1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/i2c.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 32 #include <drm/drm_crtc.h> 33 #include <drm/drm_crtc_helper.h> 34 #include <drm/drm_dp_helper.h> 35 #include <drm/drm_simple_kms_helper.h> 36 37 #include "gma_display.h" 38 #include "psb_drv.h" 39 #include "psb_intel_drv.h" 40 #include "psb_intel_reg.h" 41 42 /** 43 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp 44 * aux algorithm 45 * @running: set by the algo indicating whether an i2c is ongoing or whether 46 * the i2c bus is quiescent 47 * @address: i2c target address for the currently ongoing transfer 48 * @aux_ch: driver callback to transfer a single byte of the i2c payload 49 */ 50 struct i2c_algo_dp_aux_data { 51 bool running; 52 u16 address; 53 int (*aux_ch) (struct i2c_adapter *adapter, 54 int mode, uint8_t write_byte, 55 uint8_t *read_byte); 56 }; 57 58 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */ 59 static int 60 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode, 61 uint8_t write_byte, uint8_t *read_byte) 62 { 63 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 64 int ret; 65 66 ret = (*algo_data->aux_ch)(adapter, mode, 67 write_byte, read_byte); 68 return ret; 69 } 70 71 /* 72 * I2C over AUX CH 73 */ 74 75 /* 76 * Send the address. If the I2C link is running, this 'restarts' 77 * the connection with the new address, this is used for doing 78 * a write followed by a read (as needed for DDC) 79 */ 80 static int 81 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading) 82 { 83 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 84 int mode = MODE_I2C_START; 85 int ret; 86 87 if (reading) 88 mode |= MODE_I2C_READ; 89 else 90 mode |= MODE_I2C_WRITE; 91 algo_data->address = address; 92 algo_data->running = true; 93 ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); 94 return ret; 95 } 96 97 /* 98 * Stop the I2C transaction. This closes out the link, sending 99 * a bare address packet with the MOT bit turned off 100 */ 101 static void 102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading) 103 { 104 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 105 int mode = MODE_I2C_STOP; 106 107 if (reading) 108 mode |= MODE_I2C_READ; 109 else 110 mode |= MODE_I2C_WRITE; 111 if (algo_data->running) { 112 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); 113 algo_data->running = false; 114 } 115 } 116 117 /* 118 * Write a single byte to the current I2C address, the 119 * the I2C link must be running or this returns -EIO 120 */ 121 static int 122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte) 123 { 124 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 125 int ret; 126 127 if (!algo_data->running) 128 return -EIO; 129 130 ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL); 131 return ret; 132 } 133 134 /* 135 * Read a single byte from the current I2C address, the 136 * I2C link must be running or this returns -EIO 137 */ 138 static int 139 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret) 140 { 141 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 142 int ret; 143 144 if (!algo_data->running) 145 return -EIO; 146 147 ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret); 148 return ret; 149 } 150 151 static int 152 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter, 153 struct i2c_msg *msgs, 154 int num) 155 { 156 int ret = 0; 157 bool reading = false; 158 int m; 159 int b; 160 161 for (m = 0; m < num; m++) { 162 u16 len = msgs[m].len; 163 u8 *buf = msgs[m].buf; 164 reading = (msgs[m].flags & I2C_M_RD) != 0; 165 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading); 166 if (ret < 0) 167 break; 168 if (reading) { 169 for (b = 0; b < len; b++) { 170 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]); 171 if (ret < 0) 172 break; 173 } 174 } else { 175 for (b = 0; b < len; b++) { 176 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]); 177 if (ret < 0) 178 break; 179 } 180 } 181 if (ret < 0) 182 break; 183 } 184 if (ret >= 0) 185 ret = num; 186 i2c_algo_dp_aux_stop(adapter, reading); 187 DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret); 188 return ret; 189 } 190 191 static u32 192 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter) 193 { 194 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 195 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 196 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 197 I2C_FUNC_10BIT_ADDR; 198 } 199 200 static const struct i2c_algorithm i2c_dp_aux_algo = { 201 .master_xfer = i2c_algo_dp_aux_xfer, 202 .functionality = i2c_algo_dp_aux_functionality, 203 }; 204 205 static void 206 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter) 207 { 208 (void) i2c_algo_dp_aux_address(adapter, 0, false); 209 (void) i2c_algo_dp_aux_stop(adapter, false); 210 } 211 212 static int 213 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter) 214 { 215 adapter->algo = &i2c_dp_aux_algo; 216 adapter->retries = 3; 217 i2c_dp_aux_reset_bus(adapter); 218 return 0; 219 } 220 221 /* 222 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to 223 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon. 224 */ 225 static int 226 i2c_dp_aux_add_bus(struct i2c_adapter *adapter) 227 { 228 int error; 229 230 error = i2c_dp_aux_prepare_bus(adapter); 231 if (error) 232 return error; 233 error = i2c_add_adapter(adapter); 234 return error; 235 } 236 237 #define _wait_for(COND, MS, W) ({ \ 238 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ 239 int ret__ = 0; \ 240 while (! (COND)) { \ 241 if (time_after(jiffies, timeout__)) { \ 242 ret__ = -ETIMEDOUT; \ 243 break; \ 244 } \ 245 if (W && !in_dbg_master()) msleep(W); \ 246 } \ 247 ret__; \ 248 }) 249 250 #define wait_for(COND, MS) _wait_for(COND, MS, 1) 251 252 #define DP_LINK_CHECK_TIMEOUT (10 * 1000) 253 254 #define DP_LINK_CONFIGURATION_SIZE 9 255 256 #define CDV_FAST_LINK_TRAIN 1 257 258 struct cdv_intel_dp { 259 uint32_t output_reg; 260 uint32_t DP; 261 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; 262 bool has_audio; 263 int force_audio; 264 uint32_t color_range; 265 uint8_t link_bw; 266 uint8_t lane_count; 267 uint8_t dpcd[4]; 268 struct gma_encoder *encoder; 269 struct i2c_adapter adapter; 270 struct i2c_algo_dp_aux_data algo; 271 uint8_t train_set[4]; 272 uint8_t link_status[DP_LINK_STATUS_SIZE]; 273 int panel_power_up_delay; 274 int panel_power_down_delay; 275 int panel_power_cycle_delay; 276 int backlight_on_delay; 277 int backlight_off_delay; 278 struct drm_display_mode *panel_fixed_mode; /* for eDP */ 279 bool panel_on; 280 }; 281 282 struct ddi_regoff { 283 uint32_t PreEmph1; 284 uint32_t PreEmph2; 285 uint32_t VSwing1; 286 uint32_t VSwing2; 287 uint32_t VSwing3; 288 uint32_t VSwing4; 289 uint32_t VSwing5; 290 }; 291 292 static struct ddi_regoff ddi_DP_train_table[] = { 293 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154, 294 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150, 295 .VSwing5 = 0x8158,}, 296 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254, 297 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250, 298 .VSwing5 = 0x8258,}, 299 }; 300 301 static uint32_t dp_vswing_premph_table[] = { 302 0x55338954, 0x4000, 303 0x554d8954, 0x2000, 304 0x55668954, 0, 305 0x559ac0d4, 0x6000, 306 }; 307 /** 308 * is_edp - is the given port attached to an eDP panel (either CPU or PCH) 309 * @encoder: GMA encoder struct 310 * 311 * If a CPU or PCH DP output is attached to an eDP panel, this function 312 * will return true, and false otherwise. 