xref: /openbmc/linux/drivers/gpu/drm/gma500/cdv_intel_dp.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include "gma_display.h"
38 #include <drm/drm_dp_helper.h>
39 
40 /**
41  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
42  * 				 aux algorithm
43  * @running: set by the algo indicating whether an i2c is ongoing or whether
44  * 	     the i2c bus is quiescent
45  * @address: i2c target address for the currently ongoing transfer
46  * @aux_ch: driver callback to transfer a single byte of the i2c payload
47  */
48 struct i2c_algo_dp_aux_data {
49 	bool running;
50 	u16 address;
51 	int (*aux_ch) (struct i2c_adapter *adapter,
52 		       int mode, uint8_t write_byte,
53 		       uint8_t *read_byte);
54 };
55 
56 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
57 static int
58 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
59 			    uint8_t write_byte, uint8_t *read_byte)
60 {
61 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
62 	int ret;
63 
64 	ret = (*algo_data->aux_ch)(adapter, mode,
65 				   write_byte, read_byte);
66 	return ret;
67 }
68 
69 /*
70  * I2C over AUX CH
71  */
72 
73 /*
74  * Send the address. If the I2C link is running, this 'restarts'
75  * the connection with the new address, this is used for doing
76  * a write followed by a read (as needed for DDC)
77  */
78 static int
79 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
80 {
81 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
82 	int mode = MODE_I2C_START;
83 	int ret;
84 
85 	if (reading)
86 		mode |= MODE_I2C_READ;
87 	else
88 		mode |= MODE_I2C_WRITE;
89 	algo_data->address = address;
90 	algo_data->running = true;
91 	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
92 	return ret;
93 }
94 
95 /*
96  * Stop the I2C transaction. This closes out the link, sending
97  * a bare address packet with the MOT bit turned off
98  */
99 static void
100 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101 {
102 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103 	int mode = MODE_I2C_STOP;
104 
105 	if (reading)
106 		mode |= MODE_I2C_READ;
107 	else
108 		mode |= MODE_I2C_WRITE;
109 	if (algo_data->running) {
110 		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111 		algo_data->running = false;
112 	}
113 }
114 
115 /*
116  * Write a single byte to the current I2C address, the
117  * the I2C link must be running or this returns -EIO
118  */
119 static int
120 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121 {
122 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123 	int ret;
124 
125 	if (!algo_data->running)
126 		return -EIO;
127 
128 	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
129 	return ret;
130 }
131 
132 /*
133  * Read a single byte from the current I2C address, the
134  * I2C link must be running or this returns -EIO
135  */
136 static int
137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138 {
139 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140 	int ret;
141 
142 	if (!algo_data->running)
143 		return -EIO;
144 
145 	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
146 	return ret;
147 }
148 
149 static int
150 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
151 		     struct i2c_msg *msgs,
152 		     int num)
153 {
154 	int ret = 0;
155 	bool reading = false;
156 	int m;
157 	int b;
158 
159 	for (m = 0; m < num; m++) {
160 		u16 len = msgs[m].len;
161 		u8 *buf = msgs[m].buf;
162 		reading = (msgs[m].flags & I2C_M_RD) != 0;
163 		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
164 		if (ret < 0)
165 			break;
166 		if (reading) {
167 			for (b = 0; b < len; b++) {
168 				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
169 				if (ret < 0)
170 					break;
171 			}
172 		} else {
173 			for (b = 0; b < len; b++) {
174 				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
175 				if (ret < 0)
176 					break;
177 			}
178 		}
179 		if (ret < 0)
180 			break;
181 	}
182 	if (ret >= 0)
183 		ret = num;
184 	i2c_algo_dp_aux_stop(adapter, reading);
185 	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
186 	return ret;
187 }
188 
189 static u32
190 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
191 {
192 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
193 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
194 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
195 	       I2C_FUNC_10BIT_ADDR;
196 }
197 
198 static const struct i2c_algorithm i2c_dp_aux_algo = {
199 	.master_xfer	= i2c_algo_dp_aux_xfer,
200 	.functionality	= i2c_algo_dp_aux_functionality,
201 };
202 
203 static void
204 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
205 {
206 	(void) i2c_algo_dp_aux_address(adapter, 0, false);
207 	(void) i2c_algo_dp_aux_stop(adapter, false);
208 }
209 
210 static int
211 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
212 {
213 	adapter->algo = &i2c_dp_aux_algo;
214 	adapter->retries = 3;
215 	i2c_dp_aux_reset_bus(adapter);
216 	return 0;
217 }
218 
219 /*
220  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
221  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
222  */
223 static int
224 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
225 {
226 	int error;
227 
228 	error = i2c_dp_aux_prepare_bus(adapter);
229 	if (error)
230 		return error;
231 	error = i2c_add_adapter(adapter);
232 	return error;
233 }
234 
235 #define _wait_for(COND, MS, W) ({ \
236         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
237         int ret__ = 0;                                                  \
238         while (! (COND)) {                                              \
239                 if (time_after(jiffies, timeout__)) {                   \
240                         ret__ = -ETIMEDOUT;                             \
241                         break;                                          \
242                 }                                                       \
243                 if (W && !in_dbg_master()) msleep(W);                   \
244         }                                                               \
245         ret__;                                                          \
246 })
247 
248 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
249 
250 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
251 
252 #define DP_LINK_CONFIGURATION_SIZE	9
253 
254 #define CDV_FAST_LINK_TRAIN	1
255 
256 struct cdv_intel_dp {
257 	uint32_t output_reg;
258 	uint32_t DP;
259 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
260 	bool has_audio;
261 	int force_audio;
262 	uint32_t color_range;
263 	uint8_t link_bw;
264 	uint8_t lane_count;
265 	uint8_t dpcd[4];
266 	struct gma_encoder *encoder;
267 	struct i2c_adapter adapter;
268 	struct i2c_algo_dp_aux_data algo;
269 	uint8_t	train_set[4];
270 	uint8_t link_status[DP_LINK_STATUS_SIZE];
271 	int panel_power_up_delay;
272 	int panel_power_down_delay;
273 	int panel_power_cycle_delay;
274 	int backlight_on_delay;
275 	int backlight_off_delay;
276 	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
277 	bool panel_on;
278 };
279 
280 struct ddi_regoff {
281 	uint32_t	PreEmph1;
282 	uint32_t	PreEmph2;
283 	uint32_t	VSwing1;
284 	uint32_t	VSwing2;
285 	uint32_t	VSwing3;
286 	uint32_t	VSwing4;
287 	uint32_t	VSwing5;
288 };
289 
290 static struct ddi_regoff ddi_DP_train_table[] = {
291 	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
292 	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
293 	.VSwing5 = 0x8158,},
294 	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
295 	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
296 	.VSwing5 = 0x8258,},
297 };
298 
299 static uint32_t dp_vswing_premph_table[] = {
300         0x55338954,	0x4000,
301         0x554d8954,	0x2000,
302         0x55668954,	0,
303         0x559ac0d4,	0x6000,
304 };
305 /**
306  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
307  * @intel_dp: DP struct
308  *
309  * If a CPU or PCH DP output is attached to an eDP panel, this function
310  * will return true, and false otherwise.
