1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 
32 #include <drm/display/drm_dp_helper.h>
33 #include <drm/drm_crtc.h>
34 #include <drm/drm_crtc_helper.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_modeset_helper_vtables.h>
37 #include <drm/drm_simple_kms_helper.h>
38 
39 #include "gma_display.h"
40 #include "psb_drv.h"
41 #include "psb_intel_drv.h"
42 #include "psb_intel_reg.h"
43 
44 /**
45  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
46  * 				 aux algorithm
47  * @running: set by the algo indicating whether an i2c is ongoing or whether
48  * 	     the i2c bus is quiescent
49  * @address: i2c target address for the currently ongoing transfer
50  * @aux_ch: driver callback to transfer a single byte of the i2c payload
51  */
52 struct i2c_algo_dp_aux_data {
53 	bool running;
54 	u16 address;
55 	int (*aux_ch) (struct i2c_adapter *adapter,
56 		       int mode, uint8_t write_byte,
57 		       uint8_t *read_byte);
58 };
59 
60 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
61 static int
62 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
63 			    uint8_t write_byte, uint8_t *read_byte)
64 {
65 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
66 	int ret;
67 
68 	ret = (*algo_data->aux_ch)(adapter, mode,
69 				   write_byte, read_byte);
70 	return ret;
71 }
72 
73 /*
74  * I2C over AUX CH
75  */
76 
77 /*
78  * Send the address. If the I2C link is running, this 'restarts'
79  * the connection with the new address, this is used for doing
80  * a write followed by a read (as needed for DDC)
81  */
82 static int
83 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
84 {
85 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
86 	int mode = MODE_I2C_START;
87 
88 	if (reading)
89 		mode |= MODE_I2C_READ;
90 	else
91 		mode |= MODE_I2C_WRITE;
92 	algo_data->address = address;
93 	algo_data->running = true;
94 	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
95 }
96 
97 /*
98  * Stop the I2C transaction. This closes out the link, sending
99  * a bare address packet with the MOT bit turned off
100  */
101 static void
102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103 {
104 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105 	int mode = MODE_I2C_STOP;
106 
107 	if (reading)
108 		mode |= MODE_I2C_READ;
109 	else
110 		mode |= MODE_I2C_WRITE;
111 	if (algo_data->running) {
112 		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113 		algo_data->running = false;
114 	}
115 }
116 
117 /*
118  * Write a single byte to the current I2C address, the
119  * I2C link must be running or this returns -EIO
120  */
121 static int
122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123 {
124 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125 
126 	if (!algo_data->running)
127 		return -EIO;
128 
129 	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
130 }
131 
132 /*
133  * Read a single byte from the current I2C address, the
134  * I2C link must be running or this returns -EIO
135  */
136 static int
137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138 {
139 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140 
141 	if (!algo_data->running)
142 		return -EIO;
143 
144 	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
145 }
146 
147 static int
148 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
149 		     struct i2c_msg *msgs,
150 		     int num)
151 {
152 	int ret = 0;
153 	bool reading = false;
154 	int m;
155 	int b;
156 
157 	for (m = 0; m < num; m++) {
158 		u16 len = msgs[m].len;
159 		u8 *buf = msgs[m].buf;
160 		reading = (msgs[m].flags & I2C_M_RD) != 0;
161 		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
162 		if (ret < 0)
163 			break;
164 		if (reading) {
165 			for (b = 0; b < len; b++) {
166 				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
167 				if (ret < 0)
168 					break;
169 			}
170 		} else {
171 			for (b = 0; b < len; b++) {
172 				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
173 				if (ret < 0)
174 					break;
175 			}
176 		}
177 		if (ret < 0)
178 			break;
179 	}
180 	if (ret >= 0)
181 		ret = num;
182 	i2c_algo_dp_aux_stop(adapter, reading);
183 	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
184 	return ret;
185 }
186 
187 static u32
188 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
189 {
190 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
191 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
192 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
193 	       I2C_FUNC_10BIT_ADDR;
194 }
195 
196 static const struct i2c_algorithm i2c_dp_aux_algo = {
197 	.master_xfer	= i2c_algo_dp_aux_xfer,
198 	.functionality	= i2c_algo_dp_aux_functionality,
199 };
200 
201 static void
202 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
203 {
204 	(void) i2c_algo_dp_aux_address(adapter, 0, false);
205 	(void) i2c_algo_dp_aux_stop(adapter, false);
206 }
207 
208 static int
209 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
210 {
211 	adapter->algo = &i2c_dp_aux_algo;
212 	adapter->retries = 3;
213 	i2c_dp_aux_reset_bus(adapter);
214 	return 0;
215 }
216 
217 /*
218  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
219  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
220  */
221 static int
222 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
223 {
224 	int error;
225 
226 	error = i2c_dp_aux_prepare_bus(adapter);
227 	if (error)
228 		return error;
229 	error = i2c_add_adapter(adapter);
230 	return error;
231 }
232 
233 #define _wait_for(COND, MS, W) ({ \
234         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
235         int ret__ = 0;                                                  \
236         while (! (COND)) {                                              \
237                 if (time_after(jiffies, timeout__)) {                   \
238                         ret__ = -ETIMEDOUT;                             \
239                         break;                                          \
240                 }                                                       \
241                 if (W && !in_dbg_master()) msleep(W);                   \
242         }                                                               \
243         ret__;                                                          \
244 })
245 
246 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
247 
248 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
249 
250 #define DP_LINK_CONFIGURATION_SIZE	9
251 
252 #define CDV_FAST_LINK_TRAIN	1
253 
254 struct cdv_intel_dp {
255 	uint32_t output_reg;
256 	uint32_t DP;
257 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
258 	bool has_audio;
259 	int force_audio;
260 	uint32_t color_range;
261 	uint8_t link_bw;
262 	uint8_t lane_count;
263 	uint8_t dpcd[4];
264 	struct gma_encoder *encoder;
265 	struct i2c_adapter adapter;
266 	struct i2c_algo_dp_aux_data algo;
267 	uint8_t	train_set[4];
268 	uint8_t link_status[DP_LINK_STATUS_SIZE];
269 	int panel_power_up_delay;
270 	int panel_power_down_delay;
271 	int panel_power_cycle_delay;
272 	int backlight_on_delay;
273 	int backlight_off_delay;
274 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
275 	bool panel_on;
276 };
277 
278 struct ddi_regoff {
279 	uint32_t	PreEmph1;
280 	uint32_t	PreEmph2;
281 	uint32_t	VSwing1;
282 	uint32_t	VSwing2;
283 	uint32_t	VSwing3;
284 	uint32_t	VSwing4;
285 	uint32_t	VSwing5;
286 };
287 
288 static struct ddi_regoff ddi_DP_train_table[] = {
289 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
290 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
291 	.VSwing5 = 0x8158,},
292 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
293 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
294 	.VSwing5 = 0x8258,},
295 };
296 
297 static uint32_t dp_vswing_premph_table[] = {
298         0x55338954,	0x4000,
299         0x554d8954,	0x2000,
300         0x55668954,	0,
301         0x559ac0d4,	0x6000,
302 };
303 /**
304  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
305  * @encoder: GMA encoder struct
306  *
307  * If a CPU or PCH DP output is attached to an eDP panel, this function
308  * will return true, and false otherwise.
