tries = 0;
1406 	cr_tries = 0;
1407 	channel_eq = false;
1408 
1409 	DRM_DEBUG_KMS("\n");
1410 		reg = DP | DP_LINK_TRAIN_PAT_2;
1411 
1412 	for (;;) {
1413 
1414 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1415 				intel_dp->train_set[0],
1416 				intel_dp->link_configuration[0],
1417 				intel_dp->link_configuration[1]);
1418         	/* channel eq pattern */
1419 
1420 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1421 					     DP_TRAINING_PATTERN_2)) {
1422 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1423 		}
1424 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1425 
1426 		if (cr_tries > 5) {
1427 			DRM_ERROR("failed to train DP, aborting\n");
1428 			cdv_intel_dp_link_down(encoder);
1429 			break;
1430 		}
1431 
1432 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1433 
1434 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1435 
1436 		udelay(1000);
1437 		if (!cdv_intel_dp_get_link_status(encoder))
1438 			break;
1439 
1440 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1441 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1442 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1443 
1444 		/* Make sure clock is still ok */
1445 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1446 			cdv_intel_dp_start_link_train(encoder);
1447 			cr_tries++;
1448 			continue;
1449 		}
1450 
1451 		if (cdv_intel_channel_eq_ok(encoder)) {
1452 			DRM_DEBUG_KMS("PT2 train is done\n");
1453 			channel_eq = true;
1454 			break;
1455 		}
1456 
1457 		/* Try 5 times, then try clock recovery if that fails */
1458 		if (tries > 5) {
1459 			cdv_intel_dp_link_down(encoder);
1460 			cdv_intel_dp_start_link_train(encoder);
1461 			tries = 0;
1462 			cr_tries++;
1463 			continue;
1464 		}
1465 
1466 		/* Compute new intel_dp->train_set as requested by target */
1467 		cdv_intel_get_adjust_train(encoder);
1468 		++tries;
1469 
1470 	}
1471 
1472 	reg = DP | DP_LINK_TRAIN_OFF;
1473 
1474 	REG_WRITE(intel_dp->output_reg, reg);
1475 	REG_READ(intel_dp->output_reg);
1476 	cdv_intel_dp_aux_native_write_1(encoder,
1477 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1478 }
1479 
1480 static void
1481 cdv_intel_dp_link_down(struct psb_intel_encoder *encoder)
1482 {
1483 	struct drm_device *dev = encoder->base.dev;
1484 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1485 	uint32_t DP = intel_dp->DP;
1486 
1487 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1488 		return;
1489 
1490 	DRM_DEBUG_KMS("\n");
1491 
1492 
1493 	{
1494 		DP &= ~DP_LINK_TRAIN_MASK;
1495 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1496 	}
1497 	REG_READ(intel_dp->output_reg);
1498 
1499 	msleep(17);
1500 
1501 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1502 	REG_READ(intel_dp->output_reg);
1503 }
1504 
1505 static enum drm_connector_status
1506 cdv_dp_detect(struct psb_intel_encoder *encoder)
1507 {
1508 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1509 	enum drm_connector_status status;
1510 
1511 	status = connector_status_disconnected;
1512 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1513 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1514 	{
1515 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1516 			status = connector_status_connected;
1517 	}
1518 	if (status == connector_status_connected)
1519 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1520 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1521 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1522 	return status;
1523 }
1524 
1525 /**
1526  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1527  *
1528  * \return true if DP port is connected.
1529  * \return false if DP port is disconnected.