311  */
312 static bool is_edp(struct gma_encoder *encoder)
313 {
314 	return encoder->type == INTEL_OUTPUT_EDP;
315 }
316 
317 
318 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
319 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
320 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
321 
322 static int
323 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
324 {
325 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
326 	int max_lane_count = 4;
327 
328 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
329 		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
330 		switch (max_lane_count) {
331 		case 1: case 2: case 4:
332 			break;
333 		default:
334 			max_lane_count = 4;
335 		}
336 	}
337 	return max_lane_count;
338 }
339 
340 static int
341 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
342 {
343 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
344 	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
345 
346 	switch (max_link_bw) {
347 	case DP_LINK_BW_1_62:
348 	case DP_LINK_BW_2_7:
349 		break;
350 	default:
351 		max_link_bw = DP_LINK_BW_1_62;
352 		break;
353 	}
354 	return max_link_bw;
355 }
356 
357 static int
358 cdv_intel_dp_link_clock(uint8_t link_bw)
359 {
360 	if (link_bw == DP_LINK_BW_2_7)
361 		return 270000;
362 	else
363 		return 162000;
364 }
365 
366 static int
367 cdv_intel_dp_link_required(int pixel_clock, int bpp)
368 {
369 	return (pixel_clock * bpp + 7) / 8;
370 }
371 
372 static int
373 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
374 {
375 	return (max_link_clock * max_lanes * 19) / 20;
376 }
377 
378 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
379 {
380 	struct drm_device *dev = intel_encoder->base.dev;
381 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
382 	u32 pp;
383 
384 	if (intel_dp->panel_on) {
385 		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
386 		return;
387 	}
388 	DRM_DEBUG_KMS("\n");
389 
390 	pp = REG_READ(PP_CONTROL);
391 
392 	pp |= EDP_FORCE_VDD;
393 	REG_WRITE(PP_CONTROL, pp);
394 	REG_READ(PP_CONTROL);
395 	msleep(intel_dp->panel_power_up_delay);
396 }
397 
398 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
399 {
400 	struct drm_device *dev = intel_encoder->base.dev;
401 	u32 pp;
402 
403 	DRM_DEBUG_KMS("\n");
404 	pp = REG_READ(PP_CONTROL);
405 
406 	pp &= ~EDP_FORCE_VDD;
407 	REG_WRITE(PP_CONTROL, pp);
408 	REG_READ(PP_CONTROL);
409 
410 }
411 
412 /* Returns true if the panel was already on when called */
413 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
414 {
415 	struct drm_device *dev = intel_encoder->base.dev;
416 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
417 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
418 
419 	if (intel_dp->panel_on)
420 		return true;
421 
422 	DRM_DEBUG_KMS("\n");
423 	pp = REG_READ(PP_CONTROL);
424 	pp &= ~PANEL_UNLOCK_MASK;
425 
426 	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
427 	REG_WRITE(PP_CONTROL, pp);
428 	REG_READ(PP_CONTROL);
429 
430 	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
431 		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
432 		intel_dp->panel_on = false;
433 	} else
434 		intel_dp->panel_on = true;
435 	msleep(intel_dp->panel_power_up_delay);
436 
437 	return false;
438 }
439 
440 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
441 {
442 	struct drm_device *dev = intel_encoder->base.dev;
443 	u32 pp, idle_off_mask = PP_ON ;
444 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
445 
446 	DRM_DEBUG_KMS("\n");
447 
448 	pp = REG_READ(PP_CONTROL);
449 
450 	if ((pp & POWER_TARGET_ON) == 0)
451 		return;
452 
453 	intel_dp->panel_on = false;
454 	pp &= ~PANEL_UNLOCK_MASK;
455 	/* ILK workaround: disable reset around power sequence */
456 
457 	pp &= ~POWER_TARGET_ON;
458 	pp &= ~EDP_FORCE_VDD;
459 	pp &= ~EDP_BLC_ENABLE;
460 	REG_WRITE(PP_CONTROL, pp);
461 	REG_READ(PP_CONTROL);
462 	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
463 
464 	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
465 		DRM_DEBUG_KMS("Error in turning off Panel\n");
466 	}
467 
468 	msleep(intel_dp->panel_power_cycle_delay);
469 	DRM_DEBUG_KMS("Over\n");
470 }
471 
472 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
473 {
474 	struct drm_device *dev = intel_encoder->base.dev;
475 	u32 pp;
476 
477 	DRM_DEBUG_KMS("\n");
478 	/*
479 	 * If we enable the backlight right away following a panel power
480 	 * on, we may see slight flicker as the panel syncs with the eDP
481 	 * link.  So delay a bit to make sure the image is solid before
482 	 * allowing it to appear.
483 	 */
484 	msleep(300);
485 	pp = REG_READ(PP_CONTROL);
486 
487 	pp |= EDP_BLC_ENABLE;
488 	REG_WRITE(PP_CONTROL, pp);
489 	gma_backlight_enable(dev);
490 }
491 
492 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
493 {
494 	struct drm_device *dev = intel_encoder->base.dev;
495 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
496 	u32 pp;
497 
498 	DRM_DEBUG_KMS("\n");
499 	gma_backlight_disable(dev);
500 	msleep(10);
501 	pp = REG_READ(PP_CONTROL);
502 
503 	pp &= ~EDP_BLC_ENABLE;
504 	REG_WRITE(PP_CONTROL, pp);
505 	msleep(intel_dp->backlight_off_delay);
506 }
507 
508 static enum drm_mode_status
509 cdv_intel_dp_mode_valid(struct drm_connector *connector,
510 		    struct drm_display_mode *mode)
511 {
512 	struct gma_encoder *encoder = gma_attached_encoder(connector);
513 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
514 	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
515 	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
516 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
517 
518 	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
519 		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
520 			return MODE_PANEL;
521 		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
522 			return MODE_PANEL;
523 	}
524 
525 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
526 	   which are outside spec tolerances but somehow work by magic */
527 	if (!is_edp(encoder) &&
528 	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
529 	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
530 		return MODE_CLOCK_HIGH;
531 
532 	if (is_edp(encoder)) {
533 	    if (cdv_intel_dp_link_required(mode->clock, 24)
534 	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
535 		return MODE_CLOCK_HIGH;
536 
537 	}
538 	if (mode->clock < 10000)
539 		return MODE_CLOCK_LOW;
540 
541 	return MODE_OK;
542 }
543 
544 static uint32_t
545 pack_aux(uint8_t *src, int src_bytes)
546 {
547 	int	i;
548 	uint32_t v = 0;
549 
550 	if (src_bytes > 4)
551 		src_bytes = 4;
552 	for (i = 0; i < src_bytes; i++)
553 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
554 	return v;
555 }
556 
557 static void
558 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
559 {
560 	int i;
561 	if (dst_bytes > 4)
562 		dst_bytes = 4;
563 	for (i = 0; i < dst_bytes; i++)
564 		dst[i] = src >> ((3-i) * 8);
565 }
566 
567 static int
568 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
569 		uint8_t *send, int send_bytes,
570 		uint8_t *recv, int recv_size)
571 {
572 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
573 	uint32_t output_reg = intel_dp->output_reg;
574 	struct drm_device *dev = encoder->base.dev;
575 	uint32_t ch_ctl = output_reg + 0x10;
576 	uint32_t ch_data = ch_ctl + 4;
577 	int i;
578 	int recv_bytes;
579 	uint32_t status;
580 	uint32_t aux_clock_divider;
581 	int try, precharge;
582 
583 	/* The clock divider is based off the hrawclk,
584 	 * and would like to run at 2MHz. So, take the
585 	 * hrawclk value and divide by 2 and use that
586 	 * On CDV platform it uses 200MHz as hrawclk.
