1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Keith Packard <keithp@keithp.com> 25 * 26 */ 27 28 #include <linux/i2c.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 32 #include <drm/display/drm_dp_helper.h> 33 #include <drm/drm_crtc.h> 34 #include <drm/drm_crtc_helper.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_modeset_helper_vtables.h> 37 #include <drm/drm_simple_kms_helper.h> 38 39 #include "gma_display.h" 40 #include "psb_drv.h" 41 #include "psb_intel_drv.h" 42 #include "psb_intel_reg.h" 43 44 /** 45 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp 46 * aux algorithm 47 * @running: set by the algo indicating whether an i2c is ongoing or whether 48 * the i2c bus is quiescent 49 * @address: i2c target address for the currently ongoing transfer 50 * @aux_ch: driver callback to transfer a single byte of the i2c payload 51 */ 52 struct i2c_algo_dp_aux_data { 53 bool running; 54 u16 address; 55 int (*aux_ch) (struct i2c_adapter *adapter, 56 int mode, uint8_t write_byte, 57 uint8_t *read_byte); 58 }; 59 60 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */ 61 static int 62 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode, 63 uint8_t write_byte, uint8_t *read_byte) 64 { 65 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 66 int ret; 67 68 ret = (*algo_data->aux_ch)(adapter, mode, 69 write_byte, read_byte); 70 return ret; 71 } 72 73 /* 74 * I2C over AUX CH 75 */ 76 77 /* 78 * Send the address. If the I2C link is running, this 'restarts' 79 * the connection with the new address, this is used for doing 80 * a write followed by a read (as needed for DDC) 81 */ 82 static int 83 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading) 84 { 85 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 86 int mode = MODE_I2C_START; 87 88 if (reading) 89 mode |= MODE_I2C_READ; 90 else 91 mode |= MODE_I2C_WRITE; 92 algo_data->address = address; 93 algo_data->running = true; 94 return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); 95 } 96 97 /* 98 * Stop the I2C transaction. This closes out the link, sending 99 * a bare address packet with the MOT bit turned off 100 */ 101 static void 102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading) 103 { 104 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 105 int mode = MODE_I2C_STOP; 106 107 if (reading) 108 mode |= MODE_I2C_READ; 109 else 110 mode |= MODE_I2C_WRITE; 111 if (algo_data->running) { 112 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); 113 algo_data->running = false; 114 } 115 } 116 117 /* 118 * Write a single byte to the current I2C address, the 119 * I2C link must be running or this returns -EIO 120 */ 121 static int 122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte) 123 { 124 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 125 126 if (!algo_data->running) 127 return -EIO; 128 129 return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL); 130 } 131 132 /* 133 * Read a single byte from the current I2C address, the 134 * I2C link must be running or this returns -EIO 135 */ 136 static int 137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret) 138 { 139 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 140 141 if (!algo_data->running) 142 return -EIO; 143 144 return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret); 145 } 146 147 static int 148 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter, 149 struct i2c_msg *msgs, 150 int num) 151 { 152 int ret = 0; 153 bool reading = false; 154 int m; 155 int b; 156 157 for (m = 0; m < num; m++) { 158 u16 len = msgs[m].len; 159 u8 *buf = msgs[m].buf; 160 reading = (msgs[m].flags & I2C_M_RD) != 0; 161 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading); 162 if (ret < 0) 163 break; 164 if (reading) { 165 for (b = 0; b < len; b++) { 166 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]); 167 if (ret < 0) 168 break; 169 } 170 } else { 171 for (b = 0; b < len; b++) { 172 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]); 173 if (ret < 0) 174 break; 175 } 176 } 177 if (ret < 0) 178 break; 179 } 180 if (ret >= 0) 181 ret = num; 182 i2c_algo_dp_aux_stop(adapter, reading); 183 DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret); 184 return ret; 185 } 186 187 static u32 188 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter) 189 { 190 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 191 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 192 I2C_FUNC_SMBUS_BLOCK_PROC_CALL | 193 I2C_FUNC_10BIT_ADDR; 194 } 195 196 static const struct i2c_algorithm i2c_dp_aux_algo = { 197 .master_xfer = i2c_algo_dp_aux_xfer, 198 .functionality = i2c_algo_dp_aux_functionality, 199 }; 200 201 static void 202 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter) 203 { 204 (void) i2c_algo_dp_aux_address(adapter, 0, false); 205 (void) i2c_algo_dp_aux_stop(adapter, false); 206 } 207 208 static int 209 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter) 210 { 211 adapter->algo = &i2c_dp_aux_algo; 212 adapter->retries = 3; 213 i2c_dp_aux_reset_bus(adapter); 214 return 0; 215 } 216 217 /* 218 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to 219 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon. 220 */ 221 static int 222 i2c_dp_aux_add_bus(struct i2c_adapter *adapter) 223 { 224 int error; 225 226 error = i2c_dp_aux_prepare_bus(adapter); 227 if (error) 228 return error; 229 error = i2c_add_adapter(adapter); 230 return error; 231 } 232 233 #define _wait_for(COND, MS, W) ({ \ 234 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ 235 int ret__ = 0; \ 236 while (! (COND)) { \ 237 if (time_after(jiffies, timeout__)) { \ 238 ret__ = -ETIMEDOUT; \ 239 break; \ 240 } \ 241 if (W && !in_dbg_master()) msleep(W); \ 242 } \ 243 ret__; \ 244 }) 245 246 #define wait_for(COND, MS) _wait_for(COND, MS, 1) 247 248 #define DP_LINK_CHECK_TIMEOUT (10 * 1000) 249 250 #define DP_LINK_CONFIGURATION_SIZE 9 251 252 #define CDV_FAST_LINK_TRAIN 1 253 254 struct cdv_intel_dp { 255 uint32_t output_reg; 256 uint32_t DP; 257 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; 258 bool has_audio; 259 int force_audio; 260 uint32_t color_range; 261 uint8_t link_bw; 262 uint8_t lane_count; 263 uint8_t dpcd[4]; 264 struct gma_encoder *encoder; 265 struct i2c_adapter adapter; 266 struct i2c_algo_dp_aux_data algo; 267 uint8_t train_set[4]; 268 uint8_t link_status[DP_LINK_STATUS_SIZE]; 269 int panel_power_up_delay; 270 int panel_power_down_delay; 271 int panel_power_cycle_delay; 272 int backlight_on_delay; 273 int backlight_off_delay; 274 struct drm_display_mode *panel_fixed_mode; /* for eDP */ 275 bool panel_on; 276 }; 277 278 struct ddi_regoff { 279 uint32_t PreEmph1; 280 uint32_t PreEmph2; 281 uint32_t VSwing1; 282 uint32_t VSwing2; 283 uint32_t VSwing3; 284 uint32_t VSwing4; 285 uint32_t VSwing5; 286 }; 287 288 static struct ddi_regoff ddi_DP_train_table[] = { 289 {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154, 290 .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150, 291 .VSwing5 = 0x8158,}, 292 {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254, 293 .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250, 294 .VSwing5 = 0x8258,}, 295 }; 296 297 static uint32_t dp_vswing_premph_table[] = { 298 0x55338954, 0x4000, 299 0x554d8954, 0x2000, 300 0x55668954, 0, 301 0x559ac0d4, 0x6000, 302 }; 303 /** 304 * is_edp - is the given port attached to an eDP panel (either CPU or PCH) 305 * @encoder: GMA encoder struct 306 * 307 * If a CPU or PCH DP output is attached to an eDP panel, this function 308 * will return true, and false otherwise. 