1530  */
1531 static enum drm_connector_status
1532 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1533 {
1534 	struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
1535 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1536 	enum drm_connector_status status;
1537 	struct edid *edid = NULL;
1538 	int edp = is_edp(encoder);
1539 
1540 	intel_dp->has_audio = false;
1541 
1542 	if (edp)
1543 		cdv_intel_edp_panel_vdd_on(encoder);
1544 	status = cdv_dp_detect(encoder);
1545 	if (status != connector_status_connected) {
1546 		if (edp)
1547 			cdv_intel_edp_panel_vdd_off(encoder);
1548 		return status;
1549         }
1550 
1551 	if (intel_dp->force_audio) {
1552 		intel_dp->has_audio = intel_dp->force_audio > 0;
1553 	} else {
1554 		edid = drm_get_edid(connector, &intel_dp->adapter);
1555 		if (edid) {
1556 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1557 			kfree(edid);
1558 		}
1559 	}
1560 	if (edp)
1561 		cdv_intel_edp_panel_vdd_off(encoder);
1562 
1563 	return connector_status_connected;
1564 }
1565 
1566 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1567 {
1568 	struct psb_intel_encoder *intel_encoder = psb_intel_attached_encoder(connector);
1569 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1570 	struct edid *edid = NULL;
1571 	int ret = 0;
1572 	int edp = is_edp(intel_encoder);
1573 
1574 
1575 	edid = drm_get_edid(connector, &intel_dp->adapter);
1576 	if (edid) {
1577 		drm_mode_connector_update_edid_property(connector, edid);
1578 		ret = drm_add_edid_modes(connector, edid);
1579 		kfree(edid);
1580 	}
1581 
1582 	if (is_edp(intel_encoder)) {
1583 		struct drm_device *dev = connector->dev;
1584 		struct drm_psb_private *dev_priv = dev->dev_private;
1585 
1586 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1587 		if (ret) {
1588 			if (edp && !intel_dp->panel_fixed_mode) {
1589 				struct drm_display_mode *newmode;
1590 				list_for_each_entry(newmode, &connector->probed_modes,
1591 					    head) {
1592 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1593 						intel_dp->panel_fixed_mode =
1594 							drm_mode_duplicate(dev, newmode);
1595 						break;
1596 					}
1597 				}
1598 			}
1599 
1600 			return ret;
1601 		}
1602 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1603 			intel_dp->panel_fixed_mode =
1604 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1605 			if (intel_dp->panel_fixed_mode) {
1606 				intel_dp->panel_fixed_mode->type |=
1607 					DRM_MODE_TYPE_PREFERRED;
1608 			}
1609 		}
1610 		if (intel_dp->panel_fixed_mode != NULL) {
1611 			struct drm_display_mode *mode;
1612 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1613 			drm_mode_probed_add(connector, mode);
1614 			return 1;
1615 		}
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 static bool
1622 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1623 {
1624 	struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
1625 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1626 	struct edid *edid;
1627 	bool has_audio = false;
1628 	int edp = is_edp(encoder);
1629 
1630 	if (edp)
1631 		cdv_intel_edp_panel_vdd_on(encoder);
1632 
1633 	edid = drm_get_edid(connector, &intel_dp->adapter);
1634 	if (edid) {
1635 		has_audio = drm_detect_monitor_audio(edid);
1636 		kfree(edid);
1637 	}
1638 	if (edp)
1639 		cdv_intel_edp_panel_vdd_off(encoder);
1640 
1641 	return has_audio;
1642 }
1643 
1644 static int
1645 cdv_intel_dp_set_property(struct drm_connector *connector,
1646 		      struct drm_property *property,
1647 		      uint64_t val)
1648 {
1649 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1650 	struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
1651 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1652 	int ret;
1653 
1654 	ret = drm_object_property_set_value(&connector->base, property, val);
1655 	if (ret)
1656 		return ret;
1657 
1658 	if (property == dev_priv->force_audio_property) {
1659 		int i = val;
1660 		bool has_audio;
1661 
1662 		if (i == intel_dp->force_audio)
1663 			return 0;
1664 
1665 		intel_dp->force_audio = i;
1666 
1667 		if (i == 0)
1668 			has_audio = cdv_intel_dp_detect_audio(connector);
1669 		else
1670 			has_audio = i > 0;
1671 
1672 		if (has_audio == intel_dp->has_audio)
1673 			return 0;
1674 
1675 		intel_dp->has_audio = has_audio;
1676 		goto done;
1677 	}
1678 
1679 	if (property == dev_priv->broadcast_rgb_property) {
1680 		if (val == !!intel_dp->color_range)
1681 			return 0;
1682 
1683 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1684 		goto done;
1685 	}
1686 
1687 	return -EINVAL;
1688 
1689 done:
1690 	if (encoder->base.crtc) {