587 	 *
588 	 */
589 	aux_clock_divider = 200 / 2;
590 
591 	precharge = 4;
592 	if (is_edp(encoder))
593 		precharge = 10;
594 
595 	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
596 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
597 			  REG_READ(ch_ctl));
598 		return -EBUSY;
599 	}
600 
601 	/* Must try at least 3 times according to DP spec */
602 	for (try = 0; try < 5; try++) {
603 		/* Load the send data into the aux channel data registers */
604 		for (i = 0; i < send_bytes; i += 4)
605 			REG_WRITE(ch_data + i,
606 				   pack_aux(send + i, send_bytes - i));
607 
608 		/* Send the command and wait for it to complete */
609 		REG_WRITE(ch_ctl,
610 			   DP_AUX_CH_CTL_SEND_BUSY |
611 			   DP_AUX_CH_CTL_TIME_OUT_400us |
612 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
613 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
614 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
615 			   DP_AUX_CH_CTL_DONE |
616 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
617 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
618 		for (;;) {
619 			status = REG_READ(ch_ctl);
620 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
621 				break;
622 			udelay(100);
623 		}
624 
625 		/* Clear done status and any errors */
626 		REG_WRITE(ch_ctl,
627 			   status |
628 			   DP_AUX_CH_CTL_DONE |
629 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
630 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
631 		if (status & DP_AUX_CH_CTL_DONE)
632 			break;
633 	}
634 
635 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
636 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
637 		return -EBUSY;
638 	}
639 
640 	/* Check for timeout or receive error.
641 	 * Timeouts occur when the sink is not connected
642 	 */
643 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
644 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
645 		return -EIO;
646 	}
647 
648 	/* Timeouts occur when the device isn't connected, so they're
649 	 * "normal" -- don't fill the kernel log with these */
650 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
651 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
652 		return -ETIMEDOUT;
653 	}
654 
655 	/* Unload any bytes sent back from the other side */
656 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
657 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
658 	if (recv_bytes > recv_size)
659 		recv_bytes = recv_size;
660 
661 	for (i = 0; i < recv_bytes; i += 4)
662 		unpack_aux(REG_READ(ch_data + i),
663 			   recv + i, recv_bytes - i);
664 
665 	return recv_bytes;
666 }
667 
668 /* Write data to the aux channel in native mode */
669 static int
670 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
671 			  uint16_t address, uint8_t *send, int send_bytes)
672 {
673 	int ret;
674 	uint8_t	msg[20];
675 	int msg_bytes;
676 	uint8_t	ack;
677 
678 	if (send_bytes > 16)
679 		return -1;
680 	msg[0] = DP_AUX_NATIVE_WRITE << 4;
681 	msg[1] = address >> 8;
682 	msg[2] = address & 0xff;
683 	msg[3] = send_bytes - 1;
684 	memcpy(&msg[4], send, send_bytes);
685 	msg_bytes = send_bytes + 4;
686 	for (;;) {
687 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
688 		if (ret < 0)
689 			return ret;
690 		ack >>= 4;
691 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
692 			break;
693 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
694 			udelay(100);
695 		else
696 			return -EIO;
697 	}
698 	return send_bytes;
699 }
700 
701 /* Write a single byte to the aux channel in native mode */
702 static int
703 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
704 			    uint16_t address, uint8_t byte)
705 {
706 	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
707 }
708 
709 /* read bytes from a native aux channel */
710 static int
711 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
712 			 uint16_t address, uint8_t *recv, int recv_bytes)
713 {
714 	uint8_t msg[4];
715 	int msg_bytes;
716 	uint8_t reply[20];
717 	int reply_bytes;
718 	uint8_t ack;
719 	int ret;
720 
721 	msg[0] = DP_AUX_NATIVE_READ << 4;
722 	msg[1] = address >> 8;
723 	msg[2] = address & 0xff;
724 	msg[3] = recv_bytes - 1;
725 
726 	msg_bytes = 4;
727 	reply_bytes = recv_bytes + 1;
728 
729 	for (;;) {
730 		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
731 				      reply, reply_bytes);
732 		if (ret == 0)
733 			return -EPROTO;
734 		if (ret < 0)
735 			return ret;
736 		ack = reply[0] >> 4;
737 		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
738 			memcpy(recv, reply + 1, ret - 1);
739 			return ret - 1;
740 		}
741 		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
742 			udelay(100);
743 		else
744 			return -EIO;
745 	}
746 }
747 
748 static int
749 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
750 		    uint8_t write_byte, uint8_t *read_byte)
751 {
752 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
753 	struct cdv_intel_dp *intel_dp = container_of(adapter,
754 						struct cdv_intel_dp,
755 						adapter);
756 	struct gma_encoder *encoder = intel_dp->encoder;
757 	uint16_t address = algo_data->address;
758 	uint8_t msg[5];
759 	uint8_t reply[2];
760 	unsigned retry;
761 	int msg_bytes;
762 	int reply_bytes;
763 	int ret;
764 
765 	/* Set up the command byte */
766 	if (mode & MODE_I2C_READ)
767 		msg[0] = DP_AUX_I2C_READ << 4;
768 	else
769 		msg[0] = DP_AUX_I2C_WRITE << 4;
770 
771 	if (!(mode & MODE_I2C_STOP))
772 		msg[0] |= DP_AUX_I2C_MOT << 4;
773 
774 	msg[1] = address >> 8;
775 	msg[2] = address;
776 
777 	switch (mode) {
778 	case MODE_I2C_WRITE:
779 		msg[3] = 0;
780 		msg[4] = write_byte;
781 		msg_bytes = 5;
782 		reply_bytes = 1;
783 		break;
784 	case MODE_I2C_READ:
785 		msg[3] = 0;
786 		msg_bytes = 4;
787 		reply_bytes = 2;
788 		break;
789 	default:
790 		msg_bytes = 3;
791 		reply_bytes = 1;
792 		break;
793 	}
794 
795 	for (retry = 0; retry < 5; retry++) {
796 		ret = cdv_intel_dp_aux_ch(encoder,
797 				      msg, msg_bytes,
798 				      reply, reply_bytes);
799 		if (ret < 0) {
800 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
801 			return ret;
802 		}
803 
804 		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
805 		case DP_AUX_NATIVE_REPLY_ACK:
806 			/* I2C-over-AUX Reply field is only valid
807 			 * when paired with AUX ACK.