309  */
310 static bool is_edp(struct gma_encoder *encoder)
311 {
312 	return encoder->type == INTEL_OUTPUT_EDP;
313 }
314 
315 
316 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
317 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
318 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
319 
320 static int
321 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
322 {
323 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
324 	int max_lane_count = 4;
325 
326 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
327 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
328 		switch (max_lane_count) {
329 		case 1: case 2: case 4:
330 			break;
331 		default:
332 			max_lane_count = 4;
333 		}
334 	}
335 	return max_lane_count;
336 }
337 
338 static int
339 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
340 {
341 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
342 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
343 
344 	switch (max_link_bw) {
345 	case DP_LINK_BW_1_62:
346 	case DP_LINK_BW_2_7:
347 		break;
348 	default:
349 		max_link_bw = DP_LINK_BW_1_62;
350 		break;
351 	}
352 	return max_link_bw;
353 }
354 
355 static int
356 cdv_intel_dp_link_clock(uint8_t link_bw)
357 {
358 	if (link_bw == DP_LINK_BW_2_7)
359 		return 270000;
360 	else
361 		return 162000;
362 }
363 
364 static int
365 cdv_intel_dp_link_required(int pixel_clock, int bpp)
366 {
367 	return (pixel_clock * bpp + 7) / 8;
368 }
369 
370 static int
371 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
372 {
373 	return (max_link_clock * max_lanes * 19) / 20;
374 }
375 
376 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
377 {
378 	struct drm_device *dev = intel_encoder->base.dev;
379 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
380 	u32 pp;
381 
382 	if (intel_dp->panel_on) {
383 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
384 		return;
385 	}
386 	DRM_DEBUG_KMS("\n");
387 
388 	pp = REG_READ(PP_CONTROL);
389 
390 	pp |= EDP_FORCE_VDD;
391 	REG_WRITE(PP_CONTROL, pp);
392 	REG_READ(PP_CONTROL);
393 	msleep(intel_dp->panel_power_up_delay);
394 }
395 
396 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
397 {
398 	struct drm_device *dev = intel_encoder->base.dev;
399 	u32 pp;
400 
401 	DRM_DEBUG_KMS("\n");
402 	pp = REG_READ(PP_CONTROL);
403 
404 	pp &= ~EDP_FORCE_VDD;
405 	REG_WRITE(PP_CONTROL, pp);
406 	REG_READ(PP_CONTROL);
407 
408 }
409 
410 /* Returns true if the panel was already on when called */
411 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
412 {
413 	struct drm_device *dev = intel_encoder->base.dev;
414 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
415 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
416 
417 	if (intel_dp->panel_on)
418 		return true;
419 
420 	DRM_DEBUG_KMS("\n");
421 	pp = REG_READ(PP_CONTROL);
422 	pp &= ~PANEL_UNLOCK_MASK;
423 
424 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
425 	REG_WRITE(PP_CONTROL, pp);
426 	REG_READ(PP_CONTROL);
427 
428 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
429 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
430 		intel_dp->panel_on = false;
431 	} else
432 		intel_dp->panel_on = true;
433 	msleep(intel_dp->panel_power_up_delay);
434 
435 	return false;
436 }
437 
438 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
439 {
440 	struct drm_device *dev = intel_encoder->base.dev;
441 	u32 pp, idle_off_mask = PP_ON ;
442 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
443 
444 	DRM_DEBUG_KMS("\n");
445 
446 	pp = REG_READ(PP_CONTROL);
447 
448 	if ((pp & POWER_TARGET_ON) == 0)
449 		return;
450 
451 	intel_dp->panel_on = false;
452 	pp &= ~PANEL_UNLOCK_MASK;
453 	/* ILK workaround: disable reset around power sequence */
454 
455 	pp &= ~POWER_TARGET_ON;
456 	pp &= ~EDP_FORCE_VDD;
457 	pp &= ~EDP_BLC_ENABLE;
458 	REG_WRITE(PP_CONTROL, pp);
459 	REG_READ(PP_CONTROL);
460 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
461 
462 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
463 		DRM_DEBUG_KMS("Error in turning off Panel\n");
464 	}
465 
466 	msleep(intel_dp->panel_power_cycle_delay);
467 	DRM_DEBUG_KMS("Over\n");
468 }
469 
470 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
471 {
472 	struct drm_device *dev = intel_encoder->base.dev;
473 	u32 pp;
474 
475 	DRM_DEBUG_KMS("\n");
476 	/*
477 	 * If we enable the backlight right away following a panel power
478 	 * on, we may see slight flicker as the panel syncs with the eDP
479 	 * link.  So delay a bit to make sure the image is solid before
480 	 * allowing it to appear.
481 	 */
482 	msleep(300);
483 	pp = REG_READ(PP_CONTROL);
484 
485 	pp |= EDP_BLC_ENABLE;
486 	REG_WRITE(PP_CONTROL, pp);
487 	gma_backlight_enable(dev);
488 }
489 
490 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
491 {
492 	struct drm_device *dev = intel_encoder->base.dev;
493 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
494 	u32 pp;
495 
496 	DRM_DEBUG_KMS("\n");
497 	gma_backlight_disable(dev);
498 	msleep(10);
499 	pp = REG_READ(PP_CONTROL);
500 
501 	pp &= ~EDP_BLC_ENABLE;
502 	REG_WRITE(PP_CONTROL, pp);
503 	msleep(intel_dp->backlight_off_delay);
504 }
505 
506 static enum drm_mode_status
507 cdv_intel_dp_mode_valid(struct drm_connector *connector,
508 		    struct drm_display_mode *mode)
509 {
510 	struct gma_encoder *encoder = gma_attached_encoder(connector);
511 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
512 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
513 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
514 	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
515 
516 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
517 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
518 			return MODE_PANEL;
519 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
520 			return MODE_PANEL;
521 	}
522 
523 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
524 	   which are outside spec tolerances but somehow work by magic */
525 	if (!is_edp(encoder) &&
526 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
527 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
528 		return MODE_CLOCK_HIGH;
529 
530 	if (is_edp(encoder)) {
531 	    if (cdv_intel_dp_link_required(mode->clock, 24)
532 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
533 		return MODE_CLOCK_HIGH;
534 
535 	}
536 	if (mode->clock < 10000)
537 		return MODE_CLOCK_LOW;
538 
539 	return MODE_OK;
540 }
541 
542 static uint32_t
543 pack_aux(uint8_t *src, int src_bytes)
544 {
545 	int	i;
546 	uint32_t v = 0;
547 
548 	if (src_bytes > 4)
549 		src_bytes = 4;
550 	for (i = 0; i < src_bytes; i++)
551 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
552 	return v;
553 }
554 
555 static void
556 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
557 {
558 	int i;
559 	if (dst_bytes > 4)
560 		dst_bytes = 4;
561 	for (i = 0; i < dst_bytes; i++)
562 		dst[i] = src >> ((3-i) * 8);
563 }
564 
565 static int
566 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
567 		uint8_t *send, int send_bytes,
568 		uint8_t *recv, int recv_size)
569 {
570 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
571 	uint32_t output_reg = intel_dp->output_reg;
572 	struct drm_device *dev = encoder->base.dev;
573 	uint32_t ch_ctl = output_reg + 0x10;
574 	uint32_t ch_data = ch_ctl + 4;
575 	int i;
576 	int recv_bytes;
577 	uint32_t status;
578 	uint32_t aux_clock_divider;
579 	int try, precharge;
580 
581 	/* The clock divider is based off the hrawclk,
582 	 * and would like to run at 2MHz. So, take the
583 	 * hrawclk value and divide by 2 and use that
584 	 * On CDV platform it uses 200MHz as hrawclk.