1691 		struct drm_crtc *crtc = encoder->base.crtc;
1692 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1693 					 crtc->x, crtc->y,
1694 					 crtc->fb);
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static void
1701 cdv_intel_dp_destroy(struct drm_connector *connector)
1702 {
1703 	struct psb_intel_encoder *psb_intel_encoder =
1704 					psb_intel_attached_encoder(connector);
1705 	struct cdv_intel_dp *intel_dp = psb_intel_encoder->dev_priv;
1706 
1707 	if (is_edp(psb_intel_encoder)) {
1708 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1709 		if (intel_dp->panel_fixed_mode) {
1710 			kfree(intel_dp->panel_fixed_mode);
1711 			intel_dp->panel_fixed_mode = NULL;
1712 		}
1713 	}
1714 	i2c_del_adapter(&intel_dp->adapter);
1715 	drm_sysfs_connector_remove(connector);
1716 	drm_connector_cleanup(connector);
1717 	kfree(connector);
1718 }
1719 
1720 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1721 {
1722 	drm_encoder_cleanup(encoder);
1723 }
1724 
1725 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1726 	.dpms = cdv_intel_dp_dpms,
1727 	.mode_fixup = cdv_intel_dp_mode_fixup,
1728 	.prepare = cdv_intel_dp_prepare,
1729 	.mode_set = cdv_intel_dp_mode_set,
1730 	.commit = cdv_intel_dp_commit,
1731 };
1732 
1733 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1734 	.dpms = drm_helper_connector_dpms,
1735 	.detect = cdv_intel_dp_detect,
1736 	.fill_modes = drm_helper_probe_single_connector_modes,
1737 	.set_property = cdv_intel_dp_set_property,
1738 	.destroy = cdv_intel_dp_destroy,
1739 };
1740 
1741 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1742 	.get_modes = cdv_intel_dp_get_modes,
1743 	.mode_valid = cdv_intel_dp_mode_valid,
1744 	.best_encoder = psb_intel_best_encoder,
1745 };
1746 
1747 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1748 	.destroy = cdv_intel_dp_encoder_destroy,
1749 };
1750 
1751 
1752 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1753 {
1754 	cdv_intel_attach_force_audio_property(connector);
1755 	cdv_intel_attach_broadcast_rgb_property(connector);
1756 }
1757 
1758 /* check the VBT to see whether the eDP is on DP-D port */
1759 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1760 {
1761 	struct drm_psb_private *dev_priv = dev->dev_private;
1762 	struct child_device_config *p_child;
1763 	int i;
1764 
1765 	if (!dev_priv->child_dev_num)
1766 		return false;
1767 
1768 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1769 		p_child = dev_priv->child_dev + i;
1770 
1771 		if (p_child->dvo_port == PORT_IDPC &&
1772 		    p_child->device_type == DEVICE_TYPE_eDP)
1773 			return true;
1774 	}
1775 	return false;
1776 }
1777 
1778 /* Cedarview display clock gating
1779 
1780    We need this disable dot get correct behaviour while enabling
1781    DP/eDP. TODO - investigate if we can turn it back to normality
1782    after enabling */
1783 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1784 {
1785 	u32 reg_value;
1786 	reg_value = REG_READ(DSPCLK_GATE_D);
1787 
1788 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1789 			DPUNIT_PIPEA_GATE_DISABLE |
1790 			DPCUNIT_CLOCK_GATE_DISABLE |
1791 			DPLSUNIT_CLOCK_GATE_DISABLE |
1792 			DPOUNIT_CLOCK_GATE_DISABLE |
1793 		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1794 
1795 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1796 
1797 	udelay(500);
1798 }
1799 
1800 void
1801 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1802 {
1803 	struct psb_intel_encoder *psb_intel_encoder;
1804 	struct psb_intel_connector *psb_intel_connector;
1805 	struct drm_connector *connector;
1806 	struct drm_encoder *encoder;
1807 	struct cdv_intel_dp *intel_dp;
1808 	const char *name = NULL;
1809 	int type = DRM_MODE_CONNECTOR_DisplayPort;
1810 
1811 	psb_intel_encoder = kzalloc(sizeof(struct psb_intel_encoder), GFP_KERNEL);
1812 	if (!psb_intel_encoder)
1813 		return;
1814         psb_intel_connector = kzalloc(sizeof(struct psb_intel_connector), GFP_KERNEL);
1815         if (!psb_intel_connector)
1816                 goto err_connector;
1817 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1818 	if (!intel_dp)
1819 	        goto err_priv;
1820 
1821 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1822 		type = DRM_MODE_CONNECTOR_eDP;
1823 
1824 	connector = &psb_intel_connector->base;
1825 	encoder = &psb_intel_encoder->base;
1826 
1827 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1828 	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
1829 
1830 	psb_intel_connector_attach_encoder(psb_intel_connector, psb_intel_encoder);
1831 