808 			 */
809 			break;
810 		case DP_AUX_NATIVE_REPLY_NACK:
811 			DRM_DEBUG_KMS("aux_ch native nack\n");
812 			return -EREMOTEIO;
813 		case DP_AUX_NATIVE_REPLY_DEFER:
814 			udelay(100);
815 			continue;
816 		default:
817 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
818 				  reply[0]);
819 			return -EREMOTEIO;
820 		}
821 
822 		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
823 		case DP_AUX_I2C_REPLY_ACK:
824 			if (mode == MODE_I2C_READ) {
825 				*read_byte = reply[1];
826 			}
827 			return reply_bytes - 1;
828 		case DP_AUX_I2C_REPLY_NACK:
829 			DRM_DEBUG_KMS("aux_i2c nack\n");
830 			return -EREMOTEIO;
831 		case DP_AUX_I2C_REPLY_DEFER:
832 			DRM_DEBUG_KMS("aux_i2c defer\n");
833 			udelay(100);
834 			break;
835 		default:
836 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
837 			return -EREMOTEIO;
838 		}
839 	}
840 
841 	DRM_ERROR("too many retries, giving up\n");
842 	return -EREMOTEIO;
843 }
844 
845 static int
846 cdv_intel_dp_i2c_init(struct gma_connector *connector,
847 		      struct gma_encoder *encoder, const char *name)
848 {
849 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
850 	int ret;
851 
852 	DRM_DEBUG_KMS("i2c_init %s\n", name);
853 
854 	intel_dp->algo.running = false;
855 	intel_dp->algo.address = 0;
856 	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
857 
858 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
859 	intel_dp->adapter.owner = THIS_MODULE;
860 	intel_dp->adapter.class = I2C_CLASS_DDC;
861 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
862 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
863 	intel_dp->adapter.algo_data = &intel_dp->algo;
864 	intel_dp->adapter.dev.parent = connector->base.kdev;
865 
866 	if (is_edp(encoder))
867 		cdv_intel_edp_panel_vdd_on(encoder);
868 	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
869 	if (is_edp(encoder))
870 		cdv_intel_edp_panel_vdd_off(encoder);
871 
872 	return ret;
873 }
874 
875 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
876 	struct drm_display_mode *adjusted_mode)
877 {
878 	adjusted_mode->hdisplay = fixed_mode->hdisplay;
879 	adjusted_mode->hsync_start = fixed_mode->hsync_start;
880 	adjusted_mode->hsync_end = fixed_mode->hsync_end;
881 	adjusted_mode->htotal = fixed_mode->htotal;
882 
883 	adjusted_mode->vdisplay = fixed_mode->vdisplay;
884 	adjusted_mode->vsync_start = fixed_mode->vsync_start;
885 	adjusted_mode->vsync_end = fixed_mode->vsync_end;
886 	adjusted_mode->vtotal = fixed_mode->vtotal;
887 
888 	adjusted_mode->clock = fixed_mode->clock;
889 
890 	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
891 }
892 
893 static bool
894 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
895 		    struct drm_display_mode *adjusted_mode)
896 {
897 	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
898 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
899 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
900 	int lane_count, clock;
901 	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
902 	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
903 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
904 	int refclock = mode->clock;
905 	int bpp = 24;
906 
907 	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
908 		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
909 		refclock = intel_dp->panel_fixed_mode->clock;
910 		bpp = dev_priv->edp.bpp;
911 	}
912 
913 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
914 		for (clock = max_clock; clock >= 0; clock--) {
915 			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
916 
917 			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
918 				intel_dp->link_bw = bws[clock];
919 				intel_dp->lane_count = lane_count;
920 				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
921 				DRM_DEBUG_KMS("Display port link bw %02x lane "
922 						"count %d clock %d\n",
923 				       intel_dp->link_bw, intel_dp->lane_count,
924 				       adjusted_mode->clock);
925 				return true;
926 			}
927 		}
928 	}
929 	if (is_edp(intel_encoder)) {
930 		/* okay we failed just pick the highest */
931 		intel_dp->lane_count = max_lane_count;
932 		intel_dp->link_bw = bws[max_clock];
933 		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
934 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
935 			      "count %d clock %d\n",
936 			      intel_dp->link_bw, intel_dp->lane_count,
937 			      adjusted_mode->clock);
938 
939 		return true;
940 	}
941 	return false;
942 }
943 
944 struct cdv_intel_dp_m_n {
945 	uint32_t	tu;
946 	uint32_t	gmch_m;
947 	uint32_t	gmch_n;
948 	uint32_t	link_m;
949 	uint32_t	link_n;
950 };
951 
952 static void
953 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
954 {
955 	/*
956 	while (*num > 0xffffff || *den > 0xffffff) {
957 		*num >>= 1;
958 		*den >>= 1;
959 	}*/
960 	uint64_t value, m;
961 	m = *num;
962 	value = m * (0x800000);
963 	m = do_div(value, *den);
964 	*num = value;
965 	*den = 0x800000;
966 }
967 
968 static void
969 cdv_intel_dp_compute_m_n(int bpp,
970 		     int nlanes,
971 		     int pixel_clock,
972 		     int link_clock,
973 		     struct cdv_intel_dp_m_n *m_n)
974 {
975 	m_n->tu = 64;
976 	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
977 	m_n->gmch_n = link_clock * nlanes;
978 	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
979 	m_n->link_m = pixel_clock;
980 	m_n->link_n = link_clock;
981 	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
982 }
983 
984 void
985 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
986 		 struct drm_display_mode *adjusted_mode)
987 {
988 	struct drm_device *dev = crtc->dev;
989 	struct drm_psb_private *dev_priv = dev->dev_private;
990 	struct drm_mode_config *mode_config = &dev->mode_config;
991 	struct drm_encoder *encoder;
992 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
993 	int lane_count = 4, bpp = 24;
994 	struct cdv_intel_dp_m_n m_n;
995 	int pipe = gma_crtc->pipe;
996 
997 	/*
998 	 * Find the lane count in the intel_encoder private
999 	 */
1000 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1001 		struct gma_encoder *intel_encoder;
1002 		struct cdv_intel_dp *intel_dp;
1003 
1004 		if (encoder->crtc != crtc)
1005 			continue;
1006 
1007 		intel_encoder = to_gma_encoder(encoder);
1008 		intel_dp = intel_encoder->dev_priv;
1009 		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1010 			lane_count = intel_dp->lane_count;
1011 			break;
1012 		} else if (is_edp(intel_encoder)) {
1013 			lane_count = intel_dp->lane_count;
1014 			bpp = dev_priv->edp.bpp;
1015 			break;
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * Compute the GMCH and Link ratios. The '3' here is
1021 	 * the number of bytes_per_pixel post-LUT, which we always
1022 	 * set up for 8-bits of R/G/B, or 3 bytes total.
1023 	 */
1024 	cdv_intel_dp_compute_m_n(bpp, lane_count,
1025 			     mode->clock, adjusted_mode->clock, &m_n);
1026 
1027 	{
1028 		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1029 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1030 			   m_n.gmch_m);
1031 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1032 		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1033 		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1034 	}
1035 }
1036 
1037 static void
1038 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1039 		  struct drm_display_mode *adjusted_mode)
1040 {
1041 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1042 	struct drm_crtc *crtc = encoder->crtc;
1043 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1044 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1045 	struct drm_device *dev = encoder->dev;
1046 
1047 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1048 	intel_dp->DP |= intel_dp->color_range;
1049 
1050 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1051 		intel_dp->DP |= DP_SYNC_HS_HIGH;
1052 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1053 		intel_dp->DP |= DP_SYNC_VS_HIGH;
1054 
1055 	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1056 
1057 	switch (intel_dp->lane_count) {
1058 	case 1:
1059 		intel_dp->DP |= DP_PORT_WIDTH_1;
1060 		break;
1061 	case 2:
1062 		intel_dp->DP |= DP_PORT_WIDTH_2;
1063 		break;
1064 	case 4:
1065 		intel_dp->DP |= DP_PORT_WIDTH_4;
1066 		break;
1067 	}
1068 	if (intel_dp->has_audio)
1069 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1070 
1071 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1072 	intel_dp->link_configuration[0] = intel_dp->link_bw;
1073 	intel_dp->link_configuration[1] = intel_dp->lane_count;
1074 
1075 	/*
1076 	 * Check for DPCD version > 1.1 and enhanced framing support
1077 	 */
1078 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1079 	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1080 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1081 		intel_dp->DP |= DP_ENHANCED_FRAMING;
1082 	}
1083 
1084 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1085 	if (gma_crtc->pipe == 1)
1086 		intel_dp->DP |= DP_PIPEB_SELECT;
1087 
1088 	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1089 	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1090 	if (is_edp(intel_encoder)) {
1091 		uint32_t pfit_control;
1092 		cdv_intel_edp_panel_on(intel_encoder);
1093 
1094 		if (mode->hdisplay != adjusted_mode->hdisplay ||
1095 			    mode->vdisplay != adjusted_mode->vdisplay)
1096 			pfit_control = PFIT_ENABLE;
1097 		else
1098 			pfit_control = 0;
1099 
1100 		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1101 
1102 		REG_WRITE(PFIT_CONTROL, pfit_control);
1103 	}
1104 }
1105 
1106 
1107 /* If the sink supports it, try to set the power state appropriately */
1108 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1109 {
1110 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1111 	int ret, i;
1112 
1113 	/* Should have a valid DPCD by this point */
1114 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1115 		return;
1116 
1117 	if (mode != DRM_MODE_DPMS_ON) {
1118 		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1119 						  DP_SET_POWER_D3);
1120 		if (ret != 1)
1121 			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1122 	} else {
1123 		/*
1124 		 * When turning on, we need to retry for 1ms to give the sink
1125 		 * time to wake up.