313 */ 314 static bool is_edp(struct gma_encoder *encoder) 315 { 316 return encoder->type == INTEL_OUTPUT_EDP; 317 } 318 319 320 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder); 321 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder); 322 static void cdv_intel_dp_link_down(struct gma_encoder *encoder); 323 324 static int 325 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder) 326 { 327 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 328 int max_lane_count = 4; 329 330 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 331 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f; 332 switch (max_lane_count) { 333 case 1: case 2: case 4: 334 break; 335 default: 336 max_lane_count = 4; 337 } 338 } 339 return max_lane_count; 340 } 341 342 static int 343 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder) 344 { 345 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 346 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; 347 348 switch (max_link_bw) { 349 case DP_LINK_BW_1_62: 350 case DP_LINK_BW_2_7: 351 break; 352 default: 353 max_link_bw = DP_LINK_BW_1_62; 354 break; 355 } 356 return max_link_bw; 357 } 358 359 static int 360 cdv_intel_dp_link_clock(uint8_t link_bw) 361 { 362 if (link_bw == DP_LINK_BW_2_7) 363 return 270000; 364 else 365 return 162000; 366 } 367 368 static int 369 cdv_intel_dp_link_required(int pixel_clock, int bpp) 370 { 371 return (pixel_clock * bpp + 7) / 8; 372 } 373 374 static int 375 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes) 376 { 377 return (max_link_clock * max_lanes * 19) / 20; 378 } 379 380 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder) 381 { 382 struct drm_device *dev = intel_encoder->base.dev; 383 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 384 u32 pp; 385 386 if (intel_dp->panel_on) { 387 DRM_DEBUG_KMS("Skip VDD on because of panel on\n"); 388 return; 389 } 390 DRM_DEBUG_KMS("\n"); 391 392 pp = REG_READ(PP_CONTROL); 393 394 pp |= EDP_FORCE_VDD; 395 REG_WRITE(PP_CONTROL, pp); 396 REG_READ(PP_CONTROL); 397 msleep(intel_dp->panel_power_up_delay); 398 } 399 400 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder) 401 { 402 struct drm_device *dev = intel_encoder->base.dev; 403 u32 pp; 404 405 DRM_DEBUG_KMS("\n"); 406 pp = REG_READ(PP_CONTROL); 407 408 pp &= ~EDP_FORCE_VDD; 409 REG_WRITE(PP_CONTROL, pp); 410 REG_READ(PP_CONTROL); 411 412 } 413 414 /* Returns true if the panel was already on when called */ 415 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder) 416 { 417 struct drm_device *dev = intel_encoder->base.dev; 418 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 419 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE; 420 421 if (intel_dp->panel_on) 422 return true; 423 424 DRM_DEBUG_KMS("\n"); 425 pp = REG_READ(PP_CONTROL); 426 pp &= ~PANEL_UNLOCK_MASK; 427 428 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON); 429 REG_WRITE(PP_CONTROL, pp); 430 REG_READ(PP_CONTROL); 431 432 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) { 433 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS)); 434 intel_dp->panel_on = false; 435 } else 436 intel_dp->panel_on = true; 437 msleep(intel_dp->panel_power_up_delay); 438 439 return false; 440 } 441 442 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder) 443 { 444 struct drm_device *dev = intel_encoder->base.dev; 445 u32 pp, idle_off_mask = PP_ON ; 446 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 447 448 DRM_DEBUG_KMS("\n"); 449 450 pp = REG_READ(PP_CONTROL); 451 452 if ((pp & POWER_TARGET_ON) == 0) 453 return; 454 455 intel_dp->panel_on = false; 456 pp &= ~PANEL_UNLOCK_MASK; 457 /* ILK workaround: disable reset around power sequence */ 458 459 pp &= ~POWER_TARGET_ON; 460 pp &= ~EDP_FORCE_VDD; 461 pp &= ~EDP_BLC_ENABLE; 462 REG_WRITE(PP_CONTROL, pp); 463 REG_READ(PP_CONTROL); 464 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS)); 465 466 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) { 467 DRM_DEBUG_KMS("Error in turning off Panel\n"); 468 } 469 470 msleep(intel_dp->panel_power_cycle_delay); 471 DRM_DEBUG_KMS("Over\n"); 472 } 473 474 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder) 475 { 476 struct drm_device *dev = intel_encoder->base.dev; 477 u32 pp; 478 479 DRM_DEBUG_KMS("\n"); 480 /* 481 * If we enable the backlight right away following a panel power 482 * on, we may see slight flicker as the panel syncs with the eDP 483 * link. So delay a bit to make sure the image is solid before 484 * allowing it to appear. 485 */ 486 msleep(300); 487 pp = REG_READ(PP_CONTROL); 488 489 pp |= EDP_BLC_ENABLE; 490 REG_WRITE(PP_CONTROL, pp); 491 gma_backlight_enable(dev); 492 } 493 494 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder) 495 { 496 struct drm_device *dev = intel_encoder->base.dev; 497 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 498 u32 pp; 499 500 DRM_DEBUG_KMS("\n"); 501 gma_backlight_disable(dev); 502 msleep(10); 503 pp = REG_READ(PP_CONTROL); 504 505 pp &= ~EDP_BLC_ENABLE; 506 REG_WRITE(PP_CONTROL, pp); 507 msleep(intel_dp->backlight_off_delay); 508 } 509 510 static enum drm_mode_status 511 cdv_intel_dp_mode_valid(struct drm_connector *connector, 512 struct drm_display_mode *mode) 513 { 514 struct gma_encoder *encoder = gma_attached_encoder(connector); 515 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 516 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder)); 517 int max_lanes = cdv_intel_dp_max_lane_count(encoder); 518 struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev); 519 520 if (is_edp(encoder) && intel_dp->panel_fixed_mode) { 521 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay) 522 return MODE_PANEL; 523 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay) 524 return MODE_PANEL; 525 } 526 527 /* only refuse the mode on non eDP since we have seen some weird eDP panels 528 which are outside spec tolerances but somehow work by magic */ 529 if (!is_edp(encoder) && 530 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp) 531 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))) 532 return MODE_CLOCK_HIGH; 533 534 if (is_edp(encoder)) { 535 if (cdv_intel_dp_link_required(mode->clock, 24) 536 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)) 537 return MODE_CLOCK_HIGH; 538 539 } 540 if (mode->clock < 10000) 541 return MODE_CLOCK_LOW; 542 543 return MODE_OK; 544 } 545 546 static uint32_t 547 pack_aux(uint8_t *src, int src_bytes) 548 { 549 int i; 550 uint32_t v = 0; 551 552 if (src_bytes > 4) 553 src_bytes = 4; 554 for (i = 0; i < src_bytes; i++) 555 v |= ((uint32_t) src[i]) << ((3-i) * 8); 556 return v; 557 } 558 559 static void 560 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) 561 { 562 int i; 563 if (dst_bytes > 4) 564 dst_bytes = 4; 565 for (i = 0; i < dst_bytes; i++) 566 dst[i] = src >> ((3-i) * 8); 567 } 568 569 static int 570 cdv_intel_dp_aux_ch(struct gma_encoder *encoder, 571 uint8_t *send, int send_bytes, 572 uint8_t *recv, int recv_size) 573 { 574 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 575 uint32_t output_reg = intel_dp->output_reg; 576 struct drm_device *dev = encoder->base.dev; 577 uint32_t ch_ctl = output_reg + 0x10; 578 uint32_t ch_data = ch_ctl + 4; 579 int i; 580 int recv_bytes; 581 uint32_t status; 582 uint32_t aux_clock_divider; 583 int try, precharge; 584 585 /* The clock divider is based off the hrawclk, 586 * and would like to run at 2MHz. So, take the 587 * hrawclk value and divide by 2 and use that 588 * On CDV platform it uses 200MHz as hrawclk. 