309 */ 310 static bool is_edp(struct gma_encoder *encoder) 311 { 312 return encoder->type == INTEL_OUTPUT_EDP; 313 } 314 315 316 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder); 317 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder); 318 static void cdv_intel_dp_link_down(struct gma_encoder *encoder); 319 320 static int 321 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder) 322 { 323 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 324 int max_lane_count = 4; 325 326 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 327 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f; 328 switch (max_lane_count) { 329 case 1: case 2: case 4: 330 break; 331 default: 332 max_lane_count = 4; 333 } 334 } 335 return max_lane_count; 336 } 337 338 static int 339 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder) 340 { 341 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 342 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; 343 344 switch (max_link_bw) { 345 case DP_LINK_BW_1_62: 346 case DP_LINK_BW_2_7: 347 break; 348 default: 349 max_link_bw = DP_LINK_BW_1_62; 350 break; 351 } 352 return max_link_bw; 353 } 354 355 static int 356 cdv_intel_dp_link_clock(uint8_t link_bw) 357 { 358 if (link_bw == DP_LINK_BW_2_7) 359 return 270000; 360 else 361 return 162000; 362 } 363 364 static int 365 cdv_intel_dp_link_required(int pixel_clock, int bpp) 366 { 367 return (pixel_clock * bpp + 7) / 8; 368 } 369 370 static int 371 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes) 372 { 373 return (max_link_clock * max_lanes * 19) / 20; 374 } 375 376 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder) 377 { 378 struct drm_device *dev = intel_encoder->base.dev; 379 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 380 u32 pp; 381 382 if (intel_dp->panel_on) { 383 DRM_DEBUG_KMS("Skip VDD on because of panel on\n"); 384 return; 385 } 386 DRM_DEBUG_KMS("\n"); 387 388 pp = REG_READ(PP_CONTROL); 389 390 pp |= EDP_FORCE_VDD; 391 REG_WRITE(PP_CONTROL, pp); 392 REG_READ(PP_CONTROL); 393 msleep(intel_dp->panel_power_up_delay); 394 } 395 396 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder) 397 { 398 struct drm_device *dev = intel_encoder->base.dev; 399 u32 pp; 400 401 DRM_DEBUG_KMS("\n"); 402 pp = REG_READ(PP_CONTROL); 403 404 pp &= ~EDP_FORCE_VDD; 405 REG_WRITE(PP_CONTROL, pp); 406 REG_READ(PP_CONTROL); 407 408 } 409 410 /* Returns true if the panel was already on when called */ 411 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder) 412 { 413 struct drm_device *dev = intel_encoder->base.dev; 414 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 415 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE; 416 417 if (intel_dp->panel_on) 418 return true; 419 420 DRM_DEBUG_KMS("\n"); 421 pp = REG_READ(PP_CONTROL); 422 pp &= ~PANEL_UNLOCK_MASK; 423 424 pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON); 425 REG_WRITE(PP_CONTROL, pp); 426 REG_READ(PP_CONTROL); 427 428 if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) { 429 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS)); 430 intel_dp->panel_on = false; 431 } else 432 intel_dp->panel_on = true; 433 msleep(intel_dp->panel_power_up_delay); 434 435 return false; 436 } 437 438 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder) 439 { 440 struct drm_device *dev = intel_encoder->base.dev; 441 u32 pp, idle_off_mask = PP_ON ; 442 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 443 444 DRM_DEBUG_KMS("\n"); 445 446 pp = REG_READ(PP_CONTROL); 447 448 if ((pp & POWER_TARGET_ON) == 0) 449 return; 450 451 intel_dp->panel_on = false; 452 pp &= ~PANEL_UNLOCK_MASK; 453 /* ILK workaround: disable reset around power sequence */ 454 455 pp &= ~POWER_TARGET_ON; 456 pp &= ~EDP_FORCE_VDD; 457 pp &= ~EDP_BLC_ENABLE; 458 REG_WRITE(PP_CONTROL, pp); 459 REG_READ(PP_CONTROL); 460 DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS)); 461 462 if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) { 463 DRM_DEBUG_KMS("Error in turning off Panel\n"); 464 } 465 466 msleep(intel_dp->panel_power_cycle_delay); 467 DRM_DEBUG_KMS("Over\n"); 468 } 469 470 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder) 471 { 472 struct drm_device *dev = intel_encoder->base.dev; 473 u32 pp; 474 475 DRM_DEBUG_KMS("\n"); 476 /* 477 * If we enable the backlight right away following a panel power 478 * on, we may see slight flicker as the panel syncs with the eDP 479 * link. So delay a bit to make sure the image is solid before 480 * allowing it to appear. 481 */ 482 msleep(300); 483 pp = REG_READ(PP_CONTROL); 484 485 pp |= EDP_BLC_ENABLE; 486 REG_WRITE(PP_CONTROL, pp); 487 gma_backlight_enable(dev); 488 } 489 490 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder) 491 { 492 struct drm_device *dev = intel_encoder->base.dev; 493 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 494 u32 pp; 495 496 DRM_DEBUG_KMS("\n"); 497 gma_backlight_disable(dev); 498 msleep(10); 499 pp = REG_READ(PP_CONTROL); 500 501 pp &= ~EDP_BLC_ENABLE; 502 REG_WRITE(PP_CONTROL, pp); 503 msleep(intel_dp->backlight_off_delay); 504 } 505 506 static enum drm_mode_status 507 cdv_intel_dp_mode_valid(struct drm_connector *connector, 508 struct drm_display_mode *mode) 509 { 510 struct gma_encoder *encoder = gma_attached_encoder(connector); 511 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 512 int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder)); 513 int max_lanes = cdv_intel_dp_max_lane_count(encoder); 514 struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev); 515 516 if (is_edp(encoder) && intel_dp->panel_fixed_mode) { 517 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay) 518 return MODE_PANEL; 519 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay) 520 return MODE_PANEL; 521 } 522 523 /* only refuse the mode on non eDP since we have seen some weird eDP panels 524 which are outside spec tolerances but somehow work by magic */ 525 if (!is_edp(encoder) && 526 (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp) 527 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))) 528 return MODE_CLOCK_HIGH; 529 530 if (is_edp(encoder)) { 531 if (cdv_intel_dp_link_required(mode->clock, 24) 532 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)) 533 return MODE_CLOCK_HIGH; 534 535 } 536 if (mode->clock < 10000) 537 return MODE_CLOCK_LOW; 538 539 return MODE_OK; 540 } 541 542 static uint32_t 543 pack_aux(uint8_t *src, int src_bytes) 544 { 545 int i; 546 uint32_t v = 0; 547 548 if (src_bytes > 4) 549 src_bytes = 4; 550 for (i = 0; i < src_bytes; i++) 551 v |= ((uint32_t) src[i]) << ((3-i) * 8); 552 return v; 553 } 554 555 static void 556 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) 557 { 558 int i; 559 if (dst_bytes > 4) 560 dst_bytes = 4; 561 for (i = 0; i < dst_bytes; i++) 562 dst[i] = src >> ((3-i) * 8); 563 } 564 565 static int 566 cdv_intel_dp_aux_ch(struct gma_encoder *encoder, 567 uint8_t *send, int send_bytes, 568 uint8_t *recv, int recv_size) 569 { 570 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 571 uint32_t output_reg = intel_dp->output_reg; 572 struct drm_device *dev = encoder->base.dev; 573 uint32_t ch_ctl = output_reg + 0x10; 574 uint32_t ch_data = ch_ctl + 4; 575 int i; 576 int recv_bytes; 577 uint32_t status; 578 uint32_t aux_clock_divider; 579 int try, precharge; 580 581 /* The clock divider is based off the hrawclk, 582 * and would like to run at 2MHz. So, take the 583 * hrawclk value and divide by 2 and use that 584 * On CDV platform it uses 200MHz as hrawclk. 