1126 		 */
1127 		for (i = 0; i < 3; i++) {
1128 			ret = cdv_intel_dp_aux_native_write_1(encoder,
1129 							  DP_SET_POWER,
1130 							  DP_SET_POWER_D0);
1131 			if (ret == 1)
1132 				break;
1133 			udelay(1000);
1134 		}
1135 	}
1136 }
1137 
1138 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1139 {
1140 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1141 	int edp = is_edp(intel_encoder);
1142 
1143 	if (edp) {
1144 		cdv_intel_edp_backlight_off(intel_encoder);
1145 		cdv_intel_edp_panel_off(intel_encoder);
1146 		cdv_intel_edp_panel_vdd_on(intel_encoder);
1147         }
1148 	/* Wake up the sink first */
1149 	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1150 	cdv_intel_dp_link_down(intel_encoder);
1151 	if (edp)
1152 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1153 }
1154 
1155 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1156 {
1157 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1158 	int edp = is_edp(intel_encoder);
1159 
1160 	if (edp)
1161 		cdv_intel_edp_panel_on(intel_encoder);
1162 	cdv_intel_dp_start_link_train(intel_encoder);
1163 	cdv_intel_dp_complete_link_train(intel_encoder);
1164 	if (edp)
1165 		cdv_intel_edp_backlight_on(intel_encoder);
1166 }
1167 
1168 static void
1169 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1170 {
1171 	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1172 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1173 	struct drm_device *dev = encoder->dev;
1174 	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1175 	int edp = is_edp(intel_encoder);
1176 
1177 	if (mode != DRM_MODE_DPMS_ON) {
1178 		if (edp) {
1179 			cdv_intel_edp_backlight_off(intel_encoder);
1180 			cdv_intel_edp_panel_vdd_on(intel_encoder);
1181 		}
1182 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1183 		cdv_intel_dp_link_down(intel_encoder);
1184 		if (edp) {
1185 			cdv_intel_edp_panel_vdd_off(intel_encoder);
1186 			cdv_intel_edp_panel_off(intel_encoder);
1187 		}
1188 	} else {
1189         	if (edp)
1190 			cdv_intel_edp_panel_on(intel_encoder);
1191 		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1192 		if (!(dp_reg & DP_PORT_EN)) {
1193 			cdv_intel_dp_start_link_train(intel_encoder);
1194 			cdv_intel_dp_complete_link_train(intel_encoder);
1195 		}
1196 		if (edp)
1197         		cdv_intel_edp_backlight_on(intel_encoder);
1198 	}
1199 }
1200 
1201 /*
1202  * Native read with retry for link status and receiver capability reads for
1203  * cases where the sink may still be asleep.
1204  */
1205 static bool
1206 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1207 			       uint8_t *recv, int recv_bytes)
1208 {
1209 	int ret, i;
1210 
1211 	/*
1212 	 * Sinks are *supposed* to come up within 1ms from an off state,
1213 	 * but we're also supposed to retry 3 times per the spec.
1214 	 */
1215 	for (i = 0; i < 3; i++) {
1216 		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1217 					       recv_bytes);
1218 		if (ret == recv_bytes)
1219 			return true;
1220 		udelay(1000);
1221 	}
1222 
1223 	return false;
1224 }
1225 
1226 /*
1227  * Fetch AUX CH registers 0x202 - 0x207 which contain
1228  * link status information
1229  */
1230 static bool
1231 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1232 {
1233 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1234 	return cdv_intel_dp_aux_native_read_retry(encoder,
1235 					      DP_LANE0_1_STATUS,
1236 					      intel_dp->link_status,
1237 					      DP_LINK_STATUS_SIZE);
1238 }
1239 
1240 static uint8_t
1241 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1242 		     int r)
1243 {
1244 	return link_status[r - DP_LANE0_1_STATUS];
1245 }
1246 
1247 static uint8_t
1248 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1249 				 int lane)
1250 {
1251 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1252 	int	    s = ((lane & 1) ?
1253 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1254 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1255 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1256 
1257 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1258 }
1259 
1260 static uint8_t
1261 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1262 				      int lane)
1263 {
1264 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1265 	int	    s = ((lane & 1) ?
1266 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1267 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1268 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1269 
1270 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1271 }
1272 
1273 
1274 #if 0
1275 static char	*voltage_names[] = {
1276 	"0.4V", "0.6V", "0.8V", "1.2V"
1277 };
1278 static char	*pre_emph_names[] = {
1279 	"0dB", "3.5dB", "6dB", "9.5dB"
1280 };
1281 static char	*link_train_names[] = {
1282 	"pattern 1", "pattern 2", "idle", "off"
1283 };
1284 #endif
1285 
1286 #define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1287 /*
1288 static uint8_t
1289 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1290 {
1291 	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1292 	case DP_TRAIN_VOLTAGE_SWING_400:
1293 		return DP_TRAIN_PRE_EMPHASIS_6;
1294 	case DP_TRAIN_VOLTAGE_SWING_600:
1295 		return DP_TRAIN_PRE_EMPHASIS_6;
1296 	case DP_TRAIN_VOLTAGE_SWING_800:
1297 		return DP_TRAIN_PRE_EMPHASIS_3_5;
1298 	case DP_TRAIN_VOLTAGE_SWING_1200:
1299 	default:
1300 		return DP_TRAIN_PRE_EMPHASIS_0;
1301 	}
1302 }
1303 */
1304 static void
1305 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1306 {
1307 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1308 	uint8_t v = 0;
1309 	uint8_t p = 0;
1310 	int lane;
1311 
1312 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1313 		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1314 		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1315 
1316 		if (this_v > v)
1317 			v = this_v;
1318 		if (this_p > p)
1319 			p = this_p;
1320 	}
1321 
1322 	if (v >= CDV_DP_VOLTAGE_MAX)
1323 		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1324 
1325 	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1326 		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1327 
1328 	for (lane = 0; lane < 4; lane++)
1329 		intel_dp->train_set[lane] = v | p;
1330 }
1331 
1332 
1333 static uint8_t
1334 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1335 		      int lane)
1336 {
1337 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1338 	int s = (lane & 1) * 4;
1339 	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1340 
1341 	return (l >> s) & 0xf;
1342 }
1343 
1344 /* Check for clock recovery is done on all channels */
1345 static bool
1346 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1347 {
1348 	int lane;
1349 	uint8_t lane_status;
1350 
1351 	for (lane = 0; lane < lane_count; lane++) {
1352 		lane_status = cdv_intel_get_lane_status(link_status, lane);
1353 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1354 			return false;
1355 	}
1356 	return true;
1357 }
1358 
1359 /* Check to see if channel eq is done on all channels */
1360 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1361 			 DP_LANE_CHANNEL_EQ_DONE|\
1362 			 DP_LANE_SYMBOL_LOCKED)
1363 static bool
1364 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1365 {
1366 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1367 	uint8_t lane_align;
1368 	uint8_t lane_status;
1369 	int lane;
1370 
1371 	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1372 					  DP_LANE_ALIGN_STATUS_UPDATED);
1373 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1374 		return false;
1375 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1376 		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1377 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1378 			return false;
1379 	}
1380 	return true;
1381 }
1382 
1383 static bool
1384 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1385 			uint32_t dp_reg_value,
1386 			uint8_t dp_train_pat)
1387 {
1388 
1389 	struct drm_device *dev = encoder->base.dev;
1390 	int ret;
1391 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1392 
1393 	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1394 	REG_READ(intel_dp->output_reg);
1395 
1396 	ret = cdv_intel_dp_aux_native_write_1(encoder,
1397 				    DP_TRAINING_PATTERN_SET,
1398 				    dp_train_pat);
1399 
1400 	if (ret != 1) {
1401 		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1402 				dp_train_pat);
1403 		return false;
1404 	}
1405 
1406 	return true;
1407 }
1408 
1409 
1410 static bool
1411 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1412 			uint8_t dp_train_pat)
1413 {
1414 
1415 	int ret;
1416 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1417 
1418 	ret = cdv_intel_dp_aux_native_write(encoder,
1419 					DP_TRAINING_LANE0_SET,
1420 					intel_dp->train_set,
1421 					intel_dp->lane_count);
1422 
1423 	if (ret != intel_dp->lane_count) {
1424 		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1425 				intel_dp->train_set[0], intel_dp->lane_count);
1426 		return false;
1427 	}
1428 	return true;
1429 }
1430 
1431 static void