589 * 590 */ 591 aux_clock_divider = 200 / 2; 592 593 precharge = 4; 594 if (is_edp(encoder)) 595 precharge = 10; 596 597 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) { 598 DRM_ERROR("dp_aux_ch not started status 0x%08x\n", 599 REG_READ(ch_ctl)); 600 return -EBUSY; 601 } 602 603 /* Must try at least 3 times according to DP spec */ 604 for (try = 0; try < 5; try++) { 605 /* Load the send data into the aux channel data registers */ 606 for (i = 0; i < send_bytes; i += 4) 607 REG_WRITE(ch_data + i, 608 pack_aux(send + i, send_bytes - i)); 609 610 /* Send the command and wait for it to complete */ 611 REG_WRITE(ch_ctl, 612 DP_AUX_CH_CTL_SEND_BUSY | 613 DP_AUX_CH_CTL_TIME_OUT_400us | 614 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 615 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 616 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | 617 DP_AUX_CH_CTL_DONE | 618 DP_AUX_CH_CTL_TIME_OUT_ERROR | 619 DP_AUX_CH_CTL_RECEIVE_ERROR); 620 for (;;) { 621 status = REG_READ(ch_ctl); 622 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 623 break; 624 udelay(100); 625 } 626 627 /* Clear done status and any errors */ 628 REG_WRITE(ch_ctl, 629 status | 630 DP_AUX_CH_CTL_DONE | 631 DP_AUX_CH_CTL_TIME_OUT_ERROR | 632 DP_AUX_CH_CTL_RECEIVE_ERROR); 633 if (status & DP_AUX_CH_CTL_DONE) 634 break; 635 } 636 637 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 638 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 639 return -EBUSY; 640 } 641 642 /* Check for timeout or receive error. 643 * Timeouts occur when the sink is not connected 644 */ 645 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 646 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 647 return -EIO; 648 } 649 650 /* Timeouts occur when the device isn't connected, so they're 651 * "normal" -- don't fill the kernel log with these */ 652 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 653 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 654 return -ETIMEDOUT; 655 } 656 657 /* Unload any bytes sent back from the other side */ 658 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 659 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 660 if (recv_bytes > recv_size) 661 recv_bytes = recv_size; 662 663 for (i = 0; i < recv_bytes; i += 4) 664 unpack_aux(REG_READ(ch_data + i), 665 recv + i, recv_bytes - i); 666 667 return recv_bytes; 668 } 669 670 /* Write data to the aux channel in native mode */ 671 static int 672 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder, 673 uint16_t address, uint8_t *send, int send_bytes) 674 { 675 int ret; 676 uint8_t msg[20]; 677 int msg_bytes; 678 uint8_t ack; 679 680 if (send_bytes > 16) 681 return -1; 682 msg[0] = DP_AUX_NATIVE_WRITE << 4; 683 msg[1] = address >> 8; 684 msg[2] = address & 0xff; 685 msg[3] = send_bytes - 1; 686 memcpy(&msg[4], send, send_bytes); 687 msg_bytes = send_bytes + 4; 688 for (;;) { 689 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1); 690 if (ret < 0) 691 return ret; 692 ack >>= 4; 693 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) 694 break; 695 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) 696 udelay(100); 697 else 698 return -EIO; 699 } 700 return send_bytes; 701 } 702 703 /* Write a single byte to the aux channel in native mode */ 704 static int 705 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder, 706 uint16_t address, uint8_t byte) 707 { 708 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1); 709 } 710 711 /* read bytes from a native aux channel */ 712 static int 713 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder, 714 uint16_t address, uint8_t *recv, int recv_bytes) 715 { 716 uint8_t msg[4]; 717 int msg_bytes; 718 uint8_t reply[20]; 719 int reply_bytes; 720 uint8_t ack; 721 int ret; 722 723 msg[0] = DP_AUX_NATIVE_READ << 4; 724 msg[1] = address >> 8; 725 msg[2] = address & 0xff; 726 msg[3] = recv_bytes - 1; 727 728 msg_bytes = 4; 729 reply_bytes = recv_bytes + 1; 730 731 for (;;) { 732 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, 733 reply, reply_bytes); 734 if (ret == 0) 735 return -EPROTO; 736 if (ret < 0) 737 return ret; 738 ack = reply[0] >> 4; 739 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) { 740 memcpy(recv, reply + 1, ret - 1); 741 return ret - 1; 742 } 743 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) 744 udelay(100); 745 else 746 return -EIO; 747 } 748 } 749 750 static int 751 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, 752 uint8_t write_byte, uint8_t *read_byte) 753 { 754 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 755 struct cdv_intel_dp *intel_dp = container_of(adapter, 756 struct cdv_intel_dp, 757 adapter); 758 struct gma_encoder *encoder = intel_dp->encoder; 759 uint16_t address = algo_data->address; 760 uint8_t msg[5]; 761 uint8_t reply[2]; 762 unsigned retry; 763 int msg_bytes; 764 int reply_bytes; 765 int ret; 766 767 /* Set up the command byte */ 768 if (mode & MODE_I2C_READ) 769 msg[0] = DP_AUX_I2C_READ << 4; 770 else 771 msg[0] = DP_AUX_I2C_WRITE << 4; 772 773 if (!(mode & MODE_I2C_STOP)) 774 msg[0] |= DP_AUX_I2C_MOT << 4; 775 776 msg[1] = address >> 8; 777 msg[2] = address; 778 779 switch (mode) { 780 case MODE_I2C_WRITE: 781 msg[3] = 0; 782 msg[4] = write_byte; 783 msg_bytes = 5; 784 reply_bytes = 1; 785 break; 786 case MODE_I2C_READ: 787 msg[3] = 0; 788 msg_bytes = 4; 789 reply_bytes = 2; 790 break; 791 default: 792 msg_bytes = 3; 793 reply_bytes = 1; 794 break; 795 } 796 797 for (retry = 0; retry < 5; retry++) { 798 ret = cdv_intel_dp_aux_ch(encoder, 799 msg, msg_bytes, 800 reply, reply_bytes); 801 if (ret < 0) { 802 DRM_DEBUG_KMS("aux_ch failed %d\n", ret); 803 return ret; 804 } 805 806 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) { 807 case DP_AUX_NATIVE_REPLY_ACK: 808 /* I2C-over-AUX Reply field is only valid 809 * when paired with AUX ACK. 810 */ 811 break; 812 case DP_AUX_NATIVE_REPLY_NACK: 813 DRM_DEBUG_KMS("aux_ch native nack\n"); 814 return -EREMOTEIO; 815 case DP_AUX_NATIVE_REPLY_DEFER: 816 udelay(100); 817 continue; 818 default: 819 DRM_ERROR("aux_ch invalid native reply 0x%02x\n", 820 reply[0]); 821 return -EREMOTEIO; 822 } 823 824 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) { 825 case DP_AUX_I2C_REPLY_ACK: 826 if (mode == MODE_I2C_READ) { 827 *read_byte = reply[1]; 828 } 829 return reply_bytes - 1; 830 case DP_AUX_I2C_REPLY_NACK: 831 DRM_DEBUG_KMS("aux_i2c nack\n"); 832 return -EREMOTEIO; 833 case DP_AUX_I2C_REPLY_DEFER: 834 DRM_DEBUG_KMS("aux_i2c defer\n"); 835 udelay(100); 836 break; 837 default: 838 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); 839 return -EREMOTEIO; 840 } 841 } 842 843 DRM_ERROR("too many retries, giving up\n"); 844 return -EREMOTEIO; 845 } 846 847 static int 848 cdv_intel_dp_i2c_init(struct gma_connector *connector, 849 struct gma_encoder *encoder, const char *name) 850 { 851 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 852 int ret; 853 854 DRM_DEBUG_KMS("i2c_init %s\n", name); 855 856 intel_dp->algo.running = false; 857 intel_dp->algo.address = 0; 858 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch; 859 860 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter)); 861 intel_dp->adapter.owner = THIS_MODULE; 862 intel_dp->adapter.class = I2C_CLASS_DDC; 863 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); 864 