585 	 *
586 	 */
587 	aux_clock_divider = 200 / 2;
588 
589 	precharge = 4;
590 	if (is_edp(encoder))
591 		precharge = 10;
592 
593 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
594 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
595 			  REG_READ(ch_ctl));
596 		return -EBUSY;
597 	}
598 
599 	/* Must try at least 3 times according to DP spec */
600 	for (try = 0; try < 5; try++) {
601 		/* Load the send data into the aux channel data registers */
602 		for (i = 0; i < send_bytes; i += 4)
603 			REG_WRITE(ch_data + i,
604 				   pack_aux(send + i, send_bytes - i));
605 
606 		/* Send the command and wait for it to complete */
607 		REG_WRITE(ch_ctl,
608 			   DP_AUX_CH_CTL_SEND_BUSY |
609 			   DP_AUX_CH_CTL_TIME_OUT_400us |
610 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
611 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
612 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
613 			   DP_AUX_CH_CTL_DONE |
614 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
615 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
616 		for (;;) {
617 			status = REG_READ(ch_ctl);
618 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
619 				break;
620 			udelay(100);
621 		}
622 
623 		/* Clear done status and any errors */
624 		REG_WRITE(ch_ctl,
625 			   status |
626 			   DP_AUX_CH_CTL_DONE |
627 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
628 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
629 		if (status & DP_AUX_CH_CTL_DONE)
630 			break;
631 	}
632 
633 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
634 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
635 		return -EBUSY;
636 	}
637 
638 	/* Check for timeout or receive error.
639 	 * Timeouts occur when the sink is not connected
640 	 */
641 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
642 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
643 		return -EIO;
644 	}
645 
646 	/* Timeouts occur when the device isn't connected, so they're
647 	 * "normal" -- don't fill the kernel log with these */
648 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
649 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
650 		return -ETIMEDOUT;
651 	}
652 
653 	/* Unload any bytes sent back from the other side */
654 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
655 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
656 	if (recv_bytes > recv_size)
657 		recv_bytes = recv_size;
658 
659 	for (i = 0; i < recv_bytes; i += 4)
660 		unpack_aux(REG_READ(ch_data + i),
661 			   recv + i, recv_bytes - i);
662 
663 	return recv_bytes;
664 }
665 
666 /* Write data to the aux channel in native mode */
667 static int
668 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
669 			  uint16_t address, uint8_t *send, int send_bytes)
670 {
671 	int ret;
672 	uint8_t	msg[20];
673 	int msg_bytes;
674 	uint8_t	ack;
675 
676 	if (send_bytes > 16)
677 		return -1;
678 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
679 	msg[1] = address >> 8;
680 	msg[2] = address & 0xff;
681 	msg[3] = send_bytes - 1;
682 	memcpy(&msg[4], send, send_bytes);
683 	msg_bytes = send_bytes + 4;
684 	for (;;) {
685 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
686 		if (ret < 0)
687 			return ret;
688 		ack >>= 4;
689 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
690 			break;
691 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
692 			udelay(100);
693 		else
694 			return -EIO;
695 	}
696 	return send_bytes;
697 }
698 
699 /* Write a single byte to the aux channel in native mode */
700 static int
701 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
702 			    uint16_t address, uint8_t byte)
703 {
704 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
705 }
706 
707 /* read bytes from a native aux channel */
708 static int
709 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
710 			 uint16_t address, uint8_t *recv, int recv_bytes)
711 {
712 	uint8_t msg[4];
713 	int msg_bytes;
714 	uint8_t reply[20];
715 	int reply_bytes;
716 	uint8_t ack;
717 	int ret;
718 
719 	msg[0] = DP_AUX_NATIVE_READ << 4;
720 	msg[1] = address >> 8;
721 	msg[2] = address & 0xff;
722 	msg[3] = recv_bytes - 1;
723 
724 	msg_bytes = 4;
725 	reply_bytes = recv_bytes + 1;
726 
727 	for (;;) {
728 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
729 				      reply, reply_bytes);
730 		if (ret == 0)
731 			return -EPROTO;
732 		if (ret < 0)
733 			return ret;
734 		ack = reply[0] >> 4;
735 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
736 			memcpy(recv, reply + 1, ret - 1);
737 			return ret - 1;
738 		}
739 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
740 			udelay(100);
741 		else
742 			return -EIO;
743 	}
744 }
745 
746 static int
747 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
748 		    uint8_t write_byte, uint8_t *read_byte)
749 {
750 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
751 	struct cdv_intel_dp *intel_dp = container_of(adapter,
752 						struct cdv_intel_dp,
753 						adapter);
754 	struct gma_encoder *encoder = intel_dp->encoder;
755 	uint16_t address = algo_data->address;
756 	uint8_t msg[5];
757 	uint8_t reply[2];
758 	unsigned retry;
759 	int msg_bytes;
760 	int reply_bytes;
761 	int ret;
762 
763 	/* Set up the command byte */
764 	if (mode & MODE_I2C_READ)
765 		msg[0] = DP_AUX_I2C_READ << 4;
766 	else
767 		msg[0] = DP_AUX_I2C_WRITE << 4;
768 
769 	if (!(mode & MODE_I2C_STOP))
770 		msg[0] |= DP_AUX_I2C_MOT << 4;
771 
772 	msg[1] = address >> 8;
773 	msg[2] = address;
774 
775 	switch (mode) {
776 	case MODE_I2C_WRITE:
777 		msg[3] = 0;
778 		msg[4] = write_byte;
779 		msg_bytes = 5;
780 		reply_bytes = 1;
781 		break;
782 	case MODE_I2C_READ:
783 		msg[3] = 0;
784 		msg_bytes = 4;
785 		reply_bytes = 2;
786 		break;
787 	default:
788 		msg_bytes = 3;
789 		reply_bytes = 1;
790 		break;
791 	}
792 
793 	for (retry = 0; retry < 5; retry++) {
794 		ret = cdv_intel_dp_aux_ch(encoder,
795 				      msg, msg_bytes,
796 				      reply, reply_bytes);
797 		if (ret < 0) {
798 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
799 			return ret;
800 		}
801 
802 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
803 		case DP_AUX_NATIVE_REPLY_ACK:
804 			/* I2C-over-AUX Reply field is only valid
805 			 * when paired with AUX ACK.