1432 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1433 {
1434 	struct drm_device *dev = encoder->base.dev;
1435 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1436 	struct ddi_regoff *ddi_reg;
1437 	int vswing, premph, index;
1438 
1439 	if (intel_dp->output_reg == DP_B)
1440 		ddi_reg = &ddi_DP_train_table[0];
1441 	else
1442 		ddi_reg = &ddi_DP_train_table[1];
1443 
1444 	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1445 	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1446 				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1447 
1448 	if (vswing + premph > 3)
1449 		return;
1450 #ifdef CDV_FAST_LINK_TRAIN
1451 	return;
1452 #endif
1453 	DRM_DEBUG_KMS("Test2\n");
1454 	//return ;
1455 	cdv_sb_reset(dev);
1456 	/* ;Swing voltage programming
1457         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1458 	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1459 
1460 	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1461 	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1462 
1463 	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1464 	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1465 	 */
1466 	index = (vswing + premph) * 2;
1467 	if (premph == 1 && vswing == 1) {
1468 		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1469 	} else
1470 		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1471 
1472 	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1473 	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1474 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1475 	else
1476 		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1477 
1478 	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1479 	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1480 
1481 	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1482 	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1483 
1484 	/* ;Pre emphasis programming
1485 	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1486 	 */
1487 	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1488 
1489 	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1490 	index = 2 * premph + 1;
1491 	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1492 	return;
1493 }
1494 
1495 
1496 /* Enable corresponding port and start training pattern 1 */
1497 static void
1498 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1499 {
1500 	struct drm_device *dev = encoder->base.dev;
1501 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1502 	int i;
1503 	uint8_t voltage;
1504 	bool clock_recovery = false;
1505 	int tries;
1506 	u32 reg;
1507 	uint32_t DP = intel_dp->DP;
1508 
1509 	DP |= DP_PORT_EN;
1510 	DP &= ~DP_LINK_TRAIN_MASK;
1511 
1512 	reg = DP;
1513 	reg |= DP_LINK_TRAIN_PAT_1;
1514 	/* Enable output, wait for it to become active */
1515 	REG_WRITE(intel_dp->output_reg, reg);
1516 	REG_READ(intel_dp->output_reg);
1517 	gma_wait_for_vblank(dev);
1518 
1519 	DRM_DEBUG_KMS("Link config\n");
1520 	/* Write the link configuration data */
1521 	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1522 				  intel_dp->link_configuration,
1523 				  2);
1524 
1525 	memset(intel_dp->train_set, 0, 4);
1526 	voltage = 0;
1527 	tries = 0;
1528 	clock_recovery = false;
1529 
1530 	DRM_DEBUG_KMS("Start train\n");
1531 		reg = DP | DP_LINK_TRAIN_PAT_1;
1532 
1533 
1534 	for (;;) {
1535 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1536 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1537 				intel_dp->train_set[0],
1538 				intel_dp->link_configuration[0],
1539 				intel_dp->link_configuration[1]);
1540 
1541 		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1542 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1543 		}
1544 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1545 		/* Set training pattern 1 */
1546 
1547 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1548 
1549 		udelay(200);
1550 		if (!cdv_intel_dp_get_link_status(encoder))
1551 			break;
1552 
1553 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1554 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1555 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1556 
1557 		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1558 			DRM_DEBUG_KMS("PT1 train is done\n");
1559 			clock_recovery = true;
1560 			break;
1561 		}
1562 
1563 		/* Check to see if we've tried the max voltage */
1564 		for (i = 0; i < intel_dp->lane_count; i++)
1565 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1566 				break;
1567 		if (i == intel_dp->lane_count)
1568 			break;
1569 
1570 		/* Check to see if we've tried the same voltage 5 times */
1571 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1572 			++tries;
1573 			if (tries == 5)
1574 				break;
1575 		} else
1576 			tries = 0;
1577 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1578 
1579 		/* Compute new intel_dp->train_set as requested by target */
1580 		cdv_intel_get_adjust_train(encoder);
1581 
1582 	}
1583 
1584 	if (!clock_recovery) {
1585 		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1586 	}
1587 
1588 	intel_dp->DP = DP;
1589 }
1590 
1591 static void
1592 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1593 {
1594 	struct drm_device *dev = encoder->base.dev;
1595 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1596 	bool channel_eq = false;
1597 	int tries, cr_tries;
1598 	u32 reg;
1599 	uint32_t DP = intel_dp->DP;
1600 
1601 	/* channel equalization */
1602 	tries = 0;
1603 	cr_tries = 0;
1604 	channel_eq = false;
1605 
1606 	DRM_DEBUG_KMS("\n");
1607 		reg = DP | DP_LINK_TRAIN_PAT_2;
1608 
1609 	for (;;) {
1610 
1611 		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1612 				intel_dp->train_set[0],
1613 				intel_dp->link_configuration[0],
1614 				intel_dp->link_configuration[1]);
1615         	/* channel eq pattern */
1616 
1617 		if (!cdv_intel_dp_set_link_train(encoder, reg,
1618 					     DP_TRAINING_PATTERN_2)) {
1619 			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1620 		}
1621 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1622 
1623 		if (cr_tries > 5) {
1624 			DRM_ERROR("failed to train DP, aborting\n");
1625 			cdv_intel_dp_link_down(encoder);
1626 			break;
1627 		}
1628 
1629 		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1630 
1631 		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1632 
1633 		udelay(1000);
1634 		if (!cdv_intel_dp_get_link_status(encoder))
1635 			break;
1636 
1637 		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1638 				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1639 				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1640 
1641 		/* Make sure clock is still ok */
1642 		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1643 			cdv_intel_dp_start_link_train(encoder);
1644 			cr_tries++;
1645 			continue;
1646 		}
1647 
1648 		if (cdv_intel_channel_eq_ok(encoder)) {
1649 			DRM_DEBUG_KMS("PT2 train is done\n");
1650 			channel_eq = true;
1651 			break;
1652 		}
1653 
1654 		/* Try 5 times, then try clock recovery if that fails */
1655 		if (tries > 5) {
1656 			cdv_intel_dp_link_down(encoder);
1657 			cdv_intel_dp_start_link_train(encoder);
1658 			tries = 0;
1659 			cr_tries++;
1660 			continue;
1661 		}
1662 
1663 		/* Compute new intel_dp->train_set as requested by target */
1664 		cdv_intel_get_adjust_train(encoder);
1665 		++tries;
1666 
1667 	}
1668 
1669 	reg = DP | DP_LINK_TRAIN_OFF;
1670 
1671 	REG_WRITE(intel_dp->output_reg, reg);
1672 	REG_READ(intel_dp->output_reg);
1673 	cdv_intel_dp_aux_native_write_1(encoder,
1674 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1675 }
1676 
1677 static void
1678 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1679 {
1680 	struct drm_device *dev = encoder->base.dev;
1681 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1682 	uint32_t DP = intel_dp->DP;
1683 
1684 	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1685 		return;
1686 
1687 	DRM_DEBUG_KMS("\n");
1688 
1689 
1690 	{
1691 		DP &= ~DP_LINK_TRAIN_MASK;
1692 		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1693 	}
1694 	REG_READ(intel_dp->output_reg);
1695 
1696 	msleep(17);
1697 
1698 	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1699 	REG_READ(intel_dp->output_reg);
1700 }
1701 
1702 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1703 {
1704 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1705 	enum drm_connector_status status;
1706 
1707 	status = connector_status_disconnected;
1708 	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1709 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1710 	{
1711 		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1712 			status = connector_status_connected;
1713 	}
1714 	if (status == connector_status_connected)
1715 		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1716 			intel_dp->dpcd[0], intel_dp->dpcd[1],
1717 			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1718 	return status;
1719 }
1720 
1721 /**
1722  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1723  *
1724  * \return true if DP port is connected.