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; 865 intel_dp->adapter.algo_data = &intel_dp->algo; 866 intel_dp->adapter.dev.parent = connector->base.kdev; 867 868 if (is_edp(encoder)) 869 cdv_intel_edp_panel_vdd_on(encoder); 870 ret = i2c_dp_aux_add_bus(&intel_dp->adapter); 871 if (is_edp(encoder)) 872 cdv_intel_edp_panel_vdd_off(encoder); 873 874 return ret; 875 } 876 877 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode, 878 struct drm_display_mode *adjusted_mode) 879 { 880 adjusted_mode->hdisplay = fixed_mode->hdisplay; 881 adjusted_mode->hsync_start = fixed_mode->hsync_start; 882 adjusted_mode->hsync_end = fixed_mode->hsync_end; 883 adjusted_mode->htotal = fixed_mode->htotal; 884 885 adjusted_mode->vdisplay = fixed_mode->vdisplay; 886 adjusted_mode->vsync_start = fixed_mode->vsync_start; 887 adjusted_mode->vsync_end = fixed_mode->vsync_end; 888 adjusted_mode->vtotal = fixed_mode->vtotal; 889 890 adjusted_mode->clock = fixed_mode->clock; 891 892 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); 893 } 894 895 static bool 896 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, 897 struct drm_display_mode *adjusted_mode) 898 { 899 struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev); 900 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 901 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 902 int lane_count, clock; 903 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder); 904 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0; 905 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; 906 int refclock = mode->clock; 907 int bpp = 24; 908 909 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) { 910 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode); 911 refclock = intel_dp->panel_fixed_mode->clock; 912 bpp = dev_priv->edp.bpp; 913 } 914 915 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { 916 for (clock = max_clock; clock >= 0; clock--) { 917 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count); 918 919 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) { 920 intel_dp->link_bw = bws[clock]; 921 intel_dp->lane_count = lane_count; 922 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); 923 DRM_DEBUG_KMS("Display port link bw %02x lane " 924 "count %d clock %d\n", 925 intel_dp->link_bw, intel_dp->lane_count, 926 adjusted_mode->clock); 927 return true; 928 } 929 } 930 } 931 if (is_edp(intel_encoder)) { 932 /* okay we failed just pick the highest */ 933 intel_dp->lane_count = max_lane_count; 934 intel_dp->link_bw = bws[max_clock]; 935 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); 936 DRM_DEBUG_KMS("Force picking display port link bw %02x lane " 937 "count %d clock %d\n", 938 intel_dp->link_bw, intel_dp->lane_count, 939 adjusted_mode->clock); 940 941 return true; 942 } 943 return false; 944 } 945 946 struct cdv_intel_dp_m_n { 947 uint32_t tu; 948 uint32_t gmch_m; 949 uint32_t gmch_n; 950 uint32_t link_m; 951 uint32_t link_n; 952 }; 953 954 static void 955 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den) 956 { 957 /* 958 while (*num > 0xffffff || *den > 0xffffff) { 959 *num >>= 1; 960 *den >>= 1; 961 }*/ 962 uint64_t value, m; 963 m = *num; 964 value = m * (0x800000); 965 m = do_div(value, *den); 966 *num = value; 967 *den = 0x800000; 968 } 969 970 static void 971 cdv_intel_dp_compute_m_n(int bpp, 972 int nlanes, 973 int pixel_clock, 974 int link_clock, 975 struct cdv_intel_dp_m_n *m_n) 976 { 977 m_n->tu = 64; 978 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3; 979 m_n->gmch_n = link_clock * nlanes; 980 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); 981 m_n->link_m = pixel_clock; 982 m_n->link_n = link_clock; 983 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n); 984 } 985 986 void 987 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, 988 struct drm_display_mode *adjusted_mode) 989 { 990 struct drm_device *dev = crtc->dev; 991 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 992 struct drm_mode_config *mode_config = &dev->mode_config; 993 struct drm_encoder *encoder; 994 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 995 int lane_count = 4, bpp = 24; 996 struct cdv_intel_dp_m_n m_n; 997 int pipe = gma_crtc->pipe; 998 999 /* 1000 * Find the lane count in the intel_encoder private 1001 */ 1002 list_for_each_entry(encoder, &mode_config->encoder_list, head) { 1003 struct gma_encoder *intel_encoder; 1004 struct cdv_intel_dp *intel_dp; 1005 1006 if (encoder->crtc != crtc) 1007 continue; 1008 1009 intel_encoder = to_gma_encoder(encoder); 1010 intel_dp = intel_encoder->dev_priv; 1011 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) { 1012 lane_count = intel_dp->lane_count; 1013 break; 1014 } else if (is_edp(intel_encoder)) { 1015 lane_count = intel_dp->lane_count; 1016 bpp = dev_priv->edp.bpp; 1017 break; 1018 } 1019 } 1020 1021 /* 1022 * Compute the GMCH and Link ratios. The '3' here is 1023 * the number of bytes_per_pixel post-LUT, which we always 1024 * set up for 8-bits of R/G/B, or 3 bytes total. 1025 */ 1026 cdv_intel_dp_compute_m_n(bpp, lane_count, 1027 mode->clock, adjusted_mode->clock, &m_n); 1028 1029 { 1030 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 1031 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | 1032 m_n.gmch_m); 1033 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n); 1034 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m); 1035 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n); 1036 } 1037 } 1038 1039 static void 1040 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, 1041 struct drm_display_mode *adjusted_mode) 1042 { 1043 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1044 struct drm_crtc *crtc = encoder->crtc; 1045 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 1046 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 1047 struct drm_device *dev = encoder->dev; 1048 1049 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 1050 intel_dp->DP |= intel_dp->color_range; 1051 1052 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 1053 intel_dp->DP |= DP_SYNC_HS_HIGH; 1054 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 1055 intel_dp->DP |= DP_SYNC_VS_HIGH; 1056 1057 intel_dp->DP |= DP_LINK_TRAIN_OFF; 1058 1059 switch (intel_dp->lane_count) { 1060 case 1: 1061 intel_dp->DP |= DP_PORT_WIDTH_1; 1062 break; 1063 case 2: 1064 intel_dp->DP |= DP_PORT_WIDTH_2; 1065 break; 1066 case 4: 1067 intel_dp->DP |= DP_PORT_WIDTH_4; 1068 break; 1069 } 1070 if (intel_dp->has_audio) 1071 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 1072 1073 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); 1074 intel_dp->link_configuration[0] = intel_dp->link_bw; 1075 intel_dp->link_configuration[1] = intel_dp->lane_count; 1076 1077 /* 1078 * Check for DPCD version > 1.1 and enhanced framing support 1079 */ 1080 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 1081 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { 1082 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; 1083 intel_dp->DP |= DP_ENHANCED_FRAMING; 1084 } 1085 1086 /* CPT DP's pipe select is decided in TRANS_DP_CTL */ 1087 if (gma_crtc->pipe == 1) 1088 intel_dp->DP |= DP_PIPEB_SELECT; 1089 1090 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN)); 1091 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP); 1092 if (is_edp(intel_encoder)) { 1093 uint32_t pfit_control; 1094 cdv_intel_edp_panel_on(intel_encoder); 1095 1096 if (mode->hdisplay != adjusted_mode->hdisplay || 1097 