585 * 586 */ 587 aux_clock_divider = 200 / 2; 588 589 precharge = 4; 590 if (is_edp(encoder)) 591 precharge = 10; 592 593 if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) { 594 DRM_ERROR("dp_aux_ch not started status 0x%08x\n", 595 REG_READ(ch_ctl)); 596 return -EBUSY; 597 } 598 599 /* Must try at least 3 times according to DP spec */ 600 for (try = 0; try < 5; try++) { 601 /* Load the send data into the aux channel data registers */ 602 for (i = 0; i < send_bytes; i += 4) 603 REG_WRITE(ch_data + i, 604 pack_aux(send + i, send_bytes - i)); 605 606 /* Send the command and wait for it to complete */ 607 REG_WRITE(ch_ctl, 608 DP_AUX_CH_CTL_SEND_BUSY | 609 DP_AUX_CH_CTL_TIME_OUT_400us | 610 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 611 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 612 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | 613 DP_AUX_CH_CTL_DONE | 614 DP_AUX_CH_CTL_TIME_OUT_ERROR | 615 DP_AUX_CH_CTL_RECEIVE_ERROR); 616 for (;;) { 617 status = REG_READ(ch_ctl); 618 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 619 break; 620 udelay(100); 621 } 622 623 /* Clear done status and any errors */ 624 REG_WRITE(ch_ctl, 625 status | 626 DP_AUX_CH_CTL_DONE | 627 DP_AUX_CH_CTL_TIME_OUT_ERROR | 628 DP_AUX_CH_CTL_RECEIVE_ERROR); 629 if (status & DP_AUX_CH_CTL_DONE) 630 break; 631 } 632 633 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 634 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 635 return -EBUSY; 636 } 637 638 /* Check for timeout or receive error. 639 * Timeouts occur when the sink is not connected 640 */ 641 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 642 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 643 return -EIO; 644 } 645 646 /* Timeouts occur when the device isn't connected, so they're 647 * "normal" -- don't fill the kernel log with these */ 648 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 649 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 650 return -ETIMEDOUT; 651 } 652 653 /* Unload any bytes sent back from the other side */ 654 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 655 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 656 if (recv_bytes > recv_size) 657 recv_bytes = recv_size; 658 659 for (i = 0; i < recv_bytes; i += 4) 660 unpack_aux(REG_READ(ch_data + i), 661 recv + i, recv_bytes - i); 662 663 return recv_bytes; 664 } 665 666 /* Write data to the aux channel in native mode */ 667 static int 668 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder, 669 uint16_t address, uint8_t *send, int send_bytes) 670 { 671 int ret; 672 uint8_t msg[20]; 673 int msg_bytes; 674 uint8_t ack; 675 676 if (send_bytes > 16) 677 return -1; 678 msg[0] = DP_AUX_NATIVE_WRITE << 4; 679 msg[1] = address >> 8; 680 msg[2] = address & 0xff; 681 msg[3] = send_bytes - 1; 682 memcpy(&msg[4], send, send_bytes); 683 msg_bytes = send_bytes + 4; 684 for (;;) { 685 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1); 686 if (ret < 0) 687 return ret; 688 ack >>= 4; 689 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) 690 break; 691 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) 692 udelay(100); 693 else 694 return -EIO; 695 } 696 return send_bytes; 697 } 698 699 /* Write a single byte to the aux channel in native mode */ 700 static int 701 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder, 702 uint16_t address, uint8_t byte) 703 { 704 return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1); 705 } 706 707 /* read bytes from a native aux channel */ 708 static int 709 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder, 710 uint16_t address, uint8_t *recv, int recv_bytes) 711 { 712 uint8_t msg[4]; 713 int msg_bytes; 714 uint8_t reply[20]; 715 int reply_bytes; 716 uint8_t ack; 717 int ret; 718 719 msg[0] = DP_AUX_NATIVE_READ << 4; 720 msg[1] = address >> 8; 721 msg[2] = address & 0xff; 722 msg[3] = recv_bytes - 1; 723 724 msg_bytes = 4; 725 reply_bytes = recv_bytes + 1; 726 727 for (;;) { 728 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, 729 reply, reply_bytes); 730 if (ret == 0) 731 return -EPROTO; 732 if (ret < 0) 733 return ret; 734 ack = reply[0] >> 4; 735 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) { 736 memcpy(recv, reply + 1, ret - 1); 737 return ret - 1; 738 } 739 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) 740 udelay(100); 741 else 742 return -EIO; 743 } 744 } 745 746 static int 747 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, 748 uint8_t write_byte, uint8_t *read_byte) 749 { 750 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; 751 struct cdv_intel_dp *intel_dp = container_of(adapter, 752 struct cdv_intel_dp, 753 adapter); 754 struct gma_encoder *encoder = intel_dp->encoder; 755 uint16_t address = algo_data->address; 756 uint8_t msg[5]; 757 uint8_t reply[2]; 758 unsigned retry; 759 int msg_bytes; 760 int reply_bytes; 761 int ret; 762 763 /* Set up the command byte */ 764 if (mode & MODE_I2C_READ) 765 msg[0] = DP_AUX_I2C_READ << 4; 766 else 767 msg[0] = DP_AUX_I2C_WRITE << 4; 768 769 if (!(mode & MODE_I2C_STOP)) 770 msg[0] |= DP_AUX_I2C_MOT << 4; 771 772 msg[1] = address >> 8; 773 msg[2] = address; 774 775 switch (mode) { 776 case MODE_I2C_WRITE: 777 msg[3] = 0; 778 msg[4] = write_byte; 779 msg_bytes = 5; 780 reply_bytes = 1; 781 break; 782 case MODE_I2C_READ: 783 msg[3] = 0; 784 msg_bytes = 4; 785 reply_bytes = 2; 786 break; 787 default: 788 msg_bytes = 3; 789 reply_bytes = 1; 790 break; 791 } 792 793 for (retry = 0; retry < 5; retry++) { 794 ret = cdv_intel_dp_aux_ch(encoder, 795 msg, msg_bytes, 796 reply, reply_bytes); 797 if (ret < 0) { 798 DRM_DEBUG_KMS("aux_ch failed %d\n", ret); 799 return ret; 800 } 801 802 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) { 803 case DP_AUX_NATIVE_REPLY_ACK: 804 /* I2C-over-AUX Reply field is only valid 805 * when paired with AUX ACK. 806 */ 807 break; 808 case DP_AUX_NATIVE_REPLY_NACK: 809 DRM_DEBUG_KMS("aux_ch native nack\n"); 810 return -EREMOTEIO; 811 case DP_AUX_NATIVE_REPLY_DEFER: 812 udelay(100); 813 continue; 814 default: 815 DRM_ERROR("aux_ch invalid native reply 0x%02x\n", 816 reply[0]); 817 return -EREMOTEIO; 818 } 819 820 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) { 821 case DP_AUX_I2C_REPLY_ACK: 822 if (mode == MODE_I2C_READ) { 823 *read_byte = reply[1]; 824 } 825 return reply_bytes - 1; 826 case DP_AUX_I2C_REPLY_NACK: 827 DRM_DEBUG_KMS("aux_i2c nack\n"); 828 return -EREMOTEIO; 829 case DP_AUX_I2C_REPLY_DEFER: 830 DRM_DEBUG_KMS("aux_i2c defer\n"); 831 udelay(100); 832 break; 833 default: 834 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); 835 return -EREMOTEIO; 836 } 837 } 838 839 DRM_ERROR("too many retries, giving up\n"); 840 return -EREMOTEIO; 841 } 842 843 static int 844 cdv_intel_dp_i2c_init(struct gma_connector *connector, 845 struct gma_encoder *encoder, const char *name) 846 { 847 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 848 int ret; 849 850 DRM_DEBUG_KMS("i2c_init %s\n", name); 851 852 intel_dp->algo.running = false; 853 intel_dp->algo.address = 0; 854 intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch; 855 856 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter)); 857 intel_dp->adapter.owner = THIS_MODULE; 858 intel_dp->adapter.class = I2C_CLASS_DDC; 859 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); 