806 			 */
807 			break;
808 		case DP_AUX_NATIVE_REPLY_NACK:
809 			DRM_DEBUG_KMS("aux_ch native nack\n");
810 			return -EREMOTEIO;
811 		case DP_AUX_NATIVE_REPLY_DEFER:
812 			udelay(100);
813 			continue;
814 		default:
815 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
816 				  reply[0]);
817 			return -EREMOTEIO;
818 		}
819 
820 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
821 		case DP_AUX_I2C_REPLY_ACK:
822 			if (mode == MODE_I2C_READ) {
823 				*read_byte = reply[1];
824 			}
825 			return reply_bytes - 1;
826 		case DP_AUX_I2C_REPLY_NACK:
827 			DRM_DEBUG_KMS("aux_i2c nack\n");
828 			return -EREMOTEIO;
829 		case DP_AUX_I2C_REPLY_DEFER:
830 			DRM_DEBUG_KMS("aux_i2c defer\n");
831 			udelay(100);
832 			break;
833 		default:
834 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
835 			return -EREMOTEIO;
836 		}
837 	}
838 
839 	DRM_ERROR("too many retries, giving up\n");
840 	return -EREMOTEIO;
841 }
842 
843 static int
844 cdv_intel_dp_i2c_init(struct gma_connector *connector,
845 		      struct gma_encoder *encoder, const char *name)
846 {
847 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
848 	int ret;
849 
850 	DRM_DEBUG_KMS("i2c_init %s\n", name);
851 
852 	intel_dp->algo.running = false;
853 	intel_dp->algo.address = 0;
854 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
855 
856 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
857 	intel_dp->adapter.owner = THIS_MODULE;
858 	intel_dp->adapter.class = I2C_CLASS_DDC;
859 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
860 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
861 	intel_dp->adapter.algo_data = &intel_dp->algo;
862 	intel_dp->adapter.dev.parent = connector->base.kdev;
863 
864 	if (is_edp(encoder))
865 		cdv_intel_edp_panel_vdd_on(encoder);
866 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
867 	if (is_edp(encoder))
868 		cdv_intel_edp_panel_vdd_off(encoder);
869 
870 	return ret;
871 }
872 
873 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
874 	struct drm_display_mode *adjusted_mode)
875 {
876 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
877 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
878 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
879 	adjusted_mode->htotal = fixed_mode->htotal;
880 
881 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
882 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
883 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
884 	adjusted_mode->vtotal = fixed_mode->vtotal;
885 
886 	adjusted_mode->clock = fixed_mode->clock;
887 
888 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
889 }
890 
891 static bool
892 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
893 		    struct drm_display_mode *adjusted_mode)
894 {
895 	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
896 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
897 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
898 	int lane_count, clock;
899 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
900 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
901 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
902 	int refclock = mode->clock;
903 	int bpp = 24;
904 
905 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
906 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
907 		refclock = intel_dp->panel_fixed_mode->clock;
908 		bpp = dev_priv->edp.bpp;
909 	}
910 
911 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
912 		for (clock = max_clock; clock >= 0; clock--) {
913 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
914 
915 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
916 				intel_dp->link_bw = bws[clock];
917 				intel_dp->lane_count = lane_count;
918 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
919 				DRM_DEBUG_KMS("Display port link bw %02x lane "
920 						"count %d clock %d\n",
921 				       intel_dp->link_bw, intel_dp->lane_count,
922 				       adjusted_mode->clock);
923 				return true;
924 			}
925 		}
926 	}
927 	if (is_edp(intel_encoder)) {
928 		/* okay we failed just pick the highest */
929 		intel_dp->lane_count = max_lane_count;
930 		intel_dp->link_bw = bws[max_clock];
931 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
932 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
933 			      "count %d clock %d\n",
934 			      intel_dp->link_bw, intel_dp->lane_count,
935 			      adjusted_mode->clock);
936 
937 		return true;
938 	}
939 	return false;
940 }
941 
942 struct cdv_intel_dp_m_n {
943 	uint32_t	tu;
944 	uint32_t	gmch_m;
945 	uint32_t	gmch_n;
946 	uint32_t	link_m;
947 	uint32_t	link_n;
948 };
949 
950 static void
951 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
952 {
953 	/*
954 	while (*num > 0xffffff || *den > 0xffffff) {
955 		*num >>= 1;
956 		*den >>= 1;
957 	}*/
958 	uint64_t value, m;
959 	m = *num;
960 	value = m * (0x800000);
961 	m = do_div(value, *den);
962 	*num = value;
963 	*den = 0x800000;
964 }
965 
966 static void
967 cdv_intel_dp_compute_m_n(int bpp,
968 		     int nlanes,
969 		     int pixel_clock,
970 		     int link_clock,
971 		     struct cdv_intel_dp_m_n *m_n)
972 {
973 	m_n->tu = 64;
974 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
975 	m_n->gmch_n = link_clock * nlanes;
976 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
977 	m_n->link_m = pixel_clock;
978 	m_n->link_n = link_clock;
979 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
980 }
981 
982 void
983 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
984 		 struct drm_display_mode *adjusted_mode)
985 {
986 	struct drm_device *dev = crtc->dev;
987 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
988 	struct drm_mode_config *mode_config = &dev->mode_config;
989 	struct drm_encoder *encoder;
990 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
991 	int lane_count = 4, bpp = 24;
992 	struct cdv_intel_dp_m_n m_n;
993 	int pipe = gma_crtc->pipe;
994 
995 	/*
996 	 * Find the lane count in the intel_encoder private
997 	 */
998 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
999 		struct gma_encoder *intel_encoder;
1000 		struct cdv_intel_dp *intel_dp;
1001 
1002 		if (encoder->crtc != crtc)
1003 			continue;
1004 
1005 		intel_encoder = to_gma_encoder(encoder);
1006 		intel_dp = intel_encoder->dev_priv;
1007 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1008 			lane_count = intel_dp->lane_count;
1009 			break;
1010 		} else if (is_edp(intel_encoder)) {
1011 			lane_count = intel_dp->lane_count;
1012 			bpp = dev_priv->edp.bpp;
1013 			break;
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * Compute the GMCH and Link ratios. The '3' here is
1019 	 * the number of bytes_per_pixel post-LUT, which we always
1020 	 * set up for 8-bits of R/G/B, or 3 bytes total.