1725  * \return false if DP port is disconnected.
1726  */
1727 static enum drm_connector_status
1728 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1729 {
1730 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1731 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1732 	enum drm_connector_status status;
1733 	struct edid *edid = NULL;
1734 	int edp = is_edp(encoder);
1735 
1736 	intel_dp->has_audio = false;
1737 
1738 	if (edp)
1739 		cdv_intel_edp_panel_vdd_on(encoder);
1740 	status = cdv_dp_detect(encoder);
1741 	if (status != connector_status_connected) {
1742 		if (edp)
1743 			cdv_intel_edp_panel_vdd_off(encoder);
1744 		return status;
1745         }
1746 
1747 	if (intel_dp->force_audio) {
1748 		intel_dp->has_audio = intel_dp->force_audio > 0;
1749 	} else {
1750 		edid = drm_get_edid(connector, &intel_dp->adapter);
1751 		if (edid) {
1752 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1753 			kfree(edid);
1754 		}
1755 	}
1756 	if (edp)
1757 		cdv_intel_edp_panel_vdd_off(encoder);
1758 
1759 	return connector_status_connected;
1760 }
1761 
1762 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1763 {
1764 	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1765 	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1766 	struct edid *edid = NULL;
1767 	int ret = 0;
1768 	int edp = is_edp(intel_encoder);
1769 
1770 
1771 	edid = drm_get_edid(connector, &intel_dp->adapter);
1772 	if (edid) {
1773 		drm_connector_update_edid_property(connector, edid);
1774 		ret = drm_add_edid_modes(connector, edid);
1775 		kfree(edid);
1776 	}
1777 
1778 	if (is_edp(intel_encoder)) {
1779 		struct drm_device *dev = connector->dev;
1780 		struct drm_psb_private *dev_priv = dev->dev_private;
1781 
1782 		cdv_intel_edp_panel_vdd_off(intel_encoder);
1783 		if (ret) {
1784 			if (edp && !intel_dp->panel_fixed_mode) {
1785 				struct drm_display_mode *newmode;
1786 				list_for_each_entry(newmode, &connector->probed_modes,
1787 					    head) {
1788 					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1789 						intel_dp->panel_fixed_mode =
1790 							drm_mode_duplicate(dev, newmode);
1791 						break;
1792 					}
1793 				}
1794 			}
1795 
1796 			return ret;
1797 		}
1798 		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1799 			intel_dp->panel_fixed_mode =
1800 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1801 			if (intel_dp->panel_fixed_mode) {
1802 				intel_dp->panel_fixed_mode->type |=
1803 					DRM_MODE_TYPE_PREFERRED;
1804 			}
1805 		}
1806 		if (intel_dp->panel_fixed_mode != NULL) {
1807 			struct drm_display_mode *mode;
1808 			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1809 			drm_mode_probed_add(connector, mode);
1810 			return 1;
1811 		}
1812 	}
1813 
1814 	return ret;
1815 }
1816 
1817 static bool
1818 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1819 {
1820 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1821 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1822 	struct edid *edid;
1823 	bool has_audio = false;
1824 	int edp = is_edp(encoder);
1825 
1826 	if (edp)
1827 		cdv_intel_edp_panel_vdd_on(encoder);
1828 
1829 	edid = drm_get_edid(connector, &intel_dp->adapter);
1830 	if (edid) {
1831 		has_audio = drm_detect_monitor_audio(edid);
1832 		kfree(edid);
1833 	}
1834 	if (edp)
1835 		cdv_intel_edp_panel_vdd_off(encoder);
1836 
1837 	return has_audio;
1838 }
1839 
1840 static int
1841 cdv_intel_dp_set_property(struct drm_connector *connector,
1842 		      struct drm_property *property,
1843 		      uint64_t val)
1844 {
1845 	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1846 	struct gma_encoder *encoder = gma_attached_encoder(connector);
1847 	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1848 	int ret;
1849 
1850 	ret = drm_object_property_set_value(&connector->base, property, val);
1851 	if (ret)
1852 		return ret;
1853 
1854 	if (property == dev_priv->force_audio_property) {
1855 		int i = val;
1856 		bool has_audio;
1857 
1858 		if (i == intel_dp->force_audio)
1859 			return 0;
1860 
1861 		intel_dp->force_audio = i;
1862 
1863 		if (i == 0)
1864 			has_audio = cdv_intel_dp_detect_audio(connector);
1865 		else
1866 			has_audio = i > 0;
1867 
1868 		if (has_audio == intel_dp->has_audio)
1869 			return 0;
1870 
1871 		intel_dp->has_audio = has_audio;
1872 		goto done;
1873 	}
1874 
1875 	if (property == dev_priv->broadcast_rgb_property) {
1876 		if (val == !!intel_dp->color_range)
1877 			return 0;
1878 
1879 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1880 		goto done;
1881 	}
1882 
1883 	return -EINVAL;
1884 
1885 done:
1886 	if (encoder->base.crtc) {
1887 		struct drm_crtc *crtc = encoder->base.crtc;
1888 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1889 					 crtc->x, crtc->y,
1890 					 crtc->primary->fb);
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 static void
1897 cdv_intel_dp_destroy(struct drm_connector *connector)
1898 {
1899 	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1900 	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1901 
1902 	if (is_edp(gma_encoder)) {
1903 	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1904 		kfree(intel_dp->panel_fixed_mode);
1905 		intel_dp->panel_fixed_mode = NULL;
1906 	}
1907 	i2c_del_adapter(&intel_dp->adapter);
1908 	drm_connector_unregister(connector);
1909 	drm_connector_cleanup(connector);
1910 	kfree(connector);
1911 }
1912 
1913 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1914 {
1915 	drm_encoder_cleanup(encoder);
1916 }
1917 
1918 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1919 	.dpms = cdv_intel_dp_dpms,
1920 	.mode_fixup = cdv_intel_dp_mode_fixup,
1921 	.prepare = cdv_intel_dp_prepare,
1922 	.mode_set = cdv_intel_dp_mode_set,
1923 	.commit = cdv_intel_dp_commit,
1924 };
1925 
1926 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1927 	.dpms = drm_helper_connector_dpms,
1928 	.detect = cdv_intel_dp_detect,
1929 	.fill_modes = drm_helper_probe_single_connector_modes,
1930 	.set_property = cdv_intel_dp_set_property,
1931 	.destroy = cdv_intel_dp_destroy,
1932 };
1933 
1934 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1935 	.get_modes = cdv_intel_dp_get_modes,
1936 	.mode_valid = cdv_intel_dp_mode_valid,
1937 	.best_encoder = gma_best_encoder,
1938 };
1939 
1940 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1941 	.destroy = cdv_intel_dp_encoder_destroy,
1942 };
1943 
1944 
1945 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1946 {
1947 	cdv_intel_attach_force_audio_property(connector);
1948 	cdv_intel_attach_broadcast_rgb_property(connector);
1949 }
1950 
1951 /* check the VBT to see whether the eDP is on DP-D port */
1952 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1953 {
1954 	struct drm_psb_private *dev_priv = dev->dev_private;