mode->vdisplay != adjusted_mode->vdisplay) 1098 pfit_control = PFIT_ENABLE; 1099 else 1100 pfit_control = 0; 1101 1102 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT; 1103 1104 REG_WRITE(PFIT_CONTROL, pfit_control); 1105 } 1106 } 1107 1108 1109 /* If the sink supports it, try to set the power state appropriately */ 1110 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode) 1111 { 1112 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1113 int ret, i; 1114 1115 /* Should have a valid DPCD by this point */ 1116 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 1117 return; 1118 1119 if (mode != DRM_MODE_DPMS_ON) { 1120 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER, 1121 DP_SET_POWER_D3); 1122 if (ret != 1) 1123 DRM_DEBUG_DRIVER("failed to write sink power state\n"); 1124 } else { 1125 /* 1126 * When turning on, we need to retry for 1ms to give the sink 1127 * time to wake up. 1128 */ 1129 for (i = 0; i < 3; i++) { 1130 ret = cdv_intel_dp_aux_native_write_1(encoder, 1131 DP_SET_POWER, 1132 DP_SET_POWER_D0); 1133 if (ret == 1) 1134 break; 1135 udelay(1000); 1136 } 1137 } 1138 } 1139 1140 static void cdv_intel_dp_prepare(struct drm_encoder *encoder) 1141 { 1142 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1143 int edp = is_edp(intel_encoder); 1144 1145 if (edp) { 1146 cdv_intel_edp_backlight_off(intel_encoder); 1147 cdv_intel_edp_panel_off(intel_encoder); 1148 cdv_intel_edp_panel_vdd_on(intel_encoder); 1149 } 1150 /* Wake up the sink first */ 1151 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON); 1152 cdv_intel_dp_link_down(intel_encoder); 1153 if (edp) 1154 cdv_intel_edp_panel_vdd_off(intel_encoder); 1155 } 1156 1157 static void cdv_intel_dp_commit(struct drm_encoder *encoder) 1158 { 1159 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1160 int edp = is_edp(intel_encoder); 1161 1162 if (edp) 1163 cdv_intel_edp_panel_on(intel_encoder); 1164 cdv_intel_dp_start_link_train(intel_encoder); 1165 cdv_intel_dp_complete_link_train(intel_encoder); 1166 if (edp) 1167 cdv_intel_edp_backlight_on(intel_encoder); 1168 } 1169 1170 static void 1171 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode) 1172 { 1173 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1174 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 1175 struct drm_device *dev = encoder->dev; 1176 uint32_t dp_reg = REG_READ(intel_dp->output_reg); 1177 int edp = is_edp(intel_encoder); 1178 1179 if (mode != DRM_MODE_DPMS_ON) { 1180 if (edp) { 1181 cdv_intel_edp_backlight_off(intel_encoder); 1182 cdv_intel_edp_panel_vdd_on(intel_encoder); 1183 } 1184 cdv_intel_dp_sink_dpms(intel_encoder, mode); 1185 cdv_intel_dp_link_down(intel_encoder); 1186 if (edp) { 1187 cdv_intel_edp_panel_vdd_off(intel_encoder); 1188 cdv_intel_edp_panel_off(intel_encoder); 1189 } 1190 } else { 1191 if (edp) 1192 cdv_intel_edp_panel_on(intel_encoder); 1193 cdv_intel_dp_sink_dpms(intel_encoder, mode); 1194 if (!(dp_reg & DP_PORT_EN)) { 1195 cdv_intel_dp_start_link_train(intel_encoder); 1196 cdv_intel_dp_complete_link_train(intel_encoder); 1197 } 1198 if (edp) 1199 cdv_intel_edp_backlight_on(intel_encoder); 1200 } 1201 } 1202 1203 /* 1204 * Native read with retry for link status and receiver capability reads for 1205 * cases where the sink may still be asleep. 1206 */ 1207 static bool 1208 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address, 1209 uint8_t *recv, int recv_bytes) 1210 { 1211 int ret, i; 1212 1213 /* 1214 * Sinks are *supposed* to come up within 1ms from an off state, 1215 * but we're also supposed to retry 3 times per the spec. 1216 */ 1217 for (i = 0; i < 3; i++) { 1218 ret = cdv_intel_dp_aux_native_read(encoder, address, recv, 1219 recv_bytes); 1220 if (ret == recv_bytes) 1221 return true; 1222 udelay(1000); 1223 } 1224 1225 return false; 1226 } 1227 1228 /* 1229 * Fetch AUX CH registers 0x202 - 0x207 which contain 1230 * link status information 1231 */ 1232 static bool 1233 cdv_intel_dp_get_link_status(struct gma_encoder *encoder) 1234 { 1235 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1236 return cdv_intel_dp_aux_native_read_retry(encoder, 1237 DP_LANE0_1_STATUS, 1238 intel_dp->link_status, 1239 DP_LINK_STATUS_SIZE); 1240 } 1241 1242 static uint8_t 1243 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], 1244 int r) 1245 { 1246 return link_status[r - DP_LANE0_1_STATUS]; 1247 } 1248 1249 static uint8_t 1250 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], 1251 int lane) 1252 { 1253 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 1254 int s = ((lane & 1) ? 1255 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : 1256 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); 1257 uint8_t l = cdv_intel_dp_link_status(link_status, i); 1258 1259 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; 1260 } 1261 1262 static uint8_t 1263 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], 1264 int lane) 1265 { 1266 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 1267 int s = ((lane & 1) ? 1268 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : 1269 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); 1270 uint8_t l = cdv_intel_dp_link_status(link_status, i); 1271 1272 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; 1273 } 1274 1275 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3 1276 1277 static void 1278 cdv_intel_get_adjust_train(struct gma_encoder *encoder) 1279 { 1280 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1281 uint8_t v = 0; 1282 uint8_t p = 0; 1283 int lane; 1284 1285 for (lane = 0; lane < intel_dp->lane_count; lane++) { 1286 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane); 1287 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane); 1288 1289 if (this_v > v) 1290 v = this_v; 1291 if (this_p > p) 1292 p = this_p; 1293 } 1294 1295 if (v >= CDV_DP_VOLTAGE_MAX) 1296 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; 1297 1298 if (p == DP_TRAIN_PRE_EMPHASIS_MASK) 1299 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; 1300 1301 for (lane = 0; lane < 4; lane++) 1302 intel_dp->train_set[lane] = v | p; 1303 } 1304 1305 1306 static uint8_t 1307 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], 1308 int lane) 1309 { 1310 int i = DP_LANE0_1_STATUS + (lane >> 1); 1311 int s = (lane & 1) * 4; 1312 uint8_t l = cdv_intel_dp_link_status(link_status, i); 1313 1314 return (l >> s) & 0xf; 1315 } 1316 1317 /* Check for clock recovery is done on all channels */ 1318 static bool 1319 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) 1320 { 1321 int lane; 1322 uint8_t lane_status; 1323 1324 for (lane = 0; lane < lane_count; lane++) { 1325 lane_status = cdv_intel_get_lane_status(link_status, lane); 1326 if ((lane_status & DP_LANE_CR_DONE) == 0) 1327 return false; 1328 } 1329 return true; 1330 } 1331 1332 /* Check to see if channel eq is done on all channels */ 1333 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ 1334 DP_LANE_CHANNEL_EQ_DONE|\ 1335 DP_LANE_SYMBOL_LOCKED) 1336 static bool 1337 cdv_intel_channel_eq_ok(struct gma_encoder *encoder) 1338 { 1339 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1340 uint8_t lane_align; 1341 uint8_t lane_status; 1342 int lane; 1343 1344 lane_align = cdv_intel_dp_link_status(intel_dp->link_status, 1345 DP_LANE_ALIGN_STATUS_UPDATED); 1346 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) 1347 return false; 1348 for (lane = 0; lane < intel_dp->lane_count; lane++) { 1349 