860 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; 861 intel_dp->adapter.algo_data = &intel_dp->algo; 862 intel_dp->adapter.dev.parent = connector->base.kdev; 863 864 if (is_edp(encoder)) 865 cdv_intel_edp_panel_vdd_on(encoder); 866 ret = i2c_dp_aux_add_bus(&intel_dp->adapter); 867 if (is_edp(encoder)) 868 cdv_intel_edp_panel_vdd_off(encoder); 869 870 return ret; 871 } 872 873 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode, 874 struct drm_display_mode *adjusted_mode) 875 { 876 adjusted_mode->hdisplay = fixed_mode->hdisplay; 877 adjusted_mode->hsync_start = fixed_mode->hsync_start; 878 adjusted_mode->hsync_end = fixed_mode->hsync_end; 879 adjusted_mode->htotal = fixed_mode->htotal; 880 881 adjusted_mode->vdisplay = fixed_mode->vdisplay; 882 adjusted_mode->vsync_start = fixed_mode->vsync_start; 883 adjusted_mode->vsync_end = fixed_mode->vsync_end; 884 adjusted_mode->vtotal = fixed_mode->vtotal; 885 886 adjusted_mode->clock = fixed_mode->clock; 887 888 drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); 889 } 890 891 static bool 892 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, 893 struct drm_display_mode *adjusted_mode) 894 { 895 struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev); 896 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 897 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 898 int lane_count, clock; 899 int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder); 900 int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0; 901 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; 902 int refclock = mode->clock; 903 int bpp = 24; 904 905 if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) { 906 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode); 907 refclock = intel_dp->panel_fixed_mode->clock; 908 bpp = dev_priv->edp.bpp; 909 } 910 911 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { 912 for (clock = max_clock; clock >= 0; clock--) { 913 int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count); 914 915 if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) { 916 intel_dp->link_bw = bws[clock]; 917 intel_dp->lane_count = lane_count; 918 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); 919 DRM_DEBUG_KMS("Display port link bw %02x lane " 920 "count %d clock %d\n", 921 intel_dp->link_bw, intel_dp->lane_count, 922 adjusted_mode->clock); 923 return true; 924 } 925 } 926 } 927 if (is_edp(intel_encoder)) { 928 /* okay we failed just pick the highest */ 929 intel_dp->lane_count = max_lane_count; 930 intel_dp->link_bw = bws[max_clock]; 931 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); 932 DRM_DEBUG_KMS("Force picking display port link bw %02x lane " 933 "count %d clock %d\n", 934 intel_dp->link_bw, intel_dp->lane_count, 935 adjusted_mode->clock); 936 937 return true; 938 } 939 return false; 940 } 941 942 struct cdv_intel_dp_m_n { 943 uint32_t tu; 944 uint32_t gmch_m; 945 uint32_t gmch_n; 946 uint32_t link_m; 947 uint32_t link_n; 948 }; 949 950 static void 951 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den) 952 { 953 /* 954 while (*num > 0xffffff || *den > 0xffffff) { 955 *num >>= 1; 956 *den >>= 1; 957 }*/ 958 uint64_t value, m; 959 m = *num; 960 value = m * (0x800000); 961 m = do_div(value, *den); 962 *num = value; 963 *den = 0x800000; 964 } 965 966 static void 967 cdv_intel_dp_compute_m_n(int bpp, 968 int nlanes, 969 int pixel_clock, 970 int link_clock, 971 struct cdv_intel_dp_m_n *m_n) 972 { 973 m_n->tu = 64; 974 m_n->gmch_m = (pixel_clock * bpp + 7) >> 3; 975 m_n->gmch_n = link_clock * nlanes; 976 cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); 977 m_n->link_m = pixel_clock; 978 m_n->link_n = link_clock; 979 cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n); 980 } 981 982 void 983 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, 984 struct drm_display_mode *adjusted_mode) 985 { 986 struct drm_device *dev = crtc->dev; 987 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 988 struct drm_mode_config *mode_config = &dev->mode_config; 989 struct drm_encoder *encoder; 990 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 991 int lane_count = 4, bpp = 24; 992 struct cdv_intel_dp_m_n m_n; 993 int pipe = gma_crtc->pipe; 994 995 /* 996 * Find the lane count in the intel_encoder private 997 */ 998 list_for_each_entry(encoder, &mode_config->encoder_list, head) { 999 struct gma_encoder *intel_encoder; 1000 struct cdv_intel_dp *intel_dp; 1001 1002 if (encoder->crtc != crtc) 1003 continue; 1004 1005 intel_encoder = to_gma_encoder(encoder); 1006 intel_dp = intel_encoder->dev_priv; 1007 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) { 1008 lane_count = intel_dp->lane_count; 1009 break; 1010 } else if (is_edp(intel_encoder)) { 1011 lane_count = intel_dp->lane_count; 1012 bpp = dev_priv->edp.bpp; 1013 break; 1014 } 1015 } 1016 1017 /* 1018 * Compute the GMCH and Link ratios. The '3' here is 1019 * the number of bytes_per_pixel post-LUT, which we always 1020 * set up for 8-bits of R/G/B, or 3 bytes total. 1021 */ 1022 cdv_intel_dp_compute_m_n(bpp, lane_count, 1023 mode->clock, adjusted_mode->clock, &m_n); 1024 1025 { 1026 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 1027 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | 1028 m_n.gmch_m); 1029 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n); 1030 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m); 1031 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n); 1032 } 1033 } 1034 1035 static void 1036 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, 1037 struct drm_display_mode *adjusted_mode) 1038 { 1039 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1040 struct drm_crtc *crtc = encoder->crtc; 1041 struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 1042 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 1043 struct drm_device *dev = encoder->dev; 1044 1045 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 1046 intel_dp->DP |= intel_dp->color_range; 1047 1048 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 1049 intel_dp->DP |= DP_SYNC_HS_HIGH; 1050 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 1051 intel_dp->DP |= DP_SYNC_VS_HIGH; 1052 1053 intel_dp->DP |= DP_LINK_TRAIN_OFF; 1054 1055 switch (intel_dp->lane_count) { 1056 case 1: 1057 intel_dp->DP |= DP_PORT_WIDTH_1; 1058 break; 1059 case 2: 1060 intel_dp->DP |= DP_PORT_WIDTH_2; 1061 break; 1062 case 4: 1063 intel_dp->DP |= DP_PORT_WIDTH_4; 1064 break; 1065 } 1066 if (intel_dp->has_audio) 1067 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 1068 1069 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); 1070 intel_dp->link_configuration[0] = intel_dp->link_bw; 1071 intel_dp->link_configuration[1] = intel_dp->lane_count; 1072 1073 /* 1074 * Check for DPCD version > 1.1 and enhanced framing support 1075 */ 1076 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 1077 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { 1078 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; 1079 intel_dp->DP |= DP_ENHANCED_FRAMING; 1080 } 1081 1082 /* CPT DP's pipe select is decided in TRANS_DP_CTL */ 1083 if (gma_crtc->pipe == 1) 1084 intel_dp->DP |= DP_PIPEB_SELECT; 1085 1086 REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN)); 1087 DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP); 1088 if (is_edp(intel_encoder)) { 1089 uint32_t pfit_control; 1090 cdv_intel_edp_panel_on(intel_encoder); 1091 1092 if (mode->hdisplay != adjusted_mode->hdisplay || 1093 mode->vdisplay != adjusted_mode->vdisplay) 1094 pfit_control = PFIT_ENABLE; 1095 else 1096 pfit_control = 0; 1097 1098 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT; 1099 1100 REG_WRITE(PFIT_CONTROL, pfit_control); 1101 } 1102 } 1103 1104 1105 /* If the sink supports it, try to set the power state appropriately */ 1106 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode) 1107 { 1108 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1109 int ret, i; 1110 1111 /* Should have a valid DPCD by this point */ 1112 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 1113 return; 1114 1115 if (mode != DRM_MODE_DPMS_ON) { 1116 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER, 1117 DP_SET_POWER_D3); 1118 if (ret != 1) 1119 DRM_DEBUG_DRIVER("failed to write sink power state\n"); 1120 } else { 1121 /* 1122 * When turning on, we need to retry for 1ms to give the sink 1123 * time to wake up. 1124 */ 1125 for (i = 0; i < 3; i++) { 1126 ret = cdv_intel_dp_aux_native_write_1(encoder, 1127 DP_SET_POWER, 1128 DP_SET_POWER_D0); 1129 if (ret == 1) 1130 break; 1131 udelay(1000); 1132 } 1133 } 1134 } 1135 1136 static void cdv_intel_dp_prepare(struct drm_encoder *encoder) 1137 { 1138 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1139 int edp = is_edp(intel_encoder); 1140 1141 if (edp) { 1142 cdv_intel_edp_backlight_off(intel_encoder); 1143 cdv_intel_edp_panel_off(intel_encoder); 1144 cdv_intel_edp_panel_vdd_on(intel_encoder); 1145 } 1146 /* Wake up the sink first */ 1147 cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON); 1148 cdv_intel_dp_link_down(intel_encoder); 1149 if (edp) 1150 cdv_intel_edp_panel_vdd_off(intel_encoder); 1151 } 1152 1153 static void cdv_intel_dp_commit(struct drm_encoder *encoder) 1154 { 1155 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1156 int edp = is_edp(intel_encoder); 1157 1158 if (edp) 1159 cdv_intel_edp_panel_on(intel_encoder); 1160 cdv_intel_dp_start_link_train(intel_encoder); 1161 cdv_intel_dp_complete_link_train(intel_encoder); 1162 if (edp) 1163 cdv_intel_edp_backlight_on(intel_encoder); 1164 } 1165 1166 static void 1167 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode) 1168 { 1169 struct gma_encoder *intel_encoder = to_gma_encoder(encoder); 1170 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 1171 struct drm_device *dev = encoder->dev; 1172 uint32_t dp_reg = REG_READ(intel_dp->output_reg); 1173 int edp = is_edp(intel_encoder); 1174 1175 if (mode != DRM_MODE_DPMS_ON) { 1176 if (edp) { 1177 cdv_intel_edp_backlight_off(intel_encoder); 1178 cdv_intel_edp_panel_vdd_on(intel_encoder); 1179 } 1180 cdv_intel_dp_sink_dpms(intel_encoder, mode); 1181 cdv_intel_dp_link_down(intel_encoder); 1182 if (edp) { 1183 cdv_intel_edp_panel_vdd_off(intel_encoder); 1184 cdv_intel_edp_panel_off(intel_encoder); 1185 } 1186 } else { 1187 if (edp) 1188 cdv_intel_edp_panel_on(intel_encoder); 1189 cdv_intel_dp_sink_dpms(intel_encoder, mode); 1190 if (!(dp_reg & DP_PORT_EN)) { 1191 cdv_intel_dp_start_link_train(intel_encoder); 1192 cdv_intel_dp_complete_link_train(intel_encoder); 1193 } 1194 if (edp) 1195 cdv_intel_edp_backlight_on(intel_encoder); 1196 } 1197 } 1198 1199 /* 1200 * Native read with retry for link status and receiver capability reads for 1201 * cases where the sink may still be asleep. 1202 */ 1203 static bool 1204 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address, 1205 uint8_t *recv, int recv_bytes) 1206 { 1207 int ret, i; 1208 1209 /* 1210 * Sinks are *supposed* to come up within 1ms from an off state, 1211 * but we're also supposed to retry 3 times per the spec. 1212 */ 1213 for (i = 0; i < 3; i++) { 1214 ret = cdv_intel_dp_aux_native_read(encoder, address, recv, 1215 recv_bytes); 1216 if (ret == recv_bytes) 1217 return true; 1218 udelay(1000); 1219 } 1220 1221 return false; 1222 } 1223 1224 /* 1225 * Fetch AUX CH registers 0x202 - 0x207 which contain 1226 * link status information 1227 */ 1228 static bool 1229 cdv_intel_dp_get_link_status(struct gma_encoder *encoder) 1230 { 1231 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1232 return cdv_intel_dp_aux_native_read_retry(encoder, 1233 DP_LANE0_1_STATUS, 1234 intel_dp->link_status, 1235 DP_LINK_STATUS_SIZE); 1236 } 1237 1238 static uint8_t 1239 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], 1240 int r) 1241 { 1242 return link_status[r - DP_LANE0_1_STATUS]; 1243 } 1244 1245 static uint8_t 1246 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], 1247 int lane) 1248 { 1249 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 1250 int s = ((lane & 1) ? 1251 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : 1252 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); 1253 uint8_t l = cdv_intel_dp_link_status(link_status, i); 1254 1255 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; 1256 } 1257 1258 static uint8_t 1259 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], 1260 int lane) 1261 { 1262 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); 1263 int s = ((lane & 1) ? 1264 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : 1265 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); 1266 uint8_t l = cdv_intel_dp_link_status(link_status, i); 1267 1268 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; 1269 } 1270 1271 #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3 1272 1273 static void 1274 cdv_intel_get_adjust_train(struct gma_encoder *encoder) 1275 { 1276 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1277 uint8_t v = 0; 1278 uint8_t p = 0; 1279 int lane; 1280 1281 for (lane = 0; lane < intel_dp->lane_count; lane++) { 1282 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane); 1283 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane); 1284 1285 if (this_v > v) 1286 v = this_v; 1287 if (this_p > p) 1288 p = this_p; 1289 } 1290 1291 if (v >= CDV_DP_VOLTAGE_MAX) 1292 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; 1293 1294 if (p == DP_TRAIN_PRE_EMPHASIS_MASK) 1295 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; 1296 1297 for (lane = 0; lane < 4; lane++) 1298 intel_dp->train_set[lane] = v | p; 1299 } 1300 1301 1302 static uint8_t 1303 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], 1304 int lane) 1305 { 1306 int i = DP_LANE0_1_STATUS + (lane >> 1); 1307 int s = (lane & 1) * 4; 1308 uint8_t l = cdv_intel_dp_link_status(link_status, i); 1309 1310 return (l >> s) & 0xf; 1311 } 1312 1313 /* Check for clock recovery is done on all channels */ 1314 static bool 1315 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) 1316 { 1317 int lane; 1318 uint8_t lane_status; 1319 1320 for (lane = 0; lane < lane_count; lane++) { 1321 lane_status = cdv_intel_get_lane_status(link_status, lane); 1322 if ((lane_status & DP_LANE_CR_DONE) == 0) 1323 return false; 1324 } 1325 return true; 1326 } 1327 1328 /* Check to see if channel eq is done on all channels */ 1329 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ 1330 DP_LANE_CHANNEL_EQ_DONE|\ 1331 DP_LANE_SYMBOL_LOCKED) 1332 static bool 1333 cdv_intel_channel_eq_ok(struct gma_encoder *encoder) 1334 { 1335 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1336 uint8_t lane_align; 1337 uint8_t lane_status; 1338 int lane; 1339 1340 lane_align = cdv_intel_dp_link_status(intel_dp->link_status, 1341 DP_LANE_ALIGN_STATUS_UPDATED); 1342 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) 1343 return false; 1344 for (lane = 0; lane < intel_dp->lane_count; lane++) { 