1955 	struct child_device_config *p_child;
1956 	int i;
1957 
1958 	if (!dev_priv->child_dev_num)
1959 		return false;
1960 
1961 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1962 		p_child = dev_priv->child_dev + i;
1963 
1964 		if (p_child->dvo_port == PORT_IDPC &&
1965 		    p_child->device_type == DEVICE_TYPE_eDP)
1966 			return true;
1967 	}
1968 	return false;
1969 }
1970 
1971 /* Cedarview display clock gating
1972 
1973    We need this disable dot get correct behaviour while enabling
1974    DP/eDP. TODO - investigate if we can turn it back to normality
1975    after enabling */
1976 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1977 {
1978 	u32 reg_value;
1979 	reg_value = REG_READ(DSPCLK_GATE_D);
1980 
1981 	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1982 			DPUNIT_PIPEA_GATE_DISABLE |
1983 			DPCUNIT_CLOCK_GATE_DISABLE |
1984 			DPLSUNIT_CLOCK_GATE_DISABLE |
1985 			DPOUNIT_CLOCK_GATE_DISABLE |
1986 		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1987 
1988 	REG_WRITE(DSPCLK_GATE_D, reg_value);
1989 
1990 	udelay(500);
1991 }
1992 
1993 void
1994 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1995 {
1996 	struct gma_encoder *gma_encoder;
1997 	struct gma_connector *gma_connector;
1998 	struct drm_connector *connector;
1999 	struct drm_encoder *encoder;
2000 	struct cdv_intel_dp *intel_dp;
2001 	const char *name = NULL;
2002 	int type = DRM_MODE_CONNECTOR_DisplayPort;
2003 
2004 	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2005 	if (!gma_encoder)
2006 		return;
2007         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2008         if (!gma_connector)
2009                 goto err_connector;
2010 	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2011 	if (!intel_dp)
2012 	        goto err_priv;
2013 
2014 	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2015 		type = DRM_MODE_CONNECTOR_eDP;
2016 
2017 	connector = &gma_connector->base;
2018 	encoder = &gma_encoder->base;
2019 
2020 	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2021 	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs,
2022 			 DRM_MODE_ENCODER_TMDS, NULL);
2023 
2024 	gma_connector_attach_encoder(gma_connector, gma_encoder);
2025 
2026 	if (type == DRM_MODE_CONNECTOR_DisplayPort)
2027 		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2028         else
2029 		gma_encoder->type = INTEL_OUTPUT_EDP;
2030 
2031 
2032 	gma_encoder->dev_priv=intel_dp;
2033 	intel_dp->encoder = gma_encoder;
2034 	intel_dp->output_reg = output_reg;
2035 
2036 	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2037 	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2038 
2039 	connector->polled = DRM_CONNECTOR_POLL_HPD;
2040 	connector->interlace_allowed = false;
2041 	connector->doublescan_allowed = false;
2042 
2043 	drm_connector_register(connector);
2044 
2045 	/* Set up the DDC bus. */
2046 	switch (output_reg) {
2047 		case DP_B:
2048 			name = "DPDDC-B";
2049 			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2050 			break;
2051 		case DP_C:
2052 			name = "DPDDC-C";
2053 			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2054 			break;
2055 	}
2056 
2057 	cdv_disable_intel_clock_gating(dev);
2058 
2059 	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2060         /* FIXME:fail check */
2061 	cdv_intel_dp_add_properties(connector);
2062 
2063 	if (is_edp(gma_encoder)) {
2064 		int ret;
2065 		struct edp_power_seq cur;
2066                 u32 pp_on, pp_off, pp_div;
2067 		u32 pwm_ctrl;
2068 
2069 		pp_on = REG_READ(PP_CONTROL);
2070 		pp_on &= ~PANEL_UNLOCK_MASK;
2071 	        pp_on |= PANEL_UNLOCK_REGS;
2072 
2073 		REG_WRITE(PP_CONTROL, pp_on);
2074 
2075 		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2076 		pwm_ctrl |= PWM_PIPE_B;
2077 		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2078 
2079                 pp_on = REG_READ(PP_ON_DELAYS);
2080                 pp_off = REG_READ(PP_OFF_DELAYS);
2081                 pp_div = REG_READ(PP_DIVISOR);
2082 
2083 		/* Pull timing values out of registers */
2084                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2085                         PANEL_POWER_UP_DELAY_SHIFT;
2086 
2087                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2088                         PANEL_LIGHT_ON_DELAY_SHIFT;
2089 
2090                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2091                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2092 
2093                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2094                         PANEL_POWER_DOWN_DELAY_SHIFT;
2095 
2096                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2097                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2098 
2099                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2100                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2101 
2102 
2103 		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2104                 intel_dp->backlight_on_delay = cur.t8 / 10;
2105                 intel_dp->backlight_off_delay = cur.t9 / 10;
2106                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2107                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2108 
2109                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2110                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2111                               intel_dp->panel_power_cycle_delay);
2112 
2113                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2114                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2115 
2116 
2117 		cdv_intel_edp_panel_vdd_on(gma_encoder);
2118 		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2119 					       intel_dp->dpcd,
2120 					       sizeof(intel_dp->dpcd));
2121 		cdv_intel_edp_panel_vdd_off(gma_encoder);
2122 		if (ret == 0) {
2123 			/* if this fails, presume the device is a ghost */
2124 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2125 			cdv_intel_dp_encoder_destroy(encoder);
2126 			cdv_intel_dp_destroy(connector);
2127 			goto err_priv;
2128 		} else {
2129         		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2130 				intel_dp->dpcd[0], intel_dp->dpcd[1],
2131 				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2132 
2133 		}
2134 		/* The CDV reference driver moves pnale backlight setup into the displays that
2135 		   have a backlight: this is a good idea and one we should probably adopt, however
2136 		   we need to migrate all the drivers before we can do that */
2137                 /*cdv_intel_panel_setup_backlight(dev); */
2138 	}
2139 	return;
2140 
2141 err_priv:
2142 	kfree(gma_connector);
2143 err_connector:
2144 	kfree(gma_encoder);
2145 }
2146