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane); 1350 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) 1351 return false; 1352 } 1353 return true; 1354 } 1355 1356 static bool 1357 cdv_intel_dp_set_link_train(struct gma_encoder *encoder, 1358 uint32_t dp_reg_value, 1359 uint8_t dp_train_pat) 1360 { 1361 struct drm_device *dev = encoder->base.dev; 1362 int ret; 1363 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1364 1365 REG_WRITE(intel_dp->output_reg, dp_reg_value); 1366 REG_READ(intel_dp->output_reg); 1367 1368 ret = cdv_intel_dp_aux_native_write_1(encoder, 1369 DP_TRAINING_PATTERN_SET, 1370 dp_train_pat); 1371 1372 if (ret != 1) { 1373 DRM_DEBUG_KMS("Failure in setting link pattern %x\n", 1374 dp_train_pat); 1375 return false; 1376 } 1377 1378 return true; 1379 } 1380 1381 1382 static bool 1383 cdv_intel_dplink_set_level(struct gma_encoder *encoder, 1384 uint8_t dp_train_pat) 1385 { 1386 int ret; 1387 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1388 1389 ret = cdv_intel_dp_aux_native_write(encoder, 1390 DP_TRAINING_LANE0_SET, 1391 intel_dp->train_set, 1392 intel_dp->lane_count); 1393 1394 if (ret != intel_dp->lane_count) { 1395 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n", 1396 intel_dp->train_set[0], intel_dp->lane_count); 1397 return false; 1398 } 1399 return true; 1400 } 1401 1402 static void 1403 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level) 1404 { 1405 struct drm_device *dev = encoder->base.dev; 1406 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1407 struct ddi_regoff *ddi_reg; 1408 int vswing, premph, index; 1409 1410 if (intel_dp->output_reg == DP_B) 1411 ddi_reg = &ddi_DP_train_table[0]; 1412 else 1413 ddi_reg = &ddi_DP_train_table[1]; 1414 1415 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK); 1416 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >> 1417 DP_TRAIN_PRE_EMPHASIS_SHIFT; 1418 1419 if (vswing + premph > 3) 1420 return; 1421 #ifdef CDV_FAST_LINK_TRAIN 1422 return; 1423 #endif 1424 DRM_DEBUG_KMS("Test2\n"); 1425 //return ; 1426 cdv_sb_reset(dev); 1427 /* ;Swing voltage programming 1428 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */ 1429 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A); 1430 1431 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */ 1432 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055); 1433 1434 /* ;gfx_dpio_set_reg(0x8148, 0x55338954) 1435 * The VSwing_PreEmph table is also considered based on the vswing/premp 1436 */ 1437 index = (vswing + premph) * 2; 1438 if (premph == 1 && vswing == 1) { 1439 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954); 1440 } else 1441 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]); 1442 1443 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */ 1444 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3) 1445 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040); 1446 else 1447 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040); 1448 1449 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */ 1450 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */ 1451 1452 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */ 1453 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055); 1454 1455 /* ;Pre emphasis programming 1456 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040) 1457 */ 1458 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040); 1459 1460 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */ 1461 index = 2 * premph + 1; 1462 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]); 1463 return; 1464 } 1465 1466 1467 /* Enable corresponding port and start training pattern 1 */ 1468 static void 1469 cdv_intel_dp_start_link_train(struct gma_encoder *encoder) 1470 { 1471 struct drm_device *dev = encoder->base.dev; 1472 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1473 int i; 1474 uint8_t voltage; 1475 bool clock_recovery = false; 1476 int tries; 1477 u32 reg; 1478 uint32_t DP = intel_dp->DP; 1479 1480 DP |= DP_PORT_EN; 1481 DP &= ~DP_LINK_TRAIN_MASK; 1482 1483 reg = DP; 1484 reg |= DP_LINK_TRAIN_PAT_1; 1485 /* Enable output, wait for it to become active */ 1486 REG_WRITE(intel_dp->output_reg, reg); 1487 REG_READ(intel_dp->output_reg); 1488 gma_wait_for_vblank(dev); 1489 1490 DRM_DEBUG_KMS("Link config\n"); 1491 /* Write the link configuration data */ 1492 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET, 1493 intel_dp->link_configuration, 1494 2); 1495 1496 memset(intel_dp->train_set, 0, 4); 1497 voltage = 0; 1498 tries = 0; 1499 clock_recovery = false; 1500 1501 DRM_DEBUG_KMS("Start train\n"); 1502 reg = DP | DP_LINK_TRAIN_PAT_1; 1503 1504 for (;;) { 1505 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ 1506 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", 1507 intel_dp->train_set[0], 1508 intel_dp->link_configuration[0], 1509 intel_dp->link_configuration[1]); 1510 1511 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) { 1512 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n"); 1513 } 1514 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); 1515 /* Set training pattern 1 */ 1516 1517 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1); 1518 1519 udelay(200); 1520 if (!cdv_intel_dp_get_link_status(encoder)) 1521 break; 1522 1523 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", 1524 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], 1525 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); 1526 1527 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { 1528 DRM_DEBUG_KMS("PT1 train is done\n"); 1529 clock_recovery = true; 1530 break; 1531 } 1532 1533 /* Check to see if we've tried the max voltage */ 1534 for (i = 0; i < intel_dp->lane_count; i++) 1535 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) 1536 break; 1537 if (i == intel_dp->lane_count) 1538 break; 1539 1540 /* Check to see if we've tried the same voltage 5 times */ 1541 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { 1542 ++tries; 1543 if (tries == 5) 1544 break; 1545 } else 1546 tries = 0; 1547 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; 1548 1549 /* Compute new intel_dp->train_set as requested by target */ 1550 cdv_intel_get_adjust_train(encoder); 1551 1552 } 1553 1554 if (!clock_recovery) { 1555 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]); 1556 } 1557 1558 intel_dp->DP = DP; 1559 } 1560 1561 static void 1562 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder) 1563 { 1564 struct drm_device *dev = encoder->base.dev; 1565 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1566 int tries, cr_tries; 1567 u32 reg; 1568 uint32_t DP = intel_dp->DP; 1569 1570 /* channel equalization */ 1571 tries = 0; 1572 cr_tries = 0; 1573 1574 DRM_DEBUG_KMS("\n"); 1575 reg = DP | DP_LINK_TRAIN_PAT_2; 1576 1577 for (;;) { 1578 1579 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", 1580 intel_dp->train_set[0], 1581 intel_dp->link_configuration[0], 1582 intel_dp->link_configuration[1]); 1583 /* channel eq pattern */ 1584 1585 if (!cdv_intel_dp_set_link_train(encoder, reg, 1586 DP_TRAINING_PATTERN_2)) { 1587 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n"); 1588 } 1589 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ 1590 1591 if (cr_tries > 5) { 1592 DRM_ERROR("failed to train DP, aborting\n"); 1593 cdv_intel_dp_link_down(encoder); 1594 break; 1595 } 1596 1597 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); 1598 1599 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2); 