1345 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane); 1346 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) 1347 return false; 1348 } 1349 return true; 1350 } 1351 1352 static bool 1353 cdv_intel_dp_set_link_train(struct gma_encoder *encoder, 1354 uint32_t dp_reg_value, 1355 uint8_t dp_train_pat) 1356 { 1357 struct drm_device *dev = encoder->base.dev; 1358 int ret; 1359 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1360 1361 REG_WRITE(intel_dp->output_reg, dp_reg_value); 1362 REG_READ(intel_dp->output_reg); 1363 1364 ret = cdv_intel_dp_aux_native_write_1(encoder, 1365 DP_TRAINING_PATTERN_SET, 1366 dp_train_pat); 1367 1368 if (ret != 1) { 1369 DRM_DEBUG_KMS("Failure in setting link pattern %x\n", 1370 dp_train_pat); 1371 return false; 1372 } 1373 1374 return true; 1375 } 1376 1377 1378 static bool 1379 cdv_intel_dplink_set_level(struct gma_encoder *encoder, 1380 uint8_t dp_train_pat) 1381 { 1382 int ret; 1383 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1384 1385 ret = cdv_intel_dp_aux_native_write(encoder, 1386 DP_TRAINING_LANE0_SET, 1387 intel_dp->train_set, 1388 intel_dp->lane_count); 1389 1390 if (ret != intel_dp->lane_count) { 1391 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n", 1392 intel_dp->train_set[0], intel_dp->lane_count); 1393 return false; 1394 } 1395 return true; 1396 } 1397 1398 static void 1399 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level) 1400 { 1401 struct drm_device *dev = encoder->base.dev; 1402 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1403 struct ddi_regoff *ddi_reg; 1404 int vswing, premph, index; 1405 1406 if (intel_dp->output_reg == DP_B) 1407 ddi_reg = &ddi_DP_train_table[0]; 1408 else 1409 ddi_reg = &ddi_DP_train_table[1]; 1410 1411 vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK); 1412 premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >> 1413 DP_TRAIN_PRE_EMPHASIS_SHIFT; 1414 1415 if (vswing + premph > 3) 1416 return; 1417 #ifdef CDV_FAST_LINK_TRAIN 1418 return; 1419 #endif 1420 DRM_DEBUG_KMS("Test2\n"); 1421 //return ; 1422 cdv_sb_reset(dev); 1423 /* ;Swing voltage programming 1424 ;gfx_dpio_set_reg(0xc058, 0x0505313A) */ 1425 cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A); 1426 1427 /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */ 1428 cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055); 1429 1430 /* ;gfx_dpio_set_reg(0x8148, 0x55338954) 1431 * The VSwing_PreEmph table is also considered based on the vswing/premp 1432 */ 1433 index = (vswing + premph) * 2; 1434 if (premph == 1 && vswing == 1) { 1435 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954); 1436 } else 1437 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]); 1438 1439 /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */ 1440 if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3) 1441 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040); 1442 else 1443 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040); 1444 1445 /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */ 1446 /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */ 1447 1448 /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */ 1449 cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055); 1450 1451 /* ;Pre emphasis programming 1452 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040) 1453 */ 1454 cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040); 1455 1456 /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */ 1457 index = 2 * premph + 1; 1458 cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]); 1459 return; 1460 } 1461 1462 1463 /* Enable corresponding port and start training pattern 1 */ 1464 static void 1465 cdv_intel_dp_start_link_train(struct gma_encoder *encoder) 1466 { 1467 struct drm_device *dev = encoder->base.dev; 1468 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1469 int i; 1470 uint8_t voltage; 1471 bool clock_recovery = false; 1472 int tries; 1473 u32 reg; 1474 uint32_t DP = intel_dp->DP; 1475 1476 DP |= DP_PORT_EN; 1477 DP &= ~DP_LINK_TRAIN_MASK; 1478 1479 reg = DP; 1480 reg |= DP_LINK_TRAIN_PAT_1; 1481 /* Enable output, wait for it to become active */ 1482 REG_WRITE(intel_dp->output_reg, reg); 1483 REG_READ(intel_dp->output_reg); 1484 gma_wait_for_vblank(dev); 1485 1486 DRM_DEBUG_KMS("Link config\n"); 1487 /* Write the link configuration data */ 1488 cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET, 1489 intel_dp->link_configuration, 1490 2); 1491 1492 memset(intel_dp->train_set, 0, 4); 1493 voltage = 0; 1494 tries = 0; 1495 clock_recovery = false; 1496 1497 DRM_DEBUG_KMS("Start train\n"); 1498 reg = DP | DP_LINK_TRAIN_PAT_1; 1499 1500 for (;;) { 1501 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ 1502 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", 1503 intel_dp->train_set[0], 1504 intel_dp->link_configuration[0], 1505 intel_dp->link_configuration[1]); 1506 1507 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) { 1508 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n"); 1509 } 1510 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); 1511 /* Set training pattern 1 */ 1512 1513 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1); 1514 1515 udelay(200); 1516 if (!cdv_intel_dp_get_link_status(encoder)) 1517 break; 1518 1519 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", 1520 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], 1521 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); 1522 1523 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { 1524 DRM_DEBUG_KMS("PT1 train is done\n"); 1525 clock_recovery = true; 1526 break; 1527 } 1528 1529 /* Check to see if we've tried the max voltage */ 1530 for (i = 0; i < intel_dp->lane_count; i++) 1531 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) 1532 break; 1533 if (i == intel_dp->lane_count) 1534 break; 1535 1536 /* Check to see if we've tried the same voltage 5 times */ 1537 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { 1538 ++tries; 1539 if (tries == 5) 1540 break; 1541 } else 1542 tries = 0; 1543 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; 1544 1545 /* Compute new intel_dp->train_set as requested by target */ 1546 cdv_intel_get_adjust_train(encoder); 1547 1548 } 1549 1550 if (!clock_recovery) { 1551 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]); 1552 } 1553 1554 intel_dp->DP = DP; 1555 } 1556 1557 static void 1558 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder) 1559 { 1560 struct drm_device *dev = encoder->base.dev; 1561 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1562 int tries, cr_tries; 1563 u32 reg; 1564 uint32_t DP = intel_dp->DP; 1565 1566 /* channel equalization */ 1567 tries = 0; 1568 cr_tries = 0; 1569 1570 DRM_DEBUG_KMS("\n"); 1571 reg = DP | DP_LINK_TRAIN_PAT_2; 1572 1573 for (;;) { 1574 1575 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", 1576 intel_dp->train_set[0], 1577 intel_dp->link_configuration[0], 1578 intel_dp->link_configuration[1]); 1579 /* channel eq pattern */ 1580 1581 if (!cdv_intel_dp_set_link_train(encoder, reg, 1582 DP_TRAINING_PATTERN_2)) { 1583 DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n"); 1584 } 1585 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ 1586 1587 if (cr_tries > 5) { 1588 DRM_ERROR("failed to train DP, aborting\n"); 1589 cdv_intel_dp_link_down(encoder); 1590 break; 1591 } 1592 1593 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); 1594 1595 