1021 	 */
1022 	cdv_intel_dp_compute_m_n(bpp, lane_count,
1023 			     mode->clock, adjusted_mode->clock, &m_n);
1024 
1025 	{
1026 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1027 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1028 			   m_n.gmch_m);
1029 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1030 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1031 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1032 	}
1033 }
1034 
1035 static void
1036 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1037 		  struct drm_display_mode *adjusted_mode)
1038 {
1039 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1040 	struct drm_crtc *crtc = encoder->crtc;
1041 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1042 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1043 	struct drm_device *dev = encoder->dev;
1044 
1045 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1046 	intel_dp->DP |= intel_dp->color_range;
1047 
1048 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1049 		intel_dp->DP |= DP_SYNC_HS_HIGH;
1050 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1051 		intel_dp->DP |= DP_SYNC_VS_HIGH;
1052 
1053 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1054 
1055 	switch (intel_dp->lane_count) {
1056 	case 1:
1057 		intel_dp->DP |= DP_PORT_WIDTH_1;
1058 		break;
1059 	case 2:
1060 		intel_dp->DP |= DP_PORT_WIDTH_2;
1061 		break;
1062 	case 4:
1063 		intel_dp->DP |= DP_PORT_WIDTH_4;
1064 		break;
1065 	}
1066 	if (intel_dp->has_audio)
1067 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1068 
1069 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1070 	intel_dp->link_configuration[0] = intel_dp->link_bw;
1071 	intel_dp->link_configuration[1] = intel_dp->lane_count;
1072 
1073 	/*
1074 	 * Check for DPCD version > 1.1 and enhanced framing support
1075 	 */
1076 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1077 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1078 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1079 		intel_dp->DP |= DP_ENHANCED_FRAMING;
1080 	}
1081 
1082 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1083 	if (gma_crtc->pipe == 1)
1084 		intel_dp->DP |= DP_PIPEB_SELECT;
1085 
1086 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1087 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1088 	if (is_edp(intel_encoder)) {
1089 		uint32_t pfit_control;
1090 		cdv_intel_edp_panel_on(intel_encoder);
1091 
1092 		if (mode->hdisplay != adjusted_mode->hdisplay ||
1093 			    mode->vdisplay != adjusted_mode->vdisplay)
1094 			pfit_control = PFIT_ENABLE;
1095 		else
1096 			pfit_control = 0;
1097 
1098 		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1099 
1100 		REG_WRITE(PFIT_CONTROL, pfit_control);
1101 	}
1102 }
1103 
1104 
1105 /* If the sink supports it, try to set the power state appropriately */
1106 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1107 {
1108 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1109 	int ret, i;
1110 
1111 	/* Should have a valid DPCD by this point */
1112 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1113 		return;
1114 
1115 	if (mode != DRM_MODE_DPMS_ON) {
1116 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1117 						  DP_SET_POWER_D3);
1118 		if (ret != 1)
1119 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1120 	} else {
1121 		/*
1122 		 * When turning on, we need to retry for 1ms to give the sink
1123 		 * time to wake up.
1124 		 */
1125 		for (i = 0; i < 3; i++) {
1126 			ret = cdv_intel_dp_aux_native_write_1(encoder,
1127 							  DP_SET_POWER,
1128 							  DP_SET_POWER_D0);
1129 			if (ret == 1)
1130 				break;
1131 			udelay(1000);
1132 		}
1133 	}
1134 }
1135 
1136 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1137 {
1138 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1139 	int edp = is_edp(intel_encoder);
1140 
1141 	if (edp) {
1142 		cdv_intel_edp_backlight_off(intel_encoder);
1143 		cdv_intel_edp_panel_off(intel_encoder);
1144 		cdv_intel_edp_panel_vdd_on(intel_encoder);
1145         }
1146 	/* Wake up the sink first */
1147 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1148 	cdv_intel_dp_link_down(intel_encoder);
1149 	if (edp)
1150 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1151 }
1152 
1153 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1154 {
1155 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1156 	int edp = is_edp(intel_encoder);
1157 
1158 	if (edp)
1159 		cdv_intel_edp_panel_on(intel_encoder);
1160 	cdv_intel_dp_start_link_train(intel_encoder);
1161 	cdv_intel_dp_complete_link_train(intel_encoder);
1162 	if (edp)
1163 		cdv_intel_edp_backlight_on(intel_encoder);
1164 }
1165 
1166 static void
1167 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1168 {
1169 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1170 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1171 	struct drm_device *dev = encoder->dev;
1172 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1173 	int edp = is_edp(intel_encoder);
1174 
1175 	if (mode != DRM_MODE_DPMS_ON) {
1176 		if (edp) {
1177 			cdv_intel_edp_backlight_off(intel_encoder);
1178 			cdv_intel_edp_panel_vdd_on(intel_encoder);
1179 		}
1180 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1181 		cdv_intel_dp_link_down(intel_encoder);
1182 		if (edp) {
1183 			cdv_intel_edp_panel_vdd_off(intel_encoder);
1184 			cdv_intel_edp_panel_off(intel_encoder);
1185 		}
1186 	} else {
1187         	if (edp)
1188 			cdv_intel_edp_panel_on(intel_encoder);
1189 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1190 		if (!(dp_reg & DP_PORT_EN)) {
1191 			cdv_intel_dp_start_link_train(intel_encoder);
1192 			cdv_intel_dp_complete_link_train(intel_encoder);
1193 		}
1194 		if (edp)
1195         		cdv_intel_edp_backlight_on(intel_encoder);
1196 	}
1197 }
1198 
1199 /*
1200  * Native read with retry for link status and receiver capability reads for
1201  * cases where the sink may still be asleep.
1202  */
1203 static bool
1204 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1205 			       uint8_t *recv, int recv_bytes)
1206 {
1207 	int ret, i;
1208 
1209 	/*
1210 	 * Sinks are *supposed* to come up within 1ms from an off state,
1211 	 * but we're also supposed to retry 3 times per the spec.
1212 	 */
1213 	for (i = 0; i < 3; i++) {
1214 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1215 					       recv_bytes);
1216 		if (ret == recv_bytes)
1217 			return true;
1218 		udelay(1000);
1219 	}
1220 
1221 	return false;
1222 }
1223 
1224 /*
1225  * Fetch AUX CH registers 0x202 - 0x207 which contain
1226  * link status information
1227  */
1228 static bool
1229 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1230 {
1231 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1232 	return cdv_intel_dp_aux_native_read_retry(encoder,
1233 					      DP_LANE0_1_STATUS,
1234 					      intel_dp->link_status,
1235 					      DP_LINK_STATUS_SIZE);
1236 }
1237 
1238 static uint8_t
1239 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1240 		     int r)
1241 {
1242 	return link_status[r - DP_LANE0_1_STATUS];
1243 }
1244 
1245 static uint8_t
1246 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1247 				 int lane)
1248 {
1249 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1250 	int	    s = ((lane & 1) ?
1251 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1252 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1253 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1254 
1255 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1256 }
1257 
1258 static uint8_t
1259 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1260 				      int lane)
1261 {
1262 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1263 	int	    s = ((lane & 1) ?