1600 1601 udelay(1000); 1602 if (!cdv_intel_dp_get_link_status(encoder)) 1603 break; 1604 1605 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", 1606 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], 1607 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); 1608 1609 /* Make sure clock is still ok */ 1610 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { 1611 cdv_intel_dp_start_link_train(encoder); 1612 cr_tries++; 1613 continue; 1614 } 1615 1616 if (cdv_intel_channel_eq_ok(encoder)) { 1617 DRM_DEBUG_KMS("PT2 train is done\n"); 1618 break; 1619 } 1620 1621 /* Try 5 times, then try clock recovery if that fails */ 1622 if (tries > 5) { 1623 cdv_intel_dp_link_down(encoder); 1624 cdv_intel_dp_start_link_train(encoder); 1625 tries = 0; 1626 cr_tries++; 1627 continue; 1628 } 1629 1630 /* Compute new intel_dp->train_set as requested by target */ 1631 cdv_intel_get_adjust_train(encoder); 1632 ++tries; 1633 1634 } 1635 1636 reg = DP | DP_LINK_TRAIN_OFF; 1637 1638 REG_WRITE(intel_dp->output_reg, reg); 1639 REG_READ(intel_dp->output_reg); 1640 cdv_intel_dp_aux_native_write_1(encoder, 1641 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); 1642 } 1643 1644 static void 1645 cdv_intel_dp_link_down(struct gma_encoder *encoder) 1646 { 1647 struct drm_device *dev = encoder->base.dev; 1648 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1649 uint32_t DP = intel_dp->DP; 1650 1651 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0) 1652 return; 1653 1654 DRM_DEBUG_KMS("\n"); 1655 1656 1657 { 1658 DP &= ~DP_LINK_TRAIN_MASK; 1659 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); 1660 } 1661 REG_READ(intel_dp->output_reg); 1662 1663 msleep(17); 1664 1665 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 1666 REG_READ(intel_dp->output_reg); 1667 } 1668 1669 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder) 1670 { 1671 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1672 enum drm_connector_status status; 1673 1674 status = connector_status_disconnected; 1675 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd, 1676 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd)) 1677 { 1678 if (intel_dp->dpcd[DP_DPCD_REV] != 0) 1679 status = connector_status_connected; 1680 } 1681 if (status == connector_status_connected) 1682 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", 1683 intel_dp->dpcd[0], intel_dp->dpcd[1], 1684 intel_dp->dpcd[2], intel_dp->dpcd[3]); 1685 return status; 1686 } 1687 1688 /* 1689 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. 1690 * 1691 * \return true if DP port is connected. 1692 * \return false if DP port is disconnected. 1693 */ 1694 static enum drm_connector_status 1695 cdv_intel_dp_detect(struct drm_connector *connector, bool force) 1696 { 1697 struct gma_encoder *encoder = gma_attached_encoder(connector); 1698 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1699 enum drm_connector_status status; 1700 struct edid *edid = NULL; 1701 int edp = is_edp(encoder); 1702 1703 intel_dp->has_audio = false; 1704 1705 if (edp) 1706 cdv_intel_edp_panel_vdd_on(encoder); 1707 status = cdv_dp_detect(encoder); 1708 if (status != connector_status_connected) { 1709 if (edp) 1710 cdv_intel_edp_panel_vdd_off(encoder); 1711 return status; 1712 } 1713 1714 if (intel_dp->force_audio) { 1715 intel_dp->has_audio = intel_dp->force_audio > 0; 1716 } else { 1717 edid = drm_get_edid(connector, &intel_dp->adapter); 1718 if (edid) { 1719 intel_dp->has_audio = drm_detect_monitor_audio(edid); 1720 kfree(edid); 1721 } 1722 } 1723 if (edp) 1724 cdv_intel_edp_panel_vdd_off(encoder); 1725 1726 return connector_status_connected; 1727 } 1728 1729 static int cdv_intel_dp_get_modes(struct drm_connector *connector) 1730 { 1731 struct gma_encoder *intel_encoder = gma_attached_encoder(connector); 1732 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 1733 struct edid *edid = NULL; 1734 int ret = 0; 1735 int edp = is_edp(intel_encoder); 1736 1737 1738 edid = drm_get_edid(connector, &intel_dp->adapter); 1739 if (edid) { 1740 drm_connector_update_edid_property(connector, edid); 1741 ret = drm_add_edid_modes(connector, edid); 1742 kfree(edid); 1743 } 1744 1745 if (is_edp(intel_encoder)) { 1746 struct drm_device *dev = connector->dev; 1747 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 1748 1749 cdv_intel_edp_panel_vdd_off(intel_encoder); 1750 if (ret) { 1751 if (edp && !intel_dp->panel_fixed_mode) { 1752 struct drm_display_mode *newmode; 1753 list_for_each_entry(newmode, &connector->probed_modes, 1754 head) { 1755 if (newmode->type & DRM_MODE_TYPE_PREFERRED) { 1756 intel_dp->panel_fixed_mode = 1757 drm_mode_duplicate(dev, newmode); 1758 break; 1759 } 1760 } 1761 } 1762 1763 return ret; 1764 } 1765 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) { 1766 intel_dp->panel_fixed_mode = 1767 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); 1768 if (intel_dp->panel_fixed_mode) { 1769 intel_dp->panel_fixed_mode->type |= 1770 DRM_MODE_TYPE_PREFERRED; 1771 } 1772 } 1773 if (intel_dp->panel_fixed_mode != NULL) { 1774 struct drm_display_mode *mode; 1775 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode); 1776 drm_mode_probed_add(connector, mode); 1777 return 1; 1778 } 1779 } 1780 1781 return ret; 1782 } 1783 1784 static bool 1785 cdv_intel_dp_detect_audio(struct drm_connector *connector) 1786 { 1787 struct gma_encoder *encoder = gma_attached_encoder(connector); 1788 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1789 struct edid *edid; 1790 bool has_audio = false; 1791 int edp = is_edp(encoder); 1792 1793 if (edp) 1794 cdv_intel_edp_panel_vdd_on(encoder); 1795 1796 edid = drm_get_edid(connector, &intel_dp->adapter); 1797 if (edid) { 1798 has_audio = drm_detect_monitor_audio(edid); 1799 kfree(edid); 1800 } 1801 if (edp) 1802 cdv_intel_edp_panel_vdd_off(encoder); 1803 1804 return has_audio; 1805 } 1806 1807 static int 1808 cdv_intel_dp_set_property(struct drm_connector *connector, 1809 struct drm_property *property, 1810 uint64_t val) 1811 { 1812 struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev); 1813 struct gma_encoder *encoder = gma_attached_encoder(connector); 1814 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1815 int ret; 1816 1817 ret = drm_object_property_set_value(&connector->base, property, val); 1818 if (ret) 1819 return ret; 1820 1821 if (property == dev_priv->force_audio_property) { 1822 int i = val; 1823 bool has_audio; 1824 1825 if (i == intel_dp->force_audio) 1826 return 0; 1827 1828 intel_dp->force_audio = i; 1829 1830 if (i == 0) 1831 has_audio = cdv_intel_dp_detect_audio(connector); 1832 else 1833 has_audio = i > 0; 1834 1835 if (has_audio == intel_dp->has_audio) 1836 return 0; 1837 1838 intel_dp->has_audio = has_audio; 1839 goto done; 1840 } 1841 1842 if (property == dev_priv->broadcast_rgb_property) { 1843 if (val == !!intel_dp->color_range) 1844 return 0; 1845 1846 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0; 1847 goto done; 1848 } 1849 1850 return -EINVAL; 1851 1852 done: 1853 if (encoder->base.crtc) { 1854 struct drm_crtc *crtc = encoder->base.crtc; 1855 drm_crtc_helper_set_mode(crtc, &crtc->mode, 1856 crtc->x, crtc->y, 1857 crtc->primary->fb); 1858 } 1859 1860 return 0; 1861 } 1862 1863 static void 1864 cdv_intel_dp_destroy(struct drm_connector *connector) 1865 { 1866 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 1867 struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv; 1868 1869 if (is_edp(gma_encoder)) { 1870 /* cdv_intel_panel_destroy_backlight(connector->dev); */ 1871 kfree(intel_dp->panel_fixed_mode); 1872 intel_dp->panel_fixed_mode = NULL; 1873 } 1874 i2c_del_adapter(&intel_dp->adapter); 1875 drm_connector_unregister(connector); 1876 drm_connector_cleanup(connector); 1877 kfree(connector); 1878 } 1879 1880 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = { 1881 .dpms = cdv_intel_dp_dpms, 1882 .mode_fixup = cdv_intel_dp_mode_fixup, 1883 .prepare = cdv_intel_dp_prepare, 1884 .mode_set = cdv_intel_dp_mode_set, 1885 .commit = cdv_intel_dp_commit, 1886 }; 1887 1888 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = { 1889 .dpms = drm_helper_connector_dpms, 1890 .detect = cdv_intel_dp_detect, 1891 .fill_modes = drm_helper_probe_single_connector_modes, 1892 .set_property = cdv_intel_dp_set_property, 1893 .destroy = cdv_intel_dp_destroy, 1894 }; 1895 1896 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = { 1897 .get_modes = cdv_intel_dp_get_modes, 1898 .mode_valid = cdv_intel_dp_mode_valid, 1899 .best_encoder = gma_best_encoder, 1900 }; 1901 1902 static void cdv_intel_dp_add_properties(struct drm_connector *connector) 1903 { 1904 cdv_intel_attach_force_audio_property(connector); 1905 cdv_intel_attach_broadcast_rgb_property(connector); 1906 } 1907 1908 /* check the VBT to see whether the eDP is on DP-D port */ 1909 static bool cdv_intel_dpc_is_edp(struct drm_device *dev) 1910 { 1911 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 1912 struct child_device_config *p_child; 1913 int i; 1914 1915 if (!dev_priv->child_dev_num) 1916 return false; 1917 1918 for (i = 0; i < dev_priv->child_dev_num; i++) { 1919 p_child = dev_priv->child_dev + i; 1920 1921 if (p_child->dvo_port == PORT_IDPC && 1922 p_child->device_type == DEVICE_TYPE_eDP) 1923 return true; 1924 } 1925 return false; 1926 } 1927 1928 /* Cedarview display clock gating 1929 1930 We need this disable dot get correct behaviour while enabling 1931 DP/eDP. TODO - investigate if we can turn it back to normality 1932 after enabling */ 1933 static void cdv_disable_intel_clock_gating(struct drm_device *dev) 1934 { 1935 u32 reg_value; 1936 reg_value = REG_READ(DSPCLK_GATE_D); 1937 1938 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE | 1939 DPUNIT_PIPEA_GATE_DISABLE | 1940 DPCUNIT_CLOCK_GATE_DISABLE | 1941 DPLSUNIT_CLOCK_GATE_DISABLE | 1942 DPOUNIT_CLOCK_GATE_DISABLE | 1943 DPIOUNIT_CLOCK_GATE_DISABLE); 1944 1945 REG_WRITE(DSPCLK_GATE_D, reg_value); 1946 1947 udelay(500); 1948 } 1949 1950 void 1951 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg) 1952 { 1953 struct gma_encoder *gma_encoder; 1954 struct gma_connector *gma_connector; 1955 struct drm_connector *connector; 1956 struct drm_encoder *encoder; 1957 struct cdv_intel_dp *intel_dp; 1958 const char *name = NULL; 1959 int type = DRM_MODE_CONNECTOR_DisplayPort; 1960 1961 gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL); 1962 if (!gma_encoder) 1963 return; 1964 gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL); 1965 if (!gma_connector) 1966 goto err_connector; 1967 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL); 1968 if (!intel_dp) 1969 goto err_priv; 1970 1971 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev)) 1972 type = DRM_MODE_CONNECTOR_eDP; 1973 1974 connector = &gma_connector->base; 1975 encoder = &gma_encoder->base; 1976 1977 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type); 1978 drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS); 1979 1980 gma_connector_attach_encoder(gma_connector, gma_encoder); 1981 1982 if (type == DRM_MODE_CONNECTOR_DisplayPort) 1983 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT; 1984 else 1985 gma_encoder->type = INTEL_OUTPUT_EDP; 1986 1987 1988 gma_encoder->dev_priv=intel_dp; 1989 intel_dp->encoder = gma_encoder; 1990 intel_dp->output_reg = output_reg; 1991 1992 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs); 1993 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs); 1994 1995 connector->polled = DRM_CONNECTOR_POLL_HPD; 1996 connector->interlace_allowed = false; 1997 connector->doublescan_allowed = false; 1998 1999 drm_connector_register(connector); 2000 2001 /* Set up the DDC bus. */ 2002 switch (output_reg) { 2003 case DP_B: 2004 name = "DPDDC-B"; 2005 gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT); 2006 break; 2007 case DP_C: 2008 name = "DPDDC-C"; 2009 gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT); 2010 break; 2011 } 2012 2013 cdv_disable_intel_clock_gating(dev); 2014 2015 cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name); 2016 /* FIXME:fail check */ 2017 cdv_intel_dp_add_properties(connector); 2018 2019 if (is_edp(gma_encoder)) { 2020 int ret; 2021 struct edp_power_seq cur; 2022 u32 pp_on, pp_off, pp_div; 2023 u32 pwm_ctrl; 2024 2025 pp_on = REG_READ(PP_CONTROL); 2026 pp_on &= ~PANEL_UNLOCK_MASK; 2027 pp_on |= PANEL_UNLOCK_REGS; 2028 2029 REG_WRITE(PP_CONTROL, pp_on); 2030 2031 pwm_ctrl = REG_READ(BLC_PWM_CTL2); 2032 pwm_ctrl |= PWM_PIPE_B; 2033 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl); 2034 2035 pp_on = REG_READ(PP_ON_DELAYS); 2036 pp_off = REG_READ(PP_OFF_DELAYS); 2037 pp_div = REG_READ(PP_DIVISOR); 2038 2039 /* Pull timing values out of registers */ 2040 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> 2041 PANEL_POWER_UP_DELAY_SHIFT; 2042 2043 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> 2044 PANEL_LIGHT_ON_DELAY_SHIFT; 2045 2046 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> 2047 PANEL_LIGHT_OFF_DELAY_SHIFT; 2048 2049 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> 2050 PANEL_POWER_DOWN_DELAY_SHIFT; 2051 2052 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> 2053 PANEL_POWER_CYCLE_DELAY_SHIFT); 2054 2055 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 2056 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); 2057 2058 2059 intel_dp->panel_power_up_delay = cur.t1_t3 / 10; 2060 intel_dp->backlight_on_delay = cur.t8 / 10; 2061 intel_dp->backlight_off_delay = cur.t9 / 10; 2062 intel_dp->panel_power_down_delay = cur.t10 / 10; 2063 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100; 2064 2065 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 2066 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 2067 intel_dp->panel_power_cycle_delay); 2068 2069 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 2070 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 2071 2072 2073 cdv_intel_edp_panel_vdd_on(gma_encoder); 2074 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV, 2075 intel_dp->dpcd, 2076 sizeof(intel_dp->dpcd)); 2077 cdv_intel_edp_panel_vdd_off(gma_encoder); 2078 if (ret <= 0) { 2079 /* if this fails, presume the device is a ghost */ 2080 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 2081 drm_encoder_cleanup(encoder); 2082 cdv_intel_dp_destroy(connector); 2083 goto err_connector; 2084 } else { 2085 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", 2086 intel_dp->dpcd[0], intel_dp->dpcd[1], 2087 intel_dp->dpcd[2], intel_dp->dpcd[3]); 2088 2089 } 2090 /* The CDV reference driver moves pnale backlight setup into the displays that 2091 have a backlight: this is a good idea and one we should probably adopt, however 2092 we need to migrate all the drivers before we can do that */ 2093 /*cdv_intel_panel_setup_backlight(dev); */ 2094 } 2095 return; 2096 2097 err_priv: 2098 kfree(gma_connector); 2099 err_connector: 2100 kfree(gma_encoder); 2101 } 2102