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2); 1596 1597 udelay(1000); 1598 if (!cdv_intel_dp_get_link_status(encoder)) 1599 break; 1600 1601 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", 1602 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], 1603 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); 1604 1605 /* Make sure clock is still ok */ 1606 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { 1607 cdv_intel_dp_start_link_train(encoder); 1608 cr_tries++; 1609 continue; 1610 } 1611 1612 if (cdv_intel_channel_eq_ok(encoder)) { 1613 DRM_DEBUG_KMS("PT2 train is done\n"); 1614 break; 1615 } 1616 1617 /* Try 5 times, then try clock recovery if that fails */ 1618 if (tries > 5) { 1619 cdv_intel_dp_link_down(encoder); 1620 cdv_intel_dp_start_link_train(encoder); 1621 tries = 0; 1622 cr_tries++; 1623 continue; 1624 } 1625 1626 /* Compute new intel_dp->train_set as requested by target */ 1627 cdv_intel_get_adjust_train(encoder); 1628 ++tries; 1629 1630 } 1631 1632 reg = DP | DP_LINK_TRAIN_OFF; 1633 1634 REG_WRITE(intel_dp->output_reg, reg); 1635 REG_READ(intel_dp->output_reg); 1636 cdv_intel_dp_aux_native_write_1(encoder, 1637 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); 1638 } 1639 1640 static void 1641 cdv_intel_dp_link_down(struct gma_encoder *encoder) 1642 { 1643 struct drm_device *dev = encoder->base.dev; 1644 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1645 uint32_t DP = intel_dp->DP; 1646 1647 if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0) 1648 return; 1649 1650 DRM_DEBUG_KMS("\n"); 1651 1652 1653 { 1654 DP &= ~DP_LINK_TRAIN_MASK; 1655 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); 1656 } 1657 REG_READ(intel_dp->output_reg); 1658 1659 msleep(17); 1660 1661 REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 1662 REG_READ(intel_dp->output_reg); 1663 } 1664 1665 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder) 1666 { 1667 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1668 enum drm_connector_status status; 1669 1670 status = connector_status_disconnected; 1671 if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd, 1672 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd)) 1673 { 1674 if (intel_dp->dpcd[DP_DPCD_REV] != 0) 1675 status = connector_status_connected; 1676 } 1677 if (status == connector_status_connected) 1678 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", 1679 intel_dp->dpcd[0], intel_dp->dpcd[1], 1680 intel_dp->dpcd[2], intel_dp->dpcd[3]); 1681 return status; 1682 } 1683 1684 /* 1685 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. 1686 * 1687 * \return true if DP port is connected. 1688 * \return false if DP port is disconnected. 1689 */ 1690 static enum drm_connector_status 1691 cdv_intel_dp_detect(struct drm_connector *connector, bool force) 1692 { 1693 struct gma_encoder *encoder = gma_attached_encoder(connector); 1694 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1695 enum drm_connector_status status; 1696 struct edid *edid = NULL; 1697 int edp = is_edp(encoder); 1698 1699 intel_dp->has_audio = false; 1700 1701 if (edp) 1702 cdv_intel_edp_panel_vdd_on(encoder); 1703 status = cdv_dp_detect(encoder); 1704 if (status != connector_status_connected) { 1705 if (edp) 1706 cdv_intel_edp_panel_vdd_off(encoder); 1707 return status; 1708 } 1709 1710 if (intel_dp->force_audio) { 1711 intel_dp->has_audio = intel_dp->force_audio > 0; 1712 } else { 1713 edid = drm_get_edid(connector, &intel_dp->adapter); 1714 if (edid) { 1715 intel_dp->has_audio = drm_detect_monitor_audio(edid); 1716 kfree(edid); 1717 } 1718 } 1719 if (edp) 1720 cdv_intel_edp_panel_vdd_off(encoder); 1721 1722 return connector_status_connected; 1723 } 1724 1725 static int cdv_intel_dp_get_modes(struct drm_connector *connector) 1726 { 1727 struct gma_encoder *intel_encoder = gma_attached_encoder(connector); 1728 struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; 1729 struct edid *edid = NULL; 1730 int ret = 0; 1731 int edp = is_edp(intel_encoder); 1732 1733 1734 edid = drm_get_edid(connector, &intel_dp->adapter); 1735 if (edid) { 1736 drm_connector_update_edid_property(connector, edid); 1737 ret = drm_add_edid_modes(connector, edid); 1738 kfree(edid); 1739 } 1740 1741 if (is_edp(intel_encoder)) { 1742 struct drm_device *dev = connector->dev; 1743 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 1744 1745 cdv_intel_edp_panel_vdd_off(intel_encoder); 1746 if (ret) { 1747 if (edp && !intel_dp->panel_fixed_mode) { 1748 struct drm_display_mode *newmode; 1749 list_for_each_entry(newmode, &connector->probed_modes, 1750 head) { 1751 if (newmode->type & DRM_MODE_TYPE_PREFERRED) { 1752 intel_dp->panel_fixed_mode = 1753 drm_mode_duplicate(dev, newmode); 1754 break; 1755 } 1756 } 1757 } 1758 1759 return ret; 1760 } 1761 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) { 1762 intel_dp->panel_fixed_mode = 1763 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); 1764 if (intel_dp->panel_fixed_mode) { 1765 intel_dp->panel_fixed_mode->type |= 1766 DRM_MODE_TYPE_PREFERRED; 1767 } 1768 } 1769 if (intel_dp->panel_fixed_mode != NULL) { 1770 struct drm_display_mode *mode; 1771 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode); 1772 drm_mode_probed_add(connector, mode); 1773 return 1; 1774 } 1775 } 1776 1777 return ret; 1778 } 1779 1780 static bool 1781 cdv_intel_dp_detect_audio(struct drm_connector *connector) 1782 { 1783 struct gma_encoder *encoder = gma_attached_encoder(connector); 1784 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1785 struct edid *edid; 1786 bool has_audio = false; 1787 int edp = is_edp(encoder); 1788 1789 if (edp) 1790 cdv_intel_edp_panel_vdd_on(encoder); 1791 1792 edid = drm_get_edid(connector, &intel_dp->adapter); 1793 if (edid) { 1794 has_audio = drm_detect_monitor_audio(edid); 1795 kfree(edid); 1796 } 1797 if (edp) 1798 cdv_intel_edp_panel_vdd_off(encoder); 1799 1800 return has_audio; 1801 } 1802 1803 static int 1804 cdv_intel_dp_set_property(struct drm_connector *connector, 1805 struct drm_property *property, 1806 uint64_t val) 1807 { 1808 struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev); 1809 struct gma_encoder *encoder = gma_attached_encoder(connector); 1810 struct cdv_intel_dp *intel_dp = encoder->dev_priv; 1811 int ret; 1812 1813 ret = drm_object_property_set_value(&connector->base, property, val); 1814 if (ret) 1815 return ret; 1816 1817 if (property == dev_priv->force_audio_property) { 1818 int i = val; 1819 bool has_audio; 1820 1821 if (i == intel_dp->force_audio) 1822 return 0; 1823 1824 intel_dp->force_audio = i; 1825 1826 if (i == 0) 1827 has_audio = cdv_intel_dp_detect_audio(connector); 1828 else 1829 has_audio = i > 0; 1830 1831 if (has_audio == intel_dp->has_audio) 1832 return 0; 1833 1834 intel_dp->has_audio = has_audio; 1835 goto done; 1836 } 1837 1838 if (property == dev_priv->broadcast_rgb_property) { 1839 if (val == !!intel_dp->color_range) 1840 return 0; 1841 1842 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0; 1843 goto done; 1844 } 1845 1846 return -EINVAL; 1847 1848 done: 1849 if (encoder->base.crtc) { 1850 struct drm_crtc *crtc = encoder->base.crtc; 1851 drm_crtc_helper_set_mode(crtc, &crtc->mode, 1852 crtc->x, crtc->y, 1853 crtc->primary->fb); 1854 } 1855 1856 return 0; 1857 } 1858 1859 static void 1860 cdv_intel_dp_destroy(struct drm_connector *connector) 1861 { 1862 struct gma_connector *gma_connector = to_gma_connector(connector); 1863 struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 