1832 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1833         	psb_intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1834         else
1835 		psb_intel_encoder->type = INTEL_OUTPUT_EDP;
1836 
1837 
1838 	psb_intel_encoder->dev_priv=intel_dp;
1839 	intel_dp->encoder = psb_intel_encoder;
1840 	intel_dp->output_reg = output_reg;
1841 
1842 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1843 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1844 
1845 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1846 	connector->interlace_allowed = false;
1847 	connector->doublescan_allowed = false;
1848 
1849 	drm_sysfs_connector_add(connector);
1850 
1851 	/* Set up the DDC bus. */
1852 	switch (output_reg) {
1853 		case DP_B:
1854 			name = "DPDDC-B";
1855 			psb_intel_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1856 			break;
1857 		case DP_C:
1858 			name = "DPDDC-C";
1859 			psb_intel_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
1860 			break;
1861 	}
1862 
1863 	cdv_disable_intel_clock_gating(dev);
1864 
1865 	cdv_intel_dp_i2c_init(psb_intel_connector, psb_intel_encoder, name);
1866         /* FIXME:fail check */
1867 	cdv_intel_dp_add_properties(connector);
1868 
1869 	if (is_edp(psb_intel_encoder)) {
1870 		int ret;
1871 		struct edp_power_seq cur;
1872                 u32 pp_on, pp_off, pp_div;
1873 		u32 pwm_ctrl;
1874 
1875 		pp_on = REG_READ(PP_CONTROL);
1876 		pp_on &= ~PANEL_UNLOCK_MASK;
1877 	        pp_on |= PANEL_UNLOCK_REGS;
1878 
1879 		REG_WRITE(PP_CONTROL, pp_on);
1880 
1881 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
1882 		pwm_ctrl |= PWM_PIPE_B;
1883 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
1884 
1885                 pp_on = REG_READ(PP_ON_DELAYS);
1886                 pp_off = REG_READ(PP_OFF_DELAYS);
1887                 pp_div = REG_READ(PP_DIVISOR);
1888 
1889 		/* Pull timing values out of registers */
1890                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
1891                         PANEL_POWER_UP_DELAY_SHIFT;
1892 
1893                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
1894                         PANEL_LIGHT_ON_DELAY_SHIFT;
1895 
1896                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
1897                         PANEL_LIGHT_OFF_DELAY_SHIFT;
1898 
1899                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
1900                         PANEL_POWER_DOWN_DELAY_SHIFT;
1901 
1902                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
1903                                PANEL_POWER_CYCLE_DELAY_SHIFT);
1904 
1905                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
1906                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
1907 
1908 
1909 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
1910                 intel_dp->backlight_on_delay = cur.t8 / 10;
1911                 intel_dp->backlight_off_delay = cur.t9 / 10;
1912                 intel_dp->panel_power_down_delay = cur.t10 / 10;
1913                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
1914 
1915                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
1916                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
1917                               intel_dp->panel_power_cycle_delay);
1918 
1919                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
1920                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
1921 
1922 
1923 		cdv_intel_edp_panel_vdd_on(psb_intel_encoder);
1924 		ret = cdv_intel_dp_aux_native_read(psb_intel_encoder, DP_DPCD_REV,
1925 					       intel_dp->dpcd,
1926 					       sizeof(intel_dp->dpcd));
1927 		cdv_intel_edp_panel_vdd_off(psb_intel_encoder);
1928 		if (ret == 0) {
1929 			/* if this fails, presume the device is a ghost */
1930 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
1931 			cdv_intel_dp_encoder_destroy(encoder);
1932 			cdv_intel_dp_destroy(connector);
1933 			goto err_priv;
1934 		} else {
1935         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1936 				intel_dp->dpcd[0], intel_dp->dpcd[1],
1937 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
1938 
1939 		}
1940 		/* The CDV reference driver moves pnale backlight setup into the displays that
1941 		   have a backlight: this is a good idea and one we should probably adopt, however
1942 		   we need to migrate all the drivers before we can do that */
1943                 /*cdv_intel_panel_setup_backlight(dev); */
1944 	}
1945 	return;
1946 
1947 err_priv:
1948 	kfree(psb_intel_connector);
1949 err_connector:
1950 	kfree(psb_intel_encoder);
1951 }
1952