1264 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1265 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1266 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1267 
1268 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1269 }
1270 
1271 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1272 
1273 static void
1274 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1275 {
1276 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1277 	uint8_t v = 0;
1278 	uint8_t p = 0;
1279 	int lane;
1280 
1281 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1282 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1283 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1284 
1285 		if (this_v > v)
1286 			v = this_v;
1287 		if (this_p > p)
1288 			p = this_p;
1289 	}
1290 
1291 	if (v >= CDV_DP_VOLTAGE_MAX)
1292 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1293 
1294 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1295 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1296 
1297 	for (lane = 0; lane < 4; lane++)
1298 		intel_dp->train_set[lane] = v | p;
1299 }
1300 
1301 
1302 static uint8_t
1303 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1304 		      int lane)
1305 {
1306 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1307 	int s = (lane & 1) * 4;
1308 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1309 
1310 	return (l >> s) & 0xf;
1311 }
1312 
1313 /* Check for clock recovery is done on all channels */
1314 static bool
1315 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1316 {
1317 	int lane;
1318 	uint8_t lane_status;
1319 
1320 	for (lane = 0; lane < lane_count; lane++) {
1321 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1322 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1323 			return false;
1324 	}
1325 	return true;
1326 }
1327 
1328 /* Check to see if channel eq is done on all channels */
1329 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1330 			 DP_LANE_CHANNEL_EQ_DONE|\
1331 			 DP_LANE_SYMBOL_LOCKED)
1332 static bool
1333 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1334 {
1335 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1336 	uint8_t lane_align;
1337 	uint8_t lane_status;
1338 	int lane;
1339 
1340 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1341 					  DP_LANE_ALIGN_STATUS_UPDATED);
1342 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1343 		return false;
1344 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1345 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1346 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1347 			return false;
1348 	}
1349 	return true;
1350 }
1351 
1352 static bool
1353 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1354 			uint32_t dp_reg_value,
1355 			uint8_t dp_train_pat)
1356 {
1357 	struct drm_device *dev = encoder->base.dev;
1358 	int ret;
1359 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1360 
1361 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1362 	REG_READ(intel_dp->output_reg);
1363 
1364 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1365 				    DP_TRAINING_PATTERN_SET,
1366 				    dp_train_pat);
1367 
1368 	if (ret != 1) {
1369 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1370 				dp_train_pat);
1371 		return false;
1372 	}
1373 
1374 	return true;
1375 }
1376 
1377 
1378 static bool
1379 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1380 			uint8_t dp_train_pat)
1381 {
1382 	int ret;
1383 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1384 
1385 	ret = cdv_intel_dp_aux_native_write(encoder,
1386 					DP_TRAINING_LANE0_SET,
1387 					intel_dp->train_set,
1388 					intel_dp->lane_count);
1389 
1390 	if (ret != intel_dp->lane_count) {
1391 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1392 				intel_dp->train_set[0], intel_dp->lane_count);
1393 		return false;
1394 	}
1395 	return true;
1396 }
1397 
1398 static void
1399 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1400 {
1401 	struct drm_device *dev = encoder->base.dev;
1402 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1403 	struct ddi_regoff *ddi_reg;
1404 	int vswing, premph, index;
1405 
1406 	if (intel_dp->output_reg == DP_B)
1407 		ddi_reg = &ddi_DP_train_table[0];
1408 	else
1409 		ddi_reg = &ddi_DP_train_table[1];
1410 
1411 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1412 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1413 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1414 
1415 	if (vswing + premph > 3)
1416 		return;
1417 #ifdef CDV_FAST_LINK_TRAIN
1418 	return;
1419 #endif
1420 	DRM_DEBUG_KMS("Test2\n");
1421 	//return ;
1422 	cdv_sb_reset(dev);
1423 	/* ;Swing voltage programming
1424         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1425 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1426 
1427 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1428 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1429 
1430 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1431 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1432 	 */
1433 	index = (vswing + premph) * 2;
1434 	if (premph == 1 && vswing == 1) {
1435 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1436 	} else
1437 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1438 
1439 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1440 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1441 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1442 	else
1443 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1444 
1445 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1446 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1447 
1448 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1449 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1450 
1451 	/* ;Pre emphasis programming
1452 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1453 	 */
1454 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1455 
1456 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1457 	index = 2 * premph + 1;
1458 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1459 	return;
1460 }
1461 
1462 
1463 /* Enable corresponding port and start training pattern 1 */
1464 static void
1465 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1466 {
1467 	struct drm_device *dev = encoder->base.dev;
1468 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1469 	int i;
1470 	uint8_t voltage;
1471 	bool clock_recovery = false;
1472 	int tries;
1473 	u32 reg;
1474 	uint32_t DP = intel_dp->DP;
1475 
1476 	DP |= DP_PORT_EN;
1477 	DP &= ~DP_LINK_TRAIN_MASK;
1478 
1479 	reg = DP;
1480 	reg |= DP_LINK_TRAIN_PAT_1;
1481 	/* Enable output, wait for it to become active */
1482 	REG_WRITE(intel_dp->output_reg, reg);
1483 	REG_READ(intel_dp->output_reg);
1484 	gma_wait_for_vblank(dev);
1485 
1486 	DRM_DEBUG_KMS("Link config\n");
1487 	/* Write the link configuration data */
1488 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1489 				  intel_dp->link_configuration,
1490 				  2);
1491 
1492 	memset(intel_dp->train_set, 0, 4);
1493 	voltage = 0;
1494 	tries = 0;
1495 	clock_recovery = false;
1496 
1497 	DRM_DEBUG_KMS("Start train\n");
1498 	reg = DP | DP_LINK_TRAIN_PAT_1;
1499 
1500 	for (;;) {
1501 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1502 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1503 				intel_dp->train_set[0],
1504 				intel_dp->link_configuration[0],
1505 				intel_dp->link_configuration[1]);
1506 
1507 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1508 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1509 		}
1510 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1511 		/* Set training pattern 1 */
1512 
1513 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1514 
1515 		udelay(200);
1516 		if (!cdv_intel_dp_get_link_status(encoder))
1517 			break;
1518 
1519 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1520 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1521 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1522 
1523 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1524 			DRM_DEBUG_KMS("PT1 train is done\n");
1525 			clock_recovery = true;
1526 			break;
1527 		}
1528 
1529 		/* Check to see if we've tried the max voltage */
1530 		for (i = 0; i < intel_dp->lane_count; i++)
1531 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1532 				break;
1533 		if (i == intel_dp->lane_count)
1534 			break;
1535 
1536 		/* Check to see if we've tried the same voltage 5 times */
1537 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1538 			++tries;
1539 			if (tries == 5)
1540 				break;
1541 		} else
1542 			tries = 0;
1543 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1544 
1545 		/* Compute new intel_dp->train_set as requested by target */
1546 		cdv_intel_get_adjust_train(encoder);
1547 
1548 	}
1549 
1550 	if (!clock_recovery) {
1551 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1552 	}
1553 
1554 	intel_dp->DP = DP;
1555 }
1556 
1557 static void
1558 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1559 {
1560 	struct drm_device *dev = encoder->base.dev;
1561 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1562 	int tries, cr_tries;
1563 	u32 reg;
1564 	uint32_t DP = intel_dp->DP;
1565 
1566 	/* channel equalization */
1567 	tries = 0;
1568 	cr_tries = 0;
1569 
1570 	DRM_DEBUG_KMS("\n");
1571 	reg = DP | DP_LINK_TRAIN_PAT_2;
1572 
1573 	for (;;) {
1574 
1575 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1576 				intel_dp->train_set[0],
1577 				intel_dp->link_configuration[0],
1578 				intel_dp->link_configuration[1]);
1579         	/* channel eq pattern */
1580 
1581 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1582 					     DP_TRAINING_PATTERN_2)) {
1583 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1584 		}
1585 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1586 
1587 		if (cr_tries > 5) {
1588 			DRM_ERROR("failed to train DP, aborting\n");
1589 			cdv_intel_dp_link_down(encoder);
1590 			break;
1591 		}
1592 
1593 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1594 
1595 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1596 
1597 		udelay(1000);
1598 		if (!cdv_intel_dp_get_link_status(encoder))
1599 			break;
1600 
1601 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1602 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1603 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1604 
1605 		/* Make sure clock is still ok */
1606 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1607 			cdv_intel_dp_start_link_train(encoder);
1608 			cr_tries++;
1609 			continue;
1610 		}
1611 
1612 		if (cdv_intel_channel_eq_ok(encoder)) {
1613 			DRM_DEBUG_KMS("PT2 train is done\n");
1614 			break;
1615 		}
1616 
1617 		/* Try 5 times, then try clock recovery if that fails */
1618 		if (tries > 5) {
1619 			cdv_intel_dp_link_down(encoder);
1620 			cdv_intel_dp_start_link_train(encoder);
1621 			tries = 0;
1622 			cr_tries++;
1623 			continue;
1624 		}
1625 
1626 		/* Compute new intel_dp->train_set as requested by target */
1627 		cdv_intel_get_adjust_train(encoder);
1628 		++tries;
1629 
1630 	}
1631 
1632 	reg = DP | DP_LINK_TRAIN_OFF;
1633 
1634 	REG_WRITE(intel_dp->output_reg, reg);
1635 	REG_READ(intel_dp->output_reg);
1636 	cdv_intel_dp_aux_native_write_1(encoder,
1637 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1638 }
1639 
1640 static void
1641 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1642 {
1643 	struct drm_device *dev = encoder->base.dev;
1644 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1645 	uint32_t DP = intel_dp->DP;
1646 
1647 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1648 		return;
1649 
1650 	DRM_DEBUG_KMS("\n");
1651 
1652 
1653 	{
1654 		DP &= ~DP_LINK_TRAIN_MASK;
1655 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1656 	}
1657 	REG_READ(intel_dp->output_reg);
1658 
1659 	msleep(17);
1660 
1661 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1662 	REG_READ(intel_dp->output_reg);
1663 }
1664 
1665 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1666 {
1667 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1668 	enum drm_connector_status status;
1669 
1670 	status = connector_status_disconnected;
1671 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1672 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1673 	{
1674 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1675 			status = connector_status_connected;
1676 	}
1677 	if (status == connector_status_connected)
1678 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1679 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1680 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1681 	return status;
1682 }
1683 
1684 /*
1685  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1686  *
1687  * \return true if DP port is connected.