1864 struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv; 1865 1866 if (is_edp(gma_encoder)) { 1867 /* cdv_intel_panel_destroy_backlight(connector->dev); */ 1868 kfree(intel_dp->panel_fixed_mode); 1869 intel_dp->panel_fixed_mode = NULL; 1870 } 1871 i2c_del_adapter(&intel_dp->adapter); 1872 drm_connector_cleanup(connector); 1873 kfree(gma_connector); 1874 } 1875 1876 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = { 1877 .dpms = cdv_intel_dp_dpms, 1878 .mode_fixup = cdv_intel_dp_mode_fixup, 1879 .prepare = cdv_intel_dp_prepare, 1880 .mode_set = cdv_intel_dp_mode_set, 1881 .commit = cdv_intel_dp_commit, 1882 }; 1883 1884 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = { 1885 .dpms = drm_helper_connector_dpms, 1886 .detect = cdv_intel_dp_detect, 1887 .fill_modes = drm_helper_probe_single_connector_modes, 1888 .set_property = cdv_intel_dp_set_property, 1889 .destroy = cdv_intel_dp_destroy, 1890 }; 1891 1892 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = { 1893 .get_modes = cdv_intel_dp_get_modes, 1894 .mode_valid = cdv_intel_dp_mode_valid, 1895 .best_encoder = gma_best_encoder, 1896 }; 1897 1898 static void cdv_intel_dp_add_properties(struct drm_connector *connector) 1899 { 1900 cdv_intel_attach_force_audio_property(connector); 1901 cdv_intel_attach_broadcast_rgb_property(connector); 1902 } 1903 1904 /* check the VBT to see whether the eDP is on DP-D port */ 1905 static bool cdv_intel_dpc_is_edp(struct drm_device *dev) 1906 { 1907 struct drm_psb_private *dev_priv = to_drm_psb_private(dev); 1908 struct child_device_config *p_child; 1909 int i; 1910 1911 if (!dev_priv->child_dev_num) 1912 return false; 1913 1914 for (i = 0; i < dev_priv->child_dev_num; i++) { 1915 p_child = dev_priv->child_dev + i; 1916 1917 if (p_child->dvo_port == PORT_IDPC && 1918 p_child->device_type == DEVICE_TYPE_eDP) 1919 return true; 1920 } 1921 return false; 1922 } 1923 1924 /* Cedarview display clock gating 1925 1926 We need this disable dot get correct behaviour while enabling 1927 DP/eDP. TODO - investigate if we can turn it back to normality 1928 after enabling */ 1929 static void cdv_disable_intel_clock_gating(struct drm_device *dev) 1930 { 1931 u32 reg_value; 1932 reg_value = REG_READ(DSPCLK_GATE_D); 1933 1934 reg_value |= (DPUNIT_PIPEB_GATE_DISABLE | 1935 DPUNIT_PIPEA_GATE_DISABLE | 1936 DPCUNIT_CLOCK_GATE_DISABLE | 1937 DPLSUNIT_CLOCK_GATE_DISABLE | 1938 DPOUNIT_CLOCK_GATE_DISABLE | 1939 DPIOUNIT_CLOCK_GATE_DISABLE); 1940 1941 REG_WRITE(DSPCLK_GATE_D, reg_value); 1942 1943 udelay(500); 1944 } 1945 1946 void 1947 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg) 1948 { 1949 struct gma_encoder *gma_encoder; 1950 struct gma_connector *gma_connector; 1951 struct drm_connector *connector; 1952 struct drm_encoder *encoder; 1953 struct cdv_intel_dp *intel_dp; 1954 const char *name = NULL; 1955 int type = DRM_MODE_CONNECTOR_DisplayPort; 1956 1957 gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL); 1958 if (!gma_encoder) 1959 return; 1960 gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL); 1961 if (!gma_connector) 1962 goto err_connector; 1963 intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL); 1964 if (!intel_dp) 1965 goto err_priv; 1966 1967 if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev)) 1968 type = DRM_MODE_CONNECTOR_eDP; 1969 1970 connector = &gma_connector->base; 1971 encoder = &gma_encoder->base; 1972 1973 drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type); 1974 drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS); 1975 1976 gma_connector_attach_encoder(gma_connector, gma_encoder); 1977 1978 if (type == DRM_MODE_CONNECTOR_DisplayPort) 1979 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT; 1980 else 1981 gma_encoder->type = INTEL_OUTPUT_EDP; 1982 1983 1984 gma_encoder->dev_priv=intel_dp; 1985 intel_dp->encoder = gma_encoder; 1986 intel_dp->output_reg = output_reg; 1987 1988 drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs); 1989 drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs); 1990 1991 connector->polled = DRM_CONNECTOR_POLL_HPD; 1992 connector->interlace_allowed = false; 1993 connector->doublescan_allowed = false; 1994 1995 /* Set up the DDC bus. */ 1996 switch (output_reg) { 1997 case DP_B: 1998 name = "DPDDC-B"; 1999 gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT); 2000 break; 2001 case DP_C: 2002 name = "DPDDC-C"; 2003 gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT); 2004 break; 2005 } 2006 2007 cdv_disable_intel_clock_gating(dev); 2008 2009 cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name); 2010 /* FIXME:fail check */ 2011 cdv_intel_dp_add_properties(connector); 2012 2013 if (is_edp(gma_encoder)) { 2014 int ret; 2015 struct edp_power_seq cur; 2016 u32 pp_on, pp_off, pp_div; 2017 u32 pwm_ctrl; 2018 2019 pp_on = REG_READ(PP_CONTROL); 2020 pp_on &= ~PANEL_UNLOCK_MASK; 2021 pp_on |= PANEL_UNLOCK_REGS; 2022 2023 REG_WRITE(PP_CONTROL, pp_on); 2024 2025 pwm_ctrl = REG_READ(BLC_PWM_CTL2); 2026 pwm_ctrl |= PWM_PIPE_B; 2027 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl); 2028 2029 pp_on = REG_READ(PP_ON_DELAYS); 2030 pp_off = REG_READ(PP_OFF_DELAYS); 2031 pp_div = REG_READ(PP_DIVISOR); 2032 2033 /* Pull timing values out of registers */ 2034 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> 2035 PANEL_POWER_UP_DELAY_SHIFT; 2036 2037 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> 2038 PANEL_LIGHT_ON_DELAY_SHIFT; 2039 2040 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> 2041 PANEL_LIGHT_OFF_DELAY_SHIFT; 2042 2043 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> 2044 PANEL_POWER_DOWN_DELAY_SHIFT; 2045 2046 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> 2047 PANEL_POWER_CYCLE_DELAY_SHIFT); 2048 2049 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 2050 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); 2051 2052 2053 intel_dp->panel_power_up_delay = cur.t1_t3 / 10; 2054 intel_dp->backlight_on_delay = cur.t8 / 10; 2055 intel_dp->backlight_off_delay = cur.t9 / 10; 2056 intel_dp->panel_power_down_delay = cur.t10 / 10; 2057 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100; 2058 2059 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 2060 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 2061 intel_dp->panel_power_cycle_delay); 2062 2063 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 2064 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 2065 2066 2067 cdv_intel_edp_panel_vdd_on(gma_encoder); 2068 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV, 2069 intel_dp->dpcd, 2070 sizeof(intel_dp->dpcd)); 2071 cdv_intel_edp_panel_vdd_off(gma_encoder); 2072 if (ret <= 0) { 2073 /* if this fails, presume the device is a ghost */ 2074 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 2075 drm_encoder_cleanup(encoder); 2076 cdv_intel_dp_destroy(connector); 2077 goto err_connector; 2078 } else { 2079 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", 2080 intel_dp->dpcd[0], intel_dp->dpcd[1], 2081 intel_dp->dpcd[2], intel_dp->dpcd[3]); 2082 2083 } 2084 /* The CDV reference driver moves pnale backlight setup into the displays that 2085 have a backlight: this is a good idea and one we should probably adopt, however 2086 we need to migrate all the drivers before we can do that */ 2087 /*cdv_intel_panel_setup_backlight(dev); */ 2088 } 2089 return; 2090 2091 err_priv: 2092 kfree(gma_connector); 2093 err_connector: 2094 kfree(gma_encoder); 2095 } 2096