1688  * \return false if DP port is disconnected.
1689  */
1690 static enum drm_connector_status
1691 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1692 {
1693 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1694 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1695 	enum drm_connector_status status;
1696 	struct edid *edid = NULL;
1697 	int edp = is_edp(encoder);
1698 
1699 	intel_dp->has_audio = false;
1700 
1701 	if (edp)
1702 		cdv_intel_edp_panel_vdd_on(encoder);
1703 	status = cdv_dp_detect(encoder);
1704 	if (status != connector_status_connected) {
1705 		if (edp)
1706 			cdv_intel_edp_panel_vdd_off(encoder);
1707 		return status;
1708         }
1709 
1710 	if (intel_dp->force_audio) {
1711 		intel_dp->has_audio = intel_dp->force_audio > 0;
1712 	} else {
1713 		edid = drm_get_edid(connector, &intel_dp->adapter);
1714 		if (edid) {
1715 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1716 			kfree(edid);
1717 		}
1718 	}
1719 	if (edp)
1720 		cdv_intel_edp_panel_vdd_off(encoder);
1721 
1722 	return connector_status_connected;
1723 }
1724 
1725 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1726 {
1727 	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1728 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1729 	struct edid *edid = NULL;
1730 	int ret = 0;
1731 	int edp = is_edp(intel_encoder);
1732 
1733 
1734 	edid = drm_get_edid(connector, &intel_dp->adapter);
1735 	if (edid) {
1736 		drm_connector_update_edid_property(connector, edid);
1737 		ret = drm_add_edid_modes(connector, edid);
1738 		kfree(edid);
1739 	}
1740 
1741 	if (is_edp(intel_encoder)) {
1742 		struct drm_device *dev = connector->dev;
1743 		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1744 
1745 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1746 		if (ret) {
1747 			if (edp && !intel_dp->panel_fixed_mode) {
1748 				struct drm_display_mode *newmode;
1749 				list_for_each_entry(newmode, &connector->probed_modes,
1750 					    head) {
1751 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1752 						intel_dp->panel_fixed_mode =
1753 							drm_mode_duplicate(dev, newmode);
1754 						break;
1755 					}
1756 				}
1757 			}
1758 
1759 			return ret;
1760 		}
1761 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1762 			intel_dp->panel_fixed_mode =
1763 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1764 			if (intel_dp->panel_fixed_mode) {
1765 				intel_dp->panel_fixed_mode->type |=
1766 					DRM_MODE_TYPE_PREFERRED;
1767 			}
1768 		}
1769 		if (intel_dp->panel_fixed_mode != NULL) {
1770 			struct drm_display_mode *mode;
1771 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1772 			drm_mode_probed_add(connector, mode);
1773 			return 1;
1774 		}
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 static bool
1781 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1782 {
1783 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1784 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1785 	struct edid *edid;
1786 	bool has_audio = false;
1787 	int edp = is_edp(encoder);
1788 
1789 	if (edp)
1790 		cdv_intel_edp_panel_vdd_on(encoder);
1791 
1792 	edid = drm_get_edid(connector, &intel_dp->adapter);
1793 	if (edid) {
1794 		has_audio = drm_detect_monitor_audio(edid);
1795 		kfree(edid);
1796 	}
1797 	if (edp)
1798 		cdv_intel_edp_panel_vdd_off(encoder);
1799 
1800 	return has_audio;
1801 }
1802 
1803 static int
1804 cdv_intel_dp_set_property(struct drm_connector *connector,
1805 		      struct drm_property *property,
1806 		      uint64_t val)
1807 {
1808 	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1809 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1810 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1811 	int ret;
1812 
1813 	ret = drm_object_property_set_value(&connector->base, property, val);
1814 	if (ret)
1815 		return ret;
1816 
1817 	if (property == dev_priv->force_audio_property) {
1818 		int i = val;
1819 		bool has_audio;
1820 
1821 		if (i == intel_dp->force_audio)
1822 			return 0;
1823 
1824 		intel_dp->force_audio = i;
1825 
1826 		if (i == 0)
1827 			has_audio = cdv_intel_dp_detect_audio(connector);
1828 		else
1829 			has_audio = i > 0;
1830 
1831 		if (has_audio == intel_dp->has_audio)
1832 			return 0;
1833 
1834 		intel_dp->has_audio = has_audio;
1835 		goto done;
1836 	}
1837 
1838 	if (property == dev_priv->broadcast_rgb_property) {
1839 		if (val == !!intel_dp->color_range)
1840 			return 0;
1841 
1842 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1843 		goto done;
1844 	}
1845 
1846 	return -EINVAL;
1847 
1848 done:
1849 	if (encoder->base.crtc) {
1850 		struct drm_crtc *crtc = encoder->base.crtc;
1851 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1852 					 crtc->x, crtc->y,
1853 					 crtc->primary->fb);
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static void
1860 cdv_intel_dp_destroy(struct drm_connector *connector)
1861 {
1862 	struct gma_connector *gma_connector = to_gma_connector(connector);
1863 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1864 	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1865 
1866 	if (is_edp(gma_encoder)) {
1867 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1868 		kfree(intel_dp->panel_fixed_mode);
1869 		intel_dp->panel_fixed_mode = NULL;
1870 	}
1871 	i2c_del_adapter(&intel_dp->adapter);
1872 	drm_connector_cleanup(connector);
1873 	kfree(gma_connector);
1874 }
1875 
1876 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1877 	.dpms = cdv_intel_dp_dpms,
1878 	.mode_fixup = cdv_intel_dp_mode_fixup,
1879 	.prepare = cdv_intel_dp_prepare,
1880 	.mode_set = cdv_intel_dp_mode_set,
1881 	.commit = cdv_intel_dp_commit,
1882 };
1883 
1884 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1885 	.dpms = drm_helper_connector_dpms,
1886 	.detect = cdv_intel_dp_detect,
1887 	.fill_modes = drm_helper_probe_single_connector_modes,
1888 	.set_property = cdv_intel_dp_set_property,
1889 	.destroy = cdv_intel_dp_destroy,
1890 };
1891 
1892 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1893 	.get_modes = cdv_intel_dp_get_modes,
1894 	.mode_valid = cdv_intel_dp_mode_valid,
1895 	.best_encoder = gma_best_encoder,
1896 };
1897 
1898 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1899 {
1900 	cdv_intel_attach_force_audio_property(connector);
1901 	cdv_intel_attach_broadcast_rgb_property(connector);
1902 }
1903 
1904 /* check the VBT to see whether the eDP is on DP-D port */
1905 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1906 {
1907 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1908 	struct child_device_config *p_child;
1909 	int i;
1910 
1911 	if (!dev_priv->child_dev_num)
1912 		return false;
1913 
1914 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1915 		p_child = dev_priv->child_dev + i;
1916 
1917 		if (p_child->dvo_port == PORT_IDPC &&
1918 		    p_child->device_type == DEVICE_TYPE_eDP)
1919 			return true;
1920 	}
1921 	return false;
1922 }
1923 
1924 /* Cedarview display clock gating
1925 
1926    We need this disable dot get correct behaviour while enabling
1927    DP/eDP. TODO - investigate if we can turn it back to normality
1928    after enabling */
1929 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1930 {
1931 	u32 reg_value;
1932 	reg_value = REG_READ(DSPCLK_GATE_D);
1933 
1934 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1935 			DPUNIT_PIPEA_GATE_DISABLE |
1936 			DPCUNIT_CLOCK_GATE_DISABLE |
1937 			DPLSUNIT_CLOCK_GATE_DISABLE |
1938 			DPOUNIT_CLOCK_GATE_DISABLE |
1939 			DPIOUNIT_CLOCK_GATE_DISABLE);
1940 
1941 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1942 
1943 	udelay(500);
1944 }
1945 
1946 void
1947 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1948 {
1949 	struct gma_encoder *gma_encoder;
1950 	struct gma_connector *gma_connector;
1951 	struct drm_connector *connector;
1952 	struct drm_encoder *encoder;
1953 	struct cdv_intel_dp *intel_dp;
1954 	const char *name = NULL;
1955 	int type = DRM_MODE_CONNECTOR_DisplayPort;
1956 
1957 	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1958 	if (!gma_encoder)
1959 		return;
1960         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1961         if (!gma_connector)
1962                 goto err_connector;
1963 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1964 	if (!intel_dp)
1965 	        goto err_priv;
1966 
1967 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1968 		type = DRM_MODE_CONNECTOR_eDP;
1969 
1970 	connector = &gma_connector->base;
1971 	encoder = &gma_encoder->base;
1972 
1973 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1974 	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1975 
1976 	gma_connector_attach_encoder(gma_connector, gma_encoder);
1977 
1978 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1979 		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1980         else
1981 		gma_encoder->type = INTEL_OUTPUT_EDP;
1982 
1983 
1984 	gma_encoder->dev_priv=intel_dp;
1985 	intel_dp->encoder = gma_encoder;
1986 	intel_dp->output_reg = output_reg;
1987 
1988 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1989 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1990 
1991 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1992 	connector->interlace_allowed = false;
1993 	connector->doublescan_allowed = false;
1994 
1995 	/* Set up the DDC bus. */
1996 	switch (output_reg) {
1997 		case DP_B:
1998 			name = "DPDDC-B";
1999 			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2000 			break;
2001 		case DP_C:
2002 			name = "DPDDC-C";
2003 			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2004 			break;
2005 	}
2006 
2007 	cdv_disable_intel_clock_gating(dev);
2008 
2009 	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2010         /* FIXME:fail check */
2011 	cdv_intel_dp_add_properties(connector);
2012 
2013 	if (is_edp(gma_encoder)) {
2014 		int ret;
2015 		struct edp_power_seq cur;
2016                 u32 pp_on, pp_off, pp_div;
2017 		u32 pwm_ctrl;
2018 
2019 		pp_on = REG_READ(PP_CONTROL);
2020 		pp_on &= ~PANEL_UNLOCK_MASK;
2021 	        pp_on |= PANEL_UNLOCK_REGS;
2022 
2023 		REG_WRITE(PP_CONTROL, pp_on);
2024 
2025 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2026 		pwm_ctrl |= PWM_PIPE_B;
2027 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2028 
2029                 pp_on = REG_READ(PP_ON_DELAYS);
2030                 pp_off = REG_READ(PP_OFF_DELAYS);
2031                 pp_div = REG_READ(PP_DIVISOR);
2032 
2033 		/* Pull timing values out of registers */
2034                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2035                         PANEL_POWER_UP_DELAY_SHIFT;
2036 
2037                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2038                         PANEL_LIGHT_ON_DELAY_SHIFT;
2039 
2040                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2041                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2042 
2043                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2044                         PANEL_POWER_DOWN_DELAY_SHIFT;
2045 
2046                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2047                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2048 
2049                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2050                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2051 
2052 
2053 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2054                 intel_dp->backlight_on_delay = cur.t8 / 10;
2055                 intel_dp->backlight_off_delay = cur.t9 / 10;
2056                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2057                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2058 
2059                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2060                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2061                               intel_dp->panel_power_cycle_delay);
2062 
2063                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2064                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2065 
2066 
2067 		cdv_intel_edp_panel_vdd_on(gma_encoder);
2068 		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2069 					       intel_dp->dpcd,
2070 					       sizeof(intel_dp->dpcd));
2071 		cdv_intel_edp_panel_vdd_off(gma_encoder);
2072 		if (ret <= 0) {
2073 			/* if this fails, presume the device is a ghost */
2074 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2075 			drm_encoder_cleanup(encoder);
2076 			cdv_intel_dp_destroy(connector);
2077 			goto err_connector;
2078 		} else {
2079         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2080 				intel_dp->dpcd[0], intel_dp->dpcd[1],
2081 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2082 
2083 		}
2084 		/* The CDV reference driver moves pnale backlight setup into the displays that
2085 		   have a backlight: this is a good idea and one we should probably adopt, however
2086 		   we need to migrate all the drivers before we can do that */
2087                 /*cdv_intel_panel_setup_backlight(dev); */
2088 	}
2089 	return;
2090 
2091 err_priv:
2092 	kfree(gma_connector);
2093 err_connector:
2094 	kfree(